CASS池工作原理
- 格式:doc
- 大小:248.50 KB
- 文档页数:8
CASS污水处理工艺引言概述:CASS(Complete Mix Activated Sludge System)是一种常见的污水处理工艺,通过对废水进行生物降解,去除其中的有机物和污染物,从而达到净化水质的目的。
本文将详细介绍CASS污水处理工艺的原理、优点、适用范围、运行维护和发展趋势。
一、原理:1.1 污水处理过程:污水首先通过网格截污器去除大颗粒杂质,然后进入沉淀池进行初步沉淀,再进入好氧生物反应器进行生物降解,最后进入沉淀池进行二次沉淀。
1.2 生物降解机理:在好氧生物反应器中,细菌通过氧化有机物来生长繁殖,将有机物降解成二氧化碳和水,从而净化水质。
1.3 氧气供应方式:通常采用曝气方式,通过气泡将氧气传递给细菌,促进细菌的生长和有机物的降解。
二、优点:2.1 高效处理:CASS工艺能够有效去除水中的有机物和污染物,使废水得到有效处理。
2.2 稳定性强:CASS工艺对水质波动的适应性强,能够保持稳定的处理效果。
2.3 占地面积小:相比传统的污水处理工艺,CASS工艺占地面积小,适合在城市中心区域建设。
三、适用范围:3.1 工业废水处理:CASS工艺适用于工业废水处理,能够有效去除工业废水中的有机物和重金属等污染物。
3.2 市政污水处理:CASS工艺也适用于市政污水处理,能够处理城市居民生活污水,净化环境水质。
3.3 农村污水处理:CASS工艺适用于农村地区的污水处理,能够有效处理农村生活污水,改善农村环境卫生。
四、运行维护:4.1 定期清理:定期清理沉淀池和好氧生物反应器,清除污泥和杂质,保持处理效果。
4.2 检测监控:定期检测废水处理效果和水质指标,及时调整运行参数,确保工艺正常运行。
4.3 设备维护:定期对设备进行检修和保养,保证设备的正常运转,延长设备使用寿命。
五、发展趋势:5.1 高效化:未来CASS工艺将继续优化,提高处理效率和净化水质的能力。
5.2 自动化:随着科技的发展,CASS工艺将逐渐实现自动化控制,减少人工干预。
cass池工艺原理
CASS池,也称为循环活性污泥系统,是一种广泛应用于污水处理领域的工艺。
其工艺原理主要基于活性污泥法,通过一系列生物化学反应和物理过程,达到去除污水中有机物和污染物的目的。
CASS池工艺的核心是活性污泥,这是一种由多种微生物组成的混合群体,具有很强的降解有机物的能力。
当污水进入CASS池时,活性污泥中的微生物通过吸附和降解作用,将污水中的有机物转化为无害的物质。
这个过程主要包括好氧和厌氧两个阶段。
在好氧阶段,曝气设备向池中充入空气,使活性污泥与污水充分混合,微生物利用有机物作为能量来源进行生长繁殖,同时降解污水中的有机物。
这个过程可以有效地去除污水中的大部分有机物。
在厌氧阶段,停止曝气,活性污泥在缺氧环境下进行内源呼吸,进一步降解难以好氧处理的有机物,同时实现污泥的减量化和稳定化。
这个阶段有助于提高污水处理的效率和出水水质。
CASS池工艺的另一个重要特点是污泥回流。
部分处理后的污泥被回流至进水端,与新进入的污水混合,这不仅可以充分利用活性污泥的降解能力,还可以稀释进水中的有毒物质,提高系统的抗冲击能力。
总之,CASS池工艺通过活性污泥法、曝气、厌氧处理和污泥回流等过程的协同作用,实现了对污水中有机物的有效去除,具有处理效率高、出水水质好、运行稳定等优点。
CASS处理技术的原理和实际应用 时间:2010-6-8 11:46:42 中国污水处理工程网摘要:介绍了CASS工艺的原理、特点、核心构筑物和设计、运行中应注意的主要问题以及常见故障的排除方法。
