福建省福州市2014年中考数学试卷及参考答案
- 格式:pdf
- 大小:366.93 KB
- 文档页数:12
二O一四年福州市初中毕业会考、高级中等学校招生考试数学试卷(全卷共4页,三大题,22小题,满分150分;考试时间120分钟)友情提示:所有答案都必须填涂在答题卡相应的位置上,答在本试卷上一律无效。
毕业学校姓名考生号一、选择题(共10小题,每题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.-5的相反数是A.-5 B.5 C.15D.-15【答案】B2.地球绕太阳公转的速度约是110000千米/时,将110000用科学记者数法表示为A.11⨯104B.1.1⨯105C.1.1⨯104D.0.11⨯106【答案】B3.某几何体的三视图如图所示,则该几何体是A.三棱柱B.长方体C.圆柱D.圆锥【答案】D4.下列计算正确的是A.x4·x4=x16B.(a3)2=a5C.(ab2)3=ab6D.a+2a=3a【答案】D5.若7名学生的体重(单位:kg)分别是:40,42,43,45,47,47,58,则这组数据的平均数是A.44 B.45 C.46 D.47【答案】C6.下列命题中,假命题是A.对顶角相等B.三角形两边的和小于第三边C.菱形的四条边都相等D.多边形的外角和等于360︒【答案】B7.若(m-1)2+0,则m+n的值是A.-1 B.0 C.1 D.2【答案】A8.某工厂现在平均每天比原计算多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是A.60045050x x=+B.60045050x x=-C.60045050x x=+D.60045050x x=-【答案】A9.如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为A.45︒B.55︒C.60︒D.75︒【答案】C10.如图,已知直线y=-x+2分别与x轴,y轴交于A,B两点,与双曲线y=kx交于E,F两点,若AB=2EF,则k的值是A.-1 B.1 C.12D.34【答案】D二、填空题(共5小题,每题4分,满分20分;请将正确答案填在答题卡相应位置)11.分解因式:ma+mb=.【答案】m(a+b)12.若5件外观相同的产品中有1件不合格,现从中任意抽取1件进行检测,则抽到不合格产品的概率是.【答案】1 513.计算:+1)-1)=.【答案】114.如图,在□ABCD中,DE平分∠ADC,AD=6,BE=2,则□ABCD的周长是.【答案】2015.如图,在Rt△ABC中,∠ACB=90︒,点D,E分别是边AB,AC的中点,延长BC到点F,使CF=12 BC.若AB=10,则EF的长是.【答案】5三、解答题(满分90分;请将正确答案及解答过程填在答题卡相应位置.作图或添加辅助线用铅笔画完,再用黑色签字笔描黑)16.(每小题7分,共14分)(1+12014⎛⎫⎪⎝⎭0+|-1|.【答案】解:原式=3+1+1=5.(2)先化简,再求值:(x+2)2+x(2-x),其中x=1 3 .【答案】解:原式=x2+4x+4+2x-x2 =6x+4.当x=13时,原式=6⨯13+4=6.17.(每小题7分,共14分)(1)如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.【答案】证明:∵BE=CF,∴BE+EF=CF+EF即BF=CE.又∵AB=DC,∠B=∠C,∴△ABF≌△DCE.∴∠A=∠E.(2)如图,在边长为1个单位长度的小正方形所组成的网格中,△ABC的顶点均在格点上.①sin B的值是;②画出△ABC关于直线l对称的△A1B1C1(A与A1,B与B1,C与C1相对应).连接AA1,BB1,并计算梯形AA1B1B的面积.【答案】①35;②如图所示.由轴对称的性质可得,AA 1=2,BB 1=8,高是4. ∴11AA B B S 梯形=12(AA 1+BB 1)⨯4=20.18.(满分12分)设中学生体质健康综合评定成绩为x 分,满分为100分.规定:85≤x ≤100为A 级,75≤x <85为B 级,60≤x <75为C 级,x <60为D 级.现随机抽取福海中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图.请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了名学生,a =%; (2)补全条形统计图;(3)扇形统计图中C 级对应的圆心角为度;(4)若该校共有2000名学生,请你估计该校D 级学生有多少名? 【答案】解:(1)50,24; (2)如图所示; (3)72;(4)该校D 级学生有:2000⨯450=160人.19.(满分12分)现有A ,B 两种商品,买2件A 商品和1件B 商品用了90元,买3件A 商品和2件B 商品共用了160元.(1)求A ,B 两种商品每件多少元?(2)如果小亮准备购买A ,B 两种商品共10件,总费用不超过350元,且不低于300元,问有几种购买方案,哪种方案费用最低? 【答案】解:(1)设A 商品每件x 元,B 商品每件y 元. 依题意,得29032160.x y x y +=⎧⎨+=⎩,解得2050.x y =⎧⎨=⎩,答:A 商口每件20元,B 商品每件50元.(2)设小亮准备购买A 商品a 件,则购买B 商品(10-a )件. 依题意,得2050(10)3002050(10)350.a a a a +-≥⎧⎨+-≤⎩,解得5≤a ≤623. 根据题意,a 的值应为整数,所以a =5或a =6.方案一:当a =5时,购买费用为20⨯5+50⨯(10-5)=350元; 方案二:当a =6时,购买费用为20⨯6+50⨯(10-6)=320元. ∵350>320,∴购买A 商品6件,B 商品4件的费用最低.答:有两种购买方案,方案一:购买A 商品5件,B 商品5件;方案二:购买A 商品6件,B 商品4件.其中方案二费用最低.20.(满分11分)如图,在△ABC 中,∠B =45︒,∠ACB =60︒,AB =,点D 为BA 延长线上的一点,且∠D =∠ACB ,⊙O 为△ACD 的外接圆. (1)求BC 的长; (2)求⊙O 的半径.【答案】解:(1)过点A 作AE ⊥BC ,垂足为E . ∴∠AEB =∠AEC =90︒. 在Rt △ABE 中,∵sin B =AEAB,∴AB =AB ·sin B =·sin45︒==3. ∵∠B =45︒, ∴∠BAE =45︒.∴BE =AE =3.在Rt △ACE 中,∵tan ∠ACB =AEEC,∴EC =3tan tan 60AE ACB ===∠︒∴BC =BE +EC =3(2)由(1)得,在Rt △ACE 中,∵∠EAC =30︒,EC∴AC =解法一:连接AO 并延长交⊙O 于M ,连接CM .∵AM 为直径, ∴∠ACM =90︒.在Rt △ACM 中,∵∠M =∠D =∠ACB =60︒,sin M =ACAM,∴AM =sin AC M =4. ∴⊙O 的半径为2.解法二:连接OA ,OC ,过点O 作OF ⊥AC ,垂足为F ,则AF =12AC . ∵∠D =∠ACB =60︒, ∴∠AOC =120︒. ∴∠AOF =12∠AOC =60︒. 在Rt △OAF 中,sin ∠AOF =AFAO, ∴AO =sin AFAOF∠=2,即⊙O 的半径为2.21.(满分13分)如图1,点O 在线段AB 上,AO =2,OB =1,OC 为射线,且∠BOC =60︒,动点P 以每秒2个单位长度的速度从点O 出发,沿射线OC 做匀速运动,设运动时间为t 秒.(1)当t =12秒时,则OP =,S △ABP =;(2)当△ABP 是直角三角形时,求t 的值;(3)如图2,当AP =AB 时,过点A 作AQ ∥BP ,并使得∠QOP =∠B ,求证:AQ ·BP =3.【答案】解:(1)1; (2)①∵∠A <∠BOC =60︒, ∴∠A 不可能是直角. ②当∠ABP =90︒时, ∵∠BOC =60︒, ∴∠OPB =30︒.∴OP =2OB ,即2t =2. ∴t =1.③当∠APB =90︒时,作PD ⊥AB ,垂足为D ,则∠ADP =∠PDB =90︒. ∵OP =2t ,∴OD =t ,PD ,AD =2+t ,BD =1-t (△BOP 是锐角三角形).解法一:∴BP 2=(1-t )2+3t 2,AP 2=(2+t )2+3t 2. ∵BP 2+AP 2=AB 2,∴(1-t )2+3t 2+(2+t )2+3t 2=9, 即4t 2+t -2=0.解得t 1t 2. 解法二:∵∠APD +∠BPD =90︒,∠B +∠BPD =90︒, ∴∠APD =∠B . ∴△APD ∽△PBD .∴.AD PDPD BD= ∴PD 2=AD ·BD .于是)2=(2+t )(1-t ),即4t 2+t -2=0.解得t1t2.综上,当△ABP为直角三角形时,t=1(3)解法一:∵AP=AB,∴∠APB=∠B.作OE∥AP,交BP于点E,∴∠OEB=∠APB=∠B.∵AQ∥BP,∴∠QAB+∠B=180︒.又∵∠3+∠OEB=180︒,∴∠3=∠QAB.又∵∠AOC=∠2+∠B=∠1+∠QOP,已知∠B=∠QOP,∴∠1=∠2.∴△QAO∽△OEP.∴AQ AOEO EP=,即AQ·EP=EO·AO.∵OE∥AP,∴△OBE∽△ABP.∴13 OE BE BOAP BP BA===.∴OE=13AP=1,BP=32EP.∴AQ·BP=AQ·32EP=32AO·OE=32⨯2⨯1=3.解法二:连接PQ,设AP与OQ相交于点F. ∵AQ∥BP,∴∠QAP=∠APB.∵AP=AB,∴∠APB=∠B.∴∠QAP=∠B.又∵∠QOP=∠B,∴∠QAP=∠QOP.∵∠QF A=∠PFO,∴△QF A∽△PFO.∴FQ FAFP FO=,即FQ FPFA FO=.又∵∠PFQ=∠OF A,∴△PFQ ∽△OF A . ∴∠3=∠1.∵∠AOC =∠2+∠B =∠1+∠QOP , 已知∠B =∠QOP , ∴∠1=∠2. ∴∠2=∠3.∴△APQ ∽△BPO . ∴AQ APBO BP=. ∴AQ ·BP =AP ·BO =3⨯1=3.22.(满分14分)如图,抛物线y =12(x -3)2-1与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,顶点为D 了.(1)求点A ,B ,D 的坐标; (2)连接CD ,过原点O 作OE ⊥CD ,垂足为H ,OE 与抛物线的对称轴交于点E ,连接AE ,AD .求证:∠AEO =∠ADC ;(3)以(2)中的点E 为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P ,过点P 作⊙E 的切线,切点为Q ,当PQ 的长最小时,求点P 的坐标,并直接写出点Q 的坐标.【答案】(1)顶点D 的坐标为(3,-1). 令y =0,得12(x -3)2-1=0,解得x 1=3,x 2=3∵点A 在点B 的左侧,∴A 点坐标(3,0),B 点坐标(3,0). (2)过D 作DG ⊥y 轴,垂足为G . 则G (0,-1),GD =3.令x=0,则y=72,∴C点坐标为(0,72).∴GC=72-(-1)=92.设对称轴交x轴于点M.∵OE⊥CD,∴∠GCD+∠COH=90︒.∵∠MOE+∠COH=90︒,∴∠MOE=∠GCD.又∵∠CGD=∠OMN=90︒,∴△DCG∽△EOM.∴9323CG DGOM EM EM==,即.∴EM=2,即点E坐标为(3,2),ED=3.由勾股定理,得AE2=6,AD2=3,∴AE2+AD2=6+3=9=ED2.∴△AED是直角三角形,即∠DAE=90︒.设AE交CD于点F.∴∠ADC+∠AFD=90︒.又∵∠AEO+∠HFE=90︒,∴∠AFD=∠HFE,∴∠AEO=∠ADC.(3)由⊙E的半径为1,根据勾股定理,得PQ2=EP2-1. 要使切线长PQ最小,只需EP长最小,即EP2最小.设P坐标为(x,y),由勾股定理,得EP2=(x-3)2+(y-2)2.∵y=12(x-3)2-1,∴(x-3)2=2y+2.∴EP2=2y+2+y2-4y+4=(y-1)2+5.当y=1时,EP2最小值为5.把y=1代入y=12(x-3)2-1,得12(x-3)2-1=1,解得x1=1,x2=5.又∵点P在对称轴右侧的抛物线上,∴x1=1舍去.恒谦教育研究院西安恒谦教育科技股份有限公司 第11页 ∴点P 坐标为(5,1).此时Q 点坐标为(3,1)或(191355,).。
2014福建中考数学试题及答案“长风破浪会有时,直挂云帆济沧海”6月中旬每个奋战在一线的中考人,就是最棒的,相信付出就会有回报,为了广大考友更好的估计自己的分数,本网站为您第一时间发布了2014年福建中考数学真题及答案解析,还有更多2014年中考真题及答案最新发布资讯尽在中考真题栏目及中考答案栏目,期待您的关注。
2014年福建中考数学试题及答案发布入口中考注意事项:超常考场发挥小技巧认真审题,每分必争审题是生命线。
审题是正确答题的前导。
从一个角度看,审题甚至比做题更重要。
题目审清了,解题就成功了一半。
认真审准题,才能正确定向,一举突破。
