【数学】高中数学综合训练系列试题(5)
- 格式:doc
- 大小:720.00 KB
- 文档页数:11
综合检测卷一、选择题(本大题共10小题,每小题5分,共50分) 1.i 是虚数单位,复数1-3i1-i 的共轭复数是( )A .2+iB .2-iC .-1+2iD .-1-2i答案 A解析 ∵1-3i 1-i =(1-3i)(1+i)(1-i)(1+i)=4-2i 2=2-i ,∴1-3i 1-i的共轭复数是2+i. 2.数列2,5,11,20,x,47,…中的x 等于( ) A .28 B .32 C .33 D .27 答案 B解析 5-2=3,11-5=6,20-11=9, 推出x -20=12,x =32.3.演绎推理“因为对数函数y =log a x(a>0且a ≠1)是增函数,而函数y =log 12x 是对数函数,所以y =log 12x 是增函数”所得结论错误的原因是( )A .大前提错误B .小前提错误C .推理形式错误D .大前提和小前提都错误 答案 A解析 对数函数y =log a x(a>0,且a ≠1),当a>1时是增函数,当0<a<1时是减函数,故大前提错误.4.已知变量x 与y 正相关,且由观测数据算得样本平均数x =3,y =3.5,则由该观测数据算得的线性回归方程可能是( ) A .y =0.4x +2.3 B .y =2x -2.4 C .y =-2x +9.5D .y =-0.3x +4.4答案 A解析 因为变量x 和y 正相关,则回归直线的斜率为正,故可以排除选项C 和D. 因为样本点的中心在回归直线上,把点(3,3.5)的坐标分别代入选项A 和B 中的直线方程进行检验,可以排除B ,故选A.5.观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10等于( ) A .28 B .76C .123D .199答案 C解析 观察规律,归纳推理.从给出的式子特点观察可推知,等式右端的值,从第三项开始,后一个式子的右端值等于它前面两个式子右端值的和,照此规律,则a 10+b 10=123.6.用反证法证明命题:“若a ,b ∈N ,ab 能被3整除,那么a ,b 中至少有一个能被3整除”时,假设应为( ) A .a ,b 都能被3整除 B .a ,b 都不能被3整除 C .a ,b 不都能被3整除 D .a 不能被3整除 答案 B解析 “至少有一个”的否定为“一个也没有”.7.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:由χ2=n(ad -bc)2(a +b)(c +d)(a +c)(b +d)算得,χ2=110×(40×30-20×20)260×50×60×50≈7.8.附表:A .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C .有99%以上的把握认为“爱好该项运动与性别有关”D .有99%以上的把握认为“爱好该项运动与性别无关” 答案 C解析 根据独立性检验的定义,由χ2≈7.8>6.635可知我们有99%以上的把握认为“爱好该项运动与性别有关”.8.下面给出了关于复数的四种类比推理:①复数的加减法运算可以类比多项式的加减法运算法则;②由向量a 的性质|a|2=a 2类比得到复数z 的性质|z|2=z 2;③方程ax 2+bx +c =0(a ,b ,c ∈R)有两个不同实数根的条件是b 2-4ac>0可以类比得到:方程az 2+bz +c =0(a ,b ,c ∈C)有两个不同复数根的条件是b 2-4ac>0;④由向量加法的几何意义可以类比得到复数加法的几何意义. 其中类比得到的结论错误的是( ) A .①③ B .②④ C .②③ D .①④ 答案 C9.执行如图所示的算法框图,若输入n =10,则输出S 等于( )A.511B.1011C.3655D.7255 答案 A解析 执行第一次循环后,S =13,i =4;执行第二次循环后,S =25,i =6;执行第三次循环后,S =37,i =8;执行第四次循环后,S =49,i =10;执行第五次循环后,S =511,i =12,此时i ≤n 不成立,退出循环,输出S =511.10.已知x>0,由不等式x +1x≥2x·1x =2,x +4x 2=x 2+x 2+4x 2≥33x 2·x 2·4x 2=3,…,可以推出结论:x +ax n ≥n +1(n ∈N +),则a 等于( )A .2nB .3nC .n 2D .n n 答案 D解析 由两个不等的结构特点知, x +a x n =x n +x n +…+x n +a xn ≥ (n +1)n +1x n ·x n ·…·x n ·a x n =(n +1)n +1a n n =n +1.所以a =n n .二、填空题(本大题共5小题,每小题5分,共25分)11.若P =a +a +7,Q =a +3+a +4(a ≥0),则P ,Q 的大小关系为________. 答案 P<Q解析 要比较P 与Q 的大小,只需比较P 2与Q 2的大小,只需比较2a +7+2a(a +7)与2a +7+2(a +3)(a +4)的大小,只需比较a 2+7a 与a 2+7a +12的大小,即比较0与12的大小,而0<12,故P<Q.12.若复数z =cos θ-sin θi 所对应的点在第四象限,则θ为第________象限角. 答案 一解析 由已知得⎩⎪⎨⎪⎧cos θ>0-sin θ<0,所以θ为第一象限角.13.如图所示,A ,B ,C 表示3种开关,若在某段时间内它们正常工作的概率分别为0.9,0.8,0.7,那么此系统的可靠性为______. ①0.504;②0.994;③0.496;④0.06. 答案 ②解析 A 、B 、C 三个开关相互独立,三个中只要至少有一个正常工作即可,由间接法知 P =1-(1-0.9)×(1-0.8)×(1-0.7) =1-0.1×0.2×0.3=0.994. 14.复数11-x2+(2-2x)i(x ∈R)在复平面内的对应点位于第________象限.答案 一 解析 由题意可得11-x 2>0,解得-1<x<1,故2-2x >0,所以复数11-x2+(2-2x)i(x ∈R)在复平面内对应点位于第一象限.15.已知下列框图,若a =5,则输出b =________.答案 26解析 因a =5,所以5>5不成立, 判断框执行“否”,即b =52+1=26. 三、解答题(本大题共6小题,共75分)16.已知复数z =a 2-7a +6a 2-1+(a 2-5a -6)i(a ∈R),试求实数a 取什么值时,z 分别为(1)实数;(2)虚数;(3)纯虚数.解 (1)当z 为实数时,则a 2-5a -6=0,且a 2-7a +6a 2-1有意义,∴a =-1,或a =6,且a ≠±1, ∴当a =6时,z 为实数.(2)当z 为虚数时,则a 2-5a -6≠0,且a 2-7a +6a 2-1有意义,∴a ≠-1,且a ≠6,且a ≠±1.∴当a ≠±1,且a ≠6时,z 为虚数,即当a ∈(-∞,-1)∪(-1,1)∪(1,6)∪(6,+∞)时,z 为虚数. (3)当z 为纯虚数时,则有a 2-5a -6≠0, 且a 2-7a +6a 2-1=0.∴⎩⎪⎨⎪⎧a ≠-1,且a ≠6,a =6. ∴不存在实数a 使z 为纯虚数.17.数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2n S n(n ∈N +),证明:(1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列;(2)S n +1=4a n .证明 (1)∵a n +1=S n +1-S n ,a n +1=n +2n S n ,∴(n +2)S n =n(S n +1-S n ),即nS n +1=2(n +1)S n . ∴S n +1n +1=2·S n n ,又S 11=1≠0,(小前提)故⎩⎨⎧⎭⎬⎫S n n 是以1为首项,2为公比的等比数列.(结论) (大前提是等比数列的定义,这里省略了) (2)由(1)可知S n +1n +1=4·S n -1n -1(n ≥2), ∴S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1=4a n (n ≥2)(小前提)又a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1,(小前提) ∴对于任意的正整数n ,都有S n +1=4a n .(结论)(第(2)问的大前提是第(1)问的结论以及题中的已知条件)18.