关键词:CASS处理技术;曝气;溶解氧;撇水机;液位计CASS(Cyclic Activated Sludge System)工艺是间歇式活性污泥法的一种变革,是由SBR(序批式活性污泥法)工艺发展而来,集合了ICEAS和CAST工艺的优点。
CASS工艺的核心是CASS池,在SBR的基础上,反应池沿长方向设计为两部分。
前部为生物选择区也称预反应区,后部为主反应区。
主反应区后部安装有升降自动撇水装置。
整个工艺的曝气、沉淀、排水等过程都在同一池子周期循环进行。
省去了常规活性污泥二沉池和污泥回流系统,同时可连续进水,间断排水。
某环保中心于2008年在实验室进行了CASS整套系统的模拟试验,分别探讨了CASS工艺在处理常温生活污水、低温生活污水、工业废水的机理和特点以及水处理过程中脱氮除磷的效果,其中COD去除率为90%、BOD去除率为95%,脱氮除磷率比一般活性污泥法有很大提高,并在实践中取得了良好的经济效益。
CASS处理设施投入运行,处理水量从80m3/d到14,400m3/d不等。
实践表明,CASS工艺与ICEAS工艺相比,负荷可提高1~2倍,工程投资可节省30%。
因此CASS工艺是一种高效的污水处理工艺。
1 CASS工艺流程常见的CASS工艺污水处理流程见图1。
根据进水水质的不同,CASS工艺还可以与水解酸化、气浮、混凝沉淀、过滤、物化、消毒等工艺结合使用,达到去除污物的目的。
医院污水CASS处理工艺流程见图2。
2 CASS工艺处理医院污水2.1 主要处理单元(1)化粪池当污水经过化粪池,固体杂质借重力作用沉淀下来。
在适当的环境下,由于厌氧微生物的作用,沉淀池污泥进行厌氧发酵。
污水和污泥中的部分有机物被分解,并产生甲烷、硫化氢和二氧化碳等,从而降低了污水处理的难度,减小了污水对后续处理设施的负荷冲击。
工艺方法——循环活性污泥工艺(CASS)工艺简介一、运行原理CASS工艺是将序批式活性污泥法(SBR)的反应池沿长度方向分为两部分,前部为生物选择区也称预反应区,后部为主反应区。
在主反应区后部安装了可升降的滗水装置,实现了连续进水间歇排水的周期循环运行,集曝气沉淀、排水于一体。
CASS工艺是一个厌氧/缺氧/好氧交替运行的过程,具有一定脱氮除磷效果,废水以推流方式运行,而各反应区则以完全混合的形式运行以实现同步硝化一反硝化和生物除磷。
二、工艺流程对于一般城市污水,CASS工艺并不需要很高程度的预处理,只需设置粗格栅、细格栅和沉砂池,无需初沉池和二沉池,也不需要庞大的污泥回流系统(只在CASS反应器内部有约20%的污泥回流)。
CASS工艺运行过程包括充水-曝气、沉淀、滗水、闲置四个阶段组成,具体运行过程为:(1)充水-曝气阶段边进水边曝气,同时将主反应区的污泥回流至生物选择区,一般回流比为20%。
在此阶段,曝气系统向反应池内供氧,一方面满足好氧微生物对氧的需要,另一方面有利于活性污泥与有机物的充分混合与接触,从而有利于有机污染物被微生物氧化分解。
同时,污水中的氨氮通过微生物的硝化作用转变为硝态氮。
(2)沉淀阶段停止曝气,微生物继续利用水中剩余的溶解氧进行氧化分解。
随着反应池内溶解氧的进一步降低,微生物由好氧状态向缺氧状态转变,并发生一定的反硝化作用。
与此同时,活性污泥在几乎静止的条件下进行沉淀分离,活性污泥沉至池底,下一个周期继续发挥作用,处理后的水位于污泥层上部,静置沉淀使泥水分离。
