第7章-树和二叉树第1讲-树的概念
- 格式:pdf
- 大小:4.40 MB
- 文档页数:53
《数据结构》教学大纲一、基本信息二、教学目标及任务本课程作为计算机专业重要的主干课程,它要求学生学会分析和研究需解决的问题中的数据的特性,为其选择合适的数据结构来描述,在此数据结构的基础上写出相应的算法,并初步掌握算法的时间复杂度和空间复杂度的分析技术。
三、学时分配教学课时分配四、教学内容及教学要求第一章数据结构绪论(共4学时)基本内容:1)数据结构的概念2)数据的逻辑结构和存储结构3)算法教学要求:熟悉数据结构中各名词、术语的含义,掌握其基本概念;理解数据类型和抽象数据类型的含义;理解算法五个要素的确切含义,注意算法与程序的区别;掌握计算语句频度和估算算法时间复杂度的方法。
第二章线性表(共6学时)基本内容:1)线性表的概念及运算2)线性表的顺序存储结构—顺序表3)线性表的链式存储结构—链表教学要求:了解线性表的逻辑结构特性是数据元素之间存在着线性关系,在计算机中表示这种关系的两类不同的存储结构是顺序存储结构和链式存储结构;熟练掌握这两类存储结构的描述方法,以及线性表的各种基本操作的实现;能够从时间和空间复杂度的角度综合比较线性表两种存储结构的不同特点及其适用场合;掌握用线性表来表示一元多项式的方法及相应操作的实现。
第三章栈和队列(共4学时)基本内容:1)栈2)队列教学要求:掌握栈和队列类型的特点,并能在相应的应用问题中正确选用它们;熟练掌握栈类型的两种实现方法,特别应注意栈满和栈空的条件以及它们的描述方法;熟练掌握循环队列和链队列的基本操作实现算法,特别注意队满和队空的描述方法;理解递归算法执行过程中栈的状态变化过程。
第四章数组和矩阵(共4学时)基本内容:1)数组2)特殊矩阵教学要求:了解数组的两种存储表示方法,并掌握数组在以行为主的存储结构中的地址计算方法;掌握对特殊矩阵进行压缩存储时的下标变换公式;了解稀疏矩阵的三类压缩存储方法的特点和适用范围,领会以三元组表示稀疏矩阵时进行矩阵运算采用的处理方法;了解广义表的结构特点及其存储表示方法。
《数据结构》第二版严蔚敏课后习题作业参考答案(1-7章)【第一章绪论】1. 数据结构是计算机科学中的重要基础知识,它研究的是如何组织和存储数据,以及如何通过高效的算法进行数据的操作和处理。
本章主要介绍了数据结构的基本概念和发展历程。
【第二章线性表】1. 线性表是由一组数据元素组成的数据结构,它的特点是元素之间存在着一对一的线性关系。
本章主要介绍了线性表的顺序存储结构和链式存储结构,以及它们的操作和应用。
【第三章栈与队列】1. 栈是一种特殊的线性表,它的特点是只能在表的一端进行插入和删除操作。
本章主要介绍了栈的顺序存储结构和链式存储结构,以及栈的应用场景。
2. 队列也是一种特殊的线性表,它的特点是只能在表的一端进行插入操作,而在另一端进行删除操作。
本章主要介绍了队列的顺序存储结构和链式存储结构,以及队列的应用场景。
【第四章串】1. 串是由零个或多个字符组成的有限序列,它是一种线性表的特例。
本章主要介绍了串的存储结构和基本操作,以及串的模式匹配算法。
【第五章数组与广义表】1. 数组是一种线性表的顺序存储结构,它的特点是所有元素都具有相同数据类型。
本章主要介绍了一维数组和多维数组的存储结构和基本操作,以及广义表的概念和表示方法。
【第六章树与二叉树】1. 树是一种非线性的数据结构,它的特点是一个节点可以有多个子节点。
本章主要介绍了树的基本概念和属性,以及树的存储结构和遍历算法。
2. 二叉树是一种特殊的树,它的每个节点最多只有两个子节点。
本章主要介绍了二叉树的存储结构和遍历算法,以及一些特殊的二叉树。
【第七章图】1. 图是一种非线性的数据结构,它由顶点集合和边集合组成。
本章主要介绍了图的基本概念和属性,以及图的存储结构和遍历算法。
【总结】1. 数据结构是计算机科学中非常重要的一门基础课程,它关注的是如何高效地组织和存储数据,以及如何通过算法进行数据的操作和处理。
本文对《数据结构》第二版严蔚敏的课后习题作业提供了参考答案,涵盖了第1-7章的内容。
第7章树和森林树形结构是一类重要的非线性结构。
树形结构的特点是结点之间具有层次关系。
本章介绍树的定义、存储结构、树的遍历方法、树和森林与二叉树之间的转换以及树的应用等内容。
重点提示:●树的存储结构●树的遍历●树和森林与二叉树之间的转换7-1 重点难点指导7-1-1 相关术语1.树的定义:树是n(n>=0)个结点的有限集T,T为空时称为空树,否则它满足如下两个条件:①有且仅有一个特定的称为根的结点;②其余的结点可分为m(m>=0)个互不相交的子集T1,T2,…,T m,其中每个子集本身又是一棵树,并称为根的子树。
要点:树是一种递归的数据结构。
2.结点的度:一个结点拥有的子树数称为该结点的度。
3.树的度:一棵树的度指该树中结点的最大度数。
如图7-1所示的树为3度树。
4.分支结点:度大于0的结点为分支结点或非终端结点。
如结点a、b、c、d。
5.叶子结点:度为0的结点为叶子结点或终端结点。
如e、f、g、h、i。
