1.0um波段高功率全光纤结构连续掺镱光纤激光器
- 格式:pdf
- 大小:4.04 MB
- 文档页数:64
高功率IPG光纤激光器应用简介一、IPG光纤激光器简介1.光纤激光器简介光纤激光器是指用掺稀土元素玻璃光纤作为增益介质的激光器,光纤激光器可在光纤放大器的基础上开发出来:在泵浦光的作用下光纤内极易形成高功率密度,造成激光工作物质的激光能级“粒子数反转”,当适当加入正反馈回路(构成谐振腔)便可形成激光振荡输出。
2.光纤激光器的优势首先是使用成本低,光纤激光器替代了不稳定或高维修成本的传统激光器。
其次,光纤激光的柔性导光系统,非常容易与机器人或多维工作台集成。
第三,光纤激光器体积小,重量轻,工作位置可移动。
第四,光纤激光器可以达到前所未有的大功率(至五万瓦级)。
第五,在工业应用上比传统激光器表现更优越。
它有适用于金属加工的最佳波长和最佳的光束质量,而且光纤激光器在每米焊接和切割上的费用最低。
第六,一器多机,即一个激光器通过光纤分光成多路多台工作。
第七,免维护,使用寿命长。
最后,由于其极高的稳定性,大大降低了运行中对激光质量监控的要求。
简单来说就是高功率下的极好光束质量,高光束质量下的极好电光效率,高功率高光束质量下的极小体积、可移动性和柔性。
3.IPG简介全球最大的光纤激光制造商IPG Photonics由Valentin Gapontsev博士于1991年创建,总部设在美国东部麻省。
IPG在德国、美国、俄罗斯和意大利设有生产、研发基地,并在全球设有销售和服务网点,覆盖美国、英国、欧洲、印度、日本、韩国、新加坡和中国,并于2006年在美国纳斯达克上市。
十八年来,IPG致力于纵向合成,所有的核心配件均为IPG研发、生产和拥有,同时也是唯一一个能为客户提供高性价比的光纤和半导体激光器的厂家。
高功率是IPG的优势。
全世界已有上千台IPG的高功率(>1KW)光纤激光器在汽车制造、船舶制造、海上平台和石油管道、航空航天和技术加工等工业领域中得以应用。
在日本,我们向丰田、三菱、住友在内的客户售出了数百台IPG的大功率光纤激光器。
掺铥光纤激光器1、掺铥光纤激光器掺铥光纤激光器的光谱可调谐范围更宽(~1600 nm-2200 nm),该波段处于人眼安全波段且包含了1940 nm附近的水吸收峰,对组织的穿透深度浅,且还包含几个大气窗口及特殊气体的吸收峰。
与同时处于人眼安全波段掺铒或铒镱共掺1550 nm激光器相比,掺铥光纤激光器的光光转换效率可达60%以上;且位于铥离子吸收带的790 nm半导体激光器技术成熟,可提供高功率泵浦源;此外,此波段泵浦时,量子转换效率为200%。
掺铥基质为石英光纤,也容易实现高功率输出。
对于掺铥光纤激光器的研究,连续输出已达千瓦量级,如:飞秒150 W的功率输出,皮秒也达到百瓦的输出功率水平,相比之下,单脉冲能量较高的纳秒量级脉冲输出平均功率较低,且多数为空间泵浦结构,最高仅为110 W。
793 nm 半导体泵浦激光器的输出功率已达数百瓦,所以掺铥光纤激光器的输出功率可更高。
且与掺镱光纤激光器相比,掺铥光纤激光的受激布里渊散射和受激拉曼散射的产生阈值要高4倍以上,光纤端面的损伤阈值也高出近10倍,在高功率输出方面优势更加明显。
目前高功率、可调谐掺铥光纤激光器正处于研究的热点。
2、研究进展(1)、纳秒脉冲掺铥光纤激光器研究进展(主动调Q):输出参数(脉冲能量/功率、斜率效率/重频、脉宽)是否全光纤结构研究单位4 W,4 kHz,130 ns 否加拿大信息技术研究12.3 W,100 kHz,45 ns 否法德研究所33 W,13.9 kHz,15 ns 否耶拿大学应用物理研究所52 W,50 kHz,822 ns 是新加坡南洋理工大学(2)、皮秒/飞秒脉冲掺铥光纤激光器研究进展(锁模):平均功率,重复频率,脉宽,实现方式是否全光纤结构研究单位3.1 W,100 MHz,108 fs,CPA 否美国IMRA公司5.4 W,100 kHz,300 fs,SESAM/CPA 是美国PolarOnyx公司7 W,2 MHz,33 ps,电流调制否英国南安普顿大学152 W,49.1MHz,~700 fs,CPA 否德国耶拿大学。
基于掺铒光纤作为可饱和吸收体的窄线宽光纤激光器研究张福宇;王蓟;薛明昆;衣文索
【期刊名称】《应用物理》
【年(卷),期】2024(14)4
【摘要】本文介绍了一种以未泵浦的掺铒光纤作为可饱和吸收体,通过3 dB耦合器及环形器,构成一个由驻波效应形成动态光栅的一种窄线宽光纤激光器。