为了研究教师工作积极性和对待教育改革态度的关系,随机抽取了278名教师进行问卷调查,所得数据如下表:0.01的前提下认为态度与工作积极性有关? 解 利用公式得χ2=278×(55×52-73×98)2153×125×128×150≈13.959>6.635,故在犯错误的概率不超过0.01的前提下认为该单位教师对待教育改革的态度与其工作积极性是有关的.19.某种产品的广告费支出x 与销售额y(单位:百万元)之间有如下对应数据:(1)画出散点图;(2)求线性回归方程;(3)试预测广告费支出为10百万元时,销售额多大? 解 (1)根据表中所列数据可得散点图如下:(2)列出下表,并用科学计算器进行有关计算:因此,x =255=5,y =2505=50,∑5i =1x 2i =145,∑5i =1y 2i =13 500,∑5i =1x i y i =1 380. 于是可得:b =∑5i =1x i y i -5x ·y∑5i =1x 2i -5x 2=1 380-5×5×50145-5×5×5=6.5;a =y -b x =50-6.5×5=17.5.因此,所求线性回归方程为:y =6.5x +17.5.(3)根据上面求得的线性回归方程,当广告费支出为10百万元时,y =6.5×10+17.5=82.5(百万元),即这种产品的销售收入大约为82.5百万元.20.画出计算函数y =|2x -3|的函数值的框图.(x 由键盘输入) 解21.f(x)=13x+3,先分别求f(0)+f(1),f(-1)+f(2),f(-2)+f(3),然后归纳猜想一般性结论,并给出证明.解 f(0)+f(1)=130+3+131+3=11+3+13(1+3)=33(1+3)+13(1+3)=33,同理可得:f(-1)+f(2)=33, f(-2)+f(3)=33. 由此猜想f(x)+f(1-x)=33. 证明:f(x)+f(1-x)=13x +3+131-x +3=13x +3+3x 3+3·3x =13x +3+3x3(3+3x ) =3+3x 3(3+3x )=33.。
《数学》高中基础模块(下册)试卷5及参考答案一、选择题(每小题5分,共50分)1.过点)(7,1-M 且与直线4x+2y-15=0平行的直线方程是( )A.2x+y-5=0B.2x+y-1=0C.x-2y-5=0D.x-2y+1=02.直线(a-1)x+3y+12=0与直线x+(a+1)y+a=0互相垂直,则a 等于 ( )A.-2或21-B.1C.21-D.-2 3.已知直线1l 的方程为x+3y+C=0,直线2l 的方程为2x-By+4=0,若两直线的交点在x 轴上,则C 的值为 ( )A.2B.-2C.2或-2D.与B 有关4.已知A(4,-1) , B(1,3), 则AB 两点的距离为 ( ) A.7 B.5 C. 23 D.135.已知点A (2,1),B (-518,519),则线段AB 的垂直平分线方程是 ( ) A.2x-y-4=0 B.x+y-3=0 C.2x-y=0 D.2x-y+4=06.若圆0m 42x 22=+-++y x y 过点(2,0),则m 的值为 ( )A.2B.8±C.2±D.8-7.圆0542x 22=--++y x y 与直线y=-1的位置关系为 ( )A.相离B.相切C.相交但不经过圆心D.相交且经过圆心8.圆922=+y x 上的点到直线3x-4y-20=0距离的最大值为 ( )A..7 B 1 C.1-52或7 D.1-52或19.下列说法正确的是A.线段AB 在平面α内,直线AB 不一定在平面α内B.如果两个平面有三个公共点,这两个平面一定重合C.四边形一定是平面图形D.梯形一定是平面图形10.已知DEF ABC ∠∠与为空间的两个角,AB//DE,BC//EF.若︒=∠105DEF ,那么ABC ∠= ( )A.︒105B.︒75或︒105C.︒45或︒105D.︒75二、填空题.(本大题共8空,每空5分,共40分)1.点P(x,-y)关于y 轴的对称点是 。
数学高中数学综合库试题1.若,,则的元素个数为A.0B.1C.2D.3【答案】C【解析】=,=,∴=,其中的元素个数为2,选C。
2.(本小题满分12分)已知0<a<的最小正周期,求.【答案】2(2+m)【解析】解:因为为的最小正周期,故.因,又.故.由于,所以3.设的三个内角,向量,,若,则=()A.B.C.D.【答案】C【解析】,,所以,即,由题,即。
4.若数列的前项和,则此数列的通项公式为;数列中数值最小的项是第项.【答案】;3【解析】数列的前项和,数列为等差数列,数列的通项公式为=,数列的通项公式为,其中数值最小的项应是最靠近对称轴的项,即n=3,第3项是数列中数值最小的项。
5.已知正四棱锥的侧棱长与底面边长都相等,是的中点,则所成的角的余弦值为()A.B.C.D.【答案】C【解析】解法一:连接AC、BD交于O,连接OE,因OE∥SD。
所以∠AEO为所求。
设侧棱长与底面边长都等于2,则在⊿AEO中,OE=1,AO=,AE=,于是。
解法二:建立如图所示坐标系,令正四棱锥的棱长为2,则A(1,-1,0),D(-1,-1,0),S(0,0,),E(),则,因此可知cos,故选C.【考点】本题主要考查了多面体的结构特征和空间角的求法,同时,还考查了转化思想和运算能力,属中档题.点评:解决该试题的关键是由于是正方体,又是求角问题,所以易选用向量量,所以建立如图所示坐标系,先求得相关点的坐标,进而求得相关向量的坐标,最后用向量夹角公式求解.6.已知抛物线的焦点为,准线与轴的交点为,点在上且,则的面积为()A.B.C.D.【答案】B【解析】∵抛物线的焦点为,准线为∴设,过点向准线作垂线,则∵,又∴由得,即,解得∴的面积为故选B【点评】此题重点考察抛物线的第二定义,抛物线中与焦点,准线有关三角形问题;【点评】由题意准确化出图象,利用离心率转化位置,在中集中条件求出是关键;7.在直角坐标系xOy中,有一定点A(2,1)。
I .题源探究·黄金母题例1 求函数)34(log )(5.0-=x x f 的定义域. 【解析】要使式子有意义,则0)34(log 5.0≥-x , 即1log 0)34(log 5.05.0=≥-x ,根据对数函数的单调性,则1340≤-<x , 解得143≤<x , 所以函数)(x f 的定义域为]1,43(.II .考场精彩·真题回放【例2】【2016高考江苏卷】函数y义域是 ▲ . 【答案】[]3,1-【解析】要使函数有意义,必须2320x x --≥,即2230x x +-≤,31x ∴-≤≤.故答案应填:[]3,1-, 【例3】【2016高考新课标2文数】下列函数中,其定义域和值域分别与函数y=10lg x 的定义域和值域相同的是( )(A )y =x (B )y =lg x (C )y =2x (D)y =【答案】D 【解析】lg 10xy x ==,定义域与值域均为()0,+∞,只有D 满足,故选D .精彩解读【试题来源】人教版A 版必修一第74页习题2.2 A 组第7题【母题评析】本题以求函数定义域为载体,考查根式的概念及利用对数函数的性质解简单对数不等式.本类考查方式是近几年高考试题常常采用的命题形式,达到一箭双雕的目的.【思路方法】由函数式有意义得到关于自变量的不等式,利用有关函数的性质或不等式性质,解出自变量的取值范围,即为函数的定义域.【命题意图】本类题通常主要考查函数定义域的求法.【考试方向】这类试题在考查题型上,通常基本以选择题或填空题的形式出现,难度较小,往往与特殊函数的图像与性质、值域、解不等式、集合运算有联系. 【难点中心】对求函数定义域问题,首项要确定使函数式子有意义的条件,列出关于自变量的不等式(组),其次利用有关不等式性质和相关函数的性质解不等式(组),注意:①函数解析式含有几个式子,这几个式子都必须有意义,其交集即为函数的定义域;②解不等式时要等价变形;③抽象函数的定义域是难点.本题是简单函数定义域的求法,是基础题.III .理论基础·解题原理考点一 函数定义域的概念1.在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域; 考点二 常见函数的定义域1.一次函数b kx y +=的定义域为R ;2.二次函数c bx ax y ++=2的定义域为R ; 3.指数函数x a y =(0>a 且1≠a )定义域为R ;4.对数函数x y a log =(0>a 且1≠a )的定义域为),0(+∞;(1)当Z m ∈,n 为奇数且0>mn 时,定义域为R ; (2)当m 为奇数n 为偶数且0>mn 时,定义域为),0[+∞; (3)当*Z m ∈,n 为奇数且0<mn 时,定义域为),0()0,(+∞⋃-∞; (4)当m 是奇数,n 为偶数且0<mn 时,定义域为),0(+∞; 6.正弦函数x y sin =、余弦函数x y cos =定义域都为R ;考点三 函数定义域的求法 1.已知函数解析式,求定义域紧扣“函数定义域是函数自变量的取值范围”这一概念。
