《生物化学简明教程》附带的习题答案zq整理版
- 格式:doc
- 大小:64.00 KB
- 文档页数:3
课后习题参考答案第二章核酸的化学1.列表说明DNA和RNA在化学组成、分子结构和生物学功能各方面主要特点。
答:2.列述DNA双螺旋结构的要点,从分子大小和形成氢键两个方面A-T配对和G-C配对是碱基配对的最佳方案,概要说明碱基配对规律在生命科学中的意义。
答:双螺旋的要点:(1)DNA分子是由两条方向相反的平行的多核苷酸链组成的一条链的5’-结尾与另一条的3’结尾相对两条链的主链都是右手螺旋,由一路的螺旋轴。
(2)两条链上的碱基均在主链的内侧A与T配对,G与C配对。
(3)成对的碱基大致处于同一平面,改平面与螺旋轴大体垂直。
(4)大多数DNA属双链DNA(dsDNA),某些病毒DNA的单链DNA(ssDNA)。
(5)双链上的化学键手碱基配对等因素的影响旋转手限制。
使DNA分子比较刚硬,呈比较伸展的结构。
亦可作进一步的扭曲成三碱基互补配对规律保证了遗传信息在传递和遗传进程中的准确性。
3.简要说明松弛环形DNA,解链环形DNA,负超螺旋DNA的结构特点。
答:松弛环形DNA:仅有双螺旋,无扭曲张力。
连环数等于扭转数。
解链环形DNA:链中有突环,存在扭曲张力,即突环部份有形成超螺旋的趋势。
负超螺旋DNA:由于双链两头处于固定状态,两条链之间的扭曲引发双链环向右手方向扭曲,形成超螺旋结构致密,体积较小。
4.别离简述原核生物和真核生物基因组的特点。
答:真核生物基因组的特点是:(1)基因组通常比较大,为双螺旋的DNA分子;(2)含有内含子序列;(3)有大量重复序列;(4)表达调控较复杂。
原核生物基因组的特点:(1)除调节序列和信号序列外,DNA的大部份是蛋白质编码的结构基因,且每一个基因在DNA分子中只出现一次或几回;(2)功能相关的基因常串联在一路,并转录在同一mRNA分子中;(3)有基因重叠现象。
5.若是人有1014个细胞,每一个细胞的DNA含量为9,则人体DNA的总长度为多少米?在染色体中,DNA长度是如何被紧缩的?答:1014x 9=14在染色体中,两条DNA链通过碱基互补配对原则以氢键彼此吸引结合形成双链,双链凭借碱基堆积力形成双螺旋结构,再进一步扭曲成三级结构。
生物化学简明教程(第四版)课后习题————————————————————————————————作者: ————————————————————————————————日期:2蛋白质化学1.用于测定蛋白质多肽链N端、C端的常用方法有哪些?基本原理是什么?解答:(1) N-末端测定法:常采用2,4―二硝基氟苯法、Edman降解法、丹磺酰氯法。
①2,4―二硝基氟苯(DNFB或FDNB)法:多肽或蛋白质的游离末端氨基与2,4―二硝基氟苯(2,4―DNFB)反应(Sanger反应),生成DNP―多肽或DNP―蛋白质。
由于DNFB与氨基形成的键对酸水解远比肽键稳定,因此DNP―多肽经酸水解后,只有N―末端氨基酸为黄色DNP―氨基酸衍生物,其余的都是游离氨基酸。
②丹磺酰氯(DNS)法:多肽或蛋白质的游离末端氨基与与丹磺酰氯(DNS―Cl)反应生成DNS―多肽或DNS―蛋白质。
由于DNS与氨基形成的键对酸水解远比肽键稳定,因此DNS―多肽经酸水解后,只有N―末端氨基酸为强烈的荧光物质DNS―氨基酸,其余的都是游离氨基酸。
③苯异硫氰酸脂(PITC或Edman降解)法:多肽或蛋白质的游离末端氨基与异硫氰酸苯酯(PITC)反应(Edman反应),生成苯氨基硫甲酰多肽或蛋白质。
在酸性有机溶剂中加热时,N―末端的PTC―氨基酸发生环化,生成苯乙内酰硫脲的衍生物并从肽链上掉下来,除去N―末端氨基酸后剩下的肽链仍然是完整的。
④氨肽酶法:氨肽酶是一类肽链外切酶或叫外肽酶,能从多肽链的N端逐个地向里切。
根据不同的反应时间测出酶水解释放的氨基酸种类和数量,按反应时间和残基释放量作动力学曲线,就能知道该蛋白质的N端残基序列。
(2)C―末端测定法:常采用肼解法、还原法、羧肽酶法。
肼解法:蛋白质或多肽与无水肼加热发生肼解,反应中除C端氨基酸以游离形式存在外,其他氨基酸都转变为相应的氨基酸酰肼化物。
②还原法:肽链C端氨基酸可用硼氢化锂还原成相应的α―氨基醇。
生物化学简明教程习题第一章蛋白质1 简述蛋白质的主要生物学功能。
2 组成蛋白质的20种氨基酸的名称和分类。
3 简要叙述氨基酸的主要物理和化学性质。
4 说明等电点(pI)定义和氨基酸等电点的计算方法。
5 说明蛋白质一级、二级、三级和四级结构的特点。
6 蛋白质α-螺旋和β-片层结构的基本特点。
7 简要叙述蛋白质结构与功能的关系。
8 蛋白质的基本性质及其主要的分离方法。
9 根据蛋白质等电点,指出下列蛋白质在所指的pH条件下,电泳时泳动的方向。
(1)胃蛋白酶(pI 1.0)pH 5.0 条件下电泳;(2)血清清蛋白(pI 4.9)pH 6.0 条件下电泳;(3)α-脂蛋白(pI 5.8)pH 5.0 和pH 9.0条件下电泳;10 什么是超二级结构和结构域?第三章糖类1 糖的化学含义是什么?2 简要叙述糖的生物学功能。
