新人教版七年级数学上册_有理数复习资料
- 格式:doc
- 大小:288.50 KB
- 文档页数:8
第一章有理数期末复习一、正数:大于0的数叫做正数。
负数:正数前加上符号“—”(负)的数叫做负数。
注意:0既不是正数,也不是负数;0是正数和负数的分界。
考点题目:1.如果80m表示向东走80m,那么-60m表示_____________2.在跳远测试中,合格的标准是4.00m,小明跳出了3.96m,记做-0.04m,小强的成绩被记做+0.18m,则小强跳了______m3.洗衣粉包装袋上有:“净重:300±5g”,请说明这段文字的含义袋号 1 2 3 4 5净重 303 298 300 294 305根据上面的数据解释这5袋洗衣粉的净重是否合格。
4.飞机在距地面800m的高空做飞行表演,它第一次上升了200m,第二次下降了300m,第三次又上升了-100米,此时它距地面多高?二、有理数:整数和分数统称为有理数。
整数:正整数,0,负整数统称为整数;分数:正分数,负分数统称为分数注意:小数可以化为分数,所以把小数看成分数;百分数也是分数。
正有理数:正整数,正分数有理数{ 0负有理数:负整数,负分数有理数{整数:正整数负整数 0分数:正分数负分数含有“π”的数均不是有理数。
考点题目:1.“0”的意义:①0是整数,也是有理数。
②0不是正数也不是负数。
③0是自然数2.把下列各数填在相应的集合中:-22,-π,-5%,92 ,-0.66……,0.121121112……,3.14正整数集合:。
负整数集合:。
负分数集合:。
有理数集合:。
负有理数集合:。
三、数轴:规定了单位长度,原点,正方向的直线。
考点题目:1.数轴上表示表示3的点和表示-6的点之间的距离是_____2.数轴上-3与2之间有___个整数,有____个有理数。
3.点A为数轴上表示-2的点,当点A沿数轴移动4个单位长度时,它所表示的数是_____4.在数轴上到原点的距离等于2的点所表示的数为_______5.把数轴上表示2的点移动5个单位长度后,所得的对应的点表示的数是_______6.画出数轴并标出下列各数对应的点四、相反数:只有符号不同的两个数叫做互为相反数注意:a和-a互为相反数(a表示任意一个数,正数,负数,0)0的相反数是0;互为相反数的两个数相加得0考点题目:1.-3的相反数是_______;0的相反数是_______;2.化简各数的符号:-(-5)=_______ +(+5)=_______ +(-5)=_______(+5)=________3.如果a=-a,那么表示数a的点在数轴的位置是_______4.如果a+2的相反数是-8,那么a=_______如果a的相反数是-9,那么a=_______5.一个数在数轴上所对应的点向左移动8个单位后,得到表示他的相反数的点,这个数是_______6.若a+2的相反数是-8,那么a=_______五、绝对值:数轴上表示数a的点与原点的距离叫做a的绝对值,记作|a|。
人教版七年级数学上册第一章有理数知识要点本章的主要内容可以概括为有理数的概念与有理数的运算两部分。
有理数的概念可以利用数轴来认识、理解,同时,利用数轴又可以把这些概念串在一起。
有理数的运算是全章的重点。
在具体运算时,要注意四个方面,一是运算法则,二是运算律,三是运算顺序,四是近似计算。
1.有理数:(1)凡能写成形式的数,都是有理数, 和 统称有理数.)0p q ,p (pq≠为整数且注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π (是不是)有理数;(2)有理数的分类: ① ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;a≥0 ⇔ a 是正数或0 ⇔ a 是非负数; a≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.2.数轴:数轴是规定了 (数轴的三要素)的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c 的相反数是 ;a-b 的相反数是;a+b 的相反数是;(3)相反数的和为 ⇔ a+b=0 ⇔ a 、b 互为相反数.(4)相反数的商为 .(5)相反数的绝对值相等w w w .x k b 1.c o m4.绝对值:(1)正数的绝对值等于它 ,0的绝对值是 ,负数的绝对值等于 ;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为: 或 ;⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a ⎩⎨⎧≤-≥=)0()0(a a a a a (3);;0a 1a >⇔=0a 1a <⇔-=(4) |a|是重要的非负数,即|a|≥0,非负性;5.有理数比大小:(1)正数永远比0大,负数永远比0小;(2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。
新人教版七年级上册数学总复习知识点和练习题新人教版数学七年级上期末总复期末复一:有理数的意义一、双基回顾1.前进8米的相反数是后退8米,盈利50元的相反数是亏损50元。