人教A版高中数学必修第二册专题强化练5 复数四则运算的综合应用1.(2024山东菏泽月考)已知i为虚数单位,复数z满足|z+2i|=|z|,则z的虚部为( )A.-1B.1C.iD.-i2.(2024福建福州期中)已知复数z满足|z|=2,则|z+3+4i|的最小值是( )A.3B.4C.5D.68.(2024河北张家口期中)已知在复数范围内,关于x的一元二次方程x2-2x+k=0(k∈R)有两个虚数根z1和z2,若|z1-z2|=2,且z1的虚部为正数.(1)求实数k的值;(2)求z1z2+的值.答案与分层梯度式解析专题强化练5 复数四则运算的综合应用1.B2.A3.ACD4.BCD5.BC1.B 设z=a+bi(a,b ∈R),则z =a-bi,因为|z+2i|=|z|,所以|a+(b+2)i|=|a+bi|,可得a 2+(b+2)2=a 2+b 2,解得b=-1,所以复数z 的虚部为-b=1.故选B.2.A |z|=2表示复数z 在复平面内对应的点的集合是以原点O 为圆心,2为半径的圆,|z+3+4i|=|z-(-3-4i)|表示圆上的点到点(-3,-4)(记为A)的距离,易得|OA|=32+42=5>2,所以|z+3+4i|的最小值是|OA|-2=3.故选A.3.ACD ∵-2<b<2,∴Δ=b 2-4<0,∴方程x 2+bx+1=0的根为x=-b ±4−b 2i2,不妨设z 1=-b2+4−b 22i,z 2=-b 2-4−b 22i,则z 1=z 2,A正确;|z 1|=|z 2正确;易得z 1z 2=1,∴z 1z 2=z 21z1z 2=z 21=b 2-22-b 4−b22i,当b≠0时,z 1z 2∉R,B 错误;当b=1时,z 1=-12+32i,z 2=-12-32i,计算得z 21=-12-32i=z 2,z 22=z 1,∴z 31=z 1z 2=1,z 32=z 1z 2=1,D 正确.故选ACD.4.BCD 设z 1=a+bi,z 2=c+di,a,b,c,d ∈R,则z 21=(a+bi)2=a 2-b 2+2abi,|z 1|2=a 2+b 2,当b≠0时,z 21≠|z 1|2,A 不正确;因为z 1·z 2=(a+bi)(c+di)=(ac-bd)+(ad+bc)i,所以z 1·z 2=(ac-bd)-(ad+bc)i,又z 1·z 2=(a-bi)(c-di)=(ac-bd)-(ad+bc)i,所以z 1·z 2=z 1·z 2,B 正确;|z 1z 2|=|(a+bi)(c+di)|=|(ac-bd)+(ad+bc)i|=(ac -bd )2+(ad +bc )2=a 2c 2+b 2d 2+a 2d 2+b 2c 2,|z 1|·|z 2|=a 2+b 2·c 2+d 2=(a 2+b 2)(c 2+d 2)=a 2c 2+b 2d 2+a 2d 2+b 2c 2,所以|z 1z 2|=|z 1|·|z 2|,C 正确;z 1z 1=a +b i a -b i =(a +b i)2(a -b i)(a +b i)=a 2-b 2+2abi a 2+b 2,z 21|z 1|2=(a +b i)2a 2+b 2=a 2-b 2+2abi a 2+b 2,所以z 1z 1=z 21|z 1|2,D正确.故选BCD.规律总结 关于复数有以下几个常用结论,在小题中可以直接使用,提高解题速度.(1)z1·z2=z1·z2=z1z2(z2≠0);(3)|z1z2|=|z1||z2|;(4)zz=z2|z|2(z≠0).5.BC 设z=a+bi(a,b∈R),由z2+z+1=0得(a+bi)2+(a+bi)+1=0,即(a2-b2+a+1)+(2ab+b)i=0,所以a2-b2+a+1=0,2ab+b=0,解得a=−12,b=32或a=−12,b=−32, z=-1+3i z=-1-3i,6.7.z1因为∠AOB∈[0,π],所以∠AOB=π4.8.解析 (1)设z1=a+bi(a,b∈R,b>0),则z2=a-bi,故z1+z2=2a=2,所以a=1,因为|z1-z2|=2,所以|2bi|=2,即4b2=4,解得b=1或b=-1(舍去).故z1=1+i,z2=1-i,所以k=z1z2=2.(2)因为z1z2=1+i1−i=i,i4n=1,i4n+1=i,i4n+2=-1,i4n+3=-i,n∈N,所以z1z2+=i+i2+i3+…+i2 025=(i-1-i+1)×506+i=i.。
模块综合训练一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.“ab=4”是“直线2x+ay-1=0与直线bx+2y-2=0平行”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件两直线平行,∴斜率相等.即可得ab=4,又因为不能重合,当a=1,b=4时,满足ab=4,但是重合,故“ab=4”是“直线2x+ay-1=0与直线bx+2y-2=0平行”的必要不充分条件.2.如图,四面体S-ABC 中,D 为BC 中点,点E 在AD 上,AD=3AE ,则SE ⃗⃗⃗⃗⃗ =( ) A.13SA⃗⃗⃗⃗⃗ +12SB ⃗⃗⃗⃗⃗ +13SC ⃗⃗⃗⃗ B.23SA ⃗⃗⃗⃗⃗ +16SB ⃗⃗⃗⃗⃗ +16SC ⃗⃗⃗⃗ C.12SA ⃗⃗⃗⃗⃗ +14SB ⃗⃗⃗⃗⃗ +14SC ⃗⃗⃗⃗ D.12SA ⃗⃗⃗⃗⃗ +13SB ⃗⃗⃗⃗⃗ +16SC ⃗⃗⃗⃗S-ABC 中,D 为BC 中点,点E 在AD 上,AD=3AE ,∴SE ⃗⃗⃗⃗⃗ =SA ⃗⃗⃗⃗⃗ +13AD ⃗⃗⃗⃗⃗ =SA⃗⃗⃗⃗⃗ +13×12(AC ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ )=SA ⃗⃗⃗⃗⃗ +16AC ⃗⃗⃗⃗⃗ +16AB ⃗⃗⃗⃗⃗ =SA ⃗⃗⃗⃗⃗ +16(SC ⃗⃗⃗⃗ −SA ⃗⃗⃗⃗⃗ )+16(SB ⃗⃗⃗⃗⃗ −SA ⃗⃗⃗⃗⃗ )=23SA ⃗⃗⃗⃗⃗ +16SB ⃗⃗⃗⃗⃗ +16SC ⃗⃗⃗⃗ .3.圆P :(x+3)2+(y-4)2=1关于直线x+y-2=0对称的圆Q 的标准方程是( ) A.(x+2)2+(y-1)2=1 B.(x+2)2+(y-5)2=1 C.(x-2)2+(y+5)2=1 D.(x-4)2+(y+3)2=1P :(x+3)2+(y-4)2=1,圆心(-3,4),半径1,关于直线x+y-2=0对称的圆半径不变,设对称圆的圆心为(a ,b ),则{a -32+b+42-2=0,b -4a+3=1,解得{a =-2,b =5,所求圆Q 的标准方程为(x+2)2+(y-5)2=1.4.(2021新高考Ⅰ,5)已知F 1,F 2是椭圆C :x 29+y 24=1的两个焦点,点M 在C 上,则|MF 1|·|MF 2|的最大值为( )A.13B.12C.9D.6|MF 1|+|MF 2|=2a=6,则√|MF 1|·|MF 2|≤|MF 1|+|MF 2|2=3, 则|MF 1|·|MF 2|≤9,当且仅当|MF 1|=|MF 2|=3时,等号成立. 故|MF 1|·|MF 2|的最大值为9.故选C .5.坐标原点O(0,0)在动直线mx+ny-2m-2n=0上的投影为点P,若点Q(-1,-1),那么|PQ|的取值范围为()A.[√2,3√2]B.[√2,2√2]C.[2√2,3√2]D.[1,3√2]mx+ny-2m-2n=0,可化为m(x-2)+n(y-2)=0,故直线过定点M(2,2),坐标原点O(0,0)在动直线mx+ny-2m-2n=0上的投影为点P,故∠OPM=90°,所以P 在以OM为直径的圆上,圆的圆心N为(1,1),半径为√2,根据点与圆的关系,|NQ|=√(1+1)2+(1+1)2=2√2,故√2=2√2−√2≤|PQ|≤√2+2√2=3√2.6.正确使用远光灯对于夜间行车很重要.已知某家用汽车远光灯(如图)的纵断面是抛物线的一部分,光源在抛物线的焦点处,若灯口直径是20 cm,灯深10 cm,则光源到反光镜顶点的距离是()A.2.5 cmB.3.5 cmC.4.5 cmD.5.5 cmxOy ,如图所示,设对应抛物线的标准方程为y 2=2px ,由题意知抛物线过点(10,10),得100=2p×10,得p=5,则p 2=2.5,即焦点坐标为(2.5,0), 则光源到反光镜顶点的距离是2.5cm .7.