3 解释下列名词(1)镜像异构体(对映体)(2)表异构体(差向异构体)(3)异头碳,异头物(4)糖苷键(5)糖胺聚糖(粘多糖)(6)糖蛋白和蛋白多糖(粘蛋白)4 说明淀粉、糖原和纤维素的结构与性质的主要区别。
第四章脂质与生物膜1 脂类物质的共同特点是什么?2 简要说明三酰甘油酯、磷脂和鞘磷脂的化学组成。
3 简要说明生物膜的结构与功能。
第五章酶1 酶的化学本质是什么?简要说明酶的催化特性。
2 六大酶类的名称和催化特点是什么?3 辅酶和辅基的主要区别是什么?4 什么是米氏常数?米氏常数的意义是什么?5 影响酶具有高效催化性的因素。
6 用下列数据求该酶促反应的Vmax 和Km。
[S](mol.L-1) 速度(μmol.L-1.min-1)0.3×10-5 10.40.5×10-5 14.51.0×10-5 22.53.0×10-5 33.89.0×10-5 40.57 解释下列名词:(1)最适温度(2)最适pH(3)竞争性抑制和非竞争性抑制(4)酶的别构(变构)效应(5)酶活力(酶活性)(6)同工酶(7)核酶(8)多酶体系和多酶复合物8 什么是酶的活性部位和必需基团以及两者的关系。
生物化学简明教程(第4版)__张丽萍__课后答案1绪论1.生化研究的对象和内容是什么?答:主要生化研究:(1)生物机体的化学组成、生物分子的结构、性质及功能;(2)生物分子分解与合成及反应过程中的能量变化;(3)生物遗传信息的储存、传递和表达;(4)生物体新陈代谢的调节与控制。
2.你所学的哪些课程与生物化学有关。
提示:生物化学是生命科学的基础学科,注意从不同的角度,去理解并运用生物化学的知识。
3.解释生物分子的元素组成和分子组成之间的相似性解答:生物大分子在元素组成上有相似的规粜浴l肌⑶狻⒀酢⒌、磷、硫等6种是蛋白质、核酸、糖和脂的主要组成元素。
碳原子具有特殊的成键性质,即碳原子最外层的4个电子可使碳与自身形成共价单键、共价双键和共价三键,碳还可与氮、氧和氢原子形成共价键。
碳与被键合原子形成4个共价键的性质,使得碳骨架可形成线性、分支以及环状的多O多种化合物。
其特殊的键合性能满足了生物大分子多样性的需要。
氮、氧、硫和磷的结构成了生物分子碳骨架上的氨基(―nh2)、羟基(―oh)、羰基(c),羧基(-COOH),巯基基(―sh)、磷酸基(―po4)等功能基团。
这些功能基团因氮、硫和磷有着可变的氧化数及氮和氧有着较强的电负性而与生命物质的许多关键作用密切相关。
生物大分子在结构上也有共同的规律性。
生物大分子通过某些共价键由同一类型的组分聚合成链,其主链骨架呈现周期性重复。
蛋白质的组成部分是20种基本氨基酸。
氨基酸通过肽键连接。
肽链是定向的(N端)→ C-末端),而蛋白质骨架作为“肽单元”重复;核酸的成分是核苷酸,它通过3',5'-磷酸二酯键连接。
核酸链也具有方向性(5’,→3'). 核酸的主链骨架重复为“磷酸核糖(或脱氧核糖)”;脂质的成分为甘油、脂肪酸和胆碱,其非极性烃长链也是一个重复结构;纤维素和淀粉的成分由单糖和单糖连接。
2蛋白质化学1.确定蛋白质多肽链N端和C端的常用方法是什么?基本原则是什么?解答:(1)n-末端测定法:常采用2,4d二硝基氟苯法、edman降解法、丹磺酰氯法。
《生物化学简明教程》附带的习题答案(一)用于测定蛋白质多肽链N端、C端的常用方法有哪些?解答:(1)N-末端测定法:常采用2,4―二硝基氟苯法、Edman降解法、丹磺酰氯法。
(2)C―末端测定法:常采用肼解法、还原法、羧肽酶法。
(二)何谓蛋白质的变性与沉淀?二者在本质上有何区别?解答:蛋白质的变性:天然蛋白质受物理或化学因素的影响后,使其失去原有的生物活性,并伴随着物理化学性质的改变的作用。
变性的本质:分子中各种次级键断裂,使其空间构象从紧密有序的状态变成松散无序的状态,一级结构不破坏。
蛋白质变性后的表现:①生物学活性消失②理化性质改变:溶解度下降,黏度增加,紫外吸收增加,侧链反应增强,对酶的作用敏感,易被水解。
蛋白质由于带有电荷和水膜,因此在水溶液中形成稳定的胶体。
如果在蛋白质溶液中加入适当的试剂,破坏了蛋白质的水膜或中和了蛋白质的电荷,则蛋白质胶体溶液就不稳定而出现沉淀现象。
沉淀机理:破坏蛋白质的水化膜,中和表面的净电荷。
蛋白质的沉淀可以分为两类:(1)可逆的沉淀:蛋白质的结构未发生显著的变化,除去引起沉淀的因素,蛋白质仍能溶于原来的溶剂中,并保持天然性质。
(2)不可逆沉淀:蛋白质分子内部结构发生重大改变,蛋白质变性而沉淀,不再能溶于原溶剂。
蛋白质变性后,有时由于维持溶液稳定的条件仍然存在,并不析出。
因此变性蛋白质并不一定都表现为沉淀,而沉淀的蛋白质也未必都已经变性。
(三)一个α螺旋片段含有180个氨基酸残基,该片段中有多少圈螺旋?计算该α-螺旋片段的轴长。
解答:180/3.6=50圈,50×0.54=27nm,该片段中含有50圈螺旋,其轴长为27nm。
(五)如果人体有1014个细胞,每个体细胞的DNA含量为6.4 × 109个碱基对。
试计算人体DNA 的总长度是多少?是太阳―地球之间距离(2.2 × 109 km)的多少倍?已知双链DNA每1000个核苷酸重1 ×10-18g,求人体DNA的总质量。