测得在中心波长在1559.54 nm处得到输出的激光器,在泵浦功率为150 mW以下时可以保持长时间的稳定工作,泵浦功率为70 mW,输出光功率为17.03 mW,斜率效率为30.73%,光学信噪比为39 dB,波长分辨率的不稳定性小于0.03 nm,光学信噪比的波动小于0.16 dB,从0到1 MHz的37.5 kHz信号频谱中的弛豫振荡频率峰值为−89.6 dB/Hz。
通过延时自外差法测量线宽为1.99 kHz。
【总页数】9页(P157-165)
【作者】张福宇;王蓟;薛明昆;衣文索
【作者单位】长春理工大学物理学院长春;长春理工大学光电工程学院长春
【正文语种】中文
【中图分类】TN2
【相关文献】
1.(高功率窄线宽掺铒光纤激光器的研究进展
2.基于石墨烯可饱和吸收体的掺铒光纤环形腔脉冲激光器
3.基于金纳米棒可饱和吸收体的被动调Q掺铒光纤激光器
4.
基于氧化铜可饱和吸收体的掺铒光纤激光器5.基于保偏掺铥光纤饱和吸收体的2μm波段超窄线宽光纤激光器
因版权原因,仅展示原文概要,查看原文内容请购买。
超连续光谱光源超连续谱光源在众多科学领域具有广泛而重要的应用,近年来一直是国际研究热点。
此调研回顾了利用连续光激光器和脉冲光激光器抽运光子晶体光纤产生超连续谱广元的形成机制以及近几年来两种机制下高功率超连续谱光源所取得的进展,分析了在提高超连续谱光源输出平均功率过程中所需要克服的难题。
报道了国防科学技术大学通过优化超连续谱光源的整体结构,攻克了低损熔接、光纤端面抗损伤、热处理以及非线性效应的有效控制等关键技术,成功研制出一种全光纤结构、输出平均功率为177.6w的超连续谱光源,光谱范围覆盖1064-2000nm,10db光谱带宽约740nm,光-光转换效率高达56%,功率水平为国际领先。
背景窄带入射脉冲在介质中由于极度的非线性光谱展宽效应而产生的宽带连续谱被称为超连续谱(super continuum),如图1.1所示。
超连续谱的产生由Alfano和shapiro[1,2]在块状玻璃中发现并首次报道,他们发现当波长为530nm、脉冲能量为5mJ的皮秒脉冲在块状BK7玻璃中传播后,可以获得波长从400到700nm的覆盖整个可见光范围的白光光谱。
之后超连续谱被广泛地研究,包括固体、有机和无机液体、气体以及各种类波导中产生超连续谱。
图1.1 超连续谱光源90年代后期光子晶体光纤形式的新型光波导的产生吸引了科学界广泛的兴趣,引发了一场通过超连续谱的产生来获得超宽带高亮度光谱的革命[3-5]。
1992年彻Russell等人首次提出PCF(Photonic Crystal Fiber ,PCF)的概念,1996年J.C.Knight等人成功拉制出世界上第一根PCF[6],之后对PCF的特性的研究迅速展开。
图1.2是PCF的横截面示意图,灰色区域是二氧化硅,白色区域是空气孔(air holes),黑色区域是聚合体涂覆层(polymer coating),d是空气孔的直径,Λ是空气孔的间距。
由图可看出PCF的包层由周期性排列的微米量级空气孔所组成。
连续波泵浦的高功率全光纤化超连续谱光源郭春雨;林怀钦;阮双琛;伍一鸣;欧阳德钦;杨锦辉;韦会峰;胡学娟【摘要】以6个输出功率为25 W的976 nm半导体激光器作为泵浦源,通过光纤合束器搭建双包层掺镱(Yb)光纤放大器,对中心波长为1 071.5 nm的10 W连续波掺Yb光纤激光器种子源进行主振荡功率放大,实现高功率输出.通过包层光剥离器及与系统双包层尾纤匹配的模场适配器,将放大系统的大模场双包层光纤与小芯径单模光纤进行模场匹配耦合,进而实现高功率连续波激光的单模输出.通过梯度折射率光纤熔接技术,将模场适配器的输出光纤与一段长度为200 m的高非线性光子晶体光纤进行高效率耦合,实现高功率连续波光纤激光器对高非线性光子晶体光纤的全光纤化泵浦,最终研制最大输出功率为36.5 W的全光纤化超连续谱光源,光谱范围覆盖990~1 700 nm,20 dB光谱范围达620 nm.