如图,四棱锥S-ABCD 中,底面是正方形,各棱长都相等,记直线SA 与直线AD 所成角为α,直线SA 与平面ABCD 所成角为β,二面角S-AB-C 的平面角为γ,则( ) A.α>β>γ B.γ>α>β C.α>γ>β D.γ>β>αAC ,BD ,交于点O ,连接OS ,则OA ,OB ,OS 两两垂直,以O 为原点,OA 为x 轴,OB 为y 轴,OS 为z 轴,建立空间直角坐标系,设|AB|=2,则S (0,0,√2),A (√2,0,0),D (0,-√2,0),B (0,√2,0),SA ⃗⃗⃗⃗⃗ =(√2,0,-√2),AD ⃗⃗⃗⃗⃗ =(-√2,-√2,0),SB ⃗⃗⃗⃗⃗ =(0,√2,-√2),cos α=|SA ⃗⃗⃗⃗⃗ ·AD⃗⃗⃗⃗⃗⃗ ||SA ⃗⃗⃗⃗⃗ |·|AD⃗⃗⃗⃗⃗⃗ |=√4×√4=12,平面ABCD 的法向量n =(0,0,1),cos β=|n ·SA ⃗⃗⃗⃗⃗||n |·|SA ⃗⃗⃗⃗⃗ |=√2√4=√22,设平面SAB 的法向量m =(x ,y ,z ),则{m ·SA ⃗⃗⃗⃗⃗=√2x -√2z =0,m ·SB ⃗⃗⃗⃗⃗=√2y -√2z =0,取x=1,得m =(1,1,1),cos γ=|m ·n ||m |·|n |=√3=√33, ∵cos α<cos γ<cos β,∴α>γ>β.8.设F 1,F 2是双曲线C :x 2a 2−y 2b 2=1(a>0,b>0)的左、右焦点,O 是坐标原点,过F 2作C 的一条渐近线的垂线,垂足为P.若|PF 1|=√6|OP|,则C 的离心率为( ) A.√5 B.√3 C.2 D.√2|PF 2|=b ,|OF 2|=c ,∴|PO|=a.在Rt △POF 2中,cos ∠PF 2O=|PF 2||OF 2|=bc ,∵在△PF 1F 2中,cos ∠PF 2F 1=|PF 2|2+|F 1F 2|2-|PF 1|22|PF 2||F 1F 2|=bc ,∴b 2+4c 2-(√6a )22b ·2c=bc ⇒c2=3a 2,∴e=√3.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对得3分.9.(2021新高考Ⅰ,11)已知点P 在圆(x-5)2+(y-5)2=16上,点A (4,0),B (0,2),则( ) A.点P 到直线AB 的距离小于10 B.点P 到直线AB 的距离大于2 C.当∠PBA 最小时,|PB|=3√2 D.当∠PBA 最大时,|PB|=3√2,记圆心为M ,半径为r ,则M (5,5),r=4.由条件得,直线AB 的方程为x 4+y2=1,整理得x+2y-4=0,过点M 作MN 垂直于直线AB ,垂足为N ,直线MN 与圆M 分别交于点P 1,P 2,圆心M (5,5)到直线AB 的距离|MN|=√12+22=√5,于是点P 到直线AB 的距离最小值为|P 2N|=|MN|-r=√5-4,最大值为|P 1N|=|MN|+r=√5+4. 又√5-4<2,√5+4<10,故A 正确,B 错误; 过点B 分别作圆的两条切线BP 3,BP 4,切点分别为点P 3,P 4,则当点P 在P 3处时∠PBA 最大,在P 4处时∠PBA 最小.又|BP 3|=|BP 4|=√|BM |2-r 2=√52+(5-2)2-42=3√2,故C,D 正确.故选A,C,D .10.若a =(-1,λ,-2),b =(2,-1,1),a 与b 的夹角为120°,则λ的值为( ) A.17 B.-17 C.-1 D.1a =(-1,λ,-2),b =(2,-1,1),a 与b 的夹角为120°,∴cos120°=a ·b |a |·|b |=√5+λ2·√6,解得λ=-1或λ=17.11.已知P 是椭圆C :x 26+y 2=1上的动点,Q 是圆D :(x+1)2+y 2=15上的动点,则( ) A.C 的焦距为√5B.C 的离心率为√306C.圆D 在C 的内部D.|PQ|的最小值为2√55c=√6-1=√5,则C的焦距为2√5,e=√5√6=√306.设P(x,y)(-√6≤x≤√6),则|PD|2=(x+1)2+y2=(x+1)2+1-x26=56(x+65)2+45≥45>15,所以圆D在C的内部,且|PQ|的最小值为√45−√15=√55.12.已知直线l过点P(1,0,-1),平行于向量a=(2,1,1),平面α过直线l与点M(1,2,3),则平面α的法向量可能是()A.(1,-4,2)B.(14,-1,12)C.(-14,1,-12) D.(0,-1,1),所研究平面的法向量垂直于向量a=(2,1,1)和向量PM⃗⃗⃗⃗⃗⃗ ,而PM⃗⃗⃗⃗⃗⃗ =(1,2,3)-(1,0,-1)=(0,2,4),选项A,(2,1,1)·(1,-4,2)=0,(0,2,4)·(1,-4,2)=0满足垂直,故正确;选项B,(2,1,1)·(14,-1,12)=0,(0,2,4)·(14,-1,12)=0满足垂直,故正确;选项C,(2,1,1)·(-14,1,-12)=0,(0,2,4)·(-14,1,-12)=0满足垂直,故正确;选项D,(2,1,1)·(0,-1,1)=0,但(0,2,4)·(0,-1,1)≠0,故错误.三、填空题:本题共4小题,每小题5分,共20分.13.过点(1,√2)的直线l将圆x2+y2-4x=0分成两段弧,当劣弧所对圆心角最小时,直线l 的斜率k= .(1,√2)的直线l将圆(x-2)2+y2=4分成两段弧,当劣弧所对的圆心角最小时,就是弦长最小,就是与圆心(2,0)和点(1,√2)的连线垂直的直线,连线的斜率是√2-01-2=-√2,直线l的斜率k=√22.14.(2021新高考Ⅰ,14)已知O为坐标原点,抛物线C:y2=2px(p>0)的焦点为F,P为C上一点,PF与x轴垂直,Q为x轴上一点,且PQ⊥OP.若|FQ|=6,则C的准线方程为.x=-32PF⊥x轴,∴x P=x F=p2,将x P=p2代入y2=2px,得y=±p.不妨设点P在x轴的上方,则P(p2,p),即|PF|=p.如图,由条件得,△PFO∽△QFP,∴|OF||PF|=|PF||QF|,即p2p=p6,解得p=3.故C的准线方程为x=-32.15.如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AA1=AC=BC=1,则异面直线BC1与A1B1所成角为;二面角A-BC1-C的余弦值是.√33C 为原点建立如图空间直角坐标系,则A (0,1,0),B (1,0,0),C 1(0,0,1),A 1(0,1,1),B 1(1,0,1),BC 1⃗⃗⃗⃗⃗⃗⃗ =(-1,0,1),A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(1,-1,0),AB⃗⃗⃗⃗⃗ =(1,-1,0).由cos <BC 1⃗⃗⃗⃗⃗⃗⃗ ,A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ >=|√2×√2|=12,故异面直线BC 1与A 1B 1所成角为π3, 设平面ABC 1的一个法向量为m =(a ,b ,c ),由{m ·BC 1⃗⃗⃗⃗⃗⃗⃗ =-a +c =0,m ·AB⃗⃗⃗⃗⃗ =a -b =0,设a=1,得m =(1,1,1),平面BC 1C 的一个法向量n =(0,1,0),cos <m ,n >=√3=√33.16.已知抛物线的方程为x 2=2py (p>0),过抛物线的焦点,且斜率为1的直线与抛物线交于A ,B 两点,|AB|=8,则p= ,M 为抛物线弧AOB⏜上的动点,△AMB 面积的最大值是 .4√2抛物线的方程为x 2=2py (p>0),过抛物线的焦点F ,且斜率为1的直线与抛物线交于A ,B 两点,故直线AB 的方程为y-p 2=x-0,即y=x+p2,且直线AB 的倾斜角为45°. 代入抛物线的方程x 2=2py ,可得x 2-2px-p 2=0.设A ,B 两点的横坐标分别为m ,n ,m<n ,由根与系数的关系可得m+n=2p ,mn=-p 2.∵|AB|=|AF|+|BF|=(yA +p2)+y B+p2=(m+p2)+p2+(n+p2)+p2=8=m+n+2p=4p=8,∴p=2,故抛物线的方程为x2=4y,直线AB为y=x+1.设与直线AB平行且与抛物线相切的直线方程为y=x+m,代入抛物线方程,得x2-4x-4m=0.由Δ=42+16m=0,得m=-1.与直线AB平行且与抛物线相切的直线方程为y=x-1,两直线间的距离为d=√2=√2,∴△AMB面积的最大值为12·|AB|·d=12×8×√2=4√2.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)求分别满足下列条件的直线l的方程.