生物化学简明教程(第四版)课后习题2 蛋白质化学1.用于测定蛋白质多肽链N端、C端的常用方法有哪些?基本原理是什么?解答:(1)N-末端测定法:常采用2,4―二硝基氟苯法、Edman降解法、丹磺酰氯法。
①2,4―二硝基氟苯(DNFB或FDNB)法:多肽或蛋白质的游离末端氨基与2,4―二硝基氟苯(2,4―DNFB)反应(Sanger反应),生成DNP―多肽或DNP―蛋白质。
由于DNFB与氨基形成的键对酸水解远比肽键稳定,因此DNP―多肽经酸水解后,只有N―末端氨基酸为黄色DNP―氨基酸衍生物,其余的都是游离氨基酸。
②丹磺酰氯(DNS)法:多肽或蛋白质的游离末端氨基与与丹磺酰氯(DNS―Cl)反应生成DNS―多肽或DNS―蛋白质。
由于DNS与氨基形成的键对酸水解远比肽键稳定,因此DNS―多肽经酸水解后,只有N―末端氨基酸为强烈的荧光物质DNS―氨基酸,其余的都是游离氨基酸。
③苯异硫氰酸脂(PITC或Edman降解)法:多肽或蛋白质的游离末端氨基与异硫氰酸苯酯(PITC)反应(Edman反应),生成苯氨基硫甲酰多肽或蛋白质。
在酸性有机溶剂中加热时,N―末端的PTC―氨基酸发生环化,生成苯乙内酰硫脲的衍生物并从肽链上掉下来,除去N―末端氨基酸后剩下的肽链仍然是完整的。
④氨肽酶法:氨肽酶是一类肽链外切酶或叫外肽酶,能从多肽链的N端逐个地向里切。
根据不同的反应时间测出酶水解释放的氨基酸种类和数量,按反应时间和残基释放量作动力学曲线,就能知道该蛋白质的N端残基序列。
(2)C―末端测定法:常采用肼解法、还原α-脂蛋白pI 5.8<环境pH 9.0,带负电荷,向正极移动。
4.何谓蛋白质的变性与沉淀?二者在本质上有何区别?解答:蛋白质变性的概念:天然蛋白质受物理或化学因素的影响后,使其失去原有的生物活性,并伴随着物理化学性质的改变,这种作用称为蛋白质的变性。
变性的本质:分子中各种次级键断裂,使其空间构象从紧密有序的状态变成松散无序的状态,一级结构不破坏。
2 蛋白质化学1.用于测定蛋白质多肽链N端、C端的常用方法有哪些?基本原理是什么?解答:(1)N-末端测定法:常采用2,4―二硝基氟苯法、Edman降解法、丹磺酰氯法。
①2,4―二硝基氟苯(DNFB或FDNB)法:多肽或蛋白质的游离末端氨基与2,4―二硝基氟苯(2,4―DNFB)反应(Sanger反应),生成DNP―多肽或DNP―蛋白质。
由于DNFB与氨基形成的键对酸水解远比肽键稳定,因此DNP―多肽经酸水解后,只有N―末端氨基酸为黄色DNP―氨基酸衍生物,其余的都是游离氨基酸。
②丹磺酰氯(DNS)法:多肽或蛋白质的游离末端氨基与与丹磺酰氯(DNS―Cl)反应生成DNS―多肽或DNS―蛋白质。
由于DNS与氨基形成的键对酸水解远比肽键稳定,因此DNS―多肽经酸水解后,只有N―末端氨基酸为强烈的荧光物质DNS―氨基酸,其余的都是游离氨基酸。
③苯异硫氰酸脂(PITC或Edman降解)法:多肽或蛋白质的游离末端氨基与异硫氰酸苯酯(PITC)反应(Edman反应),生成苯氨基硫甲酰多肽或蛋白质。
在酸性有机溶剂中加热时,N―末端的PTC―氨基酸发生环化,生成苯乙内酰硫脲的衍生物并从肽链上掉下来,除去N―末端氨基酸后剩下的肽链仍然是完整的。
④氨肽酶法:氨肽酶是一类肽链外切酶或叫外肽酶,能从多肽链的N端逐个地向里切。
根据不同的反应时间测出酶水解释放的氨基酸种类和数量,按反应时间和残基释放量作动力学曲线,就能知道该蛋白质的N端残基序列。
(2)C―末端测定法:常采用肼解法、还原法、羧肽酶法。
肼解法:蛋白质或多肽与无水肼加热发生肼解,反应中除C端氨基酸以游离形式存在外,其他氨基酸都转变为相应的氨基酸酰肼化物。
②还原法:肽链C端氨基酸可用硼氢化锂还原成相应的α―氨基醇。
肽链完全水解后,代表原来C―末端氨基酸的α―氨基醇,可用层析法加以鉴别。
③羧肽酶法:是一类肽链外切酶,专一的从肽链的C―末端开始逐个降解,释放出游离的氨基酸。
生物化学简明教程第四版课后习题答案 1 绪论1.生物化学研究的对象和内容是什么?解答:生物化学主要研究:(1)生物机体的化学组成、生物分子的结构、性质及功能;(2)生物分子分解与合成及反应过程中的能量变化;(3)生物遗传信息的储存、传递和表达;(4)生物体新陈代谢的调节与控制。
2.你已经学过的课程中哪些内容与生物化学有关。
提示:生物化学是生命科学的基础学科,注意从不同的角度,去理解并运用生物化学的知识。
3.说明生物分子的元素组成和分子组成有哪些相似的规侓。
解答:生物大分子在元素组成上有相似的规侓性。
碳、氢、氧、氮、磷、硫等6种是蛋白质、核酸、糖和脂的主要组成元素。
碳原子具有特殊的成键性质,即碳原子最外层的4个电子可使碳与自身形成共价单键、共价双键和共价三键,碳还可与氮、氧和氢原子形成共价键。
碳与被键合原子形成4个共价键的性质,使得碳骨架可形成线性、分支以及环状的多种多性的化合物。
特殊的成键性质适应了生物大分子多样性的需要。
氮、氧、硫、磷元素构成了生物分子碳骨架上的氨基(—NH 2)、羟基(—OH )、羰基(C O )、羧基(—COOH )、巯基(—SH )、磷酸基(—PO 4 )等功能基团。
这些功能基团因氮、硫和磷有着可变的氧化数及氮和氧有着较强的电负性而与生命物质的许多关键作用密切相关。
