高三数学第一轮复习阶段性测试题1-集合与常用逻辑用语
- 格式:doc
- 大小:245.00 KB
- 文档页数:15
课时规范训练[A级基础演练]1.已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是()A.若a+b+c≠3,则a2+b2+c2<3B.若a+b+c=3,则a2+b2+c2<3C.若a+b+c≠3,则a2+b2+c2≥3D.若a2+b2+c2≥3,则a+b+c=3解析:选A.否命题是原命题的条件和结论同时否定,故选A.2.给定两个命题p,q.若﹁p是q的必要而不充分条件,则p是﹁q的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析:选A.由q⇒﹁p且﹁p⇒/q可得p⇒﹁q且﹁q⇒/p,所以p是﹁q的充分而不必要条件.3.命题“若x2>y2,则x>y”的逆否命题是()A.“若x<y,则x2<y2”B.“若x>y,则x2>y2”C.“若x≤y,则x2≤y2”D.“若x≥y,则x2≥y2”答案:C4.设a,b是向量,命题“若a=-b,则|a|=|b|”的逆命题是()A.a.若a≠-b,则|a|≠|b| B.若a=-b,则|a|≠|b|C.若|a|≠|b|,则a≠-b D.若|a|=|b|,则a=-b解析:选D.条件与结论相互交换.即若|a|=|b|则a=-b5.“x<0”是“ln(x+1)<0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:选B.由ln(x+1)<0得0<x+1<1,∴-1<x<0即(-1,0)(-∞,0)∴“x<0”是“ln(x+1)<0”的必要不充分条件.6.“0≤m≤1”是“函数f(x)=sin x+m-1有零点”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A.要使函数f(x)=sin x+m-1有零点,则m-1=-sin x∈[-1,1],可知0≤m≤2.当0≤m≤1时,明显能得到0≤m≤2,即函数f(x)=sin x+m-1有零点,但反之不肯定成立,故选A.7.设a,b是实数,则“a>b”是“a2>b2”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析:选D.依据充要条件的定义,举特例说明.设a=1,b=-2,则有a>b,但a2<b2,故a>b⇒/a2>b2;设a=-2,b=1,明显a2>b2,但a<b,即a2>b2⇒/a>b.故“a>b”是“a2>b2”的既不充分也不必要条件.8.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是__________.解析:否命题既否定题设又否定结论.答案:若f(x)不是奇函数,则f(-x)不是奇函数9.有下列几个命题:①“若a>b,则a2>b2”的否命题;②“若x+y=0,则x,y互为相反数”的逆命题;③“若x2<4,则-2<x<2”的逆否命题.其中真命题的序号是__________.解析:①原命题的否命题为“若a≤b则a2≤b2”,假命题.②原命题的逆命题为:“x,y互为相反数,则x+y=0”真命题.③原命题的逆否命题为“若x≥2或x≤-2,则x2≥4”真命题.答案:②③10.下列命题:①若ac2>bc2,则a>b;②若sin α=sin β,则α=β;③“实数a=0”是“直线x-2ay=1和直线2x-2ay=1平行”的充要条件;④若f(x)=log2x,则f(|x|)是偶函数.其中正确命题的序号是__________.解析:对于①,ac2>bc2,c2>0,则a>b正确;对于②,sin 30°=sin 150°⇒/30°=150°,所以②错误;对于③,l1∥l2⇔A1B2=A2B1,即-2a=-4a⇒a=0且A1C2≠A2C1,所以③正确;④明显正确.答案:①③④[B级力量突破]1.假如x,y是实数,那么“x≠y”是cos x≠cos y的()A.充要条件B.充分不必要条件C.必要不充分条件D.即不充分又不必要条件解析:选C.若cos x=cos y⇒/x=y,反之成立,“cos x=cos y”是“x=y”的必要不充分条件,“x≠y”是“cos x≠cos y”的必要不充分条件.2.函数f(x)在x=x0处导数存在.若p:f′(x0)=0;q:x=x0是f(x)的极值点,则() A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件解析:选C.利用命题和逆命题的真假来推断充要条件,留意推断为假命题时,可以接受反例法.当f′(x0)=0时,x=x0不肯定是f(x)的极值点,比如,y=x3在x=0时,f′(0)=0,但在x=0的左右两侧f′(x)的符号相同,因而x=0不是y=x3的极值点.由极值的定义知,x=x0是f(x)的极值点必有f′(x0)=0.综上知,p是q的必要条件,但不是充分条件.3.已知p:x>1或x<-3,q:x>a,若q是p的充分不必要条件,则a的取值范围是() A.[1,+∞) B.(-∞,1]C.[-3,+∞) D.(-∞,-3]解析:选A.法一:设P={x|x>1或x<-3},Q={x|x>a},由于q是p的充分不必要条件,所以Q P,因此a≥1,故选A.法二:令a=-3,则q:x>-3,则由命题q推不出命题p,此时q不是p的充分条件,排解B,C,D,选A.4.设条件p:实数x满足x2-4ax+3a2<0,其中a<0;条件q:实数x满足x2+2x-8>0,且q是p的必要不充分条件,则实数a的取值范围是________.解析:本题考查必要不充分条件的应用与一元二次不等式的解法.由x2-4ax+3a2<0得3a<x<a,由x2+2x-8>0得x<-4或x>2,由于q是p的必要不充分条件,则⎩⎪⎨⎪⎧a<0,a≤-4,所以a≤-4.答案:(-∞,-4]5.以下关于命题的说法正确的有__________(填写全部正确命题的序号).①“若log2a>0,则函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数”是真命题;②命题“若a=0,则ab=0”的否命题是“若a≠0,则ab≠0”;③命题“若x,y都是偶数,则x+y也是偶数”的逆命题为真命题;④命题“若a∈M,则b∉M”与命题“若b∈M,则a∉M”等价.解析:对于①,若log2a>0=log21,则a>1,所以函数f(x)=log a x在其定义域内是增函数,故①不正确;对于②,依据一个命题的否命题的定义可知,该说法正确;对于③,该命题的逆命题是“若x+y是偶数,则x、y都是偶数”,是假命题,如1+3=4是偶数,但3和1均为奇数,故③不正确;对于④,不难看出,命题“若a∈M,则b∉M”与命题“若b∈M,则a∉M”是互为逆否命题,因此二者等价,所以④正确.综上可知正确的说法有②④.答案:②④。
