第六章 铸造锌合金及其熔炼
- 格式:ppt
- 大小:1.06 MB
- 文档页数:166
第一章:根据各元素对共晶点实际碳量的影响,将这些元素的量折算成碳量增减,谓之碳当量,以CE表示,只考虑Si、P时,CE=C+1/3(Si+P) 共晶度:铸铁偏离共晶点的程度还可用铸铁的实际含碳量和共晶点的实际含碳量的比值来表示,这个比值称为共晶度,以S c表示。
S c=铁/(4.26%-1/3(Si+P))如S c>1过共晶、S c=共晶S c<1为亚共晶铸铁六种石墨分布分类1、片状:形成条件:石墨成核能力强,冷却速度慢,过冷度小2、菊花状:实际上中心是D形外围是A形,开始时过冷大,成核条件差、先出D型,后期放出凝固潜热,过冷减小而析出A型3、块片状:过共晶时在冷速较小时形成4、枝晶点状:冷速打过冷大导致G强烈分枝5、枝晶片状冷速小初生γ枝晶6、星状:过共晶冷速较大。
第二章:金相组织由金属基体和片状石墨组成。
主要金属基体:p F 及p+F石墨片以不同的数量、大小、形态分布于基体中。
此外,还有少量非金属夹杂物:硫化物、磷化物等。
硫化物:1、硫可以以硫化铁的形式完全溶解于铁液中,但凝固时硫在固溶体或渗碳体中的溶解度很小。
锰较低、冷速较大时,形成三元硫化物或以富铁硫化物形态存在共晶团晶界上,能降低铸铁的强度性能2、当锰量较高时,则形成高熔点的MnS或S质点,对强度性能则无多大影响。
3、磷共晶常沿晶团晶界呈网状、岛状或鱼骨状分布。
它的性质硬而脆,是铸铁的性能降低,脆性增加,因此质量要求高的铸件常要限制磷的含量。
灰铸铁的性能特点1、强度性能:一方面由于它在铸铁中占有一定量的体积,是金属基体承受负荷的有效面积减少;另一方面,更为重要的是,在承受负荷时造成应力集中现象。
石墨的缺口作用主要取决于石墨的形状和分布,尤其形状为主,石墨的缩减作用取决于石墨的大小、数量和分布。
灰铸铁的硬度取决与基体,细化共晶团的措施是提高铸铁力学性能的有力手段。
灰铸铁中由于有大量的石墨片存在,减少了对外来缺口对力学性能影响的敏感性。
2.硬度分散。
1.铁-碳相图的二重性: Fe-C合金中的碳有渗碳体Fe3C和石墨两种存在形式。
在通常情况下,碳以Fe3C的形式存在,即Fe-C 合金按Fe-Fe3C系转变。
但Fe3C是一亚稳相,在一定条件下分解为铁和石墨,所以石墨是碳存在的更稳定状态。
这样Fe-C相图就有Fe-Fe3C和Fe-G两种形式。
2.. Fe-C相图的应用①铸造工艺方面:根据相图确定合金的浇注温度,一般在液相线以上50-100 ℃。
共晶成分附近合金的流动性好,分散缩孔少,可获得致密铸件。
②热锻和热轧方面:钢处于奥氏体状态时强度较低,塑性较好,因此锻造或轧制选在单相奥氏区进行。
一般始锻或始轧温度控制在固相线以下100-200 ℃。
③热处理方面:一些热处理工艺如退火,正火,淬火的加热温度都是依据相图确定的。
3.碳当量:根据各元素对共晶点实际碳量的影响,将这些元素的量折算成碳量的增减,称之碳当量。
以CE表示,一般只考虑Si和P。
CE=C+1/3(Si+P)。
4.共晶度:铸铁的实际含碳量和共晶点实际含碳量的比值。
以Sc来表示。
S C=C铁/C c′。
5.热过冷:因纯金属的理论凝固温度是恒定的,凝固过程中过冷度完全取决于实际温度分布,即过冷度的大小和过冷区的形态是由传热所控制,这种过冷称为热过冷。
6.硅对相图的影响:①硅使共晶点和共析点左移,即减小共晶和共析含碳量,其中对共晶含碳量影响较显著。
②硅略微提高共晶和共析转变温度,并使转变在一个温度区间中进行,对共析转变温度范围的作用更为显著。
③硅的加入,使相图出现了共晶和共析转变的三相共存区④随着硅含量的增加,相图上的奥氏体区逐渐缩小。