%A high-power all-fiber continuous-wave (CW) fiber laser is achieved via a master oscillator power amplifier (MOPA) configuration pumped by six 25 W fiber pigtailed 976 nm laser diodes.The seed source is a 10 W Yb-doped CW fiber laser with a central wavelength of 1 071.5 nm.The mode-matching between the largemode double-clad pigtail fiber of the amplifier and a single-mode small-core fiber is realized through a claddinglight stripper (CLS) and a mode field adapter (MFA).Consequently,the high-power single-mode CW fiber laser is accomplished.Then,this single-mode CW fiber laser is used to pump a 200 m photonic crystal fiber (PCF) by using the GRIN fiber splicing technique,and a high-power all-fiber supercontinuum source with a maximum output power of 36.5 W and 20 dB bandwidth of 620 nm is demonstrated.【期刊名称】《深圳大学学报(理工版)》【年(卷),期】2013(030)004【总页数】5页(P423-427)【关键词】光电子与激光技术;超连续谱;连续波光纤激光器;主振荡功率放大;光子晶体光纤【作者】郭春雨;林怀钦;阮双琛;伍一鸣;欧阳德钦;杨锦辉;韦会峰;胡学娟【作者单位】深圳市激光工程重点实验室,先进光学精密制造技术广东普通高校重点实验室,深圳大学电子科学与技术学院,深圳518060;深圳市激光工程重点实验室,先进光学精密制造技术广东普通高校重点实验室,深圳大学电子科学与技术学院,深圳518060;深圳市激光工程重点实验室,先进光学精密制造技术广东普通高校重点实验室,深圳大学电子科学与技术学院,深圳518060;深圳市激光工程重点实验室,先进光学精密制造技术广东普通高校重点实验室,深圳大学电子科学与技术学院,深圳518060;深圳市激光工程重点实验室,先进光学精密制造技术广东普通高校重点实验室,深圳大学电子科学与技术学院,深圳518060;深圳市激光工程重点实验室,先进光学精密制造技术广东普通高校重点实验室,深圳大学电子科学与技术学院,深圳518060;光纤光缆制备技术国家重点实验室,长飞光纤光缆有限公司研发中心,武汉430073;深圳市激光工程重点实验室,先进光学精密制造技术广东普通高校重点实验室,深圳大学电子科学与技术学院,深圳518060【正文语种】中文【中图分类】TN248光子晶体光纤(photonic crystal fiber,PCF)具有高非线性系数和可控色散特性[1],利用高功率光纤激光器作为泵浦源,使超连续谱(supercontinuum,SC)研究取得长足进步[2-8].高功率连续波掺镱(Yb)光纤激光器与长度较长的光子晶体光纤结合也可产生超连续谱.与脉冲激光泵浦方式相比,基于连续波泵浦的超连续谱光源具有光谱功率密度高、光谱光滑以及强度噪声和相干长度低等优势[2];高功率连续波超连续谱光源在高分辨光学相干层析成像、环境检测及激光雷达等领域具有重要的应用前景,因而得到广泛关注.2003年,Avdokhin等[9]利用1 065 nm掺Yb光纤激光器泵浦100 m光子晶体光纤,实现输出功率为3.8 W超连续谱,光谱从泵浦波长扩展到1 380 nm 的水峰吸收波长.由于在此波长处受强水峰的影响,光纤的吸收损耗非常大,限制了1 μm光纤激光器泵浦下,超连续谱光谱向长波的进一步扩展,以及输出功率的提高.随着光子晶体光纤拉制技术的提高,光纤的水峰吸收系数降低了1个量级.2005年,Travers等[10]在连续波泵浦下的低水峰光子晶体光纤中,实现光谱扩展到1 550 nm的超连续谱输出.利用短长度的光子晶体光纤在高功率连续波激光泵浦下,输出超连续谱也可突破1 380 nm处水峰的限制.Cumberland等[11]在50 W连续波泵浦条件下,通过一段短长度双零色散光子晶体光纤(零色散点分别为810 nm和1 730 nm),得到平均功率为29 W的超连续谱输出,光谱从泵浦波长处扩展到1 670 nm,在长波零色散点的长波方向产生了色散波,但并未在短波零色散点的短波方向产生色散波.