阶段性测试题一(集合与常用逻辑用语)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间120分钟。
第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(文)(2014·甘肃临夏中学、金昌市二中期中)设集合A={x|x>1},B={x|x(x-2)<0},则A∩B 等于()A.{x|x>2}B.{x|0<x<2}C.{x|1<x<2} D.{x|0<x<1}[答案] C[解析]∵B={x|x(x-2)<0}={x|0<x<2},∴A∩B={x|1<x<2}.(理)(2014·福建省闽侯二中、永泰二中、连江侨中、长乐二中联考)已知全集U=R,集合M={x|x2-x=0},N={x|x=2n+1,n∈Z},则M∩N为()A.{0} B.{1}C.{0,1} D.∅[答案] B[解析]∵M={x|x2-x=0}={0,1},N={x|x=2n+1,n∈Z}中的元素是奇数,∴M∩N={1},选B.2.(2014·威海期中)已知集合A={-1,1},B={m|m=x+y,x∈A,y∈A},则集合B等于() A.{-2,2} B.{-2,0,2}C.{-2,0} D.{0}[答案] B[解析]∵x∈A,y∈A,A={-1,1},m=x+y,∴m的取值为-2,0,2,即B={-2,0,2},故选B.3.(2014·山西曲沃中学期中)集合A={x|(x-1)(x+2)≤0},B={x|x<0},则A∪B=()A.(-∞,0] B.(-∞,1]C.[1,2] D.[1,+∞)[答案] B[解析]∵A={x|-2≤x≤1},B={x|x<0},∴A∪B={x|x≤1},故选B.4.(文)(2014·山东省德州市期中)若U={1,2,3,4,5,6},M={1,2,4},N={2,3,6},则∁U(M∪N)=()A.{1,2,3} B.{5}C.{1,3,4} D.{2}[答案] B[解析] ∵U ={1,2,3,4,5,6},M ∪N ={1,2,3,4,6}, ∴∁U (M ∩N )={5}.(理)(2014·文登市期中)已知集合A ={x |log 4x <1},B ={x |x ≥2},则A ∩(∁R B )=( ) A .(-∞,2) B .(0,2) C .(-∞,2] D .[2,4)[答案] B[解析] ∵A ={x |log 4x <1}={x |0<x <4},B ={x |x ≥2},∴∁R B ={x |x <2},所以A ∩∁R B =(0,2),故选B.5.(文)(2014·福州市八县联考)命题“有些实数的绝对值是正数”的否定是( ) A .∀x ∈R ,|x |>0 B .∃x 0∈R ,|x 0|>0 C .∀x ∈R ,|x |≤0 D .∃x 0∈R ,|x 0|≤0[答案] C[解析] 由词语“有些”知原命题为特称命题,故其否定为全称命题,因为命题的否定只否定结论,所以选C.(理)(2014·甘肃临夏中学期中)命题“存在x ∈Z ,使x 2+2x +m ≤0成立”的否定是( ) A .存在x ∈Z ,使x 2+2x +m >0 B .不存在x ∈Z ,使x 2+2x +m >0 C .对于任意x ∈Z ,都有x 2+2x +m ≤0 D .对于任意x ∈Z ,都有x 2+2x +m >0 [答案] D[解析] 特称命题的否定是全称命题.6.(文)(2014·河北冀州中学期中)下列命题中的真命题是( ) A .∃x ∈R ,使得sin x +cos x =32B .∀x ∈(0,+∞),e x >x +1C .∃x ∈(-∞,0),2x <3xD .∀x ∈(0,π),sin x >cos x [答案] B[解析] ∵sin x +cos x =2sin(x +π4)∈[-2,2],32>2,∴不存在x ∈R ,使sin x +cos x =32成立,故A 错;令f (x )=e x -x -1(x ≥0),则f ′(x )=e x -1,当x >0时,f ′(x )>0,∴f (x )在[0,+∞)上单调递增,又f (0)=0,∴x >0时,f (x )>0恒成立,即e x >x +1对∀x ∈(0,+∞)都成立,故B 正确;在同一坐标系内作出y =2x 与y =3x 的图象知,C 错误;当x =π4时,sin x =22=cos x ,∴D 错误,故选B.(理)(2014·山东省德州市期中)下面命题中,假命题是( ) A .∀x ∈R,3x >0B .∃α,β∈R ,使sin(α+β)=sin α+sin βC .∃m ∈R ,使f (x )=mxm 2+2m 是幂函数,且在(0,+∞)上单调递增D .命题“∃x ∈R ,x 2+1>3x ”的否定是“∀x ∈R ,x 2+1>3x ” [答案] D[解析] 由指数函数性质知,对任意x ∈R ,都有3x >0,故A 真;当α=π3,β=2π时,sin(α+β)=sin α+sin β成立;故B 真;要使f (x )=mxm 2+2m 为幂函数,应有m =1,∴f (x )=x 3,显然此函数在(0,+∞)上单调递增,故C 真;D 为假命题,“>”的否定应为“≤”.7.(文)(2014·甘肃省金昌市二中期中)a 、b 为非零向量,“a ⊥b ”是“函数f (x )=(x a +b )·(x b -a )为一次函数”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件[答案] B[解析] ∵f (x )=(x a +b )·(x b -a )=x 2a ·b +x (|b |2-|a |2)-a ·b ,当f (x )为一次函数时,a ·b =0且|b |2-|a |2≠0,∴a ⊥b ,当a ⊥b 时,f (x )未必是一次函数,因为此时可能有|a |=|b |,故选B.(理)(2014·江西临川十中期中)已知平面向量a ,b 满足|a |=1,|b |=2,a 与b 的夹角为60°,则“m =1”是“(a -m b )⊥a ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 [答案] C[解析] ∵|a |=1,|b |=2,〈a ,b 〉=60°,∴a ·b =1×2×cos60°=1,(a -m b )⊥a ⇔(a -m b )·a =0⇔|a |2-m a ·b =0⇔m =1,故选C.8.