(1)已知点P(2,1),l过点A(1,3),P到l距离为1;(2)l过点P(2,1)且在x轴,y轴上截距的绝对值相等.当l斜率不存在时,l的方程为x=1,满足条件.当l斜率存在时,设l:y-3=k(x-1),即kx-y+3-k=0,由d=√k2+1=1,得k=-34,即l:3x+4y-15=0.故直线l的方程为x=1或3x+4y-15=0.(2)当直线过原点时,直线的斜率为1-02-0=12,直线l的方程为x-2y=0.当直线截距相等时,设为xa +ya=1,代入(2,1),则a=3,即x+y-3=0.当直线截距互为相反数时,设为xa +y-a=1代入(2,1),则a=1,即x-y-1=0.综上,要求的直线l 的方程为x-2y=0或x+y-3=0或x-y-1=0. 18.(12分)(2021新高考Ⅰ,21)在平面直角坐标系xOy 中,已知点F 1(-√17,0),F 2(√17,0),点M 满足|MF 1|-|MF 2|=2.记M 的轨迹为C.(1)求C 的方程;(2)设点T 在直线x=12上,过T 的两条直线分别交C 于A ,B 两点和P ,Q 两点,且|TA|·|TB|=|TP|·|TQ|,求直线AB 的斜率与直线PQ 的斜率之和.∵|MF 1|-|MF 2|=2,且F 1(-√17,0),F 2(√17,0),∴点M的轨迹为双曲线的右支,且满足{2a =2,c =√17,c 2=a 2+b 2,∴{a 2=1,b 2=16,c 2=17.∴C 的方程为x 2-y 216=1(x ≥1).(2)设T (12,m),显然直线AB 的斜率与直线PQ 的斜率都存在.设直线AB 的方程为y=k 1(x -12)+m ,A (x 1,y 1),B (x 2,y 2), 由{y =k 1(x -12)+m ,16x 2-y 2=16,得16x 2-k 12(x 2-x +14)+2k 1m (x -12)+m2=16,即(16-k 12)x 2+(k 12-2k 1m )x-14k 12+k 1m-m 2-16=0. ∴|TA|·|TB|=(1+k 12)x 1-12x 2-12=(1+k 12)x 1x 2-12(x 1+x 2)+14=(1+k 12)k 1m -14k 12-m 2-1616-k 12−12·2k 1m -k 1216-k 12+14=(1+k 12)-m 2-1216-k 12=(1+k 12)·m 2+12k 12-16.设k PQ =k 2,同理可得|TP|·|TQ|=(1+k 22)·m 2+12k 22-16. ∵|TA|·|TB|=|TP|·|TQ|,∴(1+k 12)·m 2+12k 12-16=(1+k 22)·m 2+12k 22-16. ∴k 22-16k 12=k 12-16k 22.∴k 12=k 22.∵k 1≠k 2,∴k 1=-k 2. ∴k 1+k 2=0.19.(12分)已知椭圆C :x 2a 2+y 2b 2=1(a>b>0)过点A (-2,0),点B 为其上顶点,且直线AB 的斜率为√32.(1)求椭圆C 的方程;(2)设P 为第四象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积是定值.,设直线AB :y-0=√32(x+2),令x=0,则y=√3,于是B (0,√3), 所以a=2,b=√3, 故椭圆C 的方程为x 24+y 23=1.(2)设P (x 0,y 0)(x 0>0,y 0<0),且3x 02+4y 02=12,又A (-2,0),B (0,√3),所以直线AP :y -0y 0-0=x+2x 0+2,令x=0,y M =2y 0x 0+2,则|BM|=√3-y M =√3−2y 0x 0+2=√3x 0+2√3-2y 0x 0+2. 直线BP :√3y -√3=x -0x 0-0,令y=0,x N =√3x 0y -√3,则|AN|=2+x N=2+√3x0y-√3=0√3-√3x0y-√3.所以四边形ABNM的面积为S=12|BM|·|AN|=1 2×√3x0+2√3-2y0x0+2×0√3-√3x0y-√3=0202√3x000√3y02(x y-√3x+2y-2√3)=√3(00√3x00√3)2(λy-√3x+2y-2√3)=2√3,所以四边形ABNM的面积为定值2√3.20.(12分)如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠ABC=120°,PA=PC,PB=PD,AC∩BD=O.(1)证明:PO⊥平面ABCD;(2)若PA与平面ABCD所成的角为30°,求二面角B-PC-D的余弦值.四边形ABCD是菱形,∴O为AC,BD的中点.又PA=PC,PB=PD,∴PO⊥AC,PO⊥BD.∵AC∩BD=O,且AC,BD⊂平面ABCD,∴PO⊥平面ABCD.ABCD的边长为2t(t>0).∵∠ABC=120°,∴∠BAD=60°,∴OA=√3t.由(1)知PO ⊥平面ABCD ,∴PA 与平面ABCD 所成的角为∠PAO=30°,得到PO=t ,建立如图所示的空间直角坐标系,则B (0,t ,0),C (-√3t ,0,0),P (0,0,t ),D (0,-t ,0),得到BP ⃗⃗⃗⃗⃗ =(0,-t ,t ),CP⃗⃗⃗⃗⃗ =(√3t ,0,t ). 设平面PBC 的法向量n 1=(x 1,y 1,z 1),平面PCD 的法向量n 2=(x 2,y 2,z 2).则{n 1·BP ⃗⃗⃗⃗⃗=0,n 1·CP ⃗⃗⃗⃗⃗=0,即{-ty 1+tz 1=0,√3tx 1+tz 1=0.令x=1,则y=z=-√3,得到n 1=(1,-√3,-√3). 同理可得n 2=(1,√3,-√3),所以|cos <n 1,n 2>|=|n 1·n 2||n 1||n 2|=17.因为二面角B-PC-D 为钝二面角,则余弦值为-17.21.(12分)在平面直角坐标系xOy 中,曲线Γ:y=x 2-mx+2m (m ∈R )与x 轴交于不同的两点A ,B ,曲线Γ与y 轴交于点C.(1)是否存在以AB 为直径的圆过点C ?若存在,求出该圆的方程;若不存在,请说明理由. (2)求证:过A ,B ,C 三点的圆过定点,并求出该定点的坐标.由曲线Γ:y=x 2-mx+2m (m ∈R ),令y=0,得x 2-mx+2m=0. 设A (x 1,0),B (x 2,0),则可得Δ=m 2-8m>0,x 1+x 2=m ,x 1x 2=2m. 令x=0,得y=2m ,即C (0,2m ).若存在以AB 为直径的圆过点C ,则AC⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =0,得x 1x 2+4m 2=0,即2m+4m 2=0, 所以m=0或m=-12.由Δ>0,得m<0或m>8,所以m=-12,此时C (0,-1),AB 的中点M (-14,0)即圆心,半径r=|CM|=√174.故所求圆的方程为(x +14)2+y 2=1716. (2)设过A ,B ,C 的圆P 的方程为(x-a )2+(y-b )2=r 2满足{(x 1-a )2+b 2=r 2,(x 2-a )2+b 2=r 2,a 2+(2m -b )2=r 2,x 1x 2=2m ,x 1+x 2=m⇒{ a =m2,r 2=5m 24-m +14,b =m +12,代入P 得(x -m 2)2+y-m-122=5m 24-m+14,展开得(-x-2y+2)m+x 2+y 2-y=0, 当{-x -2y +2=0,x 2+y 2-y =0,即{x =0,y =1或{x =25,y =45时方程恒成立, ∴圆P 方程恒过定点(0,1)或(25,45).22.(12分)某高速公路隧道设计为单向三车道,每条车道宽4米,要求通行车辆限高5米,隧道全长1.5千米,隧道的断面轮廓线近似地看成半个椭圆形状(如图所示).(1)若最大拱高h 为6米,则隧道设计的拱宽l 至少是多少米?(结果取整数)(2)如何设计拱高h 和拱宽l ,才能使半个椭圆形隧道的土方工程量最小?(结果取整数) 参考数据:√11≈3.3,椭圆的面积公式为S=πab ,其中a ,b 分别为椭圆的长半轴和短半轴长.建立直角坐标系xOy如图所示,则点P(6,5)在椭圆x2a2+y2b2=1上,将b=h=6与点P(6,5)代入椭圆方程,得a=√11,此时l=2a=√11≈21.8,因此隧道设计的拱宽l至少是22米.(2)由椭圆方程x2a2+y2b2=1,得36a2+25b2≤1,因为1≥36a2+25b2≥2×6×5ab,即ab≥60,S=πab2≥30π,当且仅当6a=5b时,等号成立.由于隧道长度为1.5千米,故隧道的土方工程量V=1.5S≥45π,当V取得最小值时,有6a =5b,且ab=60,得a=6√2,b=5√2,此时l=2a=12√2≈16.97,h=b≈7.07.①若h=b=8,此时l=2a=17,此时V1=3πab4=3×17×8π8=51π,②若h=b=7,此时l=2a=18,此时V2=3πab4=3×9×7π4=47.25π,因为V1>V2,故当拱高为7米、拱宽为18米时,土方工程量最小.。
