激光器控制原理图
- 格式:pdf
- 大小:2.34 MB
- 文档页数:16
典型的高功率光纤激光加工系统典型的高功率光纤激光加工系统一般包括以下几个基本单元:●高功率光纤激光器系统机械手准直聚焦系统外部光闸高功率光纤激光器系统包括以下几个模块:●传输光纤/操作光纤●光纤的外型●光纤的功能光纤是一种高度透明的玻璃丝,由纯石英经复杂的工艺拉制而成。
光纤 中心部分(芯Core)+同心圆状包裹层(包层Clad)+涂覆层套层外包层纤芯一次涂覆层型号描述QB IPG最常用型号输入端输出端输入端输出端Feeding fiber名称多路输出Process fiber反射镜Feeding fiberProcess fiber 耦合镜准直镜型号:FFS2way描述操作光纤的数目:Modular Multi-KW Fiber Laser Very High Beam Quality模块温度显示模块选择显示电源状态显示激光器功率水冷机要求制冷量(KW)12制冷机接口●内控模式激光功率和开关光均由LaserNet通过网线控制YLS-xx-SM series YLS-xx-SM-CT seriesYLR-xx-ST2(SST2) series YLR-xx-yy-WW seriesYLR –3000(5000) -YLR-xx-SM-CT series specifications Single Mode Fiber Laser with internal Fiber/Fiber coupler on topYLR-20000 Fiber LaserYLR-xx-C series specifications Multimode Fiber Laser with internal Fiber/Fiber coupler on sideYLR-xx-S2(SS2) series specifications Multimode Fiber Laser with internal 2-ways Beam Switch on sideYLR-xx-CT series specifications Multimode Fiber Laser with internal Fiber/Fiber coupler on top 内置光光耦合器P ≤2500 W P ≥3000 WYLR-xx-ST2(SST2) series specifications Multimode Fiber Laser with internal 2-ways Beam Switch on topP ≥3000 WYLR-2000-S2T-QCW Fiber Laser Main advantage:better cutting quality and faster speedIPG Application Lab in Burbach Heartly Welcome and thanks for Your attention !。
激光发射的原理图
激光发射的原理图如下所示:
1. 激光介质是由装置内部的两块光反射面之间的一个透明固体、液体或气体组成。
2. 能源提供设备产生的能量被转换为激光介质分子的激发能。
3. 通过光源的输入,激活了介质分子中的原子或分子的激发态。
4. 激发态的分子开始跃迁至基态并释放出光子。
5. 利用光学共振效应和光反射面的不同折射率,光子在其通过激光介质的过程中会得到多次强烈的反射。
6. 反射率越高,光子经历的反射次数越多,从而增强了激光的准直性和能量密度。
7. 最终,由于受限于一侧光反射面上的特定反射镜的特性,高反射率的光子会从另一侧的半透明反射镜中通过。
8. 当达到一定能量和频率的光子通过边界退出时,它们将形成一个具有高标度的平行激光束。
激光器的工作原理一.光学谐振腔结构与稳定性激光是在光学谐振腔中产生的。