每次考试,总有一些考生因为审题失误而丢分。
尤其是那些似曾相识的题,那些看似很简单的题,考试要倍加细心,以防“上当受骗”。
我曾给学生一副对联:似曾相识“卷”归来,无可奈何“分”落去。
横批:掉以轻心。
越是简单、熟悉的试题,越要倍加慎重。
很多学生看题犹如“走马观花”,更不思考命题旨意,待到走出考场才恍然大悟,但为时已晚矣。
考试应努力做到简单题不因审题而丢分。
“两先两后”,合理安排中考不是选拔性考试,在新课改背景下,试卷的难度理应不会太大。
基础题和中等难度题的分值应占到80%。
考生拿到试卷,不妨整体浏览,此时大脑里的思维状态由启动阶段进入亢奋阶段。
只要听到铃声一响就可开始答题了。
解题应注意“两先两后”的安排:1.先易后难一般来说,一份成功的试卷,题目的排列应是遵循由易到难,但这是命题者的主观愿望,具体情况却因人而异。
同样一个题目,对他人来说是难的,对自己来说也许是容易的,所以当被一个题目卡住时就产生这样的念头,“这个题目做不出,下面的题目更别提了。
”事实情况往往是:下面一个题目反而容易!由此,不可拘泥于从前往后的顺序,根据情况可以先绕开那些难攻的堡垒,等容易题解答完,再集中火力攻克之。
2.先熟后生通览全卷后,考生会看到较多的驾轻就熟的题目,也可能看到一些生题或新型题,对前者——熟悉的内容可以采取先答的方式。
二O一四年福州市初中毕业会考、高级中等学校招生考试数学试卷(全卷共4页,三大题,22小题,满分150分;考试时间120分钟)友情提示:所有答案都必须填涂在答题卡相应的位置上,答在本试卷上一律无效。
毕业学校姓名考生号一、选择题(共10小题,每题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.-5的相反数是A.-5 B.5 C.15D.-15【答案】B2.地球绕太阳公转的速度约是110000千米/时,将110000用科学记者数法表示为A.11⨯104B.1.1⨯105C.1.1⨯104D.0.11⨯106【答案】B3.某几何体的三视图如图所示,则该几何体是A.三棱柱B.长方体C.圆柱D.圆锥【答案】D4.下列计算正确的是A.x4·x4=x16B.(a3)2=a5C.(ab2)3=ab6D.a+2a=3a【答案】D5.若7名学生的体重(单位:kg)分别是:40,42,43,45,47,47,58,则这组数据的平均数是A.44 B.45 C.46 D.47【答案】C6.下列命题中,假命题是A.对顶角相等B.三角形两边的和小于第三边C.菱形的四条边都相等D.多边形的外角和等于360︒【答案】B7.若(m-1)2+=0,则m+n的值是A.-1 B.0 C.1 D.2【答案】A8.某工厂现在平均每天比原计算多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是A.60045050x x=+B.60045050x x=-C.60045050x x=+D.60045050x x=-【答案】A9.如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为A.45︒B.55︒C.60︒D.75︒【答案】C10.如图,已知直线y=-x+2分别与x轴,y轴交于A,B两点,与双曲线y=kx交于E,F两点,若AB=2EF,则k的值是A.-1 B.1 C.12D.34【答案】D二、填空题(共5小题,每题4分,满分20分;请将正确答案填在答题卡相应位置)11.分解因式:ma+mb=.【答案】m(a+b)12.若5件外观相同的产品中有1件不合格,现从中任意抽取1件进行检测,则抽到不合格产品的概率是.【答案】1 513+1-1)=.【答案】114.如图,在□ABCD中,DE平分∠ADC,AD=6,BE=2,则□ABCD的周长是.【答案】2015.如图,在Rt△ABC中,∠ACB=90︒,点D,E分别是边AB,AC的中点,延长BC到点F,使CF=12BC .若AB=10,则EF的长是.【答案】5三、解答题(满分90分;请将正确答案及解答过程填在答题卡相应位置.作图或添加辅助线用铅笔画完,再用黑色签字笔描黑)16.(每小题7分,共14分)(112014⎛⎫⎪⎝⎭0+|-1|.【答案】解:原式=3+1+1=5.(2)先化简,再求值:(x+2)2+x(2-x),其中x=1 3 .【答案】解:原式=x2+4x+4+2x-x2=6x+4.当x=13时,原式=6⨯13+4=6.17.(每小题7分,共14分)(1)如图,点E ,F 在BC 上,BE =CF ,AB =DC ,∠B =∠C .求证:∠A =∠D .【答案】证明:∵BE =CF , ∴BE +EF =CF +EF 即BF =CE .又∵AB =DC ,∠B =∠C , ∴△ABF ≌△DCE .∴∠A =∠E .(2)如图,在边长为1个单位长度的小正方形所组成的网格中,△ABC 的顶点均在格点上. ①sin B 的值是 ;②画出△ABC 关于直线l 对称的△A 1B 1C 1(A 与A 1,B 与B 1,C 与C 1相对应).连接AA 1,BB 1,并计算梯形AA 1B 1B 的面积.【答案】①35;②如图所示.由轴对称的性质可得,AA 1=2,BB 1=8,高是4. ∴11AA B B S 梯形 =12(AA 1+BB 1)⨯4=20.18.(满分12分)设中学生体质健康综合评定成绩为x分,满分为100分.规定:85≤x≤100为A级,75≤x<85为B级,60≤x<75为C级,x<60为D级.现随机抽取福海中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图.请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了名学生,a=%;(2)补全条形统计图;(3)扇形统计图中C级对应的圆心角为度;(4)若该校共有2000名学生,请你估计该校D级学生有多少名?【答案】解:(1)50,24;(2)如图所示;(3)72;(4)该校D级学生有:2000⨯450=160人.19.(满分12分)现有A,B两种商品,买2件A商品和1件B商品用了90元,买3件A商品和2件B 商品共用了160元.(1)求A,B两种商品每件多少元?(2)如果小亮准备购买A,B两种商品共10件,总费用不超过350元,且不低于300元,问有几种购买方案,哪种方案费用最低?【答案】解:(1)设A商品每件x元,B商品每件y元.依题意,得290 32160.x yx y+=⎧⎨+=⎩,解得2050. xy=⎧⎨=⎩,答:A商口每件20元,B商品每件50元.(2)设小亮准备购买A商品a件,则购买B商品(10-a)件.依题意,得2050(10)300 2050(10)350.a aa a+-≥⎧⎨+-≤⎩,解得5≤a≤62 3 .根据题意,a的值应为整数,所以a=5或a=6.方案一:当a=5时,购买费用为20⨯5+50⨯(10-5)=350元;方案二:当a=6时,购买费用为20⨯6+50⨯(10-6)=320元.∵350>320,∴购买A商品6件,B商品4件的费用最低.答:有两种购买方案,方案一:购买A商品5件,B商品5件;方案二:购买A商品6件,B商品4件.其中方案二费用最低.20.(满分11分)如图,在△ABC中,∠B=45︒,∠ACB=60︒,AB=D为BA延长线上的一点,且∠D=∠ACB,⊙O为△ACD的外接圆.(1)求BC的长;(2)求⊙O的半径.【答案】解:(1)过点A作AE⊥BC,垂足为E.∴∠AEB=∠AEC=90︒.在Rt△ABE中,∵sin B=AE AB,∴AB=AB·sin B=sin45︒=2=3. ∵∠B=45︒,∴∠BAE=45︒.∴BE=AE=3.在Rt △ACE 中,∵tan ∠ACB =AEEC,∴EC =3tan tan 60AE ACB ===∠︒∴BC =BE +EC =3(2)由(1)得,在Rt △ACE 中,∵∠EAC =30︒,EC∴AC =解法一:连接AO 并延长交⊙O 于M ,连接CM . ∵AM 为直径, ∴∠ACM =90︒.在Rt △ACM 中,∵∠M =∠D =∠ACB =60︒,sin M =ACAM,∴AM =sin ACM =4. ∴⊙O 的半径为2.解法二:连接OA ,OC ,过点O 作OF ⊥AC ,垂足为F ,则AF =12AC ∵∠D =∠ACB =60︒, ∴∠AOC =120︒. ∴∠AOF =12∠AOC =60︒. 在Rt △OAF 中,sin ∠AOF =AFAO, ∴AO =sin AFAOF∠=2,即⊙O 的半径为2.21.(满分13分)如图1,点O 在线段AB 上,AO =2,OB =1,OC 为射线,且∠BOC =60︒,动点P 以每秒2个单位长度的速度从点O 出发,沿射线OC 做匀速运动,设运动时间为t 秒.(1)当t=12秒时,则OP=,S△ABP=;(2)当△ABP是直角三角形时,求t的值;(3)如图2,当AP=AB时,过点A作AQ∥BP,并使得∠QOP=∠B,求证:AQ·BP=3.【答案】解:(1)1;(2)①∵∠A<∠BOC=60︒,∴∠A不可能是直角.②当∠ABP=90︒时,∵∠BOC=60︒,∴∠OPB=30︒.∴OP=2OB,即2t=2.∴t=1.③当∠APB=90︒时,作PD⊥AB,垂足为D,则∠ADP=∠PDB=90︒.∵OP=2t,∴OD=t,PD,AD=2+t,BD=1-t(△BOP是锐角三角形).解法一:∴BP2=(1-t)2+3t2,AP2=(2+t)2+3t2.∵BP2+AP2=AB2,∴(1-t)2+3t2+(2+t)2+3t2=9,即4t2+t-2=0.解得t 1t 2= . 解法二:∵∠APD +∠BPD =90︒,∠B +∠BPD =90︒, ∴∠APD =∠B . ∴△APD ∽△PBD . ∴.AD PD PD BD= ∴PD 2=AD ·BD .于是)2=(2+t )(1-t ),即 4t 2+t -2=0.解得t 1t 2= .综上,当△ABP 为直角三角形时,t =1(3)解法一:∵AP =AB , ∴∠APB =∠B .作OE ∥AP ,交BP 于点E , ∴∠OEB =∠APB =∠B . ∵AQ ∥BP , ∴∠QAB +∠B =180︒. 又∵∠3+∠OEB =180︒, ∴∠3=∠QAB .又∵∠AOC =∠2+∠B =∠1+∠QOP , 已知∠B =∠QOP , ∴∠1=∠2. ∴△QAO ∽△OEP . ∴AQ AOEO EP=,即AQ ·EP =EO ·AO . ∵OE ∥AP , ∴△OBE ∽△ABP . ∴13OE BE BO AP BP BA ===. ∴OE =13AP =1,BP =32EP .∴AQ ·BP =AQ ·32EP =32AO ·OE =32⨯2⨯1=3.解法二:连接PQ,设AP与OQ相交于点F. ∵AQ∥BP,∴∠QAP=∠APB.∵AP=AB,∴∠APB=∠B.∴∠QAP=∠B.又∵∠QOP=∠B,∴∠QAP=∠QOP.∵∠QFA=∠PFO,∴△QFA∽△PFO.∴FQ FAFP FO=,即FQ FPFA FO=.又∵∠PFQ=∠OFA,∴△PFQ∽△OFA.∴∠3=∠1.∵∠AOC=∠2+∠B=∠1+∠QOP,已知∠B=∠QOP,∴∠1=∠2.∴∠2=∠3.∴△APQ∽△BPO.∴AQ AP BO BP=.∴AQ·BP=AP·BO=3⨯1=3.22.(满分14分)如图,抛物线y=12(x-3)2-1与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D了.(1)求点A,B,D的坐标;(2)连接CD,过原点O作OE⊥CD,垂足为H,OE与抛物线的对称轴交于点E,连接AE,AD.求证:∠AEO=∠ADC;(3)以(2)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过点P作⊙E的切线,切点为Q,当PQ的长最小时,求点P的坐标,并直接写出点Q的坐标.【答案】(1)顶点D的坐标为(3,-1).令y=0,得12(x-3)2-1=0,解得x1=3x2=3.∵点A在点B的左侧,∴A点坐标(30),B点坐标(30). (2)过D作DG⊥y轴,垂足为G.则G(0,-1),GD=3.令x=0,则y=72,∴C点坐标为(0,72).∴GC=72-(-1)=92.设对称轴交x轴于点M. ∵OE⊥CD,∴∠GCD+∠COH=90︒.∵∠MOE+∠COH=90︒,∴∠MOE=∠GCD.又∵∠CGD=∠OMN=90︒,∴△DCG∽△EOM.∴9323CG DGOM EM EM==,即.∴EM=2,即点E坐标为(3,2),ED=3.由勾股定理,得AE2=6,AD2=3,∴AE2+AD2=6+3=9=ED2.∴△AED是直角三角形,即∠DAE=90︒.设AE交CD于点F.∴∠ADC+∠AFD=90︒.又∵∠AEO+∠HFE=90︒,∴∠AFD=∠HFE,∴∠AEO=∠ADC.(3)由⊙E的半径为1,根据勾股定理,得PQ2=EP2-1. 要使切线长PQ最小,只需EP长最小,即EP2最小.设P坐标为(x,y),由勾股定理,得EP2=(x-3)2+(y-2)2.∵y=12(x-3)2-1,∴(x-3)2=2y+2.∴EP2=2y+2+y2-4y+4=(y-1)2+5.当y=1时,EP2最小值为5.把y=1代入y=12(x-3)2-1,得12(x-3)2-1=1,解得x1=1,x2=5.又∵点P在对称轴右侧的抛物线上,∴x1=1舍去.∴点P坐标为(5,1).此时Q点坐标为(3,1)或(1913 55,).。