要想在零色散点短波方向产生新的光谱成分,要求泵浦波长位于光纤的反常色散区,且尽量接近光纤的零色散点,以利从泵浦演化产生的超短脉冲孤子扩展到正常色散区.Travers等[3]利用400 W工业级掺Yb光纤激光器作为泵浦源,获得的超连续谱输出功率首次突破50 W,是通过零色散波长位于泵浦短波方向的PCF,得到超连续谱光谱范围为1 050~2 200 nm;同时,也利用零色散波长与泵浦波长匹配的PCF,实现了光谱范围覆盖600~1900 nm的28 W宽带超连续谱输出[3].Labat等[12]利用 100 W 的1 075 nm光纤激光器,泵浦180 m色散匹配的掺磷PCF,实现光谱达到可见光波段的36 W超连续谱输出.尽管在连续波泵浦下已实现如此高功率的超连续谱输出,但实验中泵浦源和光子晶体光纤非线性介质之间通过透镜进行空间耦合,并未实现全光纤化结构,因而限制了超连续谱光源的进一步应用.本文研究主振荡功率放大(master oscillator power amplifier,MOPA)结构的掺Yb高功率单模连续波光纤激光器,采用梯度折射率光纤(gradient-index fiber,GRIN fiber)熔接技术实现泵浦激光器与光子晶体光纤的全光纤耦合,最终研制出基于连续波泵浦的高功率全光纤化超连续谱光源.1 实验装置高功率超连续谱光源系统整体结构如图1.采用高非线性光子晶体光纤作为超连续谱产生的非线性介质,搭建MOPA结构的连续波单模掺Yb光纤激光器作为泵浦源.掺Yb光纤激光器尾纤与高非线性光子晶体光纤之间采用GRIN光纤熔接技术实现全光纤化高强度耦合.图1 基于连续波泵浦的全光纤化超连续谱光源系统结构图Fig.1 Experimental setup of the all-fiber CW-pumped supercontinuum source所用光纤为长飞光纤光缆公司的高非线性光子晶体光纤(high nonlinear PCF,HNL-PCF),其采用堆积拉伸法拉制,纤芯与石英外层之间有5层周期结构.纤芯直径为4.7 μm,空气孔周期Λ 为3.3 μm,空气孔直径d为1.9 μm.由于一般光纤在1 380 nm处存在高水峰吸收,在光纤拉制过程中采用特殊方法来减弱OH 离子的影响,以减小水峰处的吸收损耗.利用光纤截断法对光子晶体光纤进行损耗测量,得到光纤水峰处的吸收系数为80 dB/km[13].根据光纤端面图,利用有限元法(finite element method,FEM)对其色散和非线性系数进行理论计算,同时采用光纤色散测量仪(PE,CD 400)对其色散值进行验证,理论计算值与实际测量值非常吻合.光纤的零色散点位于1 030 nm处[14],小于泵浦源的波长,在1 071.5 nm泵浦波长处的模场直径和非线性系数分别为3.9 μm和11 W-1·km-1. 图2 所用PCF的端面图及色散特性Fig.2 The cross-section and experimental measured dispersion of the PCFMOPA结构光纤激光器的种子源为1 071.5 nm的连续波单模光纤激光器,种子源的输出功率为10 W.功率放大级是掺Yb双包层光纤放大器:泵浦源为6个25 W 的976 nm半导体激光器,对Yb波段激光进行防反保护后输出;功率放大级增益光纤采用长度为15 m的大模场双包层掺Yb光纤(Nufern,LMA-YDF-20/400),纤芯与包层的直径分别为 20和400 μm,数值孔径分别为 0.06和0.46,包层在976 nm处的泵浦光吸收系数为 1.7 dB/m;采用一个(6+1)×1的光纤合束器连接6个半导体激光器尾纤和掺Yb双包层增益光纤,进行全光纤化泵浦;在增益光纤之后熔接一个高功率包层光剥离器(cladding light stripper,CLS),用来剥离剩余的976 nm泵浦光和激发到包层中的激光,避免对后续系统造成损坏.在CLS之后熔接一个光纤模场适配器(mode field adapter,MFA,输入光纤为LMA-20/400,输出光纤为HI-1060),实现大模场双包层粗光纤和小芯径单模光纤之间的模场匹配耦合.HI-1060光纤的模场直径为6.2 μm,与用来产生超连续谱的HNL-PCF模场直径更为接近,易于实现两者的高效率熔接耦合.模场适配器输出端的HI-1060光纤与高非线性光子晶体光纤之间采用GRIN光纤熔接技术实现全光纤化高效耦合,最小熔接损耗达到0.26 dB[15].