7.片状G的形成过程:①形成条件: a. 螺位错台阶:即沿a向,又沿c向生长,最后长成具有一定厚度的片状石墨。
b. 旋转晶界:取决于Va/Vc。
普通HT中G呈片状,这是由于O、S等活性元素在G棱面上的吸附,使这个原本光滑的界面变得粗糙,只需小的过冷即沿a向生长,使Va﹥Vc,长成片状石墨。
铸造合金及其熔炼复习思考题铸铁及其熔炼1.什么是Fe-C双重相图,那一个相图是热力学稳定的,如何用双重相图来解释同一化学成分的铁水在不同的冷却速度下会得到灰口或白口,硅、铬对双重相图共晶临界点各有何影响?2.什么是碳当量、共晶度,有何意义。
3.分析片状石墨、球状石墨、蠕虫状石墨与奥氏体的共晶结过程和形成条件。
4.铸铁固态相变有那些,对铸铁最终组织有何影响?5.冷却速度、化学成分(C、Si、Mn、Cr、Cu等)对铸铁的一次结晶和二次结晶有何影响?6.灰铸铁中石墨的分布形态有那几种,对铸铁的性能有何影响,从化学成分、冷却速度及形核等方面说明其形成条件。
7.灰铸铁的基体和非金属夹杂物有那些类型,对铸铁的性能有何影响?8.灰口铸铁的性能有何特点?与其组织有何关系?汽车上那些铸件采用灰口铁生产?9.影响灰铸组织、性能的因素有那些,根据组织与性能的关系分析提高灰铸铁性能的途径和措施。
10.灰铸铁孕育处理的目的是什么,有那些作用,孕育铸铁化学成分的选择原则是什么,提高孕育效果有那些途径和措施?11.说明球墨铸铁生产的工艺过程,其化学成分选择的原则是什么,与灰口铸铁有何不同?12.球墨铸铁的球化剂和球化处理方法有那些?13.球铁凝固组织中为何易于出现自由渗碳体,如何消除自由渗碳体?14.根据铸铁组织形成原理分析在铸态下获得高韧性、高强度球墨铸铁的途径与措施。
15.球墨铸铁比灰口铸铁易出现缩孔、缩松缺陷,分析其原因和防止措施。
16.铸铁的热处理有何特点,生产上球墨铸铁采用那些热处理工艺?17.蠕墨铸铁有何性能特点?18.蠕墨铸铁的化学成分选择与灰铁和球铁有何不同,蠕化剂和蠕化处理工艺有那些?19.简述可锻铸铁生产工艺过程,化学成分选择原则,为何对于薄壁小件采用可锻铸铁生产有优越性?20.减摩铸铁与抗磨铸铁的组织要求有何不同,常用减摩铸铁和抗磨铸铁有那些?21.提高铸铁的耐热性能的途径和措施有那些?常用耐热铸铁有那些?22.提高铸铁的耐蚀性能的途径和措施有那些,硅、铭、铬三元素在耐热铸铁及耐蚀铸铁中的作用是什么?23.简述冲天炉的结构与熔炼的一般过程。
锌压铸工艺锌合金压铸熔炼是锌合金压铸过程的一个重要环节,熔炼过程不仅是为了获得熔炼的金属液,更重要的是得到化学成分符合规定,能使压铸件得到良好的结晶组织以及气体、夹杂物都很小的金属液。
在熔炼过程中,金属与气体的相互作用和金属液与坩埚的相互作用使成分发生变化,产生夹杂物和吸气。
所以制定正确的熔化工艺规程,并严格执行,是获得高质量铸件的重要保证。
常用锌合金压铸用锌合金熔炼方法:锌合金压铸件1.熔炼前准备坩埚使用前必须清理,去除表面的油污、铁锈、熔渣和氧化物。
工具:熔炼工具在使用前应清楚表面脏物,与金属接触的部分,必须预热并刷上涂料。
工具不能沾水,否则会引起熔液的飞溅及爆炸。
合金料:熔炼前要清理赶紧并预热,去除表面水分。
2.熔炼工艺过程准备好锌料、多孔把、锭槽、熔剂等,注意所以工具在使用前须先预热刷涂料烘干。
合上电源开关,启动燃料机开关,点燃火焰,盖上炉盖。
将温控器温度设定在420-430摄氏度向炉内加入碎锌料垫底,待其熔至办固态后向内加入锌锭。
及时清除锌埚液面上的浮渣,及时补充锌料,保持熔液面正常的高度,因为过多的浮渣和过低的液面都容易造成料渣进入压射系统,导致热作件拉伤、卡死。
停机时把锌熔液舀出,重新熔炼时按三段调温,可以避免冷料爆料和烧坏坩埚。
3.坩埚的使用和维护坩埚在使用前须先进行清理,去除表面的油污、铁锈、熔渣及氧化物。