2.向东走5m记作+5m,则向西走8m记作-8m,原地不动用0表示。
3.把下列各数填入相应的大括号中:正数{7,11/2,0.25};负数{-9.25,-301,-7/3};分数{11/2,-7/3,0};整数{7,-9,-301,0};非负整数{0,7,11/2};非正数{-9.25,-301,-7/3,0}。
4.与表示-1的点距离为3个单位的点所表示的数是-4.5.数轴上到原点的距离为2的点所表示的数是±2.6.3的相反数的倒数是-1/3.7.最小的自然数是1;最小的正整数是1;绝对值最小的数是0;最大的负整数是-1.8.相反数等于它本身的数是0,绝对值等于它本身的数是0,平方等于它本身的数是1,立方等于它本身的数是0,倒数等于它本身的数是1.9.如图,如果a0,那么-a>b>-b>a。
10.已知|a+2|+(3-b)²=0,则a=-2,b=3/2.二、例题导引例11) 大于-3且小于2.1的整数有-2,-1,0,1.2) 绝对值大于1小于4.3的整数的和是-3+2+1+3+4=7.例2由a、b互为相反数可得a+b=0,由m、n互为倒数可得mn=1,代入(a+b)²-3mn+2|x|的式子中得(-6)²-3+6=33.例31) 由a²=4得a=±2,由b³=-8得b=-2,故a+b=0.2) 由|a|=2,|b|=5得a=-2,b=5,故a-b=-7.三、练升华1.判断下列叙述是否正确:①零上6℃的相反数是零下6℃,而不是零下8℃。
(错误)②如果a是负数,那么-a就是正数。
(正确)③正数与负数互为相反数。
(正确)④一个数的相反数是非正数,那么这个数一定是非负数。
人教版七年级数学上册期末复习有理数知识点+易错题有理数习知识点复习1、有理数的定义:________和________统称为有理数。
2、有理数的分类:按照符号分类,可以分为________、________和________;按照定义分类,可以分为________和________:整数分为________、________和________;分数分为________和________。
3、数轴的定义:规定了________、________和________的________叫数轴。
4、数轴的三要素:数轴的三要素是指________、________和________,缺一不可。
5、用数轴比较有理数的大小:在数轴上,________的点表示的数总比________的点表示的数大。
6、绝对值的定义:数轴上____________与________的________,叫做这个数的绝对值。
7、绝对值的表示方法如下:-2的绝对值是2,记作________;3的绝对值是3,记作________;0的绝对值是________。
8、相反数的定义:__________、__________的两个数互为相反数,其中一个数是另一个数的________。
9、表示一个数的相反数就是在这个数的前面添一个________号,如2的相反数可表示为________。
10、有理数加法法则:①同号两数相加,取________的符号,并把________相加;②异号两数相加,________相等时,和为________;绝对值不等时,取__________符号,并用________________。
③一个数与0相加,________。
11、有理数减法法则:减去一个数,等于____________。
12、有理数加法运算律:加法交换律:a+b=________;加法结合律:(a+b)+c=________。
13、有理数乘法法则:两数相乘,同号________,异号________,并把________相乘;任何数与0相乘都得________。
有理数总复习1.有理数: (1)凡能写成)0p q ,p (pq≠为整数且形式的数,都是有理数,整数和分数统称有理数. 注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数; (2)有理数的分类: ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 练习:(1)有理数的定义: 、 、 、 、 都可以写成 的形式,这样的数统称为有理数。
(2)数集:把一些数放在一起就组成了一个数的集合。
集合的表示方法:有 和 两种。
▲集合里一定不要忘记写 。
2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 练习:有理数在数轴上的位置如图,用“> ”或“< ”填空:a+b______0,a-b______0。