(3)滗水阶段沉淀阶段完成后,置于反应池末端的滗水器开始工作,自上而下逐层排出上清液,排水结束后滗水器自动复位。
滗水期间,污泥回流系统照常工作,其目的是提高缺氧区的污泥浓度,随污泥回流至该区内的污泥中的硝态氮进一步进行反硝化,并进行磷的释放。
(4)闲置阶段闲置阶段的时间一般比较短,主要保证滗水器在此阶段内上升至原始位置,防止污泥流失。
某处理厂CASS池改造工艺选择及运行效果一、引言随着社会经济的发展和人们生活水平的提高,城市污水处理成为了当前环保领域的一个重要课题。
废水处理厂作为城市污水处理的关键环节,其处理工艺的选择和运行效果对于污水处理的效率和质量具有重要影响。
近年来,某处理厂为了提高污水处理效率和降低运行成本,对其CASS池进行了改造,并选择了新的处理工艺。
本文将详细介绍某处理厂CASS池改造工艺选择及运行效果,以期为其他污水处理厂提供一定的参考。
二、改造工艺选择CASS(接触氧化法)是一种常用的污水处理工艺,其主要原理是在污水内增加曝气槽和接触氧化池,利用曝气槽进行氧化分解有机废物,并利用接触氧化池去除废水中的悬浮物。
在CASS池中,微生物和废水长期接触,通过生物分解及吸附作用去除污染物。
在对CASS池进行改造时,某处理厂经过综合考虑和实地调研,最终选择了A2O(变性活性污泥)工艺作为新的处理工艺。
A2O工艺是一种复合生物反应器,其包括缺氧池(Aerobic Zone)和缺氧池(Anoxic Zone)两个部分。
在缺氧池中,污水经过振荡曝气处理,有效去除污水中的氮氧化物,然后通过缺氧池中的好氧区去除有机物。
相比于传统的CASS工艺,A2O工艺具有以下几点优势:A2O工艺能够同时去除废水中的氮、磷和有机物,处理效果更加全面;A2O工艺对于氮、磷和有机物的去除效率更高;A2O工艺在运行稳定性和运行成本方面也具有较大的优势。
三、运行效果经过CASS池改造工艺选择为A2O工艺后,某处理厂的运行效果得到了明显的改善。
首先是处理效率方面,A2O工艺大大提高了废水处理的效率。
经过改造后,废水中氮、磷和有机物的去除率有了明显的提升,处理效果更加全面和彻底。
其次是运行成本方面,A2O工艺的运行成本相比传统的CASS工艺有所降低。
A2O工艺减少了氮磷除去的额外处理设备和药剂,减少了运行成本,并且具有较低的能耗和维护成本。
A2O工艺也提高了处理污泥的效率。
1.1 CASS工艺运行原理CASS工艺运行原理CASS工艺是将序批式活性污泥法(SBR)的反应池沿长度方向分为两部分,前部为生物选择区也称预反应区,后部为主反应区。
在主反应区后部安装了可升降的滗水装置,实现了连续进水间歇排水的周期循环运行,集曝气沉淀、排水于一体。
CASS工艺是一个好氧/缺氧/厌氧交替运行的过程,具有一定脱氮除磷效果,废水以推流方式运行,而各反应区则以完全混合的形式运行以实现同步硝化一反硝化和生物除磷。
CASS工艺流程对于一般城市污水,CASS工艺并不需要很高程度的预处理,只需设置粗格栅、细格栅和沉砂池,无需初沉池和二沉池,也不需要庞大的污泥回流系统(只在CASS反应器内部有约20%的污泥回流)国内常见的CASS工艺流程如图1所示。
编辑本段CASS工艺运行过程总述CASS工艺运行过程包括充水-曝气、沉淀、滗水、闲置四个阶段组成,具体运行过程为:(1)充水-曝气阶段边进水边曝气,同时将主反应区的污泥回流至生物选择区,一般回流比为20%。
在此阶段,曝气系统向反应池内供氧,一方面满足好氧微生物对氧的需要,另一方面有利于活性污泥与有机物的充分混合与接触,从而有利于有机污染物被微生物氧化分解。