使用过程中严禁向坩埚内砸放锌锭,以免损坏坩埚。
生产完成后停炉前须将坩埚内锌液舀干。
坩埚在使用过程中须根据表面涂料的脱落程度定期进行清理重喷。
以上就是锌合金压铸件熔炼工艺的大体操作步骤,希望您在看完这篇文章之后,可以对锌合金压铸件的熔炼工艺有一个大致的了解。
《铸造合金及其熔炼》课程教学大纲课程代码:050141002课程英文名称:Casting Alloy and Smelting课程总学时:56讲课:48实验:8上机:0适用专业:材料成型及控制工程专业大纲编写(修订)时间:2017、7一、大纲使用说明(一)课程的地位及教学目标《铸造合金及其熔炼》课试材料加工及控制工程专业的骨干课之一,本课程的教学目的是使学生掌握常用铸铁的成分、组织、性能及其内在联系,掌握铸铁结晶凝固的基本原理及结晶凝固过程对组织形成的影响,掌握铸铁熔炼的基本原理,了解各种铸铁的生产方法及冲天炉的操作工艺,为获得合格的铸铁件奠定合金及熔炼方面的基础。
掌握铸造碳钢、低合金钢、高合金钢的化学成分、金相组织、力学性能的关系,掌握铸钢结晶凝固的基本原理及结晶凝固过程对组织形成的影响,掌握合金元素在铸钢中的作用,掌握炼钢工艺特点,了解炼钢设备的基本构造。
掌握常用的铸造铝合金、铸造铜合金的成分、组织、性能及应用的关系,掌握合金的铸造性能及熔炼工艺原理的基础知识,常用合金及其典型熔炼工艺。
了解铸造镁合金、钛合金的基本知识。
(二)知识、能力及技能方面的基本要求(1).掌握常用铸铁的成分、组织、性能及其内在联系的规律性,掌握铸铁结晶凝固的基本原理及结晶凝固过程对组织形成的影响,掌握常用合金元素的作用。
(2).了解孕育机理、球化机理及固态石墨化机理,了解各种铸铁的生产方法。
(3).掌握冲天炉熔炼的基本原理和获得高温优质铁水的途径。
(4).了解冲天炉的结构、操作工艺和熔炼过程的控制方法。
(5).全面、系统的讲授常用的铸造碳钢及铸造合金钢的牌号、化学成分、组织与性能,掌握铸铁结晶凝固的基本原理及结晶凝固过程对组织形成的影响,阐明铸态组织的形成机理和热处理方法。
(6).介绍国内外在铸钢材料方面的研究成果、发展方向及动态,以扩大思路,开阔眼界。
(7).讲授电弧炉炼钢及感应炉炼钢的工艺过程,阐明炼钢过程中各期主要的物理化学反应,对钢水质量和铸件质量的影响。
铸造合金材料及其熔炼知识全部在这里了铸造合金是高温合金合金化程度较高,不易变形而采用精密铸造成型的合金,属于高温合金中高温强度最高的一种;也是适于熔融状态下充填铸型获得一定形状和尺寸铸件毛坯的合金。
在有色金属合金中,铜合金、铝合金、镁合金、锌合金等都可用于铸造。
有色金属铸件广泛使用于机器制造、航空、汽车、建筑等工业中。
铸钢件在钢铁材料的使用中所占份额甚少,钢铁厂大多以钢材形式供货,因之冶炼厂大多和加工厂设于一地。
有色金属铸件在有色金属材料的使用中所占份额很大(有时几近半数),形成庞大复杂的铸造合金系列。
1 灰铸铁灰铸铁通常是指具有片状石墨的灰口铸铁,这中铸铁具有一定的机械性能、良好的铸造性能以及其它多方面的优良性能,因而在机械制造中业获得最广泛的应用。
表2为灰铸铁的新的国家标准。
该标准是以灰铸铁的抗拉强度作为分级依据的。
由于灰铸铁对冷却速率的敏感性(壁厚效应),同一种牌号铸铁在不同铸件壁厚条件下的实际强度有很大的差别(薄壁与厚壁之间在强度上的差别达50-80MPa)。
表2 灰铸铁分级2 球墨铸铁及蠕墨铸铁球墨铸铁和蠕墨铸铁一般是用稀土镁合金对铁液进行处理,以改善石墨形态,从而得到比灰铸铁有更高机械性能的铸铁。
球墨铸铁依照其基体和性能特点而分为六种:即铁素体(高韧性)球墨铸铁,珠光体(高强度)球墨铸铁,贝氏体(耐磨)球墨铸铁,奥氏体一贝氏体(耐磨)球墨铸铁,马氏体一奥氏体(抗磨)球墨铸铁及奥氏体(耐热、耐蚀)球墨铸铁。