3.有理数比大小:(1)正数永远比0大,负数永远比0小; (2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小; (4)数轴上的两个数,右边的数总比左边的数大; 练习:1、比较大小:-2 -3,0 │-821│,-32 -432、最大的负整数是 ,最小的正整数3、在-5,-0.3,0,1,π,-π,-521,0.0002中,最小的数是 4.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)相反数的和为0 (3)相反数的商为-1. (4)相反数的绝对值相等 练习:1.23的相反数是________,-15的相反数是______,0的相反数是________.2.若a=8.7,则-a=_______,-(-a )=________,+(-a )=________.3.-(-6.3)的相反数是________. 4.化简(1)-(-32)=________;(2)+(+15)=_______; (3)+[-(+1)]=________;(4)-[-(-5)]=_________. 5.若-a=13,则a=_______,若-a=-7.7,则a=________. 5.绝对值:(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数; 注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ;(3)0a 1aa >⇔= ;0a 1aa <⇔-=;(4) |a|是重要的非负数,即|a|≥0;练习:1、-5的绝对值是______ 若|x|=7,则x=______ 若|a|=a,那a_____0; 2、已知052=++-y x ,求x,y 的值。
3、若3=x ,则x=___。
4、下列说法中,错误的是( )A 、一个数的绝对值一定是正数B 、互为相反数的两个数的绝对值相等C 、绝对值最小的数是0D 、绝对值等于它本身的数是非负数 6.倒数:乘积为1的两个数互为倒数;注意:0没有倒数; 若ab=1⇔ a 、b 互为倒数; 若ab=-1⇔ a 、b 互为负倒数.练习:-5的倒数是______ 若那么x=______;等于本身的数汇总:相反数等于本身的数:0 倒数等于本身的数:1,-1 绝对值等于本身的数:正数和0 平方等于本身的数:0,1 立方等于本身的数:0,1,-1. 7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数.练习:△同号两数相加 1、(–3)+(–9) 2、85+(+15) 3、(–361)+(–332) 4、(–3.5)+(–532)△绝对值不相等的异号两数相加1、(–45) +(+23)2、(–1.35)+6.35 2、3、412+(–2.25) 4、(–9)+7 △一个数同0相加1、(–9)+ 0=______________;2、0 +(+15)=_____________。
8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ). 练习: 1、(–1.76)+(–19.15)+ (–8.24) 2、23+(–17)+(+7)+(–13) 3、(+ 341)+(–253)+ 543+(–852) 4、52+112+(–52)9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 练习:1、(–3)–(–5)2、341–(–143) 3、0–(–7) 10 有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘; (2)任何数同零相乘都得零;(3)几个因式都不为零,积的符号由负因式的个数决定.奇数个负数为负,偶数个负数为正。
练习:1、(–4)×(–9)2、(–52)×812、3、(–6)×0 4、(–253)×1355、(–5)×8×(–7)6、(–6)×(–5)×(–7)7、(–12)×2.45×0×9×100 11 有理数乘法的运算律: (1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .(简便运算) 练习: (-4)×15×(-53) (2)(-54)×21×74×(-835)(2)100×(0.7–103–254+ 0.03) (4)(–11)×52+(–11)×95312.有理数除法法则:除以一个数等于乘以这个数的倒数; 注意:零不能做除数,无意义即0a.有理数的除法可以转化为_______来进行,转化的“桥梁”是____________。
除法法则一:除以一个不等于0的数,等于__乘这个数的倒数_。
除法法则二:两数相除,同号得____,异号得____,并把绝对值相______. 0除以任何一个不等于0的数,都得____.1. (–18)÷(–9)2. (–63)÷(7)3. 0÷(–105)4. 1÷(–9)13、加减乘除混合运算有理数加减乘除混合运算,无括号时,“先_乘除_,后__加减_”,有括号时,先算括号内的,同级运算,从_左_到_右_. 计算时注意符号的确定,还要灵活应用运算律使运算简便。