生物大分子在结构上也有着共同的规律性。
生物大分子均由相同类型的构件通过一定的共价键聚合成链状,其主链骨架呈现周期性重复。
构成蛋白质的构件是20种基本氨基酸。
氨基酸之间通过肽键相连。
肽链具有方向性(N 端→C 端),蛋白质主链骨架呈“肽单位”重复;核酸的构件是核苷酸,核苷酸通过3′, 5′-磷酸二酯键相连,核酸链也具有方向性(5′、→3′ ),核酸的主链骨架呈“磷酸-核糖(或脱氧核糖)”重复;构成脂质的构件是甘油、脂肪酸和胆碱,其非极性烃长链也是一种重复结构;构成多糖的构件是单糖,单糖间通过糖苷键相连,淀粉、纤维素、糖原的糖链骨架均呈葡萄糖基的重复。
2蛋白质化学1.用于测定蛋白质多肽链N 端、 C 端的常用方法有哪些?基来源理是什么?解答:( 1 ) N- 尾端测定法:常采纳2, 4―二硝基氟苯法、Edman 降解法、丹磺酰氯法。
①2, 4―二硝基氟苯 (DNFB 或 FDNB) 法:多肽或蛋白质的游离尾端氨基与2, 4―二硝基氟苯(2, 4― DNFB )反响( Sanger反响),生成DNP ―多肽或DNP ―蛋白质。
因为DNFB 与氨基形成的键对酸水解远比肽键稳固,所以DNP― 多肽经酸水解后,只有N― 末端氨基酸为黄色DNP ―氨基酸衍生物,其余的都是游离氨基酸。
②丹磺酰氯 (DNS) 法:多肽或蛋白质的游离尾端氨基与与丹磺酰氯(DNS― Cl)反响生成 DNS ―多肽或 DNS ―蛋白质。
因为 DNS 与氨基形成的键对酸水解远比肽键稳固,因此 DNS ―多肽经酸水解后,只有N― 尾端氨基酸为激烈的荧光物质DNS ―氨基酸,其余的都是游离氨基酸。
③苯异硫氰酸脂( PITC 或 Edman 降解)法:多肽或蛋白质的游离尾端氨基与异硫氰酸苯酯( PITC)反响( Edman反响),生成苯氨基硫甲酰多肽或蛋白质。
在酸性有机溶剂中加热时, N ―尾端的PTC―氨基酸发生环化,生成苯乙内酰硫脲的衍生物并从肽链上掉下来,除掉 N ―尾端氨基酸后剩下的肽链仍旧是完好的。
④氨肽酶法:氨肽酶是一类肽链外切酶或叫外肽酶,能从多肽链的N 端逐一地向里切。
依据不一样的反响时间测出酶水解开释的氨基酸种类和数目,按反响时间和残基开释量作动力学曲线,就能知道该蛋白质的N 端残基序列。
( 2) C―尾端测定法:常采纳肼解法、复原法、羧肽酶法。
肼解法:蛋白质或多肽与无水肼加热发生肼解,反响中除 C 端氨基酸以游离形式存在外,其余氨基酸都转变为相应的氨基酸酰肼化物。
②复原法:肽链 C 端氨基酸可用硼氢化锂复原成相应的α―氨基醇。
肽链完好水解后,代表本来 C―尾端氨基酸的α―氨基醇,可用层析法加以鉴识。
6 酶1.作为生物催化剂,酶最重要的特点是什么?解答:作为生物催化剂,酶最重要的特点是具有很高的催化效率以及高度专一性。
2.酶分为哪几大类?每一大类酶催化的化学反应的特点是什么?请指出以下几种酶分别属于哪一大类酶:磷酸葡糖异构酶(phosphoglucose isomerase)碱性磷酸酶(alkaline phosphatase)●肌酸激酶(creatine kinase)❍甘油醛―3―磷酸脱氢酶(glyceraldehyde-3-phosphate dehydrogenase)⏹琥珀酰―CoA合成酶(succinyl-CoA synthetase)☐柠檬酸合酶(citrate synthase)☐葡萄糖氧化酶(glucose oxidase)❑谷丙转氨酶(glutamic-pyruvic transaminase)❒蔗糖酶(invertase)♦ T4 RNA 连接酶(T4 RNA ligase)解答:前两个问题参考本章第3节内容。
异构酶类;水解酶类;●转移酶类;❍氧化还原酶类中的脱氢酶;⏹合成酶类;☐裂合酶类;☐氧化还原酶类中的氧化酶;❑转移酶类;❒水解酶类;♦合成酶类(又称连接酶类)。
3.什么是诱导契合学说,该学说如何解释酶的专一性?解答:“诱导契合”学说认为酶分子的结构并非与底物分子正好互补,而是具有一定的柔性,当酶分子与底物分子靠近时,酶受底物分子诱导,其构象发生有利于与底物结合的变化,酶与底物在此基础上互补契合进行反应。
根据诱导契合学说,经过诱导之后,酶与底物在结构上的互补性是酶催化底物反应的前提条件,酶只能与对应的化合物契合,从而排斥了那些形状、大小等不适合的化合物,因此酶对底物具有严格的选择性,即酶具有高度专一性。
4.阐述酶活性部位的概念、组成与特点。
解答:参考本章第5节内容。
5.经过多年的探索,你终于从一噬热菌中纯化得到一种蛋白水解酶,可用作洗衣粉的添加剂。
接下来,你用定点诱变的方法研究了组成该酶的某些氨基酸残基对酶活性的影响作用:(1)你将第65位的精氨酸突变为谷氨酸,发现该酶的底物专一性发生了较大的改变,试解释原因;(2)你将第108位的丝氨酸突变为丙氨酸,发现酶活力完全失去,试解释原因;(3)你认为第65位的精氨酸与第108位的丝氨酸在酶的空间结构中是否相互靠近,为什么?解答:(1)第65位的氨基酸残基可能位于酶活性部位中的底物结合部位,对酶的专一性有较大影响,当该氨基酸残基由精氨酸突变为谷氨酸后,其带电性质发生了改变,不再具有与原底物之间的互补性,导致酶的专一性发生改变。