蠕墨铸铁具有不同比例的珠光体—铁素体基体组织。
铸铁性能与其石墨的蠕化程度(蠕化率)及基体有关。
在石墨蠕化良好条件下,珠光体蠕墨铸铁的强度和硬度较高,耐磨性强。
适于制造耐磨零件,如汽车的刹车鼓等。
而铁素体蠕墨铸铁的导热性较好,在高温作用下,不存在珠光体分解问题,组织较稳定,适用于制造在高温下工作、需要有良好的抗热疲劳能力、导热性的零件,如内燃机汽缸盖、进排气岐管等。
3 可锻铸铁可锻铸铁是将白口铸铁通过固态石墨化热处理(包括有或无脱碳过程)得到的具有团絮状石墨的铁碳合金。
压铸锌合⾦熔炼及其渣的处理压铸锌合⾦熔炼及其渣的处理⼀、熔炼过程的物理、化学现象合⾦熔炼是压铸过程的⼀个重要环节,熔炼过程不仅是为了获得熔融的⾦属液,更重要的是得到化学成分符合规定,能使压铸件得到良好的结晶组织以及⽓体、夹杂物都很⼩的⾦属液。
在熔炼过程中,⾦属与⽓体的相互作⽤和⾦属液与坩埚的相互作⽤使组分发⽣变化,产⽣夹杂物和吸⽓。
所以制订正确的熔化⼯艺规程,并严格执⾏,是获得⾼质量铸件的重要保证。
1. ⾦属与⽓体的相互作⽤在熔炼过程中,遇到的⽓体有氢(H2)、氧(O2)、⽔汽(H2O)、氮(N2)、CO2、CO等,这些⽓体或是溶于⾦属液中,或是与其发⽣化学作⽤。
2. ⽓体的来源⽓体主要由原料中来,也可以从炉⽓、炉衬、原材料、熔剂、⼯具等途径进⼊合⾦液中。
3. ⾦属与坩埚的相互作⽤当熔炼温度过⾼时,铁质坩埚与锌液反应加快,坩埚表⾯发⽣铁的氧化反应⽣成Fe2O3等氧化物;此外铁元素还会与锌液反应⽣成FeZn13化合物(锌渣),溶解在锌液中。
铁坩埚壁厚不断减薄直到报废。
⼆、熔炼温度控制1. 压铸温度压铸⽤的锌合⾦熔点为382~386℃,合适的温度控制是锌合⾦成分控制的⼀个重要因素。
为保证合⾦液良好的流动性充填型腔,压铸机锌锅内⾦属液温度为415~430℃,薄壁件、复杂件压铸温度可取上限;厚壁件、简单件可取下限。
中央熔炼炉内⾦属液温度为430~450℃。
进⼊鹅颈管的⾦属液温度与锌锅内的温度基本⼀样。
通过控制锌锅⾦属液温度就能对浇注温度进⾏准确的控制。
并做到:①⾦属液为不含氧化物的⼲净液体;②浇注温度不波动。
①铝、镁元素烧损。
②⾦属氧化速度加快,烧损量增加,锌渣增加。
③热膨胀作⽤会发⽣卡死锤头现象。
④铸铁坩埚中铁元素熔⼊合⾦更多,⾼温下锌与铁反应加快。
会形成铁-铝⾦属间化合物的硬颗粒,使锤头、鹅颈过度磨损。
⑤燃料消耗相应增加。
温度过低:合⾦流动性差,不利于成形,影响压铸件表⾯质量。
现在的压铸机熔锅或熔炉都配备温度测控系统,⽇常⼯作中主要是定时检查以保证测温仪器的准确性,定期⽤便携式测温器(温度表)实测熔炉实际温度,予以校正。
锌合金熔模铸造工艺
锌合金熔模铸造工艺是指利用熔模技术(又称“失蜡造型”技术)制造模具,并在模具中加入高温熔融的锌合金,将熔融的锌合金铸造成所需形状和大小的零件。
该工艺适用于生产中小型、高精度、高要求的锌合金零件,如精密仪器零部件、通讯设备、汽车零部件等。
锌合金熔模铸造工艺步骤包括:
1.制作熔模:根据零件图纸制作熔模,通常采用蜡模制作技术。
2.组装熔模:将制作好的熔模组装成完整的模具,然后加固。
3.烘烤熔模:将组装好的熔模进行烘烤,以去除其中的水分,防止铸造时熔融金属进入熔模后发生爆裂。
4.浇注锌合金:将高温熔融的锌合金浇注入烘烤好的熔模中。
5.冷却:等待熔融的锌合金在熔模中凝固冷却。
6.脱模:将冷却好的零件从熔模中取出,并清理熔模残留物。
7.后处理:进行加工、抛光、涂装等后续处理,以达到所需的表面质量和精度要求。
总的来说,锌合金熔模铸造工艺具有模具制作周期短、零件精度高、表面质量好、生产周期短等优点,适用于小批量、高精度、高要求的零件生产。