2014年福州市中考数学试卷(含答案) (优选.)rd二O一四年福州市初中毕业会考、高级中等学校招生考试数学试卷(全卷共4页,三大题,22小题,满分150分;考试时间120分钟)友情提示:所有答案都必须填涂在答题卡相应的位置上,答在本试卷上一律无效。
[来源:]毕业学校姓名考生号一、选择题(共10小题,每题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.5的相反数是A. 5 B.5 C.15D.152.地球绕太阳公转的速度约是110000千米/时,将110000用科学记者数法表示为A.11104B.1.1105C.1.1104D.0.111063.某几何体的三视图如图所示,则该几何体是A.三棱柱B.长方体C.圆柱D.圆锥4.下列计算正确的是A.x4·x4x16B.(a3)2a5C.(ab2)3ab6D.a2a3a5.若7名学生的体重(单位:kg)分别是:40,42,43,45,47,47,58,则这组数据的平均数是A.44 B.45 C.46 D.476.下列命题中,假命题是A.对顶角相等B.三角形两边的和小于第三边C .菱形的四条边都相等D .多边形的外角和等于3607.若(m 1)22n +0,则m n 的值是A .1 B .0 C .1 D .28.某工厂现在平均每天比原计算多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x 台机器,根据题意,下面所列方程正确的是 A .60045050x x=+ B .60045050x x=- C .60045050xx =+ D .60045050xx =- 9.如图,在正方形ABCD 外侧,作等边三角形ADE ,AC ,BE 相交于点F ,则∠BFC 为 A .45B .55C .60D .7510.如图,已知直线yx 2分别与x 轴, y 轴交于A ,B 两点,与双曲线ykx交于E ,F 两点,若AB 2EF ,则k 的值是 A .1 B .1 C .12D .34二、填空题(共5小题,每题4分,满分20分;请将正确答案填在答题卡相应位置) 11.分解因式:mamb .12.若5件外观相同的产品中有1件不合格,现从中任意抽取1件进行检测,则抽到不合格产品的概率是. 13.计算:(21)(21).14.如图,在□ABCD 中,DE 平分∠ADC ,AD6,BE2,则□ABCD 的周长是.[来源:]15.如图,在Rt △ABC 中,∠ACB90,点D ,E 分别是边AB ,AC 的中点,延长BC 到点F ,使CF12BC .若AB10,则EF 的长是.三、解答题(满分90分;请将正确答案及解答过程填在答题卡相应位置.作图或添加辅助线用铅笔画完,再用黑色签字笔描黑)16.(每小题7分,共14分)(1)计算:912014⎛⎫ ⎪⎝⎭|1|. (2)先化简,再求值:(x2)2x (2x ),其中x13. 17.(每小题7分,共14分)(1)如图,点E ,F 在BC 上,BECF ,ABDC ,∠B∠C .求证:∠A∠D .(2)如图,在边长为1个单位长度的小正方形所组成的网格中,△ABC 的顶点均在格点上. ①sin B 的值是;②画出△ABC 关于直线l 对称的△A 1B 1C 1(A 与A 1,B 与B 1,C 与C 1相对应).连接AA 1,BB 1,并计算梯形AA 1B 1B 的面积.18.(满分12分)设中学生体质健康综合评定成绩为x 分,满分为100分.规定:85≤x ≤100为A 级,75≤x <85为B 级,60≤x <75为C 级,x <60为D 级.现随机抽取福海中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图.请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了名学生,a %;(2)补全条形统计图;(3)扇形统计图中C级对应的圆心角为度;(4)若该校共有2000名学生,请你估计该校D级学生有多少名?19.(满分12分)现有A,B两种商品,买2件A商品和1件B商品用了90元,买3件A商品和2件B商品共用了160元.(1)求A,B两种商品每件多少元?(2)如果小亮准备购买A,B两种商品共10件,总费用不超过350元,且不低于300元,问有几种购买方案,哪种方案费用最低?20.(满分11分)如图,在△ABC中,∠B45,∠ACB60,AB32,点D为BA延长线上的一点,且∠D∠ACB,⊙O为△ACD的外接圆.(1)求BC的长;(2)求⊙O的半径.21.(满分13分)如图1,点O在线段AB上,AO2,OB1,OC为射线,且∠BOC60,动点P以每秒2个单位长度的速度从点O出发,沿射线OC做匀速运动,设运动时间为t秒.秒时,则OP,S△ABP;(1)当t12(2)当△ABP是直角三角形时,求t的值;(3)如图2,当AP AB时,过点A作AQ∥BP,并使得∠QOP∠B,求证:AQ·BP 3.22.(满分14分)如图,抛物线y1(x3)21与x轴交于A,B两点(点A在点B的左侧),与y轴交于2点C,顶点为D了.(1)求点A,B,D的坐标;(2)连接CD,过原点O作OE⊥CD,垂足为H,OE与抛物线的对称轴交于点E,连接AE,AD.求证:∠AEO∠ADC;[来源:](3)以(2)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过点P作⊙E的切线,切点为Q,当PQ的长最小时,求点P的坐标,并直接写出点Q的坐标.数学试卷参考答案1.B2.B3.D4.D5.C6.B7.A8.A9.C10.D11.m (a b )12.1513.1 14.20 15.516.(1)解:原式311 5. (2)解:原式x 24x42xx 26x4.当x 13时, 原式6134 6.17.(1)证明:∵BE CF ,∴BEEFCF EF即BF CE .又∵ABDC ,∠B ∠C ,∴△ABF ≌△DCE .∴∠A∠E .(2)【答案】①35;②如图所示.由轴对称的性质可得,AA 12,BB 18,高是4.∴11AA B BS梯形12(AA 1BB 1)420.18.解:(1)50,24;(2)如图所示;(3)72;(4)该校D 级学生有:2000450160人.19.解:(1)设A 商品每件x 元,B 商品每件y 元.依题意,得29032160.x y x y +=⎧⎨+=⎩,解得2050.x y =⎧⎨=⎩,答:A 商口每件20元,B 商品每件50元.(2)设小亮准备购买A 商品a 件,则购买B 商品(10a )件.依题意,得2050(10)3002050(10)350.a a a a +-≥⎧⎨+-≤⎩,[来源:]解得5≤a ≤623.根据题意,a 的值应为整数,所以a 5或a 6. 方案一:当a 5时,购买费用为20550(105)350元; 方案二:当a 6时,购买费用为20650(106)320元.∵350>320,∴购买A 商品6件,B 商品4件的费用最低.答:有两种购买方案,方案一:购买A 商品5件,B 商品5件;方案二:购买A 商品6件,B 商品4件.其中方案二费用最低.20.解:(1)过点A 作AE ⊥BC ,垂足为E .∴∠AEB∠AEC 90.在Rt △ABE 中,∵sin B AEAB,∴AB AB ·sin B 32·sin4532·223.∵∠B45, ∴∠BAE45.∴BE AE 3.在Rt △ACE 中,∵tan ∠ACB AE EC,∴EC 333tan tan 603AE ACB ===∠︒.∴BCBE EC 33.(2)由(1)得,在Rt △ACE 中,∵∠EAC 30,EC 3,∴AC23.解法一:连接AO 并延长交⊙O 于M ,连接CM . ∵AM 为直径, ∴∠ACM90.在Rt △ACM 中,∵∠M ∠D∠ACB60,sin MACAM,∴AMsin AC M23sin 60︒4.∴⊙O 的半径为2.解法二:连接OA ,OC ,过点O 作OF ⊥AC ,垂足为F , 则AF 12AC 3.∵∠D∠ACB 60,∴∠AOC 120.∴∠AOF12∠AOC 60.在Rt △OAF 中,sin ∠AOF AFAO, ∴AOsin AF AOF∠2,即⊙O 的半径为2.21.解:(1)1,334;(2)①∵∠A <∠BOC60,∴∠A 不可能是直角. ②当∠ABP 90时, ∵∠BOC 60, ∴∠OPB 30.∴OP 2OB ,即2t 2.∴t1.③当∠APB 90时,作PD ⊥AB ,垂足为D ,则∠ADP ∠PDB 90.∵OP 2t ,∴ODt ,PD 3t ,AD 2t ,BD 1t (△BOP 是锐角三角形).解法一:∴BP 2(1t )23t 2,AP 2(2t )23t 2.∵BP 2AP 2AB 2, ∴(1t )23t 2(2t )23t 29,即4t 2t 20.解得t 11338-+,t 21338--(舍去). 解法二:∵∠APD ∠BPD 90,∠B ∠BPD 90,∴∠APD∠B .∴△APD ∽△PBD . ∴.AD PD PDBD=∴PD 2AD ·BD .于是(3t )2(2t )(1t ),即4t 2t 20.解得t 11338-+,t 2133--.综上,当△ABP 为直角三角形时,t 1或1338-+.(3)解法一:∵AP AB ,∴∠APB∠B .作OE ∥AP ,交BP 于点E , ∴∠OEB∠APB∠B .∵AQ ∥BP , ∴∠QAB ∠B 180. 又∵∠3∠OEB 180,∴∠3∠QAB .又∵∠AOC ∠2∠B∠1∠QOP ,已知∠B ∠QOP ,∴∠1∠2.∴△QAO ∽△OEP . ∴AQ AO EOEP=,即AQ ·EPEO ·AO .∵OE ∥AP , ∴△OBE ∽△ABP . ∴13OE BE BO APBPBA===.∴OE13AP 1,BP 32EP .∴AQ ·BPAQ ·32EP32AO ·OE3221 3.解法二:连接PQ ,设AP 与OQ 相交于点F . ∵AQ ∥BP , ∴∠QAP ∠APB .∵APAB ,∴∠APB ∠B .∴∠QAP ∠B .又∵∠QOP ∠B ,∴∠QAP ∠QOP .∵∠QFA ∠PFO ,∴△QFA ∽△PFO . ∴FQ FA FP FO =,即FQ FPFA FO =.又∵∠PFQ ∠OFA ,∴△PFQ ∽△OFA .∴∠3∠1.∵∠AOC ∠2∠B ∠1∠QOP ,已知∠B ∠QOP ,∴∠1∠2.∴∠2∠3.∴△APQ ∽△BPO .∴AQAPBO BP =.∴AQ ·BP AP ·BO 31 3.22.【答案】(1)顶点D 的坐标为(3,1). 令y 0,得12(x 3)210,解得x 132,x 232.∵点A 在点B 的左侧,∴A 点坐标(32,0),B 点坐标(320).(2)过D作DG⊥y轴,垂足为G.则G(0,1),GD 3.令x0,则y72,∴C点坐标为(0,72).∴GC72(1)92.设对称轴交x轴于点M.∵OE⊥CD,∴∠GCD∠COH90.∵∠MOE∠COH90,∴∠MOE∠GCD.又∵∠CGD∠OMN90,∴△DCG∽△EOM.[来源:ZXXK]∴9323CG DGOM EM EM==,即.∴EM2,即点E坐标为(3,2),ED 3.由勾股定理,得AE26,AD23,∴AE2AD2639ED2.∴△AED是直角三角形,即∠DAE90.设AE交CD于点F.∴∠ADC∠AFD90.又∵∠AEO∠HFE90,∴∠AFD∠HFE,∴∠AEO∠ADC.(3)由⊙E的半径为1,根据勾股定理,得PQ2EP2 1.要使切线长PQ最小,只需EP长最小,即EP2最小.设P坐标为(x,y),由勾股定理,得EP2(x3)2(y2)2.∵y12(x3)21,∴(x3)22y 2.∴EP22y2y24y4(y1)2 5.当y1时,EP2最小值为5.把y1代入y12(x3)21,得12(x3)211,解得x11,x2 5.又∵点P在对称轴右侧的抛物线上,∴x11舍去.∴点P坐标为(5,1).此时Q点坐标为(3,1)或(191355,).赠人玫瑰,手留余香。