生物化学简明教程课后习题答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】1绪论1.生物化学研究的对象和内容是什么?解答:生物化学主要研究:(1)生物机体的化学组成、生物分子的结构、性质及功能;(2)生物分子分解与合成及反应过程中的能量变化;(3)生物遗传信息的储存、传递和表达;(4)生物体新陈代谢的调节与控制。
2.你已经学过的课程中哪些内容与生物化学有关。
提示:生物化学是生命科学的基础学科,注意从不同的角度,去理解并运用生物化学的知识。
3.说明生物分子的元素组成和分子组成有哪些相似的规侓。
解答:生物大分子在元素组成上有相似的规侓性。
碳、氢、氧、氮、磷、硫等6种是蛋白质、核酸、糖和脂的主要组成元素。
碳原子具有特殊的成键性质,即碳原子最外层的4个电子可使碳与自身形成共价单键、共价双键和共价三键,碳还可与氮、氧和氢原子形成共价键。
碳与被键合原子形成4个共价键的性质,使得碳骨架可形成线性、分支以及环状的多种多性的化合物。
特殊的成键性质适应了生物大分子多样性的需要。
氮、氧、硫、磷元素构成了生物分子碳骨架上的氨基(—NH2)、羟基(—OH)、羰基(CO)、羧基(—COOH)、巯基(—SH)、磷酸基(—PO4 )等功能基团。
这些功能基团因氮、硫和磷有着可变的氧化数及氮和氧有着较强的电负性而与生命物质的许多关键作用密切相关。
生物大分子在结构上也有着共同的规律性。
生物大分子均由相同类型的构件通过一定的共价键聚合成链状,其主链骨架呈现周期性重复。
构成蛋白质的构件是20种基本氨基酸。
氨基酸之间通过肽键相连。
肽链具有方向性(N 端→C端),蛋白质主链骨架呈“肽单位”重复;核酸的构件是核苷酸,核苷酸通过3′, 5′-磷酸二酯键相连,核酸链也具有方向性(5′、→3′ ),核酸的主链骨架呈“磷酸-核糖(或脱氧核糖)”重复;构成脂质的构件是甘油、脂肪酸和胆碱,其非极性烃长链也是一种重复结构;构成多糖的构件是单糖,单糖间通过糖苷键相连,淀粉、纤维素、糖原的糖链骨架均呈葡萄糖基的重复。
1 绪论1.生物化学研究的对象和内容是什么? 解答:生物化学主要研究:(1)生物机体的化学组成、生物分子的结构、性质及功能; (2)生物分子分解与合成及反应过程中的能量变化; (3)生物遗传信息的储存、传递和表达; (4)生物体新陈代谢的调节与控制。
2.你已经学过的课程中哪些内容与生物化学有关。
提示:生物化学是生命科学的基础学科,注意从不同的角度,去理解并运用生物化学的知识。
3.说明生物分子的元素组成和分子组成有哪些相似的规侓。
解答:生物大分子在元素组成上有相似的规侓性。
碳、氢、氧、氮、磷、硫等6种是蛋白质、核酸、糖和脂的主要组成元素。
碳原子具有特殊的成键性质,即碳原子最外层的4个电子可使碳与自身形成共价单键、共价双键和共价三键,碳还可与氮、氧和氢原子形成共价键。
碳与被键合原子形成4个共价键的性质,使得碳骨架可形成线性、分支以及环状的多种多性的化合物。
特殊的成键性质适应了生物大分子多样性的需要。
氮、氧、硫、磷元素构成了生物分子碳骨架上的氨基(—NH 2)、羟基(—OH )、羰基(CO )、羧基(—COOH )、巯基(—SH )、磷酸基(—PO 4 )等功能基团。
这些功能基团因氮、硫和磷有着可变的氧化数及氮和氧有着较强的电负性而与生命物质的许多关键作用密切相关。
生物大分子在结构上也有着共同的规律性。
生物大分子均由相同类型的构件通过一定的共价键聚合成链状,其主链骨架呈现周期性重复。
构成蛋白质的构件是20种基本氨基酸。
氨基酸之间通过肽键相连。
肽链具有方向性(N 端→C 端),蛋白质主链骨架呈“肽单位”重复;核酸的构件是核苷酸,核苷酸通过3′, 5′-磷酸二酯键相连,核酸链也具有方向性(5′、→3′ ),核酸的主链骨架呈“磷酸-核糖(或脱氧核糖)”重复;构成脂质的构件是甘油、脂肪酸和胆碱,其非极性烃长链也是一种重复结构;构成多糖的构件是单糖,单糖间通过糖苷键相连,淀粉、纤维素、糖原的糖链骨架均呈葡萄糖基的重复。
1 绪论1.生物化学研究的对象和内容是什么解答:生物化学主要研究:(1)生物机体的化学组成、生物分子的结构、性质及功能;(2)生物分子分解与合成及反应过程中的能量变化;(3)生物遗传信息的储存、传递和表达;(4)生物体新陈代谢的调节与控制。
2.你已经学过的课程中哪些内容与生物化学有关。
提示:生物化学是生命科学的基础学科,注意从不同的角度,去理解并运用生物化学的知识。
3.说明生物分子的元素组成和分子组成有哪些相似的规侓。
解答:生物大分子在元素组成上有相似的规侓性。
碳、氢、氧、氮、磷、硫等6种是蛋白质、核酸、糖和脂的主要组成元素。
碳原子具有特殊的成键性质,即碳原子最外层的4个电子可使碳与自身形成共价单键、共价双键和共价三键,碳还可与氮、氧和氢原子形成共价键。
碳与被键合原子形成4个共价键的性质,使得碳骨架可形成线性、分支以及环状的多种多性的化合物。
特殊的成键性质适应了生物大分子多样性的需要。
氮、氧、硫、磷元素构成了生物分子碳骨架上的氨基(—NH 2)、羟基(—OH )、羰基(C O )、羧基(—COOH )、巯基(—SH )、磷酸基(—PO 4 )等功能基团。