(2014·江西都昌一中月考)已知全集U ={1,2,3,4,5,6},集合A ={2,3,4},集合B ={2,4,5},则右图中的阴影部分表示( )A .{2,4}B .{1,3}C .{5}D .{2,3,4,5} [答案] C[解析] 阴影部分在集合B 中,不在集合A 中,故阴影部分为B ∩(∁U A )={2,4,5}∩{1,5,6}={5},故选C.9.(2014·华安、连城、永安、漳平一中,龙海二中,泉港一中六校联考)已知m ,n 是两条不同的直线,α,β,γ是三个不同的平面,下列命题正确的是( )A .若m ∥α,n ∥α,则m ∥nB .若α⊥β,α⊥γ,则β∥γC .若m ∥α,m ∥β,则α∥βD .若m ⊥α,m ⊥β,则α∥β [答案] D[解析] m ∥α,n ∥α时,m 与n 可平行,也可相交或异面,故A 错误;由正方体相邻三个面可知,α⊥β,α⊥γ时,β与γ可能相交,故B 错;当α∩β=l ,m ⊄α,m ⊄β,m ∥l 时,m ∥α,m ∥β,故C 错,故选D.10.(2014甘肃临夏中学期中)已知函数f (x )=x +b cos x ,其中b 为常数.那么“b =0”是“f (x )为奇函数”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件[答案] C[解析] 当b =0时,f (x )=x 为奇函数,故满足充分性;当f (x )为奇函数时,f (-x )=-f (x ),∴-x +b cos x =-x -b cos x ,从而2b cos x =0,∵此式对任意x ∈R 都成立,∴b =0,故满足必要性,选C.11.(2014·海南省文昌市检测)下列命题中是假命题...的是( ) A .∃m ∈R ,使f (x )=(m -1)·xm 2-4m +3是幂函数,且在(0,+∞)上单调递减B .∀a >0,函数f (x )=ln 2x +ln x -a 有零点C .∃α,β∈R ,使cos(α+β)=cos α+sin βD .∀φ∈R ,函数f (x )=sin(2x +φ)都不是偶函数 [答案] D[解析] ∵f (x )为幂函数,∴m -1=1,∴m =2,f (x )=x -1,∴f (x )在(0,+∞)上递减,故A 真;∵y =ln 2x +ln x 的值域为[-14,+∞),∴对∀a >0,方程ln 2x +ln x -a =0有解,即f (x )有零点,故B真;当α=π6,β=2π时,cos(α+β)=cos α+sin β成立,故C 真;当φ=π2时,f (x )=sin(2x +φ)=cos2x为偶函数,故D 为假命题.12.(2014·黄冈中学检测)已知集合M ={(x ,y )|y =f (x )},若对于任意(x 1,y 1)∈M ,存在(x 2,y 2)∈M ,使得x 1x 2+y 1y 2=0成立,则称集合M 是“理想集合”,则下列集合是“理想集合”的是( )A .M ={(x ,y )|y =1x }B .M ={(x ,y )|y =cos x }C .M ={(x ,y )|y =x 2-2x +2}D .M ={(x ,y )|y =log 2(x -1)} [答案] B[解析] 设A (x 1,y 1),B (x 2,y 2),则由x 1x 2+y 1y 2=0知OA ⊥OB ,由理想集合的定义知,对函数y =f (x )图象上任一点A ,在图象上存在点B ,使OA ⊥OB ,对于函数y =1x ,图象上点A (1,1),图象上不存在点B ,使OA ⊥OB ;对于函数y =x 2-2x +2图象上的点A (1,1),在其图象上也不存在点B ,使OA ⊥OB ;对于函数y =log 2(x -1)图象上的点A (2,0),在其图象上不存在点B ,使OA ⊥OB ;而对于函数y =cos x ,无论在其图象上何处取点A ,总能在其位于区间[-π2,π2]的图象上找到点B ,使OA ⊥OB ,故选B.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上.) 13.(文)(2014·高州四中质量检测)已知函数f (x )=x 2+mx +1,若命题“∃x 0>0,f (x 0)<0”为真,则m 的取值范围是________.[答案] (-∞,-2)[解析] 由条件知⎩⎪⎨⎪⎧-m 2>0,m 2-4>0,∴m <-2.(理)(2014·福州市八县联考)已知命题p :m ∈R ,且m +1≤0,命题q :∀x ∈R ,x 2+mx +1>0恒成立,若p ∧q 为假命题且p ∨q 为真命题,则m 的取值范围是________.[答案] m ≤-2或-1<m <2[解析] p :m ≤-1,q :-2<m <2,∵p ∧q 为假命题且p ∨q 为真命题,∴p 与q 一真一假,当p 假q 真时,-1<m <2,当p 真q 假时,m ≤-2,∴m 的取值范围是m ≤-2或-1<m <2.14.(文)(2014·安徽程集中学期中)以下四个命题:①在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且b sin A =a cos B ,则B =π4;②设a ,b 是两个非零向量且|a ·b |=|a ||b |,则存在实数λ,使得b =λa ;③方程sin x -x =0在实数范围内的解有且仅有一个;④a ,b ∈R 且a 3-3b >b 3-3a ,则a >b ;其中正确的是________.[答案] ①②③④[解析] ∵b sin A =a cos B ,∴sin B sin A =sin A cos B ,∵sin A ≠0,∴sin B =cos B ,∵B ∈(0,π),∴B =π4,故①正确; ∵|a ·b |=||a |·|b |·cos 〈a ,b 〉|=|a |·|b |,∴|cos 〈a ,b 〉|=1,∴a 与b 同向或反向,∴存在实数λ,使b =λa ,故②正确;由于函数y =sin x 的图象与直线y =x 有且仅有一个交点,故③正确;∵(a 3-3b )-(b 3-3a )=(a 3-b 3)+3(a -b )=(a -b )(a 2+ab +b 2+3)>0,∵a 2+ab +b 2+3>0,∴a -b >0,∴a >b ,故④正确.