6.结点的层数:树是一种层次结构,根结点为第一层,根结点的孩子结点为第二层,…依次类推,可得到每一结点的层次。
7.兄弟结点:具有同一父亲的结点为兄弟结点。
如b、c、d;e、f;h、i。
8.树的深度:树中结点的最大层数称为树的深度或高度。
9.有序树:若将树中每个结点的子树看成从左到右有次序的(即不能互换),则称该树为有序树,否则称为无序树。
10.森林:是m棵互不相交的树的集合。
7-1-2 树的存储结构1.双亲链表表示法以图7-1所示的树为例。
(1)存储思想:因为树中每个元素的双亲是惟一的,因此对每个元素,将其值和一个指向双亲的指针parent构成一个元素的结点,再将这些结点存储在向量中。
(2)存储示意图:-1 data:parent:(3)注意: Parrent域存储其双亲结点的存储下标,而不是存放结点值。
下面的存储是不正确的:-1 data:parent:2.孩子链表表示法(1)存储思想:将每个数据元素的孩子拉成一个链表,链表的头指针与该元素的值存储为一个结点,树中各结点顺序存储起来,一般根结点的存储号为0。
树的逻辑结构树是一种非常重要的数据结构,可以应用于许多领域,如计算机科学、算法、图形学、生物学等等。
其逻辑结构也是非常有特点的,本篇文章将围绕“树的逻辑结构”进行阐述。
一、树的定义树是一种非线性数据结构,由节点和边组成。
每个节点有零个或多个子节点,但只有一个父节点。
称节点没有子节点的节点为叶节点。
称两个节点之间存在一条边,这两个节点就形成了一个父子关系。
二、树的特点1.每个节点都有唯一的一个父节点,除了顶端的根节点;2.节点之间不存在环;3.节点之间有固定的层级关系,根节点在第一层;4.所有节点都能够通过根节点进行访问;5.树中的节点个数可以是有限的或者无限的。
三、树的基本术语1.根节点:具有所有子节点的最高节点;2.子节点:由父节点生成的节点;3.父节点:具有一个或多个子节点的节点;4.叶节点:没有子节点的节点;5.兄弟节点:同一父节点下的节点;6.子树:由一个节点和其所有子孙节点组成的子树;7.层数:根节点的层数为1,其它节点的层数为其父节点层数加1;8.深度:根节点的深度为0,其它节点的深度为其父节点的深度加1;9.路径:从一节点到其它节点所经过的所有边和节点组成的序列;10.森林:由多棵没有相交边的树组成。
四、常用的树的类型1.二叉树:每个节点最多只有两个子节点的树;2.满二叉树:一棵深度为k的树,若所有节点恰好有2^k-1个,则为满二叉树;3.完全二叉树:一棵深度为k的树,除了k层节点外,其它层的节点数都达到了最大值,且第k层所有的节点都集中在最左边的若干位置上;4.二叉查找树:左子树上所有结点的值均小于或等于它的根节点的值,右子树上所有结点的值均大于或等于它的根节点的值;5.平衡二叉树:左右子树的深度相差不超过1的二叉树;6.线索二叉树:将二叉树中所有的空指针用指向该节点中序遍历的前驱和后继的线索来表示的二叉树。
总之,树的逻辑结构是非常有特点的,可以应用于很多领域,并且存在着不同类型的树,因此我们需要根据实际情况选择合适的树去解决问题。
树和二叉树树与二叉树是本书的重点内容之一,知识点多且比较零碎。
其中二叉树又是本章的重点。
在本章中我们要了解树的定义、熟悉树的存储结构、遍历;二叉树的定义、性质、存储结构、遍历以及树、森林、二叉树的转换。
哈夫曼树及哈夫曼编码等内容。
算法的重点是二叉树的遍历及其应用。
6.1 树的定义一、树的定义树:树是n(n>0)个结点的有限集合T。
一棵树满足下列条件:(1)有且仅有一个称为根的结点;(2)其余结点可分为m(m>=0)棵互不相交的有限集合T1,T2,T3,…Tm,其中每个集合又是一棵树,并称之为根的子树。
有关树的一些基本概念:1)结点的度:树中每个结点具有的子树数目或后继结点数。
如图中结点A的度为2,B的度为32) 树的度:所有结点的度的最大值为树的度。
(图中树的度为3)3) 分支结点:即:树中所有度大于0的结点。
4) 叶子结点:即:树中度为零的结点,也称为终端结点。
5) 孩子结点:一个结点的后续结点称为该结点的孩子结点。
6) 双亲结点:一个结点为其后继结点的双亲结点。
7) 子孙结点:一个结点的所有子树中的结点为该结点的子孙结点。
8) 祖先结点:从根结点到一个结点的路径上所有结点(除自己外)称为该结点的祖先结点。
(如A和B为D结点的祖先结点)9) 兄弟结点:具有同一父亲的结点互相为兄弟结点。
(如B和C为兄弟结点)10) 结点的层数:从根结点到该结点的路径上的结点总数称为该结点的层数(包括该结点)。
11) 树的深度(高度):树中结点的最大层数为树的深度。
(图中树的深度为4)12) 森林:0个或多个互不相交的树的集合。
上图中:树的度为3,树的深度为4。
结点A,B,C,D,E,F,G,H,I,J的度分别为:2, 3, 2, 0 ,2 , 0, 0, 0, 0, 0叶结点有:D, F, G, H, I, JB,C为兄弟,D, E, F为兄弟,F, G为兄弟。
I,J为兄弟。
二、树的表示1. 树的逻辑结构描述Tree=(D,R)其中:D为具有相同性质的数据元素的集合。