(数学5必修)第一章:解三角形[基础训练A 组]一、选择题1.在△ABC 中,若0030,6,90===B a C ,则b c -等于( )A .1B .1-C .32D .32-2.若A 为△ABC 的内角,则下列函数中一定取正值的是( )A .A sinB .A cosC .A tanD .Atan 1 3.在△ABC 中,角,A B 均为锐角,且,sin cos B A >则△ABC 的形状是( )A .直角三角形B .锐角三角形C .钝角三角形D .等腰三角形4.等腰三角形一腰上的高是3,这条高与底边的夹角为060,则底边长为( )A .2B .23 C .3 D .32 5.在△ABC 中,若B a b sin 2=,则A 等于( )A .006030或B .006045或C .0060120或D .0015030或6.边长为5,7,8的三角形的最大角与最小角的和是( )A .090B .0120C .0135D .0150 二、填空题1.在Rt △ABC 中,090C =,则B A sin sin 的最大值是_______________。
2.在△ABC 中,若=++=A c bc b a 则,222_________。
3.在△ABC 中,若====a C B b 则,135,30,200_________。
4.在△ABC 中,若sin A ∶sin B ∶sin C =7∶8∶13,则C =_____________。
5.在△ABC 中,,26-=AB 030C =,则AC BC +的最大值是________。
三、解答题1. 在△ABC 中,若,cos cos cos C c B b A a =+则△ABC 的形状是什么?2.在△ABC 中,求证:)cos cos (aA bB c a b b a -=-3.在锐角△ABC 中,求证:C B A C B A cos cos cos sin sin sin ++>++。
⾼中数学竞赛讲义(五)──数列⾼中数学竞赛讲义(五)──数列⼀、基础知识定义1 数列,按顺序给出的⼀列数,例如1,2,3,…,n,…. 数列分有穷数列和⽆穷数列两种,数列{a n}的⼀般形式通常记作a1, a2, a3,…,a n或a1, a2, a3,…,a n…。
其中a1叫做数列的⾸项,a n是关于n的具体表达式,称为数列的通项。
定理1 若S n表⽰{a n}的前n项和,则S1=a1, 当n>1时,a n=S n-S n-1.定义2 等差数列,如果对任意的正整数n,都有a n+1-a n=d(常数),则{a n}称为等差数列,d叫做公差。
若三个数a, b, c成等差数列,即2b=a+c,则称b为a和c的等差中项,若公差为d, 则a=b-d, c=b+d.定理2 等差数列的性质:1)通项公式a n=a1+(n-1)d;2)前n项和公式:S n=;3)a n-a m=(n-m)d,其中n, m为正整数;4)若n+m=p+q,则a n+a m=a p+a-q;5)对任意正整数p, q,恒有a p-a q=(p-q)(a2-a1);6)若A,B⾄少有⼀个不为零,则{a n}是等差数列的充要条件是S n=An2+Bn.定义3 等⽐数列,若对任意的正整数n,都有,则{a n}称为等⽐数列,q叫做公⽐。
定理3 等⽐数列的性质:1)a n=a1q n-1;2)前n项和S n,当q1时,S n=;当q=1时,S n=na1;3)如果a, b, c成等⽐数列,即b2=ac(b0),则b叫做a, c的等⽐中项;4)若m+n=p+q,则a m a n=a p a q。
定义4 极限,给定数列{a n}和实数A,若对任意的>0,存在M,对任意的n>M(n∈N),都有|a n-A|<,则称A为n→+∞时数列{a n}的极限,记作定义5 ⽆穷递缩等⽐数列,若等⽐数列{a n}的公⽐q满⾜|q|<1,则称之为⽆穷递增等⽐数列,其前n项和S n的极限(即其所有项的和)为(由极限的定义可得)。
学业分层测评(五)补集及综合应用(建议用时:45分钟)[学业达标]一、选择题1.若全集U={0,1,2,3}且∁U A={2},则集合A的真子集共有()A.3个B.5个C.7个D.8个【解析】A={0,1,3},真子集有23-1=7.【答案】 C2.已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0} B.{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}【解析】由题意可知,A∪B={x|x≤0或x≥1},所以∁U(A∪B)={x|0<x<1}.【答案】 D3.(2015·天津高考)已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},则集合A∩∁U B=()A.{2,5} B.{3,6}C.{2,5,6} D.{2,3,5,6,8}【解析】由题意得∁U B={2,5,8},∴A∩∁U B={2,3,5,6}∩{2,5,8}={2,5}.【答案】 A4.(2016·中山高一检测)设全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},则图1-1-2中的阴影部分表示的集合为()图1-1-2A.{2} B.{4,6}C.{1,3,5} D.{4,6,7,8}【解析】全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},由韦恩图可知阴影部分表示的集合为(∁U A)∩B,∵∁U A={4,6,7,8},∴(∁U A)∩B={4,6}.故选B.【答案】 B5.(2016·南阳高一检测)已知集合A={x|x<a},B={x|1<x<2},且A∪(∁R B)=R,则实数a的取值范围是() 【导学号:97030023】A.a≤2 B.a<1C.a≥2 D.a>2【解析】∵集合A={x|x<a},B={x|1<x<2},∴∁R B={x|x≤1或x≥2},因为A∪∁R B=R,所以a≥2,故选C.【答案】 C二、填空题6.(2016·杭州模拟)设集合S={x|x>-2},T={x|x2+3x-4≤0},则(∁R S)∪T=________.【解析】∵集合S={x|x>-2},∴∁R S={x|x≤-2},由x2+3x-4≤0,得T={x|-4≤x≤1},故(∁R S)∪T={x|x≤1}.【答案】(-∞,1]7.已知集合A、B均为全集U={1,2,3,4}的子集,且∁U(A∪B)={4},B={1,2},则A∩∁B=________.U【解析】∵U={1,2,3,4},∁U(A∪B)={4},∴A∪B={1,2,3},又∵B={1,2},∴{3}⊆A⊆{1,2,3}.又∁U B={3,4},∴A∩∁U B={3}.【答案】{3}8.设全集U=R,集合A={x|x≥0},B={y|y≥1},则∁U A与∁U B的包含关系是________.【解析】∁U A={x|x<0},∁U B={y|y<1}={x|x<1}.∴∁U A⊆∁U B.【答案】∁U A⊆∁U B三、解答题9.(2016·宁波高一检测)设A={x∈Z||x|<6},B={1,2,3},C={3,4,5},求:(1)A∪(B∩C);(2)A∩∁A(B∪C).【解】A={-5,-4,-3,-2,-1,0,1,2,3,4,5},(1)由B∩C={3},∴A∪(B∩C)=A={-5,-4,-3,-2,-1,0,1,2,3,4,5}.(2)由B∪C={1,2,3,4,5},∁A(B∪C)={-5,-4,-3,-2,-1,0},∴A∩∁A(B∪C)={-5,-4,-3,-2,-1,0}.10.设全集为R,A={x|3≤x<7},B={x|2<x<10},求:(1)A∩B;(2)∁R A;(3)∁R(A∪B).【解】(1)∵A={x|3≤x<7},B={x|2<x<10},∴A∩B={x|3≤x<7}.(2)又全集为R,A={x|3≤x<7},∴∁R A={x|x<3或x≥7}.(3)∵A∪B={x|2<x<10},∴∁R(A∪B)={x|x≤2或x≥10}.[能力提升]1.(2016·石家庄高一检测)若全集U={1,2,3,4,5,6},M={2,3},N={1,4},则集合{5,6}等于()A.M∪N B.M∩NC.