梯度折射率光纤熔接技术允许光子晶体光纤的空气孔塌陷熔接,因而提高了常规光纤和光子晶体光纤之间的熔接强度.光子晶体光纤输出端为一个8角光纤端帽,避免激光反馈对系统稳定性的影响,超连续谱的输出光谱和功率分别采用光谱仪(Yokogawa,AQ6370 B)和功率计(LP-3C)进行监测.2 实验结果图3为光纤放大器在不同的泵浦功率(掺Yb双包层增益光纤入纤功率)下,整个系统输出超连续谱的光谱演化过程.随着泵浦功率的增大,输出超连续谱从泵浦波长处持续向长波方向扩展.在泵浦功率分别为 0、31.9、59.4和86.5 W 时,输出超连续谱长波限分别达到1 200、1 370、1 450和1 610 nm,对应的20 dB光谱带宽分别为20、220、330和430 nm.基于连续波泵浦的超连续谱来源于调制不稳定性(modulation instability,MI)产生的超短光脉冲.脉冲能量高于孤子形成阈值的部分超短脉冲演化形成基态孤子,基态孤子进一步经历孤子自频移效应(soliton self-frequency shift,SSFS),从而形成长波拉曼孤子超连续谱[3,16].图4为最大的泵浦功率下超连续谱的输出光谱,光谱的长波限已达到1 700 nm,20 dB光谱带宽为620 nm.尽管在最大泵浦功率下,输出超连续谱长波已经扩展到1 700 nm,但在泵浦波长短波方向仍未出现显著的光谱成分.这主要是因为泵浦波长为1 071.5 nm,位于光子晶体光纤的反常色散区且距离光纤1 030 nm处的零色散点较远,调制不稳定反斯托克斯边带或产生孤子的光谱没有扩展到光纤的正常色散区,因此,导致产生短波光谱成分的“孤子捕获”及“四波混频” (four-wave mixing,FWM)非线性效应效率很低[17-18],光谱展宽机制主要是产生长波光谱成分SSFS效应.图3 光纤放大器不同泵浦功率下所对应的超连续谱的输出光谱Fig.3 Output spectra of the supercontinuum source at different pump power of the fiber amplifier图4 最大泵浦功率114.8 W下的超连续谱输出光谱Fig.4 The output spectrum of the supercontinuum source at the maximum pump power of 114.8 W 图5为输出超连续谱长波限与放大器泵浦功率之间的关系曲线,可见,超连续谱长波限整体趋于线性增长,仅在达到1 380 nm附近的水峰吸收处时曲线增长略有减缓.主要原因是连续波泵浦下超连续谱的产生要求较长的PCF来增强相互作用非线性效应,而较长的光纤在水峰处引入较大损耗,因此需要更大的泵浦功率来突破其吸收损耗对光谱扩展的限制.图6为超连续谱输出功率与光纤放大器泵浦功率之间的关系曲线,两者具有较好的线性对应,在最大的114.8 W泵浦功率下,超连续谱输出功率为36.5 W,其中,10 W的1 071.5 nm种子激光单独注入时超连续谱输出功率为3.26 W,因而,整个系统的光-光转化效率达到30%.图5 系统不同泵浦功率下输出超连续谱的长波限Fig.5 The longest wavelengths from the SC spectra with increasing pump power of the setup图6 超连续谱输出功率特性Fig.6 Output power of the generated supercontinuum with pump power of the setup结语本文对一个10 W连续波掺Yb光纤激光器进行主振荡功率放大,实现了连续波激光的高功率输出.在激光放大系统之后采用包层光剥离器和模场适配器,实现了放大系统中的大模场双包层光纤到小芯径单模光纤之间的模场匹配耦合和高功率激光的单模输出.利用梯度折射率光纤熔接技术,该高功率单模光纤激光器对200 m高非线性光子晶体光纤进行全光纤化泵浦,最终实现了最大输出功率为36.5 W的全光纤化超连续谱光源,光谱范围覆盖990~1700 nm,20 dB光谱范围达到620 nm.超连续谱输出功率和光谱扩展相对放大器泵浦功率具有较好线性关系,若采用更高功率的半导体激光器泵浦源,有望实现更高功率及更宽光谱范围的超连续谱输出.