(理)(2014·屯溪一中期中)下列几个结论:①“x <-1”是“x <-2”的充分不必要条件; ②⎠⎛01(e x +sin x )d x =e -cos1;③已知a >0,b >0,a +b =2,则y =1a +4b 的最小值为92;④若点(a,9)在函数y =3x 的图象上,则tan a π3的值为-3;⑤函数f (x )=2sin(2x -π3)-1的对称中心为(k π2+π6,0)(k ∈Z )其中正确的是________.(写出所有正确命题的序号) [答案] ②③④[解析] x <-1⇒/ x <-2,x <-2⇒x <-1,故①错误;⎠⎛01(e x +sin x )d x =(e x -cos x )|10=e -cos1,故②正确;∵a >0,b >0,a +b =2,∴y =1a +4b =12(a +b )(1a +4b )=12(5+b a +4a b )≥12(5+2b a ·4a b )=92,等号在⎩⎪⎨⎪⎧b a =4a b ,a +b =2,即a =23,b =43时成立,故③正确;∵(a,9)在函数y =3x 的图象上,∴3a =9,∴a=2,∴tan 2π3=-tan π3=-3,故④正确;f (x )=2sin(2x -π3)-1的对称中心不落在x 轴上,故⑤错.正确答案为②③④.15.(2013·福建文,16)设S ,T 是R 的两个非空子集,如果存在一个从S 到T 的函数y =f (x )满足:(1)T ={f (x )|x ∈S };(2)对任意x 1,x 2∈S ,当x 1<x 2时,恒有f (x 1)<f (x 2), 那么称这两个集合“保序同构”.现给出以下3对集合: ①A =N ,B =N *;②A ={x |-1≤x ≤3},B ={x |-8≤x ≤10}; ③A ={x |0<x <1},B =R .其中,“保序同构”的集合对的序号是________.(写出所有“保序同构”的集合对的序号) [答案] ①②③[解析] 由(1)知T 是定义域为S 的函数y =f (x )的值域;由(2)知f (x )为增函数,因此对于集合A 、B ,只要能够找到一个增函数y =f (x ),其定义域为A ,值域为B 即可.对于①,A =N ,B =N *,可取f (x )=x +1,(x ∈A );对于②,A ={x |-1≤x ≤3},B ={x |-8≤x ≤10},可取f (x )=92x -72(x ∈A );对于③,A ={x |0<x <1},B =R ,可取f (x )=tan(x -12)π(x ∈A ).16.(文)(2014·合肥八中联考)给出下列四个命题: ①∃α,β∈R ,α>β,使得tan α<tan β;②若f (x )是定义在[-1,1]上的偶函数,且在[-1,0]上是增函数,θ∈(π4,π2),则f (sin θ)>f (cos θ);③在△ABC 中,“A >π6”是“sin A >12”的充要条件;④若函数y =f (x )的图象在点M (1,f (1))处的切线方程是y =12x +2,则f (1)+f ′(1)=3,其中所有正确命题的序号是________.[答案] ①④[解析] ①当α=3π4,β=π3时,tan α<0<tan β,∴①为真命题;∵f (x )是[-1,1]上的偶函数,在[-1,0]上单调递增,∴在[0,1]上单调递减,又θ∈(π4,π2),∴1>sin θ>cos θ>22,从而f (sin θ)<f (cos θ),∴②为假命题;③当A =5π6时,A >π6成立,但sin A =12,∴③为假命题;④由条件知f ′(1)=12,f (1)=12×1+2=52,∴f (1)+f ′(1)=3,∴④为真命题.(理)(2014·银川九中一模)给出下列命题: ①已知a ,b 都是正数,且a +1b +1>ab,则a <b ;②已知f ′(x )是f (x )的导函数,若∀x ∈R ,f ′(x )≥0,则f (1)<f (2)一定成立; ③命题“∃x ∈R ,使得x 2-2x +1<0”的否定是真命题; ④“x ≤1且y ≤1”是“x +y ≤2”的充要条件.其中正确命题的序号是________.(把你认为正确命题的序号都填上) [答案] ①②③[解析] ①∵a ,b 是正数,∴a +1>0,b +1>0,∵a +1b +1>ab ,∴b (a +1)>a (b +1),∴b >a ,即a <b ,∴①正确;②∵对任意x ∈R ,f ′(x )≥0,∴f (x )在R 上为增函数, ∴f (1)<f (2),∴②正确;③“∃x ∈R ,使得x 2-2x +1<0”的否定为“∀x ∈R ,x 2-2x +1≥0”,∵x ∈R 时,x 2-2x +1=(x -1)2≥0成立,∴③正确;④当x ≤1且y ≤1时,x +y ≤2成立;当x =3,y =-2时,满足x +y ≤2,∴由“x +y ≤2”推不出“x ≤1且y ≤1”,∴④错误.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤.) 17.(本小题满分12分)(文)(2014·福州市八县联考)A ={x |x 2-2x -8<0},B ={x |x 2+2x -3>0},C ={x |x 2-3ax +2a 2<0},(1)求A ∩B ;(2)试求实数a 的取值范围,使C ⊆(A ∩B ).[解析] (1)依题意得:A ={x |-2<x <4},B ={x |x >1或x <-3}, ∴A ∩B ={x |1<x <4}.(2)①当a =0时,C =∅,符合C ⊆(A ∩B ); ②当a >0时,C ={x |a <x <2a },要使C ⊆(A ∩B ),则⎩⎪⎨⎪⎧a ≥12a ≤4,解得1≤a ≤2;③当a <0时,C ={x |2a <x <a },∵a <0,C ⊆(A ∩B )不可能成立,∴a <0不符合题设. ∴综上所述得:1≤a ≤2或a =0.(理)(2014·甘肃临夏中学期中)记函数f (x )=lg(x 2-x -2)的定义域为集合A ,函数g (x )=3-|x |的定义域为集合B .(1)求A ∩B ;(2)若C ={x |x 2+4x +4-p 2<0,p >0},且C ⊆(A ∩B ),求实数p 的取值范围.[解析] (1)由条件知,x 2-x -2>0,∴A ={x |x <-1,或x >2},由g (x )有意义得3-|x |≥0,所以B ={x |-3≤x ≤3},∴A ∩B ={x |-3≤x <-1,或2<x ≤3};(2)∵C ={x |x 2+4x +4-p 2<0}(p >0),∴C ={x |-2-p <x <-2+p }, ∵C ⊆(A ∩B ),∴-2-p ≥-3,且-2+p ≤-1, ∴0<p ≤1,∴实数p 的取值范围是{p |0<p ≤1}.18.