同时,污水中的氨氮通过微生物的硝化作用转变为硝态氮。
(2)沉淀阶段停止曝气,微生物继续利用水中剩余的溶解氧进行氧化分解。
随着反应池内溶解氧的进一步降低,微生物由好氧状态向缺氧状态转变,并发生一定的反硝化作用。
与此同时,活性污泥在几乎静止的条件下进行沉淀分离,活性污泥沉至池底,下一个周期继续发挥作用,处理后的水位于污泥层上部,静置沉淀使泥水分离。
(3)滗水阶段沉淀阶段完成后,置于反应池末端的滗水器开始工作,自上而下逐层排出上清液,排水结束后滗水器自动复位。
滗水期间,污泥回流系统照常工作,其目的是提高缺氧区的污泥浓度,随污泥回流至该区内的污泥中的硝态氮进一步进行反硝化,并进行磷的释放。
(4)闲置阶段闲置阶段的时间一般比较短,主要保证滗水器在此阶段内上升至原始位置,防止污泥流失。
关于CASS工艺的详解!CASS工艺全称为循环式活性污泥法,其前身是ICEAS工艺,两者均是由美国的Goronszy教授开发而成的,并分别在美国和加拿大取得专利(CASS)。
CASS池为一间歇式反应器,在此反应器中活性污泥法过程按曝气和非曝气阶段不断重复,将生物反应过程和泥水分离过程结合在一个池子中进行。
因此,它是SBR工艺及ICEAS工艺的一种更新变型。
随着计算机的日益普及,CASS工艺由于其投资小、运行费用低、处理效率高,尤其是优异的脱氮除磷功能而越来越得到重视。
该工艺已广泛应用于城市污水和各种工业废水的处理。
1、CASS工艺的原理CASS工艺是将序批式活性污泥法(SBR)的反应池沿长度方向分为两部分,前部为生物选择区也称预反应区,后部为主反应区。
在主反应区后部安装了可升降的滗水装置,实现了连续进水间歇排水的周期循环运行,集曝气沉淀、排水于一体。
CASS工艺是一个厌氧/缺氧/好氧交替运行的过程,具有一定脱氮除磷效果,废水以推流方式运行,而各反应区则以完全混合的形式运行以实现同步硝化一反硝化和生物除磷,如下图所示。
CASS的工艺各个单元的作用生物选择区生物选择区设置在反应器的进水处,是一容积较小的污水污泥接触区(容积约为反应器总容积的10%)。
进入反应器的污水和从主反应区内回流的活性污泥(回流量约为日平均流量的20%)在此相互混合接触。
生物选择器是按照活性污泥种群组成动力学的规律而设置的,创造合适的微生物生长条件并选择出絮凝性细菌。
在生物选择区内,通过主反应区污泥的回流并与进水混合,不仅充分利用了活性污泥的快速吸附作用而且加速对溶解性底物的去除并对难降解有机物起到良好的水解作用,同时可使污泥中的磷在厌氧条件下得到有效的释放。
生物选择器还可有效地抑制丝状菌的大量繁殖,克服污泥膨胀,提高系统的稳定性。
在生物选择器中,污泥回流液中存在的少量硝酸盐氮(约为2mg/L)可得到反硝化,反硝化量可达整个系统反硝化量的20%左右。
CASS污水处理工艺CASS污水处理工艺是一种高效、可靠的污水处理技术,它能够有效地去除污水中的有机物、悬浮物和氮、磷等营养物质。
本文将详细介绍CASS污水处理工艺的原理、工艺流程、优势以及应用案例。
一、CASS污水处理工艺的原理CASS污水处理工艺是基于活性污泥法的一种改进工艺。
它采用了连续式活性污泥法,通过在污水处理系统中引入特殊的填料,形成为了一种高效的生物膜,使得废水中的有机物能够更好地与污泥接触,从而提高了有机物的去除效率。
二、CASS污水处理工艺的工艺流程1. 初沉池:将进入处理系统的原水进行初步沉淀,去除大部份悬浮物和沉淀物。
2. 厌氧池:将初沉池出水送入厌氧池,通过厌氧菌的作用,将有机物分解为甲烷、二氧化碳等可溶性物质。