数学试卷 第1页(共24页) 数学试卷 第2页(共24页)绝密★启用前福建省福州市2014年初中毕业会考、高级中等学校招生考试数 学本试卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.5-的相反数是( ) A .5-B .5C .15D .15-2.地球绕太阳公转的速度约是110 000千米/时,将110 000用科学记数法表示为 ( ) A .41110⨯B .51.110⨯C .41.110⨯D .60.1110⨯3.某几何体的三视图如图所示,则该几何体是( )A .三棱柱B .长方体C .圆柱D .圆锥 4.下列计算正确的是( )A .4416x x x =B .325()a a =C .236()ab ab =D .23a a a +=5.若7名学生的体重(单位:kg )分别是:40,42,43,45,47,47,58,则这组数据的平均数是( ) A .44B .45C .46D .47 6.下列命题中,假命题是( ) A .对顶角相等B .三角形两边的和小于第三边C .菱形的四条边都相等D .多边形的外角和等于3607.若2(1)0m -=,则m n +的值是( ) A .1-B .0C .1D .28.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x 台机器,根据题意,下面所列方程正确的是( )A .60045050x x =+ B .60045050x x =- C .60045050x x =+D .60045050x x =- 9.如图,在正方形ABCD 外侧,作等边三角形,,ADE AC BE 相交于点F ,则BFC ∠为( )A .45B .55C .60D .7510.如图,已知直线2y x =-+分别与x 轴、y 轴交于,A B 两点,与双曲线ky x=交于,E F 两点.若2AB EF =,则k 的值是 ( ) A .1- B .1 C .12D .34第Ⅱ卷(非选择题 共110分)二、填空题(本大题共5小题,每小题4分,共20分.请把答案填在题中的横线上)11.分解因式:ma mb += .12.若5件外观相同的产品中有1件不合格,现从中任意抽取1件进行检测,则抽到不合格产品的概率是 .13.计算:1)= .14.如图,在□ABCD 中,DE 平分,6,2A D C A D B E ∠==,则□ABCD 的周长毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共24页) 数学试卷 第4页(共24页)是 .15.如图,在Rt ABC △中,90ACB ∠=,点,D E 分别是边,AB AC 的中点,延长BC 到点F ,使12CF BC =.若10AB =,则EF 的长是 .三、解答题(本大题共7小题,共90分.解答应写出文字说明、证明过程或演算步骤) 16.(本小题满分14分,每题7分)(1)019+()+|1|2014-.(2)先化简,再求值:2((2))2x x x ++-,其中13x =.17.(本小题满分14分,每题7分)(1)如图1,点,E F 在BC 上,BE CF =,AB DC =,B C ∠=∠求证:A D ∠=∠. (2)如图2,在边长为1个单位长度的小正方形所组成的网格中,ABC △的顶点均在格点上.①sin B 的值是 ;②画出ABC △关于直线l 对称的111A B C △(A 与1A ,B 与1B ,C 与1C 相对应),连接11,AA BB ,并计算梯形11AA B B 的面积.18.(本小题满分12分)设中学生体质健康综合评定成绩为x 分,满分为100分.规定:85100x ≤≤为A 级,7585x ≤<为B 级,6075x ≤<为C 级,60x <为D 级.现随机抽取福海中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图.请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了 名学生,a = %; (2)补全条形统计图;(3)扇形统计图中C 级对应的圆心角为 度;(4)若该校共有2 000名学生,请你估计该校D 级学生有多少名?19.(本小题满分12分)现有,A B 两种商品,买2件A 商品和1件B 商品用了90元,买3件A 商品和2件B 商品用了160元.(1)求,A B 两种商品每件各是多少元?(2)如果小亮准备购买,A B 两种商品共10件,总费用不超过350元,且不低于300元,问有几种购买方案,哪种方案费用最低?数学试卷 第5页(共24页) 数学试卷 第6页(共24页)20.(本小题满分11分)如图,在ABC △中,45B ∠=,60ACB ∠=,AB =D 为BA 延长线上的一点,且,D ACB O ∠=∠为ACD △的外接圆. (1)求BC 的长; (2)求O 的半径.21.(本小题满分13分)如图1,点O 在线段AB 上,2,1,AO OB OC ==为射线,且60BOC ∠=,动点P 以每秒2个单位长度的速度从点O 出发,沿射线OC 做匀速运动,设运动时间为t 秒.(1)当12t =秒时,则OP = ,ABP S △= ; (2)当ABP △是直角三角形时,求t 的值;(3)如图2,当AP AB =时,过点A 作AQ BP ∥,并使得Q O P B ∠=∠,求证:3AQ BP =.22.(本小题满分14分)如图,抛物线2)12(31y x =--与x 轴交于,A B 两点(点A 在点B 的左侧),与y 轴交于点C ,顶点为D .(1)求点,,A B D 的坐标;(2)连接CD ,过原点O 作OE CD ⊥,垂足为H ,OE 与抛物线的对称轴交于点E ,连接,AE AD .求证:AEO ADC ∠=∠;(3)以(2)中的点E 为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P ,过点P 作E 的切线,切点为Q ,当PQ 的长最小时,求点P 的坐标,并直接写出点Q 的坐标.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共24页)数学试卷 第8页(共24页)福建省福州市2014年初中毕业会考、高级中等学校招生考试数学答案解析第Ⅰ卷一、选择题1.【答案】B【解析】根据相反数的定义,只有符号不同的两个数是互为相反数,可知5-的相反数是5,故选B. 【考点】相反数的定义. 2.【答案】B【解析】将一个数写成10n a ⨯的形式,其中110a <…,n 为整数.当原数的绝对值大于等于10时,n 为正整数,n 等于原数的整数位数减1;当原数的绝对值小于1时,n 为负整数,n 的绝对值等于原数中左起第一个非零数前零的个数(含整数位上的零).即5110000 1.110=⨯,故选B. 【考点】科学记数法. 3.【答案】D【解析】根据三视图的形状可确定几何体是圆锥,故选D. 【考点】三视图. 4.【答案】D【解析】根据幂的运算法则44448x x x x +==g ,326()a a =,2332336()ab a b a b ⨯==,根据合并同类项法则,23a a a +=,故选D.【考点】整式计算. 5.【答案】C【解析】平均数等于一组数据中所有数据之和除以数据的个数,故这组数据的平均数是40424345474758467++++++=,故选C.【考点】统计中平均数的计算. 6.【答案】B【解析】对顶角相等,故A 选项不是假命题;三角形的两边之和大于第三边,故B 选项是假命题;菱形的四条边相等,故C 选项不是假命题:多边形的外角和等于360°,D 选项不是假命题,故选B. 【考点】命题真假的判定.5 / 127.【答案】A【解析】2(1)0m -=Q ,10,1,202,m m n n -==⎧⎧∴⇒⎨⎨+==-⎩⎩1m n ∴+=-,故选A. 【考点】偶次方和二次根式的非负性质. 8.【答案】A【解析】根据题意本题的等量关系是现在生产600台所需时间与原计划生产450台机器所需时间相同,即60045050x x=+,故选A. 【考点】由实际问题抽象出分式方程(工程问题). 9.【答案】C【解析】Q 四边形ABCD 是正方形,AB AD ∴=,90ABC BAD ∠=∠=︒,45BCA ∠=︒,ADE ∴△是等边三角形,AE AD ∴=,60DAE ∠=︒,AB AE ∴=,150BAE ∠=︒, 15ABE ∴∠=︒,901575CBF ∠=︒-︒=︒,18060BFC CBF BCA ∠=︒-∠-∠=︒,故选C.【考点】正方形和等边三角形的性质,三角形内角和定理. 10.【答案】D【解析】如图,连接OE ,OF ,过点E 作EH x ⊥轴,垂足为点H ,Q 直线2y x =-+交坐标轴于点A ,B ,(2,0)A ∴,(0,2)B ,12222AOB S =⨯⨯=△,2AB EF =Q ,12112EOF S ∴=⨯⨯=△Q 整个图形关于直线y x =对称,12AE BF EF ∴==,11()22EOA AOB EOF S S A =⨯-=△△△,EH y ∥Q 轴,AHE AOB ∴△△:,21()16AHE AOB S AE S AB ==△△,112168AHE S ∴=⨯=△,113288OHE S ∴=-=△,设点(,)E m n , 则332284OHE k mn S ===⨯=△,故选D.【考点】反比例函数与一次函数交点问题,曲线上点的坐标与方程的关系,相似三角形的判定和性质,轴对称的性质.【提示】解答本题时应注意两个函数图象的特点是整个图形关于直线y x =对称,从而找到解决问题的办法.数学试卷 第11页(共24页)数学试卷 第12页(共24页)第Ⅱ卷二、填空题11.【答案】()m a b +【解析】将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否可用完全平方公式或平方差公式继续分解,因此本题只需直接提取公因式m 即可,()ma mb m a b +=+.【考点】因式分解. 12.【答案】15【解析】根据概率的求法,找准两点:(1)全部可能情况的总数;(2)符合条件情况数目;二者的比值就是其发生的概率,因此抽到不合格产品的概率是15. 【考点】概率. 13.【答案】1【解析】221)1211=-=-= 【考点】平方差公式和二次根式的计算. 14.【答案】20【解析】Q 四边形ABCD 是平行四边形,6AD =,2BE =,6AD BC ∴==,AD BC ∥,4EC ∴=,ADE DEC ∠=∠.又DE Q 平分ADC ∠,ADE EDC ∴∠=∠,DEC EDC ∠=∠,4CD EC ∴==,故平行四边形ABCD 的周长是2(64)=20⨯+.【考点】平行四边形的性质,平行的性质及等腰三角形的判定. 15.【答案】5【解析】在Rt ABC △中,90ACB ∠=︒,点D ,E 分别是AB ,AC 的中点,10AB =,∴5AD =,AE EC =,12DE BC =,90AEC ∠=︒,又12CF BC =Q ,DE FC ∴=,根据“SAS ”,Rt Rt ADE EFC ≌△△,5EF AD ∴==.【考点】三角形中位线定理,全等三角形的判定和性质. 三、解答题 16.【答案】(1)5 (2)13【解析】解:(1)原式3115=++=.7 / 12(2)原式22244264x x x x =+++-=+.当13x =时,原式16463=⨯+=.【考点】二次根式的化简,零指数幂,绝对值的计算,整式的化简与求值. 17.【答案】(1)证明:BE CF =Q ,BE EF CF EF +=+. 即BF CE =.又AB DC =Q ,B C ∠=∠,ABF DCE △≌△∴.A D ∴∠=∠.(2)如图所示.由轴对称的性质可得12AA =,18BB =,高是4.11111=()4=202AA B B S AA BB ∴+⨯梯形.【考点】全等三角形的判定和性质,勾股定理,三角函数,利用轴对称的性质作图. 18.【答案】(1)50;24 (2)如图所示.(3)72(4)该校D 级学生有42000=16050⨯人. 【考点】方程及不等式(组)在实际生活中的应用(方案型问题). 19.【答案】(1)设A 商品每件x 元,B 商品每件y 元.依题意,得290,32160.x y x y +=⎧⎨+=⎩ 解得20,50.x y =⎧⎨=⎩数学试卷 第15页(共24页)数学试卷 第16页(共24页)答:A 商品每件20元,B 商品每件50元.(2)设小亮准备购买A 商品a 件,则购买B 商品(10)a -件.依题意得2050(10)300,2050(10)350.a a a a +-⎧⎨+-⎩≥≤ 解得2563a ≤≤根据题意,a 的值应为整数,所以5a =或6a = .方案一:当5a =时,购买费用为20550(105)350⨯+⨯-=元; 方案二:当6a =时,购买费用为20650(106)320⨯+⨯-=元. ∵350320>,∴购买A 商品6件,B 商品4件的费用最低.答:有两种购买方案,方案一:购买A 商品5件,B 商品5件;方案二:购买A 商品6件,B 商品4件.其中方案二费用最低.【考点】利用条形统计图和扇形统计图的信息解决实际问题. 20.【答案】(1)过点A 作AE BC ⊥,垂足为E .90AEB AEC ∴∠=∠=︒.在Rt ABE △中,sin AE B AB =Q,sin sin 453AE AB B ∴==︒==g g . 45B ∴∠=︒,45BAE ∴∠=︒.3BE AE ∴==.在Rt ACE △中,tan AEACB EC∠=Q ,3tan tan 60AE EC ACB ∴====∠︒3BC BE EC ∴=+=(2)由(1)得,在Rt ACE △中,30EAC ∠=︒Q,EC =,AC ∴=. 解法一:连接AO 并延长交O e 于点M ,连接CM .AM Q 为直径,∴90ACM ∴∠=︒.在Rt ACM △中,60M D ACB ∠=∠=∠=︒Q ,sin ACM AM=,4sin AC AM M ∴===.O ∴e 的半径为2. 解法二:连接,OA OC ,过点O 作OF AC ⊥,垂足为F ,9 / 12则12AF AC ==60D ACB ∠=∠=︒Q ,120AOC ∴∠=︒.1602AOF AOC ∴∠=∠=︒.