参考文献 /References:[1]Knight J C,Birks T A,Russell P S,et al.All-silica single-mode opticalfiber with photonic crystal cladding [J].Optics Letters,1996,21(19):1547-1549.[2]Kudlinski A,Bouwmans G,Douay M,et al.Dispersionengineered photonic crystal fibers for CW-pumped supercontinuum sources[J].Journal of Lightwave Technology,2009,27(11):1556-1564.[3]Travers J C,Rulkov A B,Cumberland B A,et al.Visible supercontinuum generation in photonic crystal fibers with a 400 W continuous wave fiber laser [J].Optics Express,2008,16(19):14435-14447.[4]Yan Peiguang,Shu Jie,Ruan Shuangchen,et al.Polarization dependent visible supercontinuum generation in the nanoweb fiber [J].Optics Express,2011,19(6):4985-4990.[5]Chen Shengping,Wang Jianhua,Chen Hongwei,et al.20 W all fiber supercontinuum generation from picosecond MOPA pumped photonic crystal fiber [J].Laser Physics,2011,21(3):519-521.[6]Guo Chunyu,Ruan Shuangchen,Chen Zucong,et al.An all-fiber supercontinuum source pumped with a 18.4 W picosecond fiber laser [J].Journal of Shenzhen University Science and Engineering,2011,28(3):218-224.(in Chinese)郭春雨,阮双琛,陈祖聪,等.18.4 W皮秒光纤激光器及其全光纤化超连续谱光源[J].深圳大学学报理工版,2011,28(3):218-224. [7]Ruan Shuangchen,Yan Peiguang,Guo Chunyu,et al.Photonic crystal fiber supercontinuum source[J].Journal of Shenzhen University Science and Engineering,2011,28(4):295-301.(in Chinese)阮双琛,闫培光,郭春雨,等.光子晶体光纤超连续谱光源[J].深圳大学学报理工版,2011,28(4):295-301.[8]Guo Chunyu,Ouyang Deqin,Ruan Shuangchen,etal.Supercontinuum generation from a tapered photonic crystal fiber pumped with a high-power nanosecond fiber laser[J].Chinese Journal of Lasers,2013,40(4):0405003-1-0405003-6.(in Chinese)郭春雨,欧阳德钦,阮双琛,等.高功率纳秒光纤激光器抽运锥形光子晶体光纤产生超连续谱[J].中国激光,2013,40(4):0405003-1-0405003-6.[9]Avdokhin A V,Popov S V,Taylor J R.Continuous-wave,high-power,Raman continuum generation in holey fibers[J].Optics Letters,2003,28(15):1353-1355.[10]Travers J C,Kennedy R E,Popov S V,et al.Extended continuous-wave supercontinuum generation in alow-waterloss holey fiber[J].Optics Letters,2005,30(15):1938-1940.