3. 好氧池:将厌氧池出水送入好氧池,通过好氧菌的作用,进一步降解有机物,并将氨氮转化为硝酸盐。
4. 沉淀池:将好氧池出水送入沉淀池,通过重力沉淀,使污泥与水分离。
5. 滤池:将沉淀池出水送入滤池,通过滤料的过滤作用,去除细小悬浮物和微生物。
6. 消毒:对滤池出水进行消毒处理,杀灭残留的细菌和病毒。
7. 出水:经过处理的水可以达到国家相关标准,可以用于灌溉、工业循环水等用途。
三、CASS污水处理工艺的优势1. 高效处理:CASS污水处理工艺采用了生物膜技术,使得污水中的有机物能够更好地与污泥接触,大大提高了有机物的去除效率。
2. 占地面积小:相比传统的活性污泥法,CASS污水处理工艺不需要大量的池塘和土地,减少了占地面积。
3. 运行成本低:CASS污水处理工艺能够实现自动化运行,减少了人工维护和管理的成本。
4. 出水水质稳定:CASS污水处理工艺通过多级处理,能够稳定地达到国家相关标准,出水水质优良。
四、CASS污水处理工艺的应用案例1. 某市污水处理厂:该污水处理厂采用CASS污水处理工艺进行污水处理,处理能力为每天5000吨。
经过处理后,出水水质符合国家一级A标准,可直接用于工业循环水。
CASS工艺生化处理一、CASS工艺原理CASS生物处理法是周期循环活性污泥法的简称,CASS池分预反应区和主反应区。
在预反应区内,微生物能通过酶的快速转移机理迅速吸附污水中大部分可溶性有机物,经历一个高负荷的基质快速积累过程,这对进水水质、水量、PH和有毒有害物质起到较好的缓冲作用,同时对丝状菌的生长起到抑制作用,可有效防止污泥膨胀;随后在主反应区经历一个较低负荷的基质降解过程。
CASS工艺集反应、沉淀、排水、功能于一体,污染物的降解在时间上是一个推流过程,而微生物则处于好氧、缺氧、厌氧周期性变化之中,从而达到对污染物去除作用,同时还具有较好的脱氮、除磷功能。
二、CASS工艺的特点CASS池通过技术革新、优化设计使其容积变小,效果更好。
此法连续进水、但不曝气,有机物浓度很高,呈缺氧和厌氧状态,抑制了好气菌的生长,控制污泥不发生膨胀。
主反应区又分成缺氧和好氧两部分,周期进行曝气、沉淀和撇水。
沉淀阶段不进水,消除了可能产生的水力干扰,提高了污泥特性和出水水质。
对成分十分复杂,含有多种病菌、病毒、寄生虫卵和一些有害物质,水质水量变化大的医院污水[2]有更强的适应性和更好的处理效果,是一种理想的医院污水生化处理方法:①工程建设费用低。
CASS的生物降解、污泥沉降和废水排放均在同一池中进行,不需调节池、二沉池和污泥回流设备,可大大节省投资、减少用地和降低运行费用。
一般,建设费用可节省10%~25%,占地面积可减少20%~35%。
②运行费用省。
由于周期性曝气,池内溶解氧的浓度在沉淀和排水阶段降低,在曝气时,氧浓度梯度大,传递效率高,节能效果显著,运转费用可节省10%-25%。
③有机物去除率高,出水水质好。
CASS法不仅能有效去除污水中各种有机污染物,而且具有良好的脱氮、除磷功能。
使二级处理的投资,达到三级处理的水质。
④CASS工艺在延时曝气、周期循环中,极易做到好氧、缺氧和厌氧状态。
而对医院污水的处理,必须要考虑污水中有传染病人的病毒、致病菌,所以不能用普通污水净化池的处理办法来处理,要采用厌氧、兼氧结合为主处理,并利用一系列的物理、化学、生物原理来对传染病污水中的有机物、病菌、病毒进行沉淀、分解、吞噬、杀死[3]。
CASS工艺科技名词定义中文名称:CASS工艺英文名称:cyclic activated sludge system定义:一种循环式活性污泥法。