(本小题满分12分)(2014·山东省菏泽市期中)已知命题p :关于x 的不等式|x -1|>m -1的解集为R ,命题q :函数f (x )=(5-2m )x 是R 上的增函数,若p 或q 为真命题,p 且q 为假命题,求实数m 的取值范围.[解析] 不等式|x -1|>m -1的解集为R ,须m -1<0,即p 是真命题时,m <1; 函数f (x )=(5-2m )x 是R 上的增函数,须5-2m >1,即q 是真命题时,m <2. ∵p 或q 为真命题,p 且q 为假命题, ∴p 、q 中一个为真命题,另一个为假命题. (1)当p 真,q 假时,m <1且m ≥2,此时无解; (2)当p 假,q 真时,m ≥1且m <2,此时1≤m <2, 因此1≤m <2.19.(本小题满分12分)(文)(2014·灵宝实验高中月考)设命题p :实数x 满足x 2-4ax +3a 2<0,其中a <0;命题q :实数x 满足x 2+2x -8>0且綈p 是綈q 的必要不充分条件,求实数a 的取值范围.[解析] 由x 2-4ax +3a 2<0及a <0得,3a <x <a , ∴p :3a <x <a ;由x 2+2x -8>0得,x <-4或x >2,∴q :x <-4或x >2.∵綈p 是綈q 的必要不充分条件, ∴p 是q 的充分不必要条件,∴a ≤-4.(理)(2014·福建省闽侯二中、永泰二中、连江侨中、长乐二中联考)设命题p :实数x 满足(x -a )(x -3a )<0,其中a >0,命题q :实数x 满足x -3x -2≤0.(1)若a =1,且p ∧q 为真,求实数x 的取值范围;(2)若綈p 是綈q 的充分不必要条件,求实数a 的取值范围. [解析] (1)∵a =1,∴不等式化为(x -1)(x -3)<0,∴1<x <3; 由x -3x -2≤0得,2<x ≤3,∵p ∧q 为真,∴2<x <3. (2)∵綈p 是綈q 的充分不必要条件, ∴q 是p 的充分不必要条件,又q :2<x ≤3,p :a <x <3a ,∴⎩⎪⎨⎪⎧a ≤2,3a >3,∴1<a ≤2.20.(本小题满分12分)(2014·马鞍山二中期中)设命题p :f (x )=2x -m 在区间(1,+∞)上是减函数;命题q :x 1,x 2是方程x 2-ax -2=0的两个实根,且不等式m 2+5m -3≥|x 1-x 2|对任意的实数a ∈[-1,1]恒成立,若(綈p )∧q 为真,试求实数m 的取值范围.[解析] 对命题p :x -m ≠0,又x ∈(1,+∞),故m ≤1,对命题q :|x 1-x 2|=(x 1+x 2)2-4x 1x 2=a 2+8对a ∈[-1,1]有a 2+8≤3, ∴m 2+5m -3≥3⇒m ≥1或m ≤-6. 若(綈p )∧q 为真,则p 假q 真,∴⎩⎪⎨⎪⎧m >1,m ≥1或m ≤-6,∴m >1. 21.(本小题满分12分)(2014·河北冀州中学期中)设集合A 为函数y =ln(-x 2-2x +8)的定义域,集合B 为函数y =x +1x +1的值域,集合C 为不等式(ax -1a )(x +4)≤0的解集.(1)求A ∩B ;(2)若C ⊆∁R A ,求a 的取值范围.[解析] (1)由于-x 2-2x +8>0,解得A =(-4,2),又y =x +1x +1=(x +1)+1x +1-1,当x +1>0时,y ≥2(x +1)·1x +1-1=1;当x +1<0时,y ≤-2(x +1)·1x +1-1=-3.∴B =(-∞,-3]∪[1,+∞), ∴A ∩B =(-4,-3]∪[1,2). (2)∵∁R A =(-∞,-4]∪[2,+∞), 由(ax -1a)(x +4)≤0,知a ≠0,当a >0时,由(ax -1a )(x +4)≤0,得C =[-4,1a 2],不满足C ⊆∁R A ;当a <0时,由(ax -1a )(x +4)≤0,得C =(-∞,-4]∪[1a 2,+∞),欲使C ⊆∁R A ,则1a 2≥2,解得:-22≤a <0或0<a ≤22, 又a <0,所以-22≤a <0, 综上所述,所求a 的取值范围是[-22,0). 22.(本小题满分14分)(2014·九江市七校第一次联考)“城中观海”是近年来国内很多大中型城市内涝所致的现象,究其原因,除天气因素、城市规划等原因外,城市垃圾杂物也是造成内涝的一个重要原因.暴雨会冲刷城市的垃圾杂物一起进入下水道,据统计,在不考虑其他因素的条件下,某段下水道的排水量V (单位:立方米/小时)是杂物垃圾密度x (单位:千克/立方米)的函数.当下水道的垃圾杂物密度达到2千克/立方米时,会造成堵塞,此时排水量为0;当垃圾杂物密度不超过0.2千克/立方米时,排水量是90立方米/小时;研究表明,0.2≤x ≤2时,排水量V 是垃圾杂物密度x 的一次函数.(1)当0≤x ≤2时,求函数V (x )的表达式;(2)当垃圾杂物密度x 为多大时,垃圾杂物量(单位时间内通过某段下水道的垃圾杂物量,单位:千克/小时)f (x )=x ·V (x )可以达到最大,求出这个最大值.[解析] 当0.2≤x ≤2时,排水量V 是垃圾杂物密度x 的一次函数,设为V (x )=mx +n ,将(0.2,90),(2,0)代入得V (x )=-50x +100,V (x )=⎩⎪⎨⎪⎧90(0≤x ≤0.2),-50x +100(0.2<x ≤2).(2)f (x )=x ·V (x )=⎩⎪⎨⎪⎧90x (0≤x ≤0.2),-50x (x -2)(0.2<x ≤2).当0≤x ≤0.2时,f (x )=90x ,最大值为1.8千克/小时; 当0.2≤x ≤2时,f (x )=50x (2-x )≤50, 当x =1时,f (x )取到最大值50,所以,当杂物垃圾密度x =1千克/立方米,f (x )取得最大值50千克/小时.。
第一章集合与常用逻辑用语第一讲集合练好题·考点自测1.下列说法正确的是()①集合{x∈N|x3=x},用列举法表示为{—1,0,1}。
②{x|y=x2}={y|y=x2}={(x,y)|y=x2}.③方程√x-2021+(y+2 022)2=0的解集为{2 021,—2 022}.④若5∈{1,m+2,m2+4},则m的取值集合为{1,-1,3}。
⑤若P∩M=P∩N=A,则A⊆(M∩N)。
⑥设U=R,A={x|lg x〈1},则∁U A={x|lg x≥1}={x|x≥10}.A.①③④B.⑤⑥C.⑤ D。
②⑤2.[2021大同市高三调研测试]已知集合A满足{0,1}⊆A⫋{0,1,2,3},则满足条件的集合A的个数为()A.1 B.2 C。