[11]Cumberland B A,Travers J C,Popov S V,et al.29 W high power CW supercontinuum source[J].Optics Express,2008,16(8):5954-5962. [12]Labat D,Mélin G,Mussot A,et al.Phosphorus-doped photonic crystal fibers for high-power(36 W)visible CW supercontinuum [J].IEEE Photonics Journal,2011,3(5):815-820.[13]Guo Chunyu,Ruan Shuangchen,Yan Peiguang,et al.A low-cost,CW-pumped supercontinuum source [J].Laser Physics,2013,23(5):055403-1-055403-4.[14]Guo Chunyu,Ruan Shuangchen,Yan Peiguang,et al.Flat supercontinuum generation in cascaded fibers pumped by a continuous wave laser [J].Optics Express,2010,18(11):11046-11051.[15]Ouyang Deqin,Guo Chunyu,Ruan Shuangchen,et al.Theoretical and experimental analysis of splicing between the photonic crystal fiber and the conventional fiber using grin fibers[J].Applied Optics,2012,51(36):8516-8520.[16]Kudlinski A,Mussot A.Vsible cw-pumped supercontinuum [J].Optics Letters,2008,33(20):2407-2409.[17]Cumberland B A,Travers J C,Popov S V,et al.Toward visible cw-pumped supercontinua [J].Optics Letters,2008,33(18):2122-2124. [18]Travers J C.Blue solitary waves from infrared continuous wave pumping of optical fibers [J].Optics Express,2009,17(3):1502-1507.。
光纤的种类1.石英光纤石英光纤(Silica Fiber)是以二氧化硅(SiO2)为主要原料,并按不同的掺杂量,来控制纤芯和包层的折射率分布的光纤。
石英(玻璃)系列光纤,具有低耗、宽带的特点,现在已广泛应用于有线电视和通信系统。
石英玻璃光导纤维的优点是损耗低,当光波长为 1.0~1.7μm(约1.4μm附近),损耗只有1dB/km,在1.55μm处最低,只有0.2dB/km。
2.掺氟光纤掺氟光纤(Fluorine Doped Fiber)为石英光纤的典型产品之一。
通常,作为1.3Pm波域的通信用光纤中,控制纤芯的掺杂物为二氧化锗(GeO2),包层是用SiO炸作成的。
但接氟光纤的纤芯,大多使用SiO2,而在包层中却是掺入氟素的。
由于,瑞利散射损耗是因折射率的变动而引起的光散射现象。
所以,希望形成折射率变动因素的掺杂物,以少为佳。
氟素的作用主要是可以降低SIO2的折射率。
因而,常用于包层的掺杂。
由于掺氟光纤中,纤芯并不含有影响折射率的氟素掺杂物。
由于它的瑞利散射很小,而且损耗也接近理论的最低值。
所以多用于长距离的光信号传输。
石英光纤与其它原料的光纤相比,还具有从紫外线光到近红外线光的透光广谱,除通信用途之外,还可用于导光和传导图像等领域。
3.红外光纤作为光通信领域所开发的石英系列光纤的工作波长,尽管用在较短的传输距离,也只能用于2pm。
为此,能在更长的红外波长领域工作,所开发的光纤称为红外光纤。
红外光纤(Infrared Optical Fiber)主要用于光能传送。