与序批式反应器相比,增加了预反应区,设计更优化合理的生物反应器。
该工艺将主反应区中部分剩余污泥回流至选择器中,实现了连续进水。
应用学科:生态学(一级学科);污染生态学(二级学科)以上内容由全国科学技术名词审定委员会审定公布目录1、简介CASS(Cyclic Activated Sludge System)是周期循环活性污泥法的简称,又称为循环活性污泥工艺CAST(Cyclic Activated Sludge technology),是在SBR的基础上发展起来的,即在SBR池内进水端增加了一个生物选择器,实现了连续进水(沉淀期、排水期仍连续进水),间歇排水。
设置生物选择器的主要目的是使系统选择出絮凝性细菌,其容积约占整个池子的10%。
生物选择器的工艺过程遵循活性污泥的基质积累--再生理论,使活性污泥在选择器中经历一个高负荷的吸附阶段(基质积累),随后在主反应区经历一个较低负荷的基质降解阶段,以完成整个基质降解的全过程和污泥再生。
该工艺最早在国外应用,为了更好地将其引进,开发出适合我国国情的新型污水处理新工艺,有关科研机构在实验室进行了整套系统的模拟试验,分别探讨了CASS工艺处理常温生活污水、低温生活污水、制药和化工等工业废水的机理和特点以及水处理过程中脱氮除磷的效果,获得了宝贵的设计参数和对工艺运行的指导性经验。
将研究成果成功地应用于处理生活污水及不同种工业废水的工程实践中,取得了良好的经济、社会和环境效益。
并开发的CASS工艺与ICEAS工艺相比,负荷可提高1-2倍,节省占地和工程投资近30%。
2、CASS结构与原理2.1 CASS基本结构是:在序批式活性污泥法(SBR)的基础上,反应池沿池长方向设计为两部分,前部为生物选择区也称预反应区,后部为主反应区,其主反应区后部安装了可升降的自动撇水装置。
整个工艺的曝气、沉淀、排水等过程在同一池子内周期循环运行,省去了常规活性污泥法的二沉池和污泥回流系统;同时可连续进水,间断排水。
2.2 CASS原理::在预反应区内,微生物能通过酶的快速转移机理迅速吸附污水中大部分可溶性有机物,经历一个高负荷的基质快速积累过程,这对进水水质、水量、PH和有毒有害物质起到较好的缓冲作用,同时对丝状菌的生长起到抑制作用,可有效防止污泥膨胀;随后在主反应区经历一个较低负荷的基质降解过程。
CASS工艺集反应、沉淀、排水、功能于一体,污染物的降解在时间上是一个推流过程,而微生物则处于好氧、缺氧、厌氧周期性变化之中,从而达到对污染物去除作用,同时还具有较好的脱氮、除磷功能。
CASS法工作原理如右图所示:cass原理图在反应器的前部设置了生物选择区,后部设置了可升降的自动滗水装置。
其工作过程可分为曝气、沉淀、滗水、闲置四个阶段,周期循环进行。
污水连续进入预反应区,经过隔墙底部进入主反应区,在保证供氧的条件下,使有机物被池中的微生物降解。
根据进水水质可对运行参数进行调整。
3、CASS操作周期的四个阶段3.1曝气阶段由曝气装置向反应池内充氧,此时有机污染物被微生物氧化分解,同时污水中的NH3-N通过微生物的硝化作用转化为NO3--N。
3.2 沉淀阶段此时停止曝气,微生物利用水中剩余的DO进行氧化分解。
反应池逐渐由好氧状态向缺氧状态转化,开始进行反硝化反应。
活性污泥逐渐沉到池底,上层水变清。
3.3 滗水阶段沉淀结束后,置于反应池末端的滗水器开始工作,自上而下逐渐排出上清液。
此时反应池逐渐过渡到厌氧状态继续反硝化。