在Rt OAF △中,sin AF AOF AO ∠=Q .2sin AFAO AOF∴==∠,即O e 得半径为2. 【考点】锐角三角形函数定义,特殊角的三角函数值,相似三角形的判定和性质,圆周角定理,圆内接四边形的性质,含30°角直角三角形的性质及勾股定理等. 21.【答案】(1)1(2)①60A BOC ∠<∠=︒Q ,A ∴∠不可能为直角. ②当90ABP ∠=︒时,60BOC ∠=︒Q ,30OPB ∴∠=︒.2OP OB ∴=,即22t OB =,即22t =.1t ∴=.③当90APB ∠=︒时,作PD AB ⊥,垂足为D ,则90ADP PDB ∠=∠=︒.2OP t =Q ,OD t ∴=,PD =,2AD t =+,1BD t =-(BOP △是锐角三角形).解法一:222222(1)3,(2)3BP t t AP t t ∴=-+=++.222BP AP AB +=Q ,∴2222(1)3(2)39t t t t ∴-++++=,数学试卷 第19页(共24页)数学试卷 第20页(共24页)即2420t t +-=.解得12t t ==(舍去) 解法二:90,90APD BPD B BPD ∠+∠=︒∠+∠=︒Q ,APD B ∴∠=∠.APD PBD ∴△△:.AD PD PD BD∴=,2PD AD BD ∴=g .于是2)(2)(1)t t =+-,即2420t t +-=.解得12t t ==(舍去). 综上,当ABP △是直角三角形时,1t =或18-+.(3)证法一:AP AB =Q ,APB B ∴∠=∠.作OE AP ∥,交BP 于点E ,OEB APB B ∴∠=∠=∠.AQ BP ∥Q ,180QAB B ∴∠+∠=︒.又3180OEB ∠+∠=︒Q ,3QAB ∴∠=∠.又21AOC B QOP ∠=∠+∠=∠+∠Q ,已知B QOP ∠=∠,12∴∠=∠.QAO OEP △∽△∴,AQ AOEO EP∴=,即AQ EP EO AO =g g .OE AP ∥Q ,OBE ABP △∽△∴. 13OE BE BO AP BP BA ∴===.13132OE AP BP EP ∴===,. 333213222AQ BP AQ EP AO OE ∴===⨯⨯=g g g .证法二:连接PQ ,设AP 与OQ 相交于点F .AQ BP ∥Q ,QAP APB ∴∠=∠.AP AB =Q ,APB B ∴∠=∠.QAP B ∴∠=∠.又QOP B ∠=∠Q ,QAP QOP ∴∠=∠.QFA PFO ∠=∠Q ,∴QFA PFO △∽△∴.FQ FA FP FO ∴=,即FQ FPFA FO=. 又PFQ OFA ∠=∠Q ,PFQ OFA △∽△∴,31∴∠=∠.21AOC B QOP ∠=∠+∠=∠+∠Q ,已知B QOP ∠=∠,12∴∠=∠.23∴∠=∠.11 / 12APQ BPO △∽△∴.AQ AP BO BP∴=.313AQ BP AP BO ∴==⨯=g g . 【考点】动点问题,锐角三角函数定义,特殊角的三角函数值,相似三角形的判定和性质. 22.【答案】(1)顶点D 的坐标为(3,1).令0y =,得21(3)102x --=,解得1233x x =+=Q 点A 在点B 的左侧,∴A ∴点坐标(3,点B坐标(3+.(2)证明:过D 作DG y ⊥轴,垂足为G ,则(0,1),3G GD =.令0x =,则72y =,∴C 点坐标为7(0,)2.79(1)22GC ∴=--=. 设对称轴交x 轴于点M . OE CD ⊥Q ,90GCD GOH ∴∠+∠=︒.90MOE COH ∠+∠=︒Q ,MOE GCD ∴∠=∠.又90CGD OME ∠=∠=︒Q ,DCG EOM △∽△∴CG DG OM EM ∴=,即233EM=. 2EM ∴=,即点E 坐标为(3,2),3ED =.由勾股定理得226,3AE AD ==,222639AE AD ED ∴+=+==.AED ∴△是直角三角形,即90DAE ∠=︒.设AE 交CD 于点F . 90ADC AFD ∴∠+∠=︒.又90,AEO HFE AFD HFE ∠+∠=︒∠=∠Q ,AEO ADC ∴∠=.(3)由E e 的半径为1,根据勾股定理得221PQ EP =-.要使切线长PQ 最小,只需EP 长最小,即2EP 最小.设P 坐标为(,)x y ,由勾股定理得222(3)(2)EP x y =-+-.21(3)12y x =--Q ,2(3)22x y ∴-=+.数学试卷 第23页(共24页)数学试卷 第24页(共24页) 2222244(1)5EP y y y y ∴=++-+=-+.当1y =时,2EP 取得最小值为5.当1y =时,2EP 取得最小值为5.把1y =代入21(3)12y x =--,得21(3)112x --=解得121,5x x ==.又Q 点P 在对称轴右侧的抛物线上,11x ∴=舍去.∴点P 坐标为(5,1).此时Q 点坐标为(3,1)或1913(,)55. 【考点】二次函数的图象和性质,单动点问题,曲线上点的坐标与方程的关系,直角三角形两锐角的关系,相似三角形的判定和性质,勾股定理和逆定理,切线的性质,解二元一次方程组等.。
2014年福州市初中毕业会考、高级中等学校招生考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共40分)一、选择题(共10小题,每题4分,满分40分;每小题只有一个正确的选项)1.-5的相反数是( )A.-5B.5C.15D.-152.地球绕太阳公转的速度约是110 000千米/时,将110 000用科学记数法表示为( )A.11×104B.1.1×105C.1.1×104D.0.11×1063.某几何体的三视图如图所示,则该几何体是( )A.三棱柱B.长方体C.圆柱D.圆锥4.下列计算正确的是( )A.x4·x4=x16B.(a3)2=a5C.(ab2)3=ab6D.a+2a=3a5.若7名学生的体重(单位:kg)分别是:40,42,43,45,47,47,58,则这组数据的平均数是( )A.44B.45C.46D.476.下列命题中,假命题...是( )A.对顶角相等B.三角形两边的和小于第三边C.菱形的四条边都相等D.多边形的外角和等于360°7.若(m-1)2+√n+2=0,则m+n的值是( )A.-1B.0C.1D.28.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是( )A.600n+50=450nB.600n-50=450nC.600n=450n+50D.600n=450n-509.如图,在正方形ABCD的外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为( )A.45°B.55°C.60°D.75°10.如图,已知直线y=-x+2分别与x轴,y轴交于A,B两点,与双曲线y=nn交于E,F两点.若AB=2EF,则k的值是( )A.-1B.1C.12D.34第Ⅱ卷(非选择题,共110分)二、填空题(共5小题,每题4分,满分20分;请将正确答案填在相应位置)11.分解因式:ma+mb= .12.若5件外观相同的产品中有1件不合格,现从中任意抽取1件进行检测,则抽到不合格产品的概率是.13.计算:(√2+1)(√2-1)= .14.如图,在▱ABCD中,DE平分∠ADC,AD=6,BE=2,则▱ABCD的周长是.BC.15.如图,在Rt△ABC中,∠ACB=90°,点D,E分别是边AB,AC的中点,延长BC到点F,使CF=12若AB=10,则EF的长是.三、解答题(满分90分;请将正确答案及解答过程写在相应位置.作图或添加辅助线用铅笔画完,再用黑色签字笔描黑)16.(每小题7分,共14分))0+|-1|;(1)计算:√9+(12 014.(2)先化简,再求值:(x+2)2+x(2-x),其中x=1317.(每小题7分,共14分)(1)如图1,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D;(2)如图2,在边长为1个单位长度的小正方形所组成的网格中,△ABC的顶点均在格点上.①sin B的值是;②画出△ABC关于直线l对称的△A1B1C1(A与A1,B与B1,C与C1相对应),连结AA1,BB1,并计算梯形AA1B1B的面积.图1 图218.(满分12分)设中学生体质健康综合评定成绩为x分,满分为100分.规定:85≤x≤100为A级,75≤x<85为B级,60≤x<75为C级,x<60为D级.现随机抽取福海中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图.请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了名学生,a= %;(2)补全条形统计图;(3)扇形统计图中C级对应的圆心角为度;(4)若该校共有2 000名学生,请你估计该校D级学生有多少名?19.(满分12分)现有A,B两种商品,买2件A商品和1件B商品用了90元,买3件A商品和2件B商品用了160元.(1)求A,B两种商品每件各是多少元;(2)如果小亮准备购买A,B两种商品共10件,总费用不超过...300元,问有几...350元,且不低于种购买方案,哪种方案费用最低?20.(满分11分)如图,在△ABC中,∠B=45°,∠ACB=60°,AB=3√2,点D为BA延长线上的一点,且∠D=∠ACB,☉O为△ACD的外接圆.(1)求BC的长;(2)求☉O的半径.21.(满分13分)如图1,点O在线段AB上,AO=2,OB=1,OC为射线,且∠BOC=60°,动点P以每秒2个单位长度的速度从点O出发,沿射线OC做匀速运动,设运动时间为t秒.(1)当t=1秒时,则OP= ,S△ABP= ;2(2)当△ABP是直角三角形时,求t的值;(3)如图2,当AP=AB时,过点A作AQ∥BP,并使得∠QOP=∠B.求证:AQ·BP=3.图1 图2 备用图22.(满分14分)(x-3)2-1与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为如图,抛物线y=12D.(1)求点A,B,D的坐标;(2)连结CD,过原点O作OE⊥CD,垂足为H,OE与抛物线的对称轴交于点E,连结AE,AD.求证:∠AEO=∠ADC;(3)以(2)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过点P作☉E 的切线,切点为Q,当PQ的长最小时,求点P的坐标,并直接写出点Q的坐标.备用图答案全解全析:一、选择题1.B 只有符号不同的两个数互为相反数,-5的相反数是5,故选B. 评析 本题考查相反数的定义,属容易题.2.B 科学记数法的表示形式为a×10n ,1≤|a|<10,故110 000=1.1×105,故选B. 评析 本题考查科学记数法的定义,属容易题.3.D 由主视图和左视图为三角形知此几何体为锥体,由俯视图为圆可推得此几何体为圆锥.评析 本题考查由三视图抽象出几何体和学生的空间想象能力,属容易题.4.D x 4·x 4=x 4+4=x 8,A 选项错误;(a 3)2=a 3×2=a 6,B 选项错误;(ab 2)3=a 3·b 2×3=a 3b 6,C 选项错误;根据合并同类项法则知,D 选项正确,故选D. 5.C 这组数据的平均数是40+42+43+45+47+47+587=46,故选C.评析 本题考查数据分析中的平均数的计算方法,属容易题. 6.B 根据三角形三条边之间的关系可知B 是错误的,故选B.7.A ∵(m -1)2+√n +2=0,∴{n -1=0,n +2=0,∴{n =1,n =-2,∴m+n=-1,故选A.8.A 根据“现在生产600台机器所需时间与原计划生产450台机器所需时间相同”可以列出方程600n +50=450n,故选A.评析 本题考查分式方程的应用,根据题意正确找出等量关系是关键,属容易题. 9.C 由已知得AB=AE,∠BAE=150°,∴∠ABF=15°,∴∠BFC=∠ABF+∠BAF=60°. 评析 本题考查正方形、等边三角形、等腰三角形的性质,属中等难度题.10.D 如图,作ED⊥OB,EC⊥OA,FG⊥OA,垂足分别为D,C,G,ED 交FG 于H,易得A(2,0),B(0,2),∴△ACE、△AOB、△EHF 都是等腰直角三角形, 又∵AB=2EF,∴EH=FH=1,设OG=x,∴AC=EC=1-x, ∴E(x+1,1-x),F(x,2-x).又∵点E 、F 在双曲线上,∴(x+1)(1-x)=x(2-x),解得x=12,∴E (32,12),k=34.评析 本题考查反比例函数与一次函数图象的交点问题,相似三角形的判定和性质,属难题.二、填空题11.答案 m(a+b) 解析 ma+mb=m(a+b).评析 本题考查提公因式法分解因式,属容易题. 12.答案 15解析 5件外观相同的产品中有1件不合格,从中任意抽取1件进行检测,则抽到不合格产品的概率是15.评析 本题考查概率,属容易题. 13.答案 1解析 (√2+1)(√2-1)=(√2)2-12=2-1=1.评析 本题考查二次根式的运算法则和平方差公式,属容易题. 14.答案 20解析 ∵四边形ABCD 是平行四边形,AD=6,BE=2, ∴BC=AD=6,∴EC=4.