(∁U M)∪(∁U N) D.(∁U M)∩(∁U N)【解析】∵全集U={1,2,3,4,5,6},M={2,3},N={1,4},∴M∪N={1,2,3,4},则(∁U M)∩(∁U N)=∁U(M∪N)={5,6}.故选D.【答案】 D2.已知全集U={1,2,3,4,5},集合A={x|x2-3x+2=0},B={x|x=2a,a∈A},则集合∁U(A ∪B)中元素个数为()A.1 B.2C.3 D.4【解析】∵A={1,2},∴B={2,4},∴A∪B={1,2,4},∴∁U(A∪B)={3,5}.【答案】 B3.已知全集U={2,3,a2-a-1},A={2,3},若∁U A={1},则实数a的值是________.【解析】 ∵U ={2,3,a 2-a -1},A ={2,3},∁U A ={1},∴a 2-a -1=1,即a 2-a -2=0,解得a =-1或a =2.【答案】 -1或24.(2016·哈尔滨师大附中高一检测)设全集U =R ,集合A ={x |x ≤-2或x ≥5},B ={x |x ≤2}.求(1)∁U (A ∪B );(2)记∁U (A ∪B )=D ,C ={x |2a -3≤x ≤-a },且C ∩D =C ,求a 的取值范围. 【导学号:97030024】【解】 (1)由题意知,A ={x |x ≤-2或x ≥5},B ={x |x ≤2},则A ∪B ={x |x ≤2或x ≥5}, 又全集U =R ,∁U (A ∪B )={x |2<x <5}.(2)由(1)得D ={x |2<x <5},由C ∩D =C 得C ⊆D ,①当C =∅时,有-a <2a -3,解得a >1;②当C ≠∅时,有⎩⎨⎧ 2a -3≤-a2a -3>2-a <5,解得a ∈∅. 综上,a 的取值范围为(1,+∞).。
高中数学综合训练系列试题(5)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分 共150分,考试时间120分钟第Ⅰ卷(选择题,共50分)参考公式:如果事件A B 互斥,那么 球的表面积公式P(A+B)=P(A)+P(B) 24R S π= 如果事件A B 相互独立,那么P(A·B)=P(A)·P(B) 其中R 表示球的半径 如果事件A 在一次试验中发生的概率是 球的体积公式p ,那么n 次独立重复试验中恰好发生k 334R V π=次的概率k n kk n n p P C k P --=)1()( 其中R 表示球的半径一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的4个选项中,只有1项最符合题要求的 ) 1. 不等式131≥-x的解集是A ]2,( -∞B ),3(∞+C )3,2[D ]3,2[2. 如果32(,),cos ,sin()cos 2542ππαπααα∈=-+-=且那么 A522 B 522- C 524 D 5243. 已知命题p :x <2,命题q :x 2―x ―2<0,则p q ⌝⌝是的A 充分非必要条件B 必要非充分条件C 充分必要条件D 既非充分也非必要条件4. 奇函数32()f x ax bx cx =++在1x a=处有极值,则2ac b +的值为 A 3 B -3 C 0 D 15. 如图,在棱长为2的正方体1111D C B A ABCD -中, O 是底面ABCD的中心,E F 分别是1CC AD 的中点 那么异面直线OE 和1FD 所成的角的余弦值等于 A32B 510C 54D 5156. 假设每一架飞机的引擎在飞行中出现故障率为1-p ,且各引擎是否有故障是独立的,已知4引擎飞机中至少有3个引擎正常运行,飞机就可成功飞行;2引擎飞机要2个引擎全部正常运行,飞机也可成功飞行,要使4引擎飞机比2引擎飞机ABCD A 1B 1C 1D 1EF O更安全,则P 的取值范围是A )1,32(B )1,31(C )32,0( D )31,0(7. 抛物线y 2=2px 与直线ax +y -4=0交于两点A B ,其中点A 的坐标是(1,2) 设抛物线的焦点为F ,则|FA|+|FB|等于A 7B 53C 6D 58. 函数)1a ()1|x (|log y a >+= 的大致图像是o y x o yxo yxoyxA B C D9. 已知()f x 是R 上的偶函数,对R x ∈都有(6)()(3)f x f x f +=+成立,若(1)2f =,则(2005)f =A 2005B 2C 1D 010. 已知F 1 F 2分别是椭圆12222=+by a x 的左右焦点,P 是以F 1F 2为直径的圆与该椭圆的一个交点,且∠P F 1F 2=2∠PF 2F 1,则这个椭圆的离心率是 A13- B 13+ C213- D 213+ 第二卷 非选择题(共100分)二、填空题:本大题共4小题,每小题5分,共20分11. 已知a 为实数,7()x a +展开式的二项式系数和为__________;如果展开式中的4x 的系数是35-,则a = _______12. 在条件⎪⎩⎪⎨⎧≤+≥≥5y x 2 1 x 0y 下, 1x y z +=的最大值为13. 一个棱长均为a 的正四棱锥S —ABCD 的一个面SCD ,与一个棱长均为a 的三棱锥S —CDE 的一个面SCD 完全重合,那么新构成的这个几何体的面数为 个 14. 若∆ABC 内切圆半径为r ,三边长为a b c ,则∆ABC 的面积S=21r(a+b+c) 若四面体内切球半径为R ,四个面的面积为S 1 S 2 S 3 S 4,则四面体的体积V =三、解答题:本大题共6小题,共80分 解答应写出文字说明 证明过程或演算步骤 15. (本题满分12分)已知向量m =)1,1( , 向量n 与向量m夹角为π43, 且m n=-1 (1)求向量n ;(2)若向量n与向量p=)0,1( 的夹角为2π,向量p =)2C cos 2,A (cos 2 ,其中A C 为△ABC 的内角,且A 、B 、C 依次成等差数列 求| n +p|的最小值16. (本题满分13分)在同一时间段里,有甲 乙两个天气预报站相互独立的对天气进行预测,根据以往的统计规律,甲预报站对天气预测的准确率为0 8,乙预报站对天气预测的准确率为0 75,求在同一时间段内(Ⅰ)甲 乙两个天气预报站同时预报准确的概率; (Ⅱ)至少有一个预报站预报准确的概率;(Ⅲ)如果甲站独立预报3次,其中恰有两次预报准确的概率已知四边形ABCD 中,︒=∠=∠90ABC BAD ,⊥PA 平面ABCD ,PA=AD=3BC=3,AB=2(1)求点D 到平面PAC 的距离; (2)若点M 分PA的比为2,求二面角M —CD —A 的正切值18. (本题满分13分)已知函数()pf x x x=-(x >1) (1)若函数在f(x )上是增函数,求实数p 的取值范围; (2)解关于x 的不等式f (x )<2A BCDM P已知数列{a n }的前n 项和为S n ,且满足21),2(0211=≥=⋅+-a n S S a n n n (1)求证:{nS 1}是等差数列;(2)求a n 的表达式; (3)若b n =2(1-n)·a n (n ≥2)时,求证:b 22+b 32+…+b n 2<1若F 1 F 2为双曲线12222=-by a x 的左 右焦点,O 为坐标原点,P在双曲线左支上,M 在右准线上,且满足111,.||||||||OF OPOP OM FO PM OP OM OF OP ⋅⋅==(1)求此双曲线的离心率;(2)若此双曲线过点)3,2(N ,求双曲线方程;(3)设(2)中双曲线的虚轴端点为B 1,B 2(B 1在y 轴正半轴上),求B 2作直线AB 与双曲线交于A B 两点,求11B A B B ⊥时,直线AB 的方程高中数学综合训练系列试题(5)参考答案一、选择题C A A BD BACBA1 (2)(3)0121023333x x x x x x x --≤⎧-≥≥⇔⇔≤<⎨≠--⎩由得,故选C2 34(,),cos ,sin 255παπαα∈=-=由得,222422sin()cos sin 422255πααα+-==⨯=又,故选A32:||2,22:20,1 2.p x x x q x x x x ⌝≥≤-≥⌝--≥≤-≥即或,解得或故选A4 '2'2111()32,()0,320f x x bx c f a b c a aa=++=++=依题意即(), 23ac b +=-化简得,故选B5 建立空间至交直角坐标系易得6 34221(1),340,13p p p p p p p -+>-<<<34依题意:C 化简得解得 7 240,2,2,px ax y p a =+-===2将(1,2)分别代入y 及解得4240xx y ⎧=∴⎨+-=⎩22A B y 联立得x -5x+4=0,x =1,x =4,||||27AF BF ∴+=+=A B x +x 8 log ,log 1(1),a a a y x y x x ==+先画然后将的图象向左平移个单位得y=log(1)a x +再保留y=log 图象在y 轴右边的图象,y 轴左边的图象与之对称即得。