它的主要功能之一是使光在腔内来回反射多次以增长激活介质作用的工作长度,提高腔内的光能密度。
显而易见的是,不垂直于反射镜表面的傍轴光线经过有限次的反射就会投射到平面镜的通光口径之外,而使得激活介质作用的工作长度只得到很有限的增长。
所以,光线能够在谐振腔中反射的次数与其结构密切相关。
能够使腔中任一束傍轴光线经过任意多次往返传播而不逸出腔外的谐振腔能够使激光器稳定地发出激光,这种谐振腔叫做稳定腔,反之称为不稳定腔。
我们讨论光学谐振腔的结构与稳定性的关系。
1.共轴球面谐振腔的稳定性条件光学谐振腔都是由相隔一定距离的两块反射镜组成的。
无论是平面镜还是球面镜,无论是凸面镜还是凹面镜,都可以用“共轴球面”的模型来表示。
因为只要把两个反射镜的球心连线作为光轴,整个系统总是轴对称的,两个反射面可以看成是“共轴球面”。
平面镜是半径为无穷大的球面镜。
如果其中一块是平面镜,可以用通过另一块球面镜球心与平面镜垂直的直线作为光轴。
平行平面腔的光轴则可以是与平面镜垂直的任一直线。
当然两个平面镜不平行不能产生谐振,不在讨论之列。
图(2-1)共轴球面腔结构示意图如图(2-1)所示,共轴球面腔的结构可以用三个参数来表示:两个球面反射镜的曲率半径R1、R2,和腔长即与光轴相交的反射镜面上的两个点之间的距离L。
如果规定凹面镜的曲率半径为正,凸面镜的曲率半径为负,可以证明共轴球面腔的稳定性条件是111021≤⎪⎪⎭⎫ ⎝⎛-⨯⎪⎪⎭⎫ ⎝⎛-≤R L R L (2-1) 上式左边成立的条件等价于⎪⎪⎭⎫ ⎝⎛-11R L 和⎪⎪⎭⎫ ⎝⎛-21R L 同时为正或同时为负,这就要求两镜面的曲率半径为正时必须同时大于腔长或同时小于腔长。
如果镜面的曲率半径同时为负,尽管上式左边成立,右边的不等式却不成立。
如果镜面的曲率半径一正一负,则需要具体讨论。
2.共轴球面腔的稳定图及其分类为了直观起见,常用稳定图来表示共轴球面腔的稳定条件。
光纤激光器原理光纤激光器主要由泵浦源,耦合器,掺稀土元素光纤,谐振腔等部件构成。
泵浦源由一个或多个大功率激光二极管阵列构成,其发出的泵浦光经特殊的泵浦结构耦合入作为增益介质的掺稀土元素光纤,泵浦波长上的光子被掺杂光纤介质吸收,形成粒子数反转,受激发射的光波经谐振腔镜的反馈和振荡形成激光输出。
光纤激光器特点光纤激光器以光纤作为波导介质,耦合效率高,易形成高功率密度,散热效果好,无需庞大的制冷系统,具有高转换效率,低阈值,光纤激光器原理图1:峰值功率:脉冲激光器,顾名思义,它输出的激光是一个一个脉冲,每单个脉冲有一个持续时间,比如说10 ns(纳秒),一般称作单个脉冲宽度,或单个脉冲持续时间,我们用t 表示。
这种激光器可以发出一连串脉冲,比如,1 秒钟发出10 个脉冲,或者有的就发出一个脉冲。
这时,我们就说脉冲重复(频)率前者为10,后者为1,那么,1 秒钟发出10 个脉冲,它的脉冲重复周期为0.1 秒,而1 秒钟发出1 个脉冲,那么,它的脉冲重复周期为 1 秒,我们用T 表示这个脉冲重复周期。
如果单个脉冲的能量为E,那么E/T 称作脉冲激光器的平均功率,这是在一个周期内的平均值。
例如, E = 50 mJ(毫焦),T = 0.1 秒,那么,平均功率P平均= 50 mJ/0.1 s = 500 mW。
如果用 E 除以t,即有激光输出的这段时间内的功率,一般称作峰值功率(peak power),例如,在前面的例子中E = 50 mJ, t = 10 ns,P峰值= 50 ×10^(-3)/[10×10^(-9)] = 5×10^6 W = 5 MW(兆瓦),由于脉冲宽度t 很小,它的峰值功率很大。
脉冲能量E=1mj 脉宽t=100ns 重复频率20-80K 脉冲持续时间T=1s/2k=?秒平均功率P=E/T=0.001J/0.00005s=20WP峰值功率=E/t激光的分类:激光按波段分,可分为可见光、红外、紫外、X光、多波长可调谐,目前工业用红外及紫外激光。