又∵DE 平分∠ADC,∴∠ADE=∠EDC. ∵AD∥BC,∴∠ADE=∠DEC, ∴∠DEC=∠EDC.∴CD=EC=4.∴▱ABCD 的周长是2×(6+4)=20.评析 本题考查平行四边形的性质和等腰三角形的判定,属中等难度题. 15.答案 5解析 ∵在Rt△ABC 中,∠ACB=90°,点D,E 分别是边AB,AC 的中点,AB=10, ∴AD=5,AE=EC,DE=12BC,∠AED=90°. ∵CF=12BC,∴DE=FC.在Rt△ADE 和Rt△EFC 中,∵AE=EC,∠AED=∠ECF=90°,DE=FC, ∴Rt△ADE≌Rt△EFC(SAS).∴EF=AD=5.评析 本题考查三角形中位线定理,属中等难度题. 三、解答题16.解析 (1)原式=3+1+1=5.(2)原式=x 2+4x+4+2x-x 2=6x+4. 当x=13时,原式=6×13+4=6.评析 本题考查了实数的运算,属容易题. 17.解析 (1)证明:∵BE=CF, ∴BE+EF=CF+EF, 即BF=CE.又∵AB=DC,∠B=∠C, ∴△ABF≌△DCE. ∴∠A=∠D. (2)①35.②如图所示.由轴对称的性质可得,AA 1=2,BB 1=8,梯形AA 1B 1B 的高是4. ∴n 梯形nn 1n 1B =12(AA 1+BB 1)×4=20.评析 本题考查了全等三角形的判定与性质,属容易题. 18.解析 (1)50;24. (2)如图所示.综合评定成绩条形统计图(3)72.(4)该校D 级学生约有2 000×450=160(名).评析 本题考查了条形统计图和扇形统计图的综合运用,条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比,属容易题. 19.解析 (1)设A 商品每件x 元,B 商品每件y 元.依题意,得{2n +n =90,3n +2n =160.解得{n =20,n =50.答:A 商品每件20元,B 商品每件50元.(2)设小亮准备购买A 商品a 件,则购买B 商品(10-a)件.依题意,得{20n +50(10-n )≥300,20n +50(10-n )≤350.解得5≤a≤623.根据题意知,a 的值应为整数,所以a=5或a=6.方案一:当a=5时,购买费用为20×5+50×(10-5)=350元; 方案二:当a=6时,购买费用为20×6+50×(10-6)=320元. ∵350>320,∴购买A 商品6件,B 商品4件的费用最低.答:有两种购买方案,方案一:购买A 商品5件,B 商品5件;方案二:购买A 商品6件,B 商品4件.其中方案二费用最低.20.解析 (1)过点A 作AE⊥BC,垂足为E. ∴∠AEB=∠AEC=90°. 在Rt△ABE 中,∵sin B=nnnn ,∴AE=AB·sin B=3√2·sin 45°=3√2×√22=3. ∵∠B=45°,∴∠BAE=45°. ∴BE=AE=3.在Rt△ACE 中,∵tan∠ACB=nnnn, ∴EC=nntan∠nnn =3tan60°=√3=√3.∴BC=BE+EC=3+√3.(2)由(1)得,在Rt△ACE 中,∠EAC=30°,EC=√3, ∴AC=2√3.解法一:连结AO 并延长交☉O 于M,连结CM. ∵AM 为直径,∴∠ACM=90°.在Rt△ACM 中,∵∠M=∠D=∠ACB=60°,sin M=nnnn , ∴AM=nnsin n =2√3sin60°=4. ∴☉O 的半径为2.解法二:连结OA,OC,过点O 作OF⊥AC,垂足为F,则AF=12AC=√3.∵∠D=∠ACB=60°,∴∠AOC=120°. ∴∠AOF=12∠AOC=60°.在Rt△OAF 中,∵sin∠AOF=nnnn , ∴AO=nnsin∠nnn =2,即☉O 的半径为2.评析 本题主要考查了解直角三角形以及锐角三角函数的应用,属中等难度题. 21.解析 (1)1;3√34. (2)①∵∠A<∠BOC=60°, ∴∠A 不可能为直角. ②当∠ABP=90°时,∵∠BOC=60°, ∴∠OPB=30°. ∴OP=2OB,即2t=2. ∴t=1.③当∠APB=90°时,作PD⊥AB,垂足为D,则∠ADP=∠PDB=90°. ∵OP=2t,∴OD=t,PD=√3t,AD=2+t,BD=1-t(△BOP 是锐角三角形).解法一:BP 2=(1-t)2+3t 2,AP 2=(2+t)2+3t 2.∵BP 2+AP 2=AB 2,∴(1-t)2+3t 2+(2+t)2+3t 2=9,即4t 2+t-2=0. 解得t 1=-1+√338,t 2=-1-√338(舍去). 解法二:∵∠APD+∠BPD=90°,∠B+∠BPD=90°,∴∠APD=∠B.又∵∠ADP=∠PDB=90°, ∴△APD∽△PBD, ∴nn nn =nn nn,∴PD 2=AD·BD. 于是(√3t)2=(2+t)(1-t),即4t 2+t-2=0. 解得t 1=-1+√338,t 2=-1-√338(舍去). 综上,当△ABP 是直角三角形时,t=1或-1+√338.(3)证法一:∵AP=AB,∴∠APB=∠B.作OE∥AP,交BP 于点E, ∴∠OEB=∠APB=∠B. ∵AQ∥BP,∴∠QAB+∠B=180°. 又∵∠3+∠OEB=180°, ∴∠3=∠QAB.又∵∠AOC=∠2+∠B=∠1+∠QOP, 已知∠B=∠QOP, ∴∠1=∠2.∴△QAO∽△OEP. ∴nn nn =nnnn,即AQ·EP=EO·AO.∵OE∥AP,∴△OBE∽△ABP. ∴nn nn =nn nn =nn nn =13.∴OE=13AP=1,BP=32EP.∴AQ·BP=AQ·32EP=32AO·OE=32×2×1=3.证法二:连结PQ,设AP 与OQ 相交于点F.∵AQ∥BP,∴∠QAP=∠APB. ∵AP=AB, ∴∠APB=∠B. ∴∠QAP=∠B. 又∵∠QOP=∠B, ∴∠QAP=∠QOP. ∵∠QFA=∠PFO, ∴△QFA∽△PFO. ∴nn nn =nn nn ,即nn nn =nnnn . 又∵∠PFQ=∠OFA, ∴△PFQ∽△OFA. ∴∠3=∠1.∵∠AOC=∠2+∠B=∠1+∠QOP, 已知∠B=∠QOP, ∴∠1=∠2. ∴∠2=∠3.∴△APQ∽△BPO. ∴nn nn =nnnn .∴AQ·BP=AP·BO=3×1=3.22.解析 (1)顶点D 的坐标为(3,-1). 令y=0,得12(x-3)2-1=0,解得x 1=3+√2,x 2=3-√2. ∵点A 在点B 的左侧,∴点A 坐标为(3-√2,0),点B 坐标为(3+√2,0). (2)证明:过D 作DG⊥y 轴,垂足为G, 则G(0,-1),GD=3.令x=0,则y=72,∴点C 坐标为(0,72).∴GC=72-(-1)=92. 设对称轴交x 轴于点M.∵OE⊥CD,∴∠GCD+∠COH=90°. ∵∠MOE+∠COH=90°, ∴∠MOE=∠GCD.又∵∠CGD=∠OME=90°, ∴△DCG∽△EOM.∴nn nn =nn nn ,即923=3nn. ∴EM=2,即点E 的坐标为(3,2),∴ED=3.由勾股定理,得AE 2=6,AD 2=3,∴AE 2+AD 2=6+3=9=ED 2.∴△AED 是直角三角形,且∠DAE=90°.设AE 交CD 于点F. ∴∠ADC+∠AFD=90°. 又∵∠AEO+∠HFE=90°, ∠AFD=∠HFE, ∴∠AEO=∠ADC.(3)由☉E 的半径为1,根据勾股定理,得PQ 2=EP 2-1.要使切线长PQ 最小,只需EP 长最小,即EP 2最小. 设点P 的坐标为(x,y),由勾股定理,得EP 2=(x-3)2+(y-2)2. ∵y=12(x-3)2-1,∴(x -3)2=2y+2.∴EP 2=2y+2+y 2-4y+4=(y-1)2+5.当y=1时,EP 2取最小值,为5.把y=1代入y=12(x-3)2-1,得12(x-3)2-1=1, 解得x 1=1,x 2=5.又∵点P 在对称轴右侧的抛物线上, ∴x 1=1舍去.∴点P 的坐标为(5,1).此时Q 点坐标为(3,1)或(195,135).评析本题是压轴题,涉及考点众多,难度较大.第(2)问中,注意观察图形,将问题转化为证明△ADE为直角三角形的问题,综合运用勾股定理及其逆定理、三角函数(或相似形)求解;第(3)问中,解题关键是将最值问题转化为求EP2最小值的问题,注意求EP2最小值的具体方法.属难题.11。
数学试卷 第1页(共8页) 数学试卷 第2页(共8页)绝密★启用前山西省2014年高中阶段教育学校招生统一考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.计算23-+的结果是( )A .1B .1-C .5-D .6-2.如图,直线AB ,CD 被直线EF 所截,AB CD ∥,1110∠=,则2∠等于( )A .65B .70 C .75D .80 3.下列运算正确的是( )A .224358a a a += B .6212aa a =C .222()a b a b +=+D .20(1)1a += 4.如图是我国古代数学家赵爽在为《周髀算经》作注解时给出的 “弦图”,它解决的数学问题是( )A .黄金分割B .垂径定理C .勾股定理D .正弦定理5.下右图是由三个小正方体叠成的一个几何体,它的左视图是( )ABCD6.我们学习了一次函数、二次函数和反比例函数,回顾学习过程,都是按照列表、描点、连线得到函数的图象,然后根据函数的图象研究函数的性质.这种研究方法主要体现的数学思想是( )A .演绎B .数形结合C .抽象D .公理化7.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是 ( )A .频率就是概率B .频率与试验次数无关C .概率是随机的,与频率无关D .随着试验次数的增加,频率一般会越来越接近概率8.如图,O 是ABC △的外接圆,连接OA ,OB ,50OBA ∠=,则C ∠的度数为( )A .30B .40 C .50D .809. 2.5PM 是指大气中直径小于或等于2.5μm 1μm=0.0000(01m)的颗粒物,也称为可入肺颗粒物.它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害.2.5μm 用科学记数法可表示为( )A .52.510m -⨯B .70.2510m -⨯C .62.510m -⨯D .52510m -⨯10.如图,点E 在正方形ABCD 的对角线AC 上,且2EC AE =,Rt FEG △的两直角边EF ,EG 分别交BC ,DC 于点M ,N .若正方形ABCD 的边长为a ,则重叠部分四边形EMCN 的面积为( )A .223aB .214aC .259aD .249a 第Ⅱ卷(非选择题 共90分)二、填空题(本大题共6小题,每小题3分,共18分.把答案填在题中的横线上) 11.计算:23232a b a b = . 12.化简21639x x ++-的结果是. 毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共8页) 数学试卷 第4页(共8页)13.如图,已知一次函数4y kx =-的图象与x 轴、y 轴分别交于A ,B 两点,与反比例函数8y x=在第一象限内的图象交于点C ,且A 为BC 的中点,则k = .14.甲、乙、丙三位同学打乒乓球,想通过“手心手背”游戏来决定其中哪两人先打.规则如下:三人同时各用一只手随机出示手心或手背,若只有两个人手势相同(都是手心或都是手背),则这两人先打;若三人手势相同,则重新决定.那么通过一次“手心手背”游戏能决定甲打乒乓球的概率是 .15.一走廊拐角的横截面如图所示,已知AB BC ⊥,AB DE ∥,BC FG ∥,且两组平行墙壁间的走廊宽度都是1m .EF 的圆心为O ,半径为1m ,且90EOF ∠=,DE ,FG 分别与O 相切于E ,F 两点.若水平放置的木棒MN 的两个端点M ,N 分别在AB 和BC 上,且MN 与O 相切于点P ,P 是EF 的中点,则木棒MN 的长度为m .16.如图,在ABC △中,30BAC ∠=,AB AC =,AD 是BC 边上的中线,12ACE BAC ∠=∠,CE 交AB 于点E ,交AD 于点F ,若2BC =,则EF 的长为.三、解答题(本大题共8小题,共72分.解答应写出必要的文字说明、证明过程或演算步骤) 17.(本小题满分10分,每题5分)(1)计算:211(2)sin 60()2---(2)分解因式:(1)(3)1x x --+.18.(本小题满分6分)解不等式组并求出它的正整数解.5229,12 3.x x x --⎧⎨--⎩>①≥②19.(本小题满分6分)阅读以下材料,并按要求完成相应的任务.几何中,平行四边形、矩形、菱形、正方形和等腰梯形都是特殊的四边形,大家对于它们的性质都非常熟悉.生活中还有一种特殊的四边形——筝形.所谓筝形,它的形状与我们生活中风筝的骨架相似. 定义:两组邻边分别相等的四边形,称之为筝形.如图,四边形ABCD 是筝形,其中AB AD =,CB CD =.判定:①两组邻边分别相等的四边形是筝形.②有一条对角线垂直平分另一条对角线的四边形是筝形.显然,菱形是特殊的筝形,就一般筝形而言,它与菱形有许多相同点和不同点.