3.4 闲置阶段闲置阶段即是滗水器上升到原始位置阶段。
4、CASS工艺的主要技术特征4.1 连续进水,间断排水传统SBR工艺为间断进水,间断排水,而实际污水排放大都是连续或半连续的,CASS工艺可连续进水,克服了SBR工艺的不足,比较适合实际排水的特点,拓宽了SBR工艺的应用领域。
虽然CASS工艺设计时均考虑为连续进水,但在实际运行中即使有间断进水,也不影响处理系统的运行。
4.2 运行上的时序性CASS反应池通常按曝气、沉淀、排水和闲置四个阶段根据时间依次进行。
4.3 运行过程的非稳态性每个工作周期内排水开始时CASS池内液位最高,排水结束时,液位最低,液位的变化幅度取决于排水比,而排水比与处理废水的浓度、排放标准及生物降解的难易程度等有关。
反应池内混合液体积和基质浓度均是变化的,基质降解是非稳态的。
4.4 溶解氧周期性变化,浓度梯度高CASS在反应阶段是曝气的,微生物处于好氧状态,在沉淀和排水阶段不曝气,微生物处于缺氧甚至厌氧状态。
因此,反应池中溶解氧是周期性变化的,氧浓度梯度大、转移效率高,这对于提高脱氮除磷效率、防止污泥膨胀及节约能耗都是有利的。
实践证实对同样的曝气设备而言,CASS工艺与传统活性污泥法相比有较高的氧利用率。
5、CASS工艺的主要优点5.1 工艺流程简单,占地面积小,投资较低CASS的核心构筑物为反应池,没有二沉池及污泥回流设备,一般情况下不设调节池及初沉池。
因此,污水处理设施布置紧凑、占地省、投资低。
5.2 生化反应推动力大CASS工艺从污染物的降解过程来看,当污水以相对较低的水量连续进入CASS池时即被混合液稀释,因此,从空间上看CASS工艺属变体积的完全混合式活性污泥法范畴;而从CASS工艺开始曝气到排水结束整个周期来看,基质浓度由高到低,浓度梯度从高到低,基质利用速率由大到小,因此,CASS工艺属理想的时间顺序上的推流式反应器,生化反应推动力较大。
5.3 沉淀效果好CASS工艺在沉淀阶段几乎整个反应池均起沉淀作用,沉淀阶段的表面负荷比普通二次沉淀池小得多,虽有进水的干扰,但其影响很小,沉淀效果较好。
实践证明,当冬季温度较低,污泥沉降性能差时,或在处理一些特种工业废水污泥凝聚性能差时,均不会影响CASS工艺的正常运行。
实验和工程中曾遇到SV30高达96%的情况,只要将沉淀阶段的时间稍作延长,系统运行不受影响。
5.4 运行灵活,抗冲击能力强CASS工艺在设计时已考虑流量变化的因素,能确保污水在系统内停留预定的处理时间后经沉淀排放,特别是CASS工艺可以通过调节运行周期来适应进水量和水质的变比。
当进水浓度较高时,也可通过延长曝气时间实现达标排放,达到抗冲击负荷的目的。
在暴雨时,可经受平常平均流量6信的高峰流量冲击,而不需要独立的调节地。
多年运行资料表明,在流量冲击和有机负荷冲击超过设计值2-3信时,处理效果仍然令人满意。
而传统处理工艺虽然已设有辅助的流量平衡调节设施,但还很可能因水力负荷变化导致活性污泥流失,严重影响排水质量。
当强化脱氮除磷功能时,CASS工艺可通过调整工作周期及控制反应池的溶解氧水平,提高脱氮除磷的效果。
所以,通过运行方式的调整,可以达到不同的处理水质。
5.5 不易发生污泥膨胀污泥膨胀是活性污泥法运行过程中常遇到的问题,由于污泥沉降性能差,污泥与水无法在二沉池进行有效分离,造成污泥流失,使出水水质变差,严重时使污水处理厂无法运行,而控制并消除污泥膨胀需要一定时间,具有滞后性。
因此,选择不易发生污泥膨胀的污水处理工艺是污水处理厂设计中必须考虑的问题。