这些功能基团因氮、硫和磷有着可变的氧化数及氮和氧有着较强的电负性而与生命物质的许多关键作用密切相关。
生物大分子在结构上也有着共同的规律性。
生物大分子均由相同类型的构件通过一定的共价键聚合成链状,其主链骨架呈现周期性重复。
构成蛋白质的构件是20种基本氨基酸。
氨基酸之间通过肽键相连。
肽链具有方向性(N 端→C 端),蛋白质主链骨架呈“肽单位”重复;核酸的构件是核苷酸,核苷酸通过3′, 5′-磷酸二酯键相连,核酸链也具有方向性(5′、→3′ ),核酸的主链骨架呈“磷酸-核糖(或脱氧核糖)”重复;构成脂质的构件是甘油、脂肪酸和胆碱,其非极性烃长链也是一种重复结构;构成多糖的构件是单糖,单糖间通过糖苷键相连,淀粉、纤维素、糖原的糖链骨架均呈葡萄糖基的重复。
生物化学简明教程第4版课后习题答案6酶1.作为生物催化剂,酶最重要的特点是什么?解答:作为生物催化剂,酶最重要的特点是具有很高的催化效率以及高度专一性。
2.酶分为哪几大类?每一大类酶催化的化学反应的特点是什么?请指出以下几种酶分别属于哪一大类酶:磷酸葡糖异构酶(phosphoglucose isomerase)碱性磷酸酶(alkaline phosphatase)●肌酸激酶(creatine kinase)❍甘油醛―3―磷酸脱氢酶(glyceraldehyde-3-phosphate dehydrogenase)⏹琥珀酰―CoA合成酶(succinyl-CoA synthetase)☐柠檬酸合酶(citrate synthase)☐葡萄糖氧化酶(glucose oxidase)❑谷丙转氨酶(glutamic-pyruvic transaminase)❒蔗糖酶(invertase)♦ T4 RNA连接酶(T4 RNA ligase)解答:前两个问题参考本章第3节内容。
异构酶类;水解酶类;●转移酶类;❍氧化还原酶类中的脱氢酶;⏹合成酶类;☐裂合酶类;☐氧化还原酶类中的氧化酶;❑转移酶类;❒水解酶类;♦合成酶类(又称连接酶类)。
3.什么是诱导契合学说,该学说如何解释酶的专一性?解答:“诱导契合”学说认为酶分子的结构并非与底物分子正好互补,而是具有一定的柔性,当酶分子与底物分子靠近时,酶受底物分子诱导,其构象发生有利于与底物结合的变化,酶与底物在此基础上互补契合进行反应。
根据诱导契合学说,经过诱导之后,酶与底物在结构上的互补性是酶催化底物反应的前提条件,酶只能与对应的化合物契合,从而排斥了那些形状、大小等不适合的化合物,因此酶对底物具有严格的选择性,即酶具有高度专一性。
4.阐述酶活性部位的概念、组成与特点。
解答:参考本章第5节内容。
5.经过多年的探索,你终于从一噬热菌中纯化得到一种蛋白水解酶,可用作洗衣粉的添加剂。
第三章酶一、练习题目(一)名词解释1全酶2.别构酶3.别构效应4.单体酶5.寡聚酶6.诱导酶7.固定化酶8.酶原9.酶原激活10.序变模型11.齐变模型12.同I 酶13.酶的最适pH14.共价调节酶15.酶的辅助因子16.酶的活性中心17.酶的抑制作用18.酶的最适底物19.多酶体系20.邻近效应21.定向效应22.竞争性抑制作用23.非竞争性抑制作用24.反竞争性抑制作用25.核糖酶26.细胞外酶27.细胞内酶28.酶活力29.酶的活力单位30.酶的比活力31.酶的转换系数32.酶工程33.生物酶工程34.维生素(二)问答题1简述酶和一般催化剂的共性及特性2.以胰凝乳蛋白酶为例,说明酶作用的机理。
3.简述酶促反应速度的影响因素。
4.米氏方程][][max S m K S V V +=的推导过程。
5.简述米氏常数Km 值的物理意义。
6.简述酶的分离、提纯的步骤。
7.遵循米氏方程式的酶催化反应中,求(1)当V=0.1V max 时底物浓度(2)当V=0.9V max 时底物浓度。
8.过氧化氢酶的Km 值为2.5×10-2M ,当底物过氧化氢浓度为l00mM 时,求过氧化氢酶被底物所饱和的百分数。
9.已知无抑制剂时:Km=1.1×10-5M ,V max =50μm /min ,有抑制剂时Km=3.1×10-5M ,V max =50μm /min ,试确定抑制剂类型。
10.某酶Km 为4.7×10-5M ,V max 是22μm /min ,在2×10-4M 底物和下述抑制剂存在的情况下反应速度为多少?:①5×10-4M 竞争性抑制剂;②5×10-4M 非竞争性抑制剂;以上两种情况的K i 都是3×10-4M 。
1l .称取25mg 蛋白酶粉配制成25ml 酶溶液,从中取出0.1ml 酶液,以酪蛋白为底物,用Folin 一酚比色法测定酶活力,得知每小时产生1500μg 酪氨酸。
第五章碳水化合物代谢一、练习题目(一)名词解释1.激酶, 2.糊精与极限糊精 3.糖酵解 4.乳酸发酵 5.酒精发酵 6.回补反应 7.葡萄糖的异生作用 8.三羧酸循环 9.磷酸戊糖途径 10.转酮酶 11.转醛酶(二)问答题1.植物体内淀粉如何彻底水解为葡萄糖的?2.试比较α—淀粉酶、β—淀粉酶存在部位、理化特性及作用特点的异同。
3.为什么长期泡水的甘薯或马铃薯的块根具有酒味?4.糖酵解是如何举行调控的?5.说明葡萄糖异生要绕过的三个反应。