1. 3×(–9)+7×(–9)2. 20–15÷(–5)3. [65÷(–21–31)+281]÷(–181)14.有理数乘方的法则: (1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数; 15.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂; (3)a 2是重要的非负数,即a 2≥0;若a 2+|b|=0 ⇔ a=0,b=0;(4)据规律 ⇒⎪⎪⎭⎪⎪⎬⎫⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅===100101101.01.0222底数的小数点移动一位,平方数的小数点移动二位.练习:1、()42-- 2、3211⎪⎭⎫ ⎝⎛ 3、()20031-4、()33131-⨯-- 5、()2332-+- 6、()2233-÷-15.科学记数法:把一个大于10的数记成a ×10n的形式,其中a 是整数数位只有一位的数且不能为零,这种记数法叫科学记数法. 练习:用科学记数法记出下列各数:(1)1 000 000= (2)57 000 000= (3)123 000 000 000=16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位. (1)0.85149(精确到千分位), (2)47.6(精确到个位) (3)1.5972(精确到0.01), (4)0.02067(保留3个有效数字) (5)64340(保留1个有效数字) (6)60304(保留2个有效数字) 17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字. 18.易错点例1.若||2,3,x y x y ==+=则 。
例2.计算:(1)32423;()- 例3. 33.4510⨯精确到 位。
例4.用四舍五入法,按要求取近似数:80642(保留3个有效数字)。
例5.计算:1133422÷⨯(-)。
例6.计算:11160++235÷(-)。
19.重要考点例析:考点一、考查有理数的有关概念:例1.(1)(08,桂林市)如果向东走3米记作+3米,那么向西走5米记 作 米。
(2)把下列各数填入表示它所在的数集中:16,0.618, 3.14,260,2008,,0.21,5%37-----。
整数集 分数集 负数集 有理数集 例2.(08,泰州市)1.化简-(-2)的结果是 A .-2 B .21-C .21D .2 考点二、考查数轴、相反数、倒数的概念:例3.(1)(08,湖州市)2的相反数的倒数是( ) A .2-B .2C .12-D .12(2)(08,广州)若实数a 、b 互为相反数,则下列等式中恒成立的是( ) A 0a b -= B 0a b += C 1ab = D 1ab =- 例4.2-的倒数的相反数是( ) A .12B .12-C .2D .2-例5.(1)(08,威海市)点A ,B ,C ,D 在数轴上的位置如图所示,其中表示-2的相反数的点是A B C D(2)(08,资阳市)如图1,在数轴上表示到原点的距离为3个单位的点有 A .D 点B .A 点C .A 点和D 点D .B 点和C 点考点三、考查绝对值的有关运算:例6.(08年,东莞市)21-的值是( ) A .21- B .21C .2-D .2例7.(08,芜湖市)若23(2)0m n -++=,则2m n +的值为( )A .4-B .1-C .0D .4考点四、有理数大小的比较:例8.(08,湛江市) 1. 在2-、0、1、3这四个数中比0小的数是( ) A.2-B.0C.1 D .3(2)(08,郴州市)实数a 、b 在数轴上的位置如图1所示,则a 与b 的大小关系是( )A .a > bB . a = bC . a < bD . 不能判断考点五、考查有理数的运算:例9(1)(08,大连市)某天的最高气温为6°C ,最低气温为-2°C ,同这天的最高气温比最低气温高__________°C(2)(08,湘潭) 如图,数轴上A 、B 两点所表示的两数的( ) A. 和为正数B. 和为负数C. 积为正数D. 积为负数例10.计算: (1)(08,江西省)计算(-2)2-(-2) 3的结果是( ) A. -4 B. 2 C. 4 D. 12(2)-10+8÷2(2)(4)(3)---⨯- 考点六、考查乘方的意义及有关运算:例11.(1)(08,嘉兴市)计算2(3)-的结果是( ) A .6-B .6C .9-D .9(2)(08,苏州)计算2008(1)-= .考点七、考查科学记数法、有效数字、近似数的意义:图1 ABO-3o 图1例12.(1)(08盐城)2008年北京奥运圣火在全球传递的里程约为137000km ,用科学记数法可表示为 A .1.37×103kmB .137×103kmC .1.37×105kmD .137×105km(2)(08,义乌市)据统计,2007年义乌中国小商品城市场全年成交额约为348.4亿元,连续第17次蝉联全国批发市场榜首.近似数348.4亿元的有效数字的个数是 A.3个 B. 4个 C.5个 D .6个 考点八、考查有关新题型: 例13.(2008年贵阳市)符号“f ”表示一种运算,它对一些数的运算结果如下:(1)(1)0f =,(2)1f =,(3)2f =,(4)3f =,…(2)122f ⎛⎫= ⎪⎝⎭,133f ⎛⎫= ⎪⎝⎭,144f ⎛⎫= ⎪⎝⎭,155f ⎛⎫= ⎪⎝⎭,… 利用以上规律计算:1(2008)2008f f ⎛⎫-= ⎪⎝⎭ .例1 计算:()110.53 2.75742⎛⎫⎛⎫---+-+ ⎪ ⎪⎝⎭⎝⎭例2 若0>a ,0<b ,且b a <,试用“<”号连接a ,b ,-a ,-b 。