由于丝状菌的比表面积比菌胶团大,因此,有利于摄取低浓度底物,但一般丝状菌的比增殖速率比非丝状菌小,在高底物浓度下菌胶团和丝状菌都以较大速率降解底物与增殖,但由于胶团细菌比增殖速率较大,其增殖量也较大,从而较丝状菌占优势。
而CASS反应池中存在着较大的浓度梯度,而且处于缺氧、好氧交替变化之中,这样的环境条件可选择性地培养出菌胶团细菌,使其成为曝气池中的优势菌属,有效地抑制丝状菌的生长和繁殖,克服污泥膨胀,从而提高系统的运行稳定性。
5.6 适用范围广,适合分期建设CASS工艺可应用于大型、中型及小型污水处理工程,比SBR工艺适用范围更广泛;连续进水的设计和运行方式,一方面便于与前处理构筑物相匹配,另一方面控制系统比SBR工艺更简单。
对大型污水处理厂而言,CASS反应池设计成多池模块组合式,单池可独立运行。
当处理水量小于设计值时,可以在反应地的低水位运行或投入部分反应池运行等多种灵活操作方式;由于CASS系统的主要核心构筑物是CASS反应池,如果处理水量增加,超过设计水量不能满足处理要求时,可同样复制CASS反应池,因此CASS法污水处理厂的建设可随企业的发展而发展,它的阶段建造和扩建较传统活性污泥法简单得多。
5.7 剩余污泥量小,性质稳定传统活性污泥法的泥龄仅2-7天,而CASS法泥龄为25-30天,所以污泥稳定性好,脱水性能佳,产生的剩余污泥少。
去除1.0kgBOD产生0.2~0.3kg剩余污泥,仅为传统法的60%左右。
由于污泥在CASS反应池中已得到一定程度的消化,所以剩余污泥的耗氧速率只有10mgO2/g MLSS.h以下,一般不需要再经稳定化处理,可直接脱水。
而传统法剩余污泥不稳定,沉降性差,耗氧速率大于20mgO2/g MLSS.h ,必须经稳定化后才能处置。
6、CASS设计中应注意的问题6.1 水量平衡工业废水和生活污水的排放通常是不均匀的,如何充分发挥CASS反应池的作用,与选择的设计流量关系很大,如果设计流量不合适,进水高峰时水位会超过上限,进水量小时反应池不能充分利用。
当水量波动较大时,应考虑设置调节池。
6.2 控制方式的选择CASS工艺的日益广泛应用,得益于自动化技术发展及在污水处理工程中的应用。
CASS工艺的特点是程序工作制,可根据进水及出水水质变化来调整工作程序,保证出水效果。
整套控制系统可采用现场可编程控制(PLC)与微机集中控制相结合,同时为了保证 CASS工艺的正常运行,所有设备采用手动/自动两种操作方式,后者便于手动调试和自控系统故障时使用,前者供日常工作使用。
6.3 曝气方式的选择CASS工艺可选择多种曝气方式,但在选择曝气头时要尽量采用不堵塞的曝气形式,如穿孔管、水下曝气机、伞式曝气器、螺旋曝气器等。
采用微孔曝气时应采用强度高的橡胶曝气盘或管,当停止曝气时,微孔闭合,曝气时开启,不易造成微孔堵塞。
此外,由于CASS工艺自身的特点,选用水下曝气机还可根据其运行周期和DO等情况适当开启不同的台数,达到在满足废水要求的前提下节约能耗的目的。
6.4 排水方式的选择CASS工艺的排水要求与SBR相同,目前,常用的设备为旋转式撇水机,其优点是排水均匀、排水量可调节、对底部污泥干扰小,又能防止水面漂浮物随水排出。
CASS工艺沉淀结束需及时将上清液排出,排水时应尽可能均匀排出,不能扰动沉淀在池底的污泥层,同时,还应防止水面的漂浮物随水流排出,影响出水水质。
目前,常见的排水方式有固定式排水装置如沿水池不同深度设置出水管,从上到下依次开启,优点是排水设备简单、投资少,缺点是开启阀门多、排水管中会积存部分污泥,造成初期出水水质差。