6.叙述TCA循环的回补反应。
7.试说明TCA环的生理意义。
8.磷酸戊糖途径是如何被证明的?9。
试说明磷酸戊糖途径的生理意义。
(三)填空题1.在高等植物中发现第一个糖核苷酸是_________________。
2.糖核苷酸是___________,的一种活化形式,是双糖和多糖生物合成中葡萄糖的____________。
3.植物体内蔗糖合成酶催化的蔗糖生物合成中,葡萄糖供体是__________,葡萄糖基的受体是 ________;而由磷酸蔗糖合成酶催化蔗糖合成时,其葡萄糖供体是___________,葡萄糖基的受体是一 __________,其直接产物是_______________。
4.催化蔗糖合成的苷糖合成酶在植物的________________组织中活性较高,而磷酸蔗糖合成酶在植物的_______组织中活性较高。
5.α-淀粉酶水解淀粉的_____________糖苷键,而纤维素酶水解纤维素的_________糖苷键。
6.R酶又叫_______它水解支链淀粉的__________键,它必须与__________酶和___________酶共同作用,才能将支链淀粉完全降解生成_____________及______________。
7.淀粉的磷酸解过程通过___________酶降解α-1,4糖苷键,但该酶不能降解___________键,必须靠____________酶和_____________酶降解。
《生物化学简明教程》附带的习题答案(一)用于测定蛋白质多肽链N端、C端的常用方法有哪些?解答:(1)N-末端测定法:常采用2,4―二硝基氟苯法、Edman降解法、丹磺酰氯法。
(2)C―末端测定法:常采用肼解法、还原法、羧肽酶法。
(二)何谓蛋白质的变性与沉淀?二者在本质上有何区别?解答:蛋白质的变性:天然蛋白质受物理或化学因素的影响后,使其失去原有的生物活性,并伴随着物理化学性质的改变的作用。
变性的本质:分子中各种次级键断裂,使其空间构象从紧密有序的状态变成松散无序的状态,一级结构不破坏。
蛋白质变性后的表现:①生物学活性消失②理化性质改变:溶解度下降,黏度增加,紫外吸收增加,侧链反应增强,对酶的作用敏感,易被水解。
蛋白质由于带有电荷和水膜,因此在水溶液中形成稳定的胶体。
如果在蛋白质溶液中加入适当的试剂,破坏了蛋白质的水膜或中和了蛋白质的电荷,则蛋白质胶体溶液就不稳定而出现沉淀现象。
沉淀机理:破坏蛋白质的水化膜,中和表面的净电荷。
蛋白质的沉淀可以分为两类:(1)可逆的沉淀:蛋白质的结构未发生显著的变化,除去引起沉淀的因素,蛋白质仍能溶于原来的溶剂中,并保持天然性质。
(2)不可逆沉淀:蛋白质分子内部结构发生重大改变,蛋白质变性而沉淀,不再能溶于原溶剂。
蛋白质变性后,有时由于维持溶液稳定的条件仍然存在,并不析出。
因此变性蛋白质并不一定都表现为沉淀,而沉淀的蛋白质也未必都已经变性。
(三)一个α螺旋片段含有180个氨基酸残基,该片段中有多少圈螺旋?计算该α-螺旋片段的轴长。
解答:180/3.6=50圈,50×0.54=27nm,该片段中含有50圈螺旋,其轴长为27nm。
(五)如果人体有1014个细胞,每个体细胞的DNA含量为6.4 × 109个碱基对。
试计算人体DNA 的总长度是多少?是太阳―地球之间距离(2.2 × 109 km)的多少倍?已知双链DNA每1000个核苷酸重1 ×10-18g,求人体DNA的总质量。
解答:每个体细胞的DNA的总长度为:6.4 × 109 × 0.34nm = 2.176 × 109 nm = 2.176m,人体内所有体细胞的DNA的总长度为:2.176m×1014 = 2.176×1011km,这个长度与太阳―地球之间距离(2.2×109 km)相比为:2.176 × 1011/2.2 × 109 = 99倍,每个核苷酸重1 × 10-18g/1000 = 10-21g,所以,总DNA 6.4 × 1023 × 10-21 = 6.4 × 102 = 640g。
(六)如何看待RNA功能的多样性?它的核心作用是什么?解答:RNA的功能主要有:①控制蛋白质合成②作用于RNA转录后加工与修饰③参与细胞功能的调节④生物催化与其他细胞持家功能⑤遗传信息的加工⑥可能是生物进化时比蛋白质和DNA更早出现的生物大分子。
其核心作用是既可以作为信息分子又可以作为功能分子发挥作用。
(七)什么是DNA变性?DNA变性后理化性质有何变化?解答:DNA双链转化成单链的过程称变性。
DNA变性后的理化性质变化主要有:① 天然DNA 分子的双螺旋结构解链变成单链的无规则线团,生物学活性丧失;② 天然的线型DNA 分子直径与长度之比可达1∶10,其水溶液具有很大的黏度。
变性后,发生了螺旋-线团转变,黏度显著降低;③ 在氯化铯溶液中进行密度梯度离心,变性后的DNA 浮力密度大大增加,故沉降系数S 增加; ④ DNA 变性后,碱基的有序堆积被破坏,碱基被暴露出来,因此,紫外吸收值明显增加,产生所谓增色效应。
⑤ DNA 分子具旋光性,旋光方向为右旋。
由于DNA 分子的高度不对称性,因此旋光性很强,其[a] = 150。