3 D。
43。
[易错题]已知集合A={x|1〈1},则∁R A=()x-1A.(-∞,2]B.[1,2]C。
(1,2] D。
(—∞,2)4.[2020全国卷Ⅲ,1,5分][文]已知集合A={1,2,3,5,7,11},B={x|3<x〈15},则A∩B中元素的个数为()A。
2 B.3 C。
4 D.55.[2020全国卷Ⅰ,1,5分][文]已知集合A={x|x2-3x—4<0},B={-4,1,3,5},则A∩B=()A.{-4,1} B.{1,5}C.{3,5}D.{1,3}6.[2020全国卷Ⅱ,1,5分]已知集合U={—2,—1,0,1,2,3},A={-1,0,1},B={1,2},则∁U(A∪B)=()A.{—2,3}B。
{-2,2,3}C。
{—2,—1,0,3}D.{—2,—1,0,2,3}拓展变式1.[2020全国卷Ⅲ,1,5分]已知集合A={(x,y)|x,y∈N*,y≥x},B={(x,y)|x+y=8},则A∩B中元素的个数为()A。
2 B。
3 C。
4 D.62。
(1)[2021大同市调研测试]已知集合A={x|x2-x-2<0},B={x|-1〈x<1},则()A。
课时规范训练[A级基础演练]1.命题“∀x∈R,x2≠x”的否定是()A.∀x∉R,x2≠x B.∀x∈R,x2=xC.∃x∉R,x2≠x D.∃x∈R,x2=x解析:选D.全称命题的否定,需要把全称量词改为特称量词,并否定结论.2.已知命题p:存在a∈R,曲线x2+ay2=1为双曲线;命题q:x-1x-2≤0的解集是{x|1<x<2},则下列结论中正确的有()①“p∧q”是真命题;②“p∧(﹁q)”是真命题;③“(﹁p)∨q”是真命题;④“(﹁p)∨(﹁q)”是真命题.A.1个B.2个C.3个D.4个解析:选B.命题p为真命题,命题q是假命题,则﹁p为假命题,﹁q为真命题,所以①错,②正确,③错,④正确.3.下列命题中的假命题是()A.∀x∈R,e x>0B.∀x∈R,x2≥0C.∃x0∈R,sin x0=2D.∃x0∈R,2x0>x20解析:选C.∀x∈R,sin x≤1<2,所以C选项是假命题,故选C.4.已知命题p:∀x>0,x+4x≥4;命题q:∃x0∈(0,+∞),2x0=12.则下列判断正确的是()A.p是假命题B.q是真命题C.p∧(﹁q)是真命题D.(﹁p)∧q是真命题解析:选C.因为当x>0时,x+4x≥2x·4x=4,当且仅当x=2时等号成立,所以p是真命题,当x>0时,2x0>1,所以q是假命题,所以p∧(﹁q)是真命题,(﹁p )∧q 是假命题.5.(2017·山东泰安模拟)如果命题“﹁(p ∨q )”为真命题,则( )A .p ,q 均为真命题B .p ,q 均为假命题C .p ,q 中至少有一个为真命题D .p ,q 中一个为真命题,一个为假命题解析:选B.因为﹁(p ∨q )为真命题,所以p ∨q 为假命题,所以p ,q 均为假命题,故选B.6.(2017·广东揭阳一模)已知命题p :函数y =sin 4x 是最小正周期为π2的周期函数,命题q :函数y =tan x 在⎝ ⎛⎭⎪⎫π2,π上单调递减,则下列命题为真命题的是( ) A .p ∧qB .(﹁p )∨qC .(﹁p )∧(﹁q )D .(﹁p )∨(﹁q )解析:选D.函数y =sin 4x 的最小正周期T =2π4=π2,所以p 是真命题;函数y =tan x 在⎝ ⎛⎭⎪⎫π2,π上单调递减,故q 是假命题,所以﹁p 为假,﹁q 为真,从而(﹁p )∨(﹁q )为真,故选D.7.已知命题p :∀x >0,总有(x +1)e x >1,则﹁p 为( )A .∃x 0≤0,使得(x 0+1)e x 0≤1B .∃x 0>0,使得(x 0+1)e x 0≤1C .∀x >0,总有(x +1)e x ≤1D .∀x ≤0,总有(x +1)e x ≤1解析:选 B.“∀x >0,总有(x +1)e x >1”的否定是“∃x 0>0,使得(x 0+1)e x 0≤1”.故选B.8.若“∀x ∈⎣⎢⎡⎦⎥⎤0,π4,tan x ≤m ”是真命题,则实数m 的最小值为________. 解析:由题意,原命题等价于tan x ≤m 在区间⎣⎢⎡⎦⎥⎤0,π4上恒成立,即y =tan x在⎣⎢⎡⎦⎥⎤0,π4上的最大值小于或等于m ,又y =tan x 在⎣⎢⎡⎦⎥⎤0,π4上的最大值为1,所以m ≥1,即m 的最小值为1.答案:19.已知命题p :∃x 0∈R ,x 20+1x 20≤2,命题q 是命题p 的否定,则命题p 、q 、p ∧q 、p ∨q 中是真命题的是__________.解析:p 是真命题,则q 是假命题.p ∧q 是假命题,p ∨q 是真命题. 答案:p 、p ∨q10.(2017·湖南长沙模拟)r (x ):已知r (x )=sin x +cos x >m ;s (x ):x 2+mx +1>0.如果∀x ∈R ,r (x )与s (x )有且仅有一个是真命题,则实数m 的取值范围是________.解析:由sin x +cos x =2sin ⎝ ⎛⎭⎪⎫x +π4,得sin x +cos x 的最小值为- 2. 若∀x ∈R 时,命题r (x )为真命题,则m <- 2.若命题s (x )为真命题,即∀x ∈R ,不等式x 2+mx +1>0恒成立,则Δ=m 2-4<0,解得-2<m <2.若命题r (x )为真命题,命题s (x )为假命题,则m ≤-2;若命题r (x )为假命题,命题s (x )为真命题,则-2≤m <2.综上所述,实数m 的取值范围是(-∞,-2]∪[-2,2).答案:(-∞,-2]∪[-2,2)[B 级 能力突破]1.(2017·四川资阳模拟)已知命题p :∃x 0∈R ,x 2+ax +a <0,若命题p 是假命题,则实数a 的取值范围是( )A .[0,4]B .(0,4)C .(-∞,0)∪(4,+∞)D .(-∞,0]∪[4,+∞)解析:选A.由于p 是假命题,所以﹁p 是真命题,即﹁p :∀x ∈R ,x 2+ax +a ≥0,所以Δ=a 2-4a ≤0,解得0≤a ≤4.2.下列选项中,说法正确的是( )A .命题“∃x ∈R ,x 2-x ≤0”的否定是“∃x ∈R ,x 2-x >0”B .命题“p ∨q 为真”是命题“p ∧q 为真”的充分不必要条件C .命题“若am 2≤bm 2,则a ≤b ”是假命题D .