如果只研究一般的筝形(不包括菱形),请根据以上材料完成下列任务:数学试卷 第5页(共8页) 数学试卷 第6页(共8页)(1)请说出筝形和菱形的相同点和不同点各两条;(2)请仿照图1的画法,在图2所示的88⨯网格中重新设计一个由四个全等的筝形和四个全等的菱形组成的新图案,具体要求如下: ①顶点都在格点上;②所设计的图案既是轴对称图形又是中心对称图形;③将新图案中的四个筝形都涂上阴影(建议用一系列平行斜线表示阴影).图1图220.(本小题满分10分)某公司招聘人才,对应聘者分别进行阅读能力、思维能力和表达能力三项测试,其中(1)若根据三项测试的平均成绩在甲、乙两人中录用一人,那么谁将被录用? (2)根据实际需要,公司将阅读、思维和表达能力三项测试得分按3:5:2的比确定每人的最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?(3)公司按照(2)中的成绩计算方法,将每位应聘者的最后成绩绘制成如图所示的频数分布直方图(每组分数段均包含左端数值,不包含右端数值,如最右边一组分数x 为8590x ≤<),并决定由高分到低分录用8名员工,甲、乙两人能否被录用?请说明理由,并求出本次招聘人才的录用率.21.(本小题满分7分)如图,点A ,B ,C 表示某旅游景区三个缆车站的位置,线段AB ,BC 表示连接缆车站的钢缆,已知A ,B ,C 三点在同一铅直平面内,它们的海拔高度'AA ,'BB ,'CC 分别为110米,310米,710米,钢缆AB 的坡度11:2i =,钢缆BC 的坡度21:1i =,景区因改造缆车线路,需要从A 到C 直线架设一条钢缆,那么钢缆AC 的长度是多少米?(注:坡度i 是指坡面的铅直高度与水平宽度的比)22.(本小题满分9分)某新建火车站站前广场需要绿化的面积为246000米,施工队在绿化了222000米后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程. (1)该项绿化工程原计划每天完成多少2米?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为562米,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?23.(本小题满分11分)课题学习:正方形折纸中的数学.动手操作:如图1,四边形ABCD 是一张正方形纸片,先将正方形ABCD 对折,使BC 与AD 重合,折痕为EF ,把这个正方形展平,然后沿直线CG 折叠,使B 点落在EF 上,对应点为'B .毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效--数学试卷 第7页(共8页) 数学试卷 第8页(共8页)图1图2图3数学思考:(1)求'CB F ∠的度数;(2)如图2,在图1的基础上,连接'AB ,试判断'B AE ∠与'GCB ∠的大小关系,并说明理由. 解决问题:(3)如图3,按以下步骤进行操作:第一步:先将正方形ABCD 对折,使BC 与AD 重合,折痕为EF ,把这个正方形展平,然后继续对折,使AB 与DC 重合,折痕为MN ,再把这个正方形展平,设EF 和MN 相交于点O ;第二步:沿直线CG 折叠,使B 点落在EF 上,对应点为'B ;再沿直线AH 折叠,使D 点落在EF 上,对应点为'D ;第三步:设CG ,AH 分别与MN 相交于点P ,Q ,连接'B P ,'PD ,'D Q ,'QB .试判断四边形''B PD Q 的形状,并证明你的结论.24.(本小题满分13分)综合与探究:如图,在平面直角坐标系xOy 中,四边形OABC 是平行四边形,A ,C 两点的坐标分别为(4,0),(2,3)-,抛物线W 经过O ,A ,C 三点,D 是抛物线W 的顶点.(1)求抛物线W 的解析式及顶点D 的坐标;(2)将抛物线W 和□OABC 一起先向右平移4个单位后,再向下平移(03)m m <<个单位,得到抛物线'W 和□O A B C ''''.在向下平移的过程中,设□O A B C ''''与□OABC 的重叠部分的面积为S ,试探究:当m 为何值时S 有最大值,并求出S 的最大值;(3)在(2)的条件下,当S 取最大值时,设此时抛物线W '的顶点为F ,若点M 是x 轴上的动点,点N 时抛物线W '上的动点,试判断是否存在这样的点M 和点N ,使得以D ,F ,M ,N 为顶点的四边形是平行四边形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.。
2014年福建省福州中考数学试题及答案[fz]2014年福建省福州中考数学试题及答案一、选择题1. 设集合A={x|-1<x<5},则Ax={__________}。
(A) x≤-1(B) -1<x<5(C) x>5(D) -1≤x正确答案:(B)解析:根据题意,可知A集合中所有的x值都满足-1<x<5,因此A 对应的数轴上区间表示为-1<x<5。
2. 已知集合A={x|x>0},若Ax={x|x≤2},则数a的取值范围是__________。
(A) a>2(B) a≤2(C) a≤0(D) 0<a≤2正确答案:(B)解析:Ax对应的数轴上的区间为x≤2,因此a的取值范围是a≤2。
3. 平面直角坐标系中,曲线y=x^2-2与y=3的图象相交于点A和点B,点A坐标为__________。
(A) (-1, 3)(B) (-√3, 3)(C) (√3, 3)(D) (1, 3)正确答案:(A)解析:根据题意,当y=x^2-2与y=3相交时,x^2-2=3,解得x=-1,代入y=3得到坐标(-1, 3)。
4. 在平面直角坐标系中,点(2, -3)关于原点的象在第几象限?(A) 第一象限(B) 第二象限(C) 第三象限(D) 第四象限正确答案:(C)解析:关于原点对称的象的x坐标和y坐标都为原坐标的相反数,所以点(2, -3)关于原点的象为(-2, 3),即位于第三象限。
5. 若a>0,b<0,c<0,且a<b<c,则下列集合关系中正确的是__________。
(A) {x|x>a} ⊂ {x|x<b} ⊂ {x|x<c}(B) {x|x<c} ⊂ {x|x<b} ⊂ {x|x>a}(C) {x|x>a} ⊂ {x|x<c} ⊂ {x|x<b}(D) {x|x<c} ⊂ {x|x>a} ⊂ {x|x<b}正确答案:(A)解析:由题意可知a<b<c,所以集合关系应为{x|x>a} ⊂ {x|x<b} ⊂{x|x<c}。
2014年福州市初中毕业会考、高级中等学校招生考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共40分)一、选择题(共10小题,每题4分,满分40分;每小题只有一个正确的选项)1.-5的相反数是()A.-5B.5C.D.-2.地球绕太阳公转的速度约是110000千米/时,将110000用科学记数法表示为()A.11×104B.1.1×105C.1.1×104D.0.11×1063.某几何体的三视图如图所示,则该几何体是()A.三棱柱B.长方体C.圆柱D.圆锥4.下列计算正确的是()A.x4·x4=x16B.(a3)2=a5C.(ab2)3=ab6D.a+2a=3a5.若7名学生的体重(单位:kg)分别是:40,42,43,45,47,47,58,则这组数据的平均数是()A.44B.45C.46D.476.下列命题中,假命题...是()A.对顶角相等B.三角形两边的和小于第三边C.菱形的四条边都相等D.多边形的外角和等于360°7.若(m-1)2+=0,则m+n的值是()A.-1B.0C.1D.28.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A.=B.-=C.= D.=-9.如图,在正方形ABCD的外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为()A.45°B.55°C.60°D.75°10.如图,已知直线y=-x+2分别与x轴,y轴交于A,B两点,与双曲线y=交于E,F两点.若AB=2EF,则k的值是()A.-1B.1C.D.第Ⅱ卷(非选择题,共110分)二、填空题(共5小题,每题4分,满分20分;请将正确答案填在相应位置)11.分解因式:ma+mb=.12.若5件外观相同的产品中有1件不合格,现从中任意抽取1件进行检测,则抽到不合格产品的概率是.13.计算:(+1)(-1)=.14.如图,在▱ABCD中,DE平分∠ADC,AD=6,BE=2,则▱ABCD的周长是.15.如图,在Rt△ABC中,∠ACB=90°,点D,E分别是边AB,AC的中点,延长BC到点F,使CF=BC.若AB=10,则EF的长是.三、解答题(满分90分;请将正确答案及解答过程写在相应位置.作图或添加辅助线用铅笔画完,再用黑色签字笔描黑)16.(每小题7分,共14分)(1)计算:++|-1|;(2)先化简,再求值:(x+2)2+x(2-x),其中x=.17.(每小题7分,共14分)(1)如图1,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D;(2)如图2,在边长为1个单位长度的小正方形所组成的网格中,△ABC的顶点均在格点上.①sin B的值是;②画出△ABC关于直线l对称的△A1B1C1(A与A1,B与B1,C与C1相对应),连结AA1,BB1,并计算梯形AA1B1B的面积.图1图2设中学生体质健康综合评定成绩为x分,满分为100分.规定:85≤x≤100为A级,75≤x<85为B 级,60≤x<75为C级,x<60为D级.现随机抽取福海中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图.请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了名学生,a=%;(2)补全条形统计图;(3)扇形统计图中C级对应的圆心角为度;(4)若该校共有2000名学生,请你估计该校D级学生有多少名?19.(满分12分)现有A,B两种商品,买2件A商品和1件B商品用了90元,买3件A商品和2件B商品用了160元.(1)求A,B两种商品每件各是多少元;(2)如果小亮准备购买A,B两种商品共10件,总费用不超过...300元,问有几...350元,且不低于种购买方案,哪种方案费用最低?如图,在△ABC中,∠B=45°,∠ACB=60°,AB=3,点D为BA延长线上的一点,且∠D=∠ACB,☉O为△ACD的外接圆.(1)求BC的长;(2)求☉O的半径.21.(满分13分)如图1,点O在线段AB上,AO=2,OB=1,OC为射线,且∠BOC=60°,动点P以每秒2个单位长度的速度从点O出发,沿射线OC做匀速运动,设运动时间为t秒.(1)当t=秒时,则OP=,S△ABP=;(2)当△ABP是直角三角形时,求t的值;(3)如图2,当AP=AB时,过点A作AQ∥BP,并使得∠QOP=∠B.求证:AQ·BP=3.图1图2备用图如图,抛物线y=(x-3)2-1与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D.(1)求点A,B,D的坐标;(2)连结CD,过原点O作OE⊥CD,垂足为H,OE与抛物线的对称轴交于点E,连结AE,AD.求证:∠AEO=∠ADC;(3)以(2)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过点P作☉E 的切线,切点为Q,当PQ的长最小时,求点P的坐标,并直接写出点Q的坐标.备用图答案全解全析:一、选择题1.B只有符号不同的两个数互为相反数,-5的相反数是5,故选B.评析本题考查相反数的定义,属容易题.2.B科学记数法的表示形式为a×10n,1≤|a|<10,故110000=1.1×105,故选B.评析本题考查科学记数法的定义,属容易题.3.D由主视图和左视图为三角形知此几何体为锥体,由俯视图为圆可推得此几何体为圆锥.评析本题考查由三视图抽象出几何体和学生的空间想象能力,属容易题.4.D x4·x4=x4+4=x8,A选项错误;(a3)2=a3×2=a6,B选项错误;(ab2)3=a3·b2×3=a3b6,C选项错误;根据合并同类项法则知,D选项正确,故选D.5.C这组数据的平均数是=46,故选C.评析本题考查数据分析中的平均数的计算方法,属容易题.6.B根据三角形三条边之间的关系可知B是错误的,故选B.7.A∵(m-1)2+=0,∴-∴-∴m+n=-1,故选A.8.A根据“现在生产600台机器所需时间与原计划生产450台机器所需时间相同”可以列出方程=,故选A.评析本题考查分式方程的应用,根据题意正确找出等量关系是关键,属容易题.9.C由已知得AB=AE,∠BAE=150°,∴∠ABF=15°,∴∠BFC=∠ABF+∠BAF=60°.评析本题考查正方形、等边三角形、等腰三角形的性质,属中等难度题.10.D如图,作ED⊥OB,EC⊥OA,FG⊥OA,垂足分别为D,C,G,ED交FG于H,易得A(2,0),B(0,2),∴△ACE、△AOB、△EHF都是等腰直角三角形,又∵AB=2EF,∴EH=FH=1,设OG=x,∴AC=EC=1-x,∴E(x+1,1-x),F(x,2-x).