当DNA 分子变性时,比旋光值就大大下降。
(八)根据下列单糖和单糖衍生物的结构:CH 2OH C CC OHOH H HH O C HO CH 2OHC CC OHOH OH H HH C HO CHO CH 2OH H C CC OHHH HO CHOCH 2OH H NHCOCH 3HO HC CC OH H H C HOCHOCH 2OH HO H HOH (A) (B) (C) (D)(1)写出其构型(D 或L)和名称;(2)指出它们能否还原本尼地试剂;(3) 指出哪些能发生成苷反应。
解答:(1) 构型是以D-,L-甘油醛为参照物,以距醛基最远的不对称碳原子为准, 羟基在左面的为L 构型, 羟基在右的为D 构型。
A 、B 、C 为D 构型,D 为L 构型。
(2) B 、C 、D 均有醛基具还原性,可还原本尼地试剂。
A 为酮糖,无还原性。
(3) 单糖的半缩醛上羟基与非糖物质(醇、酚等)的羟基形成的缩醛结构称为糖苷, B,C,D 均能发生成苷反应。
(十)纤维素和淀粉都是由1→4糖苷键连接的D ―葡萄糖聚合物,相对分子质量也相当,但它们在物理性质上有很大的不同,请问是什么结构特点造成它们在物理性质上的如此差别? 解释它们各自性质的生物学优点。
解答:淀粉是葡萄糖聚合物,既有α→1,4 糖苷键,也有α→1,6糖苷键,为多分支结构。
直链淀粉分子的空间构象是卷曲成螺旋形的,每一回转为6个葡萄糖基,淀粉在水溶液中混悬时就形成这种螺旋圈。
纤维素虽然也是由D-吡喃葡萄糖基构成,但它是以β-(1,4)糖苷键连接的一种没有分支的线性分子,它不卷曲成螺旋。
纤维素分子的链与链间,能以众多氢键像麻绳样拧在一起,构成坚硬的不溶于水的纤维状高分子(也称纤维素微晶束),构成植物的细胞壁。
人和哺乳动物体内没有纤维素酶,因此不能将纤维素水解成葡萄糖。
虽然纤维素不能作为人类的营养物,但人类食品中必须含纤维素。
因为它可以促进胃肠蠕动、促进消化和排便。
(十一)概述脂肪酸的结构和性质。
解答:(1)脂肪酸的结构:脂肪酸分子为一条长的烃链(“尾”)和一个末端羧基(“头”)组成的羧酸。
烃链以线性为主,分枝或环状的为数甚少。
根据烃链是否饱和,可将脂肪酸分为饱和脂肪酸和不饱和脂肪酸。
(2)脂肪酸的性质:①脂肪酸的物理性质取决于脂肪酸烃链的长度和不饱和程度。
烃链越长,非极性越强,溶解度也就越低。
②脂肪酸的熔点也受脂肪酸烃链的长度和不饱和程度的影响。
③脂肪酸中的双键极易被强氧化剂,如H2O2、超氧阴离子自由基(O 2-)、羟自由基(·OH )等所氧化,因此含不饱和脂肪酸丰富的生物膜容易发生脂质过氧化作用,从而继发引起膜蛋白氧化,严重影响膜的结构和功能。
④脂肪酸盐属于极性脂质,具有亲水基(电离的羧基)和疏水基(长的烃链),是典型的两亲性化合物,属于离子型去污剂。
⑤必需脂肪酸中的亚油酸和亚麻酸可直接从植物食物中获得,花生四烯酸则可由亚油酸在体内转变而来。
它们是前列腺素、血栓噁烷和白三烯等生物活性物质的前体。
(十三)(重要)何为必需脂肪酸?哺乳动物体内所需的必需脂肪酸都有哪些?解答:哺乳动物体内能够自身合成饱和及单不饱和脂肪酸,但不能合成机体必需的多不饱和脂肪酸。
我们将这些机体生长必需的而自身不能合成,必须由膳食提供的脂肪酸称为必需脂肪酸。
主要包括亚油酸、亚麻酸和花生四烯酸等。
(十七)(重要)什么是维生素?列举脂溶性维生素与水溶性维生素的成员。
解答:维生素的科学定义是参与生物生长发育与代谢所必需的一类微量小分子有机化合物。
脂溶性维生素主要包括维生素A、维生素D、维生素E、维生素K等,水溶性维生素主要包括维生素B 族(维生素B1、维生素B2、维生素PP、维生素B6、维生素B12、叶酸、泛酸、生物素)、硫辛酸和维生素C。
(十八)为什么维生素D可数个星期补充一次,而维生素C必须经常补充?解答:维生素D是脂溶性的维生素,可以贮存在肝等器官中。
维生素C是水溶性的,不能贮存,所以必须经常补充。
(十九)油料作物种子萌发时,脂肪减少糖増加,利用生化机制解释该现象,写出所经历的主要生化反应历程。
解答:油料作物种子萠发时,脂肪减少,糖増加,表明脂肪转化成了糖。
转化途径是:脂肪酸氧化分解成乙酰辅酶A,乙酰辅酶A经乙醛酸循环中的异柠檬酸裂解酶与苹果酸合成酶催化,生成草酰乙酸,再经糖异生转化为糖。
(二十)(重要)激烈运动后人们会感到肌肉酸痛,几天后酸痛感会消失。
利用生化机制解释该现象。
解答:激烈运动时, 肌肉组织中氧气供应不足, 酵解作用加强, 生成大量的乳酸, 会感到肌肉酸痛,经过代谢, 乳酸可转变成葡萄糖等其他物质,或彻底氧化为CO2和H2O, 因乳酸含量减少酸痛感会消失。
(二十一)(重要)什么是β-氧化?1mol硬脂酸彻底氧化可净产生多摩尔ATP?解答:脂肪酸氧化作用是发生在β碳原子上,逐步将碳原子成对地从脂肪酸链上切下,这个作用即β-氧化。
它经历了脱氢(辅酶FAD),加水,再脱氢(辅酶NAD+),硫解四步骤,从脂肪酸链上分解下一分子乙酰CoA。
1mol硬脂酸(十八碳饱和脂肪酸)彻底氧化可净产生120mol摩尔ATP。
1.5×8+2.5×8+10×9-2=12+20+90-2=120 mol ATP。