命题“在△ABC 中,若sin A <12,则A <π6”的逆否命题为真命题解析:选C.A 中命题的否定是:∀x ∈R ,x 2-x >0,故A 错;B 中当p 为假命题、q 为真命题时,p ∨q 为真,p ∧q 为假,故B 错;C 中当m =0时,a ,b ∈R ,故C 的说法正确;D 中命题“在△ABC 中,若sin A <12,则A <π6”为假命题,所以其逆否命题为假命题,D 错.故选C.3.已知命题p :∃x 0∈R ,e x 0-mx 0=0,q :∀x ∈R ,x 2+mx +1≥0,若p ∨(﹁q )为假命题,则实数m 的取值范围是( )A .(-∞,0)∪(2,+∞)B .[0,2]C .RD .∅解析:选B.若p ∨(﹁q )为假命题,则p 假q 真.命题p 为假命题时,有0≤m <e ;命题q 为真命题时,有Δ=m 2-4≤0,即-2≤m ≤2.所以当p ∨(﹁q )为假命题时,m 的取值范围是0≤m ≤2.4.(2017·济南模拟)给定命题p :对任意实数x 都有ax 2+ax +1>0成立;q :关于x 的方程x 2-x +a =0有实数根.如果p ∨q 为真命题,p ∧q 为假命题,那么实数a 的取值范围为________.解析:当p 为真命题时,“对任意实数x 都有ax 2+ax +1>0成立”⇔a =0或⎩⎪⎨⎪⎧a >0,Δ<0,∴0≤a <4. 当q 为真命题时,“关于x 的方程x 2-x +a =0有实数根”⇔Δ=1-4a ≥0,∴a ≤14.∵p ∨q 为真命题,p ∧q 为假命题,∴p ,q 一真一假.∴若p 真q 假,则有0≤a <4,且a >14,即14<a <4;若p 假q 真,则有⎩⎨⎧ a <0或a ≥4,a ≤14.即a <0.故实数a 的取值范围为(-∞,0)∪⎝ ⎛⎭⎪⎫14,4. 答案:(-∞,0)∪⎝ ⎛⎭⎪⎫14,4 5.已知命题p :“∀x ∈[0,1],a ≥e x ”;命题q :“∃x ∈R ,使得x 2+4x +a =0”.若命题“p ∧q ”是真命题,则实数a 的取值范围是________.解析:若命题“p ∧q ”是真命题,那么命题p ,q 都是真命题.由∀x ∈[0,1],a ≥e x ,得a ≥e ;由∃x ∈R ,使x 2+4x +a =0,知Δ=16-4a ≥0,a ≤4,因此e ≤a ≤4.答案:[e,4]。
2021届高三复习数学名校联考质检卷精编 (1)集合与常用逻辑用语1.设集合()(){}{}2130,1,0,2,4|A x x x B =+->=-,则A B ⋂=( )A.{}1,4-B.{}2,4C.{}0,2D.{}0,2,42.已知集合2{230}A x x x =--<,集合{}121x B x +=>,则B A =( ) A. [)3,+∞B. ()3,+∞C. ()[),13,-∞-+∞D. ()(),13,-∞-+∞3.设集合{}{}2|340,|21A x B x x x x =∈=-≤--<Z ,则A B =( )A .{1,0,1,2}-B .[1,2)-C .{1,0,1}-D .[1,2]- 4.若命题“x ∃∈R ,使()2110x a x +-+<”是假命题,则实数a 的取值范围为( )A. 13a ≤≤B. 13a -≤≤C. 33a -≤≤D. 11a -≤≤5.设{}{}21,20A x x B x x x =>=--<,则()R A B =( ) A .{}1x x >- B .{}11x x -<≤ C .{}11x x -<< D .{}12x x <<6.若集合2{|12},{20}A x Z x B x x x =∈-<<=-=,则AB = ( ) A. {}0 B. {}0,1 C. {}0,1,2 D. {}1,0,1,2-7.已知全集U =R ,集合{}{}2|2150,|e A x x x B x x =--<=≥,则图中阴影部分表示的集合为( )A. [)e,5B. ()[),3e,-∞-+∞C. ()3,-+∞D. ()5,+∞ 8.已知集合{}03A x N x =∈≤≤,{}22B x x =∈-<<R ,则AB ( ) A. {}0,1 B. {}1 C. []0,1 D. [)0,29.已知命题[]1,e ,:ln x a x p ∀∈>“”,命题2,0:q x x x a ∃∈+=R -4“”,若“p q ∧”是真命题,则实数a 的取值范围是( )A .(]1,4B .(]0,1C .[]1,1-D .()4,+∞10.已知集合{}2{|ln(1)},|40A x y x B x x ==-=-≤,则A B ⋂= ( )A.{2|}x x ≥-B.{}2|1x x <<C.2}|1{x x <≤D.{|}2x x ≥ 11.已知集合{}{}{}1,2,3,4,5,6,7,2,3,4,5,2,3,6,7U A B ===,则U A C B ⋂=( )A. {}1,4B. {}1,4,5C. {}4,5D. {}6,712.设集合{}22,A x x x =-≤∈R ,{}2,12B y y x x ==--≤≤,则()R A B 等于( ) A. R B. {},0x x R x ∈≠ C. {}0 D. ∅13.已知集合{}{}3log 1,3,0x A x x B y y x =<==≥,则AB =( ) A .∅ B .{}13x x <≤C .{}13x x <<D .{}13x x ≤<14.已知集合A 为自然数集N ,集合2{|3,}B x x x =>∈N ,则( )A. {}1A B =B. {}0,1A B =C. A B B =D. A B A =15.已知集合{|51}{6911,18}B A x x n n =∈==+N ,,,,,则集合A B 中元素的个数为( ) A.4个 B.3个 C.2个 D.1个答案以及解析1.答案:A 解析:依题意,1{|2A x x <-或3}x >,故{1,4}AB ⋂=-. 2.答案:A解析:2{230}{13}A xx x x x =--<=-<<∣∣,1{21}{1}x B x x x +=>=>-∣∣,[3,)B A =+∞,故选A.3.答案:A 解析:由题意得,{}2340{14}{1,0,1,2,3,4}A x Zx x x Z x =∈--≤=∈-≤≤=-∣∣, {21}{3}B x x x x =-<=<∣∣则{1,0,1,2,3,4}{3}{1,0,1,2}A B x x =-<=-∣.故选A.4.答案:B解析:∵命题“0x R ∃∈,使200(1)10n x a x +-+<” 是假命题,∴命题“x R ∀∈,使2(1)10n x a x +-+≥” 是真命题,()2140a --≤∴△=,解得:13a -≤≤.故选B.5.