例如有:温度计量、热图像传输、激光手术刀医疗、热能加工等等,普及率尚低。
4.复合光纤复合光纤(Compound Fiber)在SiO2原料中,再适当混合诸如氧化钠(Na2O)、氧化硼(B2O2)、氧化钾(K2O2)等氧化物的多成分玻璃作成的光纤,特点是多成分玻璃比石英的软化点低且纤芯与包层的折射率差很大。
主要用在医疗业务的光纤内窥镜。
5.氟、氯化物光纤氟化物光纤氯化物光纤(Fluoride Fiber)是由氟化物玻璃作成的光纤。
超连续光谱光源超连续谱光源在众多科学领域具有广泛而重要的应用,近年来一直是国际研究热点。
此调研回顾了利用连续光激光器和脉冲光激光器抽运光子晶体光纤产生超连续谱广元的形成机制以及近几年来两种机制下高功率超连续谱光源所取得的进展,分析了在提高超连续谱光源输出平均功率过程中所需要克服的难题。
报道了国防科学技术大学通过优化超连续谱光源的整体结构,攻克了低损熔接、光纤端面抗损伤、热处理以及非线性效应的有效控制等关键技术,成功研制出一种全光纤结构、输出平均功率为177.6w的超连续谱光源,光谱范围覆盖1064-2000nm,10db光谱带宽约740nm,光-光转换效率高达56%,功率水平为国际领先。
背景窄带入射脉冲在介质中由于极度的非线性光谱展宽效应而产生的宽带连续谱被称为超连续谱(super continuum),如图1.1所示。
超连续谱的产生由Alfano和shapiro[1,2]在块状玻璃中发现并首次报道,他们发现当波长为530nm、脉冲能量为5mJ的皮秒脉冲在块状BK7玻璃中传播后,可以获得波长从400到700nm的覆盖整个可见光范围的白光光谱。
之后超连续谱被广泛地研究,包括固体、有机和无机液体、气体以及各种类波导中产生超连续谱。
图1.1 超连续谱光源90年代后期光子晶体光纤形式的新型光波导的产生吸引了科学界广泛的兴趣,引发了一场通过超连续谱的产生来获得超宽带高亮度光谱的革命[3-5]。
1992年彻Russell等人首次提出PCF(Photonic Crystal Fiber ,PCF)的概念,1996年J.C.Knight等人成功拉制出世界上第一根PCF[6],之后对PCF的特性的研究迅速展开。
图1.2是PCF的横截面示意图,灰色区域是二氧化硅,白色区域是空气孔(air holes),黑色区域是聚合体涂覆层(polymer coating),d是空气孔的直径,Λ是空气孔的间距。
由图可看出PCF的包层由周期性排列的微米量级空气孔所组成。
掺镱光纤发射光谱-概述说明以及解释1.引言1.1 概述掺镱光纤是一种掺杂了稀土元素镱的光纤,具有较高的发射效率和较宽的发射带宽。
随着光通信、激光器、光放大器等光学器件领域的发展,掺镱光纤在光学通信和光学传感等领域具有广泛的应用前景。
本文将对掺镱光纤的制备过程、性质特点以及应用领域进行深入探讨,以期为相关领域的研究和实践提供参考和借鉴。
1.2 文章结构本文主要分为三个部分,即引言、正文和结论。
在引言部分,将对掺镱光纤发射光谱进行概述,介绍文章的结构和目的,为读者提供一个整体的了解。
在正文部分,将详细介绍掺镱光纤的制备方法、性质特点以及应用领域,通过对相关研究成果和实践经验的介绍,深入探讨掺镱光纤在光学通信、激光加工等领域的重要作用。
在结论部分,对文章进行总结,展望掺镱光纤在未来的应用前景,并提出对相关研究方向的建议和展望,以期为进一步研究和实践提供参考。
1.3 目的本文旨在系统概述掺镱光纤的制备、性质和应用,并通过对相关研究和实践的总结和分析,探讨掺镱光纤的发展趋势和前景。
同时,通过本文的研究,可以更深入地了解掺镱光纤在光通信、激光器、传感器等领域的应用,并为相关领域的研究提供参考和借鉴。
希望通过本文的阐述,读者能够对掺镱光纤有一个更全面和深入的了解,促进该领域的研究和发展。
2.正文2.1 掺镱光纤的制备掺镱光纤是一种具有特殊性能的光纤,其制备过程需要经过多道工艺步骤。
首先,选择高纯度的二氧化硅作为基材,通过化学气相沉积(CVD)或者类似的方法,在基材表面形成一层掺镱的包覆层。
然后在高温环境下,将这些掺镱包覆层进行拉伸,形成细长的光纤。
接着,将拉制好的光纤进行退火处理,消除其中的应力,提高其抗弯曲性能。
在制备掺镱光纤的过程中,需要严格控制各个步骤的工艺参数,以确保最终光纤的质量和性能稳定性。
此外,掺镱光纤的制备还需要注意保护环境的洁净度,避免杂质等不良因素对光纤质量的影响。
通过以上工艺步骤的精确控制,可以制备出具有高光学性能和稳定性的掺镱光纤,为后续的研究和应用奠定良好的基础。