也可用特值得到 9由(6)()(3)f x f x f +=+得(6)()(3)()(3)f x f x f f x f -+=-+=+,(6)(6)(6),(12)(),f x f x f x f x f x ∴+=-=-+=即(2005)(167121)(1)2f f f ∴=⨯+==10 依题意:121221122190,260,30,F PF PF F PF F PF F PF F ︒︒︒∠=∠=∠∴∠=∠=1212132cos60,2cos30,2,2()222PF c PF c PF PF a c a ︒︒∴==+=∴+=又31e ∴=-二、填空题11 128;—1 12 32 13 5 14 )(314321S S S S R +++ 三、解答题15 解:设n (, ),m n 1, 1.x y x y =⋅=-+=由有①……(1分)m 与n 夹角为43π,有m ·n=|m | ·|n | ·43cos π,|n | 1∴= 则1y x 22=+②……(3分)由①②解得⎩⎨⎧=-=01y x 或⎩⎨⎧-==10y x∴即n (1, 0)=- 或n (0, 1)=-……(6分)(Ⅱ)由n 与q垂直知n (0, 1)=- ……(7分)由2B =A +C 知B =3π,A +C =32π, 32A 0π<<若n (0, 1)=- , 则n +p =)12C cos2,A (cos 2- =)C cos ,A (cos ∴2221cos 21cos 2|n p | cos cos 22A C A C +++=+=+ =)3A 2cos(211)]A 234cos(A 2[cos 211π++=-π++……(10分) ∵,353A 23,32A 0π<π+<ππ<< ∴当1)3A 2cos(-=π+时, |n p |+取得最小值即2min 1|n p |,2+= ∴min 2|n p |2+= …………(12分)16 解:(Ⅰ)设A =“甲天气预报站预报准确”,B=“乙天气预报站预报准确” 则,P (A ·B ) = P (A )·P (B ) = 0 8 × 0 75 = 0 6 …………3分(Ⅱ)所求事件的概率等于1 – P (A )·P (B ) ……………… 6分 =1–(1 – 0 8)(1 – 0 75)= 0 95 …………… 8分 (Ⅲ)甲站独立预报3次,其中恰有两次预报准确的概率P = )51()54(223C ………………………11分 =12548= 0 384 ……………………………13分 17 解法一:(1)过D 作DQ ⊥AC 于点Q ,⊥PA 平面ABCD ,DQ PA ⊥∴ ………………(1分)⊥∴DQ 平面PAC ………………(2分)∴又由DQ AC AB AD S ACD ⋅=⋅=∆2121, 522=+=BC AB AC ……………(4分) 556523=⋅=⋅=∴AC AB AD DQ ………(5分) ∴D 到平面PAC 的距离为.556…………(7分) (2)过A 作AK ⊥DC 于K 点,连MK ∵PA ⊥平面ABCD ,∴MK ⊥CD ∴∠MKA 为M —CD —A 的平面角 ……………………(10分)ACD MA PM MAPMAD PA ∆==∴===在又.1,2,2,3 中,由面积相等, 得22,=⋅=⋅CD AK CD AB AD 又,.32tan ,223==∠∴=⋅=∴AK MA MKA CD AB AD AK ………………(14分)解法二:以A 为坐标原点,分别以,,AB AD AP所在直线为x y z 轴建立坐标系……………………………………(1分)(1)过D 作DQ PAC DQ DQ PA Q AC DQ ∴⊥∴⊥⊥,,,平面于 就是D 到平面PAC 的距离 ………………(3分)设()(2,1,0),AQ mAC m AB BC m ==+=(0,3,0)(2,1,0)(2,3,0),DQ DA AQ m m m ∴=+=-+=-…………(4分)由23,4(3)0,5DQ AQ DQ AQ m m m m ⊥⋅=+-=∴= 得…………(5分)2261265||()().555DQ =+= ……………………(7分)(2)过A 作,(2,2,0).AK DC K DK DC λλ⊥==-于点设………………(8分)则3(2,32,0).,0,,4AK AD DK AK AD AK DK λλλ=+=-⊥∴⋅=∴=22333||()()0 2.222AK ∴=++= ………………(10分)MKA CD MK ABCD MA ∠∴⊥∴⊥.,平面 就是M —CD —A 的平面角…(12分)A BCDKM PQ||2tan .3||MA MKA AK ∴∠== ………………………………(14分)18 解:(1) 01)('2>+=x px f 在(1,)+∞恒成立,则 2p x >-在(1,)+∞恒成立,得1p ≥- ……………………(6分)(2) 由2px x-<及x>1得220x x p --< ① 当p= —1时,2210x x -+<,无解;② 当p> —1时,1111p x p -+<<++且x>1 所以得1<x 11p <++ ……………………(13分)19 解:(1)证明:)3,2,1(0),2(2,2111 =≠≥=+-∴⋅=----n S n S S S S S S a n n n n n n n n (1)分2111=-∴-n n S S ……2分 又21111==a S }1{nS ∴是以2为首项,2为公差的等差数列……4分 (2)解:由(1)n n S n 22)1(21=⋅-+= nS n 211=∴……5分 当n ≥2时, )1(21)1(21211--=--=-=-n n n n S S a n n n (或n ≥2时,)1(2121--=-=-n n S S a n n n ) 当n=1时,2111==a S ………………7分)2()1(21)1(21≥⎪⎪⎩⎪⎪⎨⎧--==∴n n n n a n ………………8分 (3)由(2)知,nn n n a n b n n 1])1(21[)1(2)1(2=--⋅-=-=………………………………9分n n nb b b n )1(13212111312122222322-++⨯+⨯<+++=+++∴ …………………11分 )111()3121()211(nn --++-+-= …………11分 111<-=n …………………………14分20 解:(1)由1F D PM = 知四边形PF 1OM 为平行四边形,又由11||||||||OP OF OM OP OP OF OM OP ⋅⋅=知OM PF OM F OP 11,∴∠平分为菱形,设半焦距为c ,由11||||OF c PF c ==知, 221||2||,||||22,,||PF c aPM c PF PF a c a e e c PM +=∴=+=+== 又即)1.(2,022舍去-==∴=--e e e e ………………………4分(2)∴=∴==,2,2a c a c e 双曲线方程为)3,2(,132222将点=-ay a x 代入,知识改变命运,学习成就未来欢迎各位老师踊跃投稿,稿酬丰厚 邮箱:zxjkw@第 11 页 共 11 页 有.3,1434222=∴=-a a a 即所求双曲线方程为.19322=-y x ………………………8分 (3)依题意得B 1(0,3),B 2(0,-3)设直线AB 的方程为).,(),,(,32211y x B y x A kx y -= 则由.0186)3(19332222=-+-⇒⎪⎩⎪⎨⎧=--=kx x k y x kx y ∵双曲线的渐近线为3,3±=∴±=k x y 当时,AB 与双曲线只有一个交点, 即.3±≠k .318,36221221k x x k k x x --=⋅-=+ 99)(,3186)(212122122121=++-=--=-+=+x x k x x k y y k x x k y y 又11112211121212(,3),(,3),3()90,B A x y B B x y B A B B x x y y y y =-=-⊥⇒+-++= 22218189390.5, 5.33k k k k--∴+-⋅+==∴=±--即 故所求直线AB 的方程为.3535--=-=x y x y 或………………………14分。