又∵点E、F在双曲线上,∴(x+1)(1-x)=x(2-x),解得x=,∴E,k=.评析本题考查反比例函数与一次函数图象的交点问题,相似三角形的判定和性质,属难题.二、填空题11.答案m(a+b)解析ma+mb=m(a+b).评析本题考查提公因式法分解因式,属容易题.12.答案解析5件外观相同的产品中有1件不合格,从中任意抽取1件进行检测,则抽到不合格产品的概率是.评析本题考查概率,属容易题.13.答案1解析(+1)(-1)=()2-12=2-1=1.评析本题考查二次根式的运算法则和平方差公式,属容易题.14.答案20解析∵四边形ABCD是平行四边形,AD=6,BE=2,∴BC=AD=6,∴EC=4.又∵DE平分∠ADC,∴∠ADE=∠EDC.∵AD∥BC,∴∠ADE=∠DEC,∴∠DEC=∠EDC.∴CD=EC=4.∴▱ABCD的周长是2×(6+4)=20.评析本题考查平行四边形的性质和等腰三角形的判定,属中等难度题. 15.答案5解析∵在Rt△ABC中,∠ACB=90°,点D,E分别是边AB,AC的中点,AB=10,∴AD=5,AE=EC,DE=BC,∠AED=90°.∵CF=BC,∴DE=FC.在Rt△ADE和Rt△EFC中,∵AE=EC,∠AED=∠ECF=90°,DE=FC,∴Rt△ADE≌Rt△EFC(SAS).∴EF=AD=5.评析本题考查三角形中位线定理,属中等难度题.三、解答题16.解析(1)原式=3+1+1=5.(2)原式=x2+4x+4+2x-x2=6x+4.当x=时,原式=6×+4=6.评析本题考查了实数的运算,属容易题.17.解析(1)证明:∵BE=CF,∴BE+EF=CF+EF,即BF=CE.又∵AB=DC,∠B=∠C,∴△ABF≌△DCE.∴∠A=∠D.(2)①.②如图所示.由轴对称的性质可得,AA1=2,BB1=8,梯形AA1B1B的高是4.=(AA1+BB1)×4=20.∴梯形评析本题考查了全等三角形的判定与性质,属容易题.18.解析(1)50;24.(2)如图所示.综合评定成绩条形统计图(3)72.(4)该校D级学生约有2000×=160(名).评析本题考查了条形统计图和扇形统计图的综合运用,条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比,属容易题.19.解析(1)设A商品每件x元,B商品每件y元.依题意,得解得答:A商品每件20元,B商品每件50元.(2)设小亮准备购买A商品a件,则购买B商品(10-a)件.依题意,得--解得5≤a≤6.根据题意知,a的值应为整数,所以a=5或a=6.方案一:当a=5时,购买费用为20×5+50×(10-5)=350元;方案二:当a=6时,购买费用为20×6+50×(10-6)=320元.∵350>320,∴购买A商品6件,B商品4件的费用最低.答:有两种购买方案,方案一:购买A商品5件,B商品5件;方案二:购买A商品6件,B商品4件.其中方案二费用最低.20.解析(1)过点A作AE⊥BC,垂足为E.∴∠AEB=∠AEC=90°.在Rt△ABE中,∵sin B=,∴AE=AB·sin B=3·sin45°=3×=3.∵∠B=45°,∴∠BAE=45°.∴BE=AE=3.在Rt△ACE中,∵tan∠ACB=,∴EC==°==.∴BC=BE+EC=3+.(2)由(1)得,在Rt△ACE中,∠EAC=30°,EC=,∴AC=2.解法一:连结AO并延长交☉O于M,连结CM.∵AM为直径,∴∠ACM=90°.在Rt△ACM中,∵∠M=∠D=∠ACB=60°,sin M=,=4.∴AM==°∴☉O的半径为2.解法二:连结OA,OC,过点O作OF⊥AC,垂足为F,则AF=AC=.∵∠D=∠ACB=60°,∴∠AOC=120°.∴∠AOF=∠AOC=60°.在Rt△OAF中,∵sin∠AOF=,∴AO==2,即☉O的半径为2.评析本题主要考查了解直角三角形以及锐角三角函数的应用,属中等难度题.21.解析(1)1;.(2)①∵∠A<∠BOC=60°,∴∠A不可能为直角.②当∠ABP=90°时,∵∠BOC=60°,∴∠OPB=30°.∴OP=2OB,即2t=2.∴t=1.③当∠APB=90°时,作PD⊥AB,垂足为D,则∠ADP=∠PDB=90°.∵OP=2t,∴OD=t,PD=t,AD=2+t,BD=1-t(△BOP是锐角三角形).解法一:BP2=(1-t)2+3t2,AP2=(2+t)2+3t2.∵BP2+AP2=AB2,∴(1-t)2+3t2+(2+t)2+3t2=9,即4t2+t-2=0.解得t1=-,t2=--(舍去).解法二:∵∠APD+∠BPD=90°,∠B+∠BPD=90°,∴∠APD=∠B.又∵∠ADP=∠PDB=90°,∴△APD∽△PBD,∴=,∴PD2=AD·BD.于是(t)2=(2+t)(1-t),即4t2+t-2=0.解得t1=-,t2=--(舍去).综上,当△ABP是直角三角形时,t=1或-.(3)证法一:∵AP=AB,∴∠APB=∠B.作OE∥AP,交BP于点E,∴∠OEB=∠APB=∠B.∵AQ∥BP,∴∠QAB+∠B=180°.又∵∠3+∠OEB=180°,∴∠3=∠QAB.又∵∠AOC=∠2+∠B=∠1+∠QOP,已知∠B=∠QOP,∴∠1=∠2.∴△QAO∽△OEP.∴=,即AQ·EP=EO·AO.∵OE∥AP,∴△OBE∽△ABP.∴===.∴OE=AP=1,BP=EP.∴AQ·BP=AQ·EP=AO·OE=×2×1=3.证法二:连结PQ,设AP与OQ相交于点F.∵AQ∥BP,∴∠QAP=∠APB.∵AP=AB,∴∠APB=∠B.∴∠QAP=∠B.又∵∠QOP=∠B,∴∠QAP=∠QOP.∵∠QFA=∠PFO,∴△QFA∽△PFO.∴=,即=.又∵∠PFQ=∠OFA,∴△PFQ∽△OFA.∴∠3=∠1.∵∠AOC=∠2+∠B=∠1+∠QOP,已知∠B=∠QOP,∴∠1=∠2.∴∠2=∠3.∴△APQ∽△BPO.∴=.∴AQ·BP=AP·BO=3×1=3.22.解析(1)顶点D的坐标为(3,-1).令y=0,得(x-3)2-1=0,解得x1=3+,x2=3-.∵点A在点B的左侧,∴点A坐标为(3-,0),点B坐标为(3+,0).(2)证明:过D作DG⊥y轴,垂足为G,则G(0,-1),GD=3.令x=0,则y=,∴点C坐标为.∴GC=-(-1)=.设对称轴交x轴于点M.∵OE⊥CD,∴∠GCD+∠COH=90°.∵∠MOE+∠COH=90°,∴∠MOE=∠GCD.又∵∠CGD=∠OME=90°,∴△DCG∽△EOM.∴=,即=.∴EM=2,即点E的坐标为(3,2),∴ED=3.由勾股定理,得AE2=6,AD2=3,∴AE2+AD2=6+3=9=ED2.∴△AED是直角三角形,且∠DAE=90°.设AE交CD于点F.∴∠ADC+∠AFD=90°.又∵∠AEO+∠HFE=90°,∠AFD=∠HFE,∴∠AEO=∠ADC.(3)由☉E的半径为1,根据勾股定理,得PQ2=EP2-1.要使切线长PQ最小,只需EP长最小,即EP2最小.设点P的坐标为(x,y),由勾股定理,得EP2=(x-3)2+(y-2)2.∵y=(x-3)2-1,∴(x-3)2=2y+2.∴EP2=2y+2+y2-4y+4=(y-1)2+5.当y=1时,EP2取最小值,为5.把y=1代入y=(x-3)2-1,得(x-3)2-1=1,解得x1=1,x2=5.又∵点P在对称轴右侧的抛物线上,∴x1=1舍去.∴点P的坐标为(5,1).此时Q点坐标为(3,1)或.评析本题是压轴题,涉及考点众多,难度较大.第(2)问中,注意观察图形,将问题转化为证明△ADE为直角三角形的问题,综合运用勾股定理及其逆定理、三角函数(或相似形)求解;第(3)问中,解题关键是将最值问题转化为求EP2最小值的问题,注意求EP2最小值的具体方法.属难题.。
2014年福州市初中毕业会考、高级中等学校招生考试数学试卷一、选择题(共10小题,每题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.-5的相反数是( )A.-5 B.5 C.15D.-152.地球绕太阳公转的速度约是110000千米/时,将110000用科学记者数法表示为( ) A.11⨯104B.1.1⨯105C.1.1⨯104D.0.11⨯1063.某几何体的三视图如图所示,则该几何体是( )A.三棱柱B.长方体C.圆柱D.圆锥第3题图4.下列计算正确的是( )A.x4·x4=x16B.(a3)2=a5C.(ab2)3=ab6D.a+2a=3a5.若7名学生的体重(单位:kg)分别是:40,42,43,45,47,47,58,则这组数据的平均数是( ) A.44 B.45 C.46 D.476.下列命题中,假命题是( )A.对顶角相等B.三角形两边的和小于第三边C.菱形的四条边都相等D.多边形的外角和等于360︒7.若(m-1)2+=0,则m+n的值是( )A.-1 B.0 C.1 D.28.某工厂现在平均每天比原计算多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是( )A.60045050x x=+B.60045050x x=-C.60045050x x=+D.60045050x x=-9.如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为( ) A.45︒B.55︒C.60︒D.75︒E第9题图第10题图10.如图,已知直线y=-x+2分别与x轴,y轴交于A,B两点,与双曲线y=kx交于E,F两点,若AB=2EF,则k的值是( )A.-1 B.1 C.12D.34二、填空题(共5小题,每题4分,满分20分;请将正确答案填在答题卡相应位置)11.分解因式:ma+mb=.12.若5件外观相同的产品中有1件不合格,现从中任意抽取1件进行检测,则抽到不合格产品的概率是.13.计算:1)1)=.14.如图,在□ABCD中,DE平分∠ADC,AD=6,BE=2,则□ABCD的周长是.B第14题图第15题图15.如图,在Rt△ABC中,∠ACB=90︒,点D,E分别是边AB,AC的中点,延长BC到点F,使CF=12BC .若AB=10,则EF的长是.三、解答题(满分90分;请将正确答案及解答过程填在答题卡相应位置.作图或添加辅助线用铅笔画完,再用黑色签字笔描黑)16.(每小题7分,共14分)(112014⎛⎫⎪⎝⎭0+|-1|.(2)先化简,再求值:(x+2)2+x(2-x),其中x=1 3 .17.(每小题7分,共14分)(1)如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.(2)如图,在边长为1个单位长度的小正方形所组成的网格中,△ABC的顶点均在格点上.①sin B的值是;②画出△ABC关于直线l对称的△A1B1C1(A与A1,B与B1,C与C1相对应).连接AA1,BB1,并计算梯形AA1B1B的面积.18.(满分12分)设中学生体质健康综合评定成绩为x分,满分为100分.规定:85≤x≤100为A级,75≤x<85为B级,60≤x<75为C级,x<60为D级.现随机抽取福海中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图.请根据图中的信息,解答下列问题:综合评定成绩扇形统计图D a级C级A级48%B级(1)在这次调查中,一共抽取了名学生,a %;(2)补全条形统计图;(3)扇形统计图中C级对应的圆心角为度;(4)若该校共有2000名学生,请你估计该校D级学生有多少名?19.(满分12分)现有A,B两种商品,买2件A商品和1件B商品用了90元,买3件A商品和2件B商品共用了160元.(1)求A,B两种商品每件多少元?(2)如果小亮准备购买A,B两种商品共10件,总费用不超过350元,且不低于300元,问有几种购买方案,哪种方案费用最低?20.(满分11分)如图,在△ABC 中,∠B =45︒,∠ACB =60︒,AB =D 为BA 延长线上的一点,且∠D =∠ACB ,⊙O 为△ACD 的外接圆. (1)求BC 的长; (2)求⊙O 的半径.B21.(满分13分)如图1,点O 在线段AB 上,AO =2,OB =1,OC 为射线,且∠BOC =60︒,动点P 以每秒2个单位长度的速度从点O 出发,沿射线OC 做匀速运动,设运动时间为t 秒. (1)当t =12秒时,则OP = ,S △ABP = ; (2)当△ABP 是直角三角形时,求t 的值;(3)如图2,当AP =AB 时,过点A 作AQ ∥BP ,并使得∠QOP =∠B ,求证:AQ ·BP =3.、图2Q备用图图1O22.(满分14分)如图,抛物线y=12(x-3)2-1与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D了.(1)求点A,B,D的坐标;(2)连接CD,过原点O作OE⊥CD,垂足为H,OE与抛物线的对称轴交于点E,连接AE,AD.求证:∠AEO=∠ADC;(3)以(2)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过点P作⊙E的切线,切点为Q,当PQ的长最小时,求点P的坐标,并直接写出点Q的坐标.。