答案:B解析:{1}A xx =>∣∵,{1}R A x x =≤∴∣,22(2)(1)0x x x x --=-+<∵,12x -<<∴, {12}B x x =-<<∴∣,(){11}R A B x x =-<≤∴∣.6.答案:C解析:∵集合{12}{0,1}A x Z x =∈-<<=∣,{}220{0,2}B x x x =-==∣,{0,1,2}A B =∴7.答案:C解析:由22150x x --<可得{}35,|35x A x x -<<∴=-<<,{}{}|e ,|3B x x AB x x =≥∴=>-,故选C.8.答案:A 解析:{}{}0,1,2,3,22A B x R x ==∈-<<;∴{}0,1AB =.故选A .9.答案:A 解析:若命题:[1,],ln p e a x ∀∈>“”,为真命题,则ln 1a e >=,若命题2:,40q x R x x a ∃∈-+=“”为真命题,则40a -≥△=16,解得4a ≤,若命题“p q ∧”为真命题,则,p q 都是真命题,则14a a >⎧⎨≤⎩,解得:14a <≤,故实数a 的取值范围为(]1,4.故选A. 10.答案:C解析:由题意得,{}2{ln(1)}{1},40{22}A x y x x x B x x x x ==-=>=-≤=-≤≤∣∣∣∣ ,所以{|12}A B x x ⋂=<≤,故选C.11.答案:C解析:集合1,23456723}{67{}U B ==,,,,,,,,,,所以15}4{U B =,,,又2345{}A =,,,,所以4,{}5U A B ⋂=.故选C .12.答案:B解析:[0,4],[4,0]A B ==-,所以{0}A B =,{}(),0R A B x x R x =∈≠.故选B13.答案:D解析:由题得{}{}03,1A x x B y y =<<=≥,所以{}13A x x B =≤<.故选D14.答案:B解析:∵集合A 为自然数集N ,集合{}23,B x x x N =<∈,∴{0,1,2,3,},{1,0,1}A B =⋅⋅⋅=-,∴{}0,1A B =.故选B.15.答案:C解析:∵集合{51,}A x x n n N ==+∈∣,{}6,9,11,18B =,∴{}6,11A B =,∴集合A B 中元素的个数为2.故选C.。
1.2 常用逻辑用语一、选择题1.(2022届豫北名校联盟10月联考,4)已知命题p:若x>0,y>0,则xy>0,则p的否命题是( )A.若x>0,y>0,则xy≤0B.若x≤0,y≤0,则xy≤0C.若x,y至少有一个不大于0,则xy<0D.若x,y至少有一个小于或等于0,则xy≤0答案 D 否命题应在否定条件的同时否定结论,原命题中的条件是“且”的关系,所以条件的否定形式是“x≤0或y≤0”.而结论的否定是“xy≤0”,故选D.2.(2022届贵州五校联考(二),3)已知命题p:“∀x∈N,x2<2x”的否定是“∃x0∈N,x02>2x0”;命题q:∃α0∈R,sinα0+cosα0=1.下列说法不正确的是( )A.(xp)∧q为真命题B.p∨(x q)为真命题C.p∨q为真命题D.x q为假命题答案 B 由全称命题的否定为特称命题知,命题“∀x∈N,x2<2x”的否定为“∃x0∈N,x02≥2x0”,所以命题p为假命题,x p为真命题.当α0=0时,sinα0+cosα0=1,所以命题q为真命题,x q为假命题,所以(xp)∧q为真命题,p∨(x q)为假命题,p∨q为真命题,所以A,C,D正确,B不正确,故选B.3.(2022届山西百校联盟强化训练(一),5)有下列四个命题:①“若xy=1,则x,y互为倒数”的逆命题;②“面积相等的三角形全等”的否命题;③“若m≤1,则x2-2x+m=0有实数解”的逆否命题;④“若A∩B=B,则A⊆B”的逆否命题.其中,是真命题的为( )A.①②B.②③C.④D.①②③答案 D ①中逆命题为“若x,y互为倒数,则xy=1”,是真命题;②中否命题为“面积不相等的三角形不是全等三角形”,是真命题;③中原命题是真命题,所以它的逆否命题也是真命题;④中原命题是假命题,所以它的逆否命题也是假命题.故选D.4.(2022届重庆西南大学附中9月考试,2)命题“∃x>0,x+1x≥3且sinx≥1”的否定是( )A.∀x≤0,x+1x<3且sinx<1B.∃x>0,x+1x<3或sinx<1C.∀x>0,x+1x<3且sinx<1D.∀x>0,x+1x<3或sinx<1答案 D 因为存在量词命题的否定是全称量词命题,所以命题“∃x>0,x+1x≥3且sinx≥1”的否定是“∀x>0,x+1x<3或sinx<1”.故选D.5.(2022届T8联考,1)“0<θ<π3”是“0<sinθ<√32”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A 由正弦函数的单调性可知,当0<θ<π3时,0<sinθ<√32,充分性成立;当0<sinθ<√32时,θ∈(2xπ,2xπ+π3)∪(2xπ+2π3,2kπ+π),k∈Z,必要性不成立,所以“0<θ<π3”是“0<sinθ<√32”的充分不必要条件,故选A.6.(2022届山东日照校际联考,2)“|x-1|<2成立”是“x(x-3)<0成立”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案 B |x-1|<2的解集为{x|-1<x<3},令A={x|-1<x<3}.x(x-3)<0的解集为{x|0<x<3}.令B={x|0<x<3}.因为B⫋A,所以“|x-1|<2成立”是“x(x-3)<0成立”的必要不充分条件,故选B.7.(多选)(2022届河北武强中学月考,10)下列命题中为真命题的是( )A.“a-b=0”的充要条件是“xx=1”B.“a>b”是“1x <1x”的既不充分也不必要条件C.命题“∃x∈R,x2-2x<0”的否定是∀x∈R,x2-2x≥0”D.“a>2,b>2”是“ab>4”的必要条件答案BC 对于A,由xx =1⇒a-b=0,但a-b=0⇒/xx=1,所以“xx=1”是“a-b=0”的充分非必要条件,故A中命题错误.对于B,取a=2,b=-1,满足a>b,但1x >1x,所以a>b⇒/1x<1x;同理,取a=-1,b=2,满足1x <1x,但a<b,所以1x<1x⇒/a>b,所以“a>b”是“1x<1x”的既不充分也不必要条件,故B中命题正确.对于C,命题“∃x∈R,x2-2x<0”的否定是∀x∈R,x2-2x≥0”,故C中命题正确.对于D,因为a>2,b>2⇒ab>4,但ab>4⇒/a>2,b>2,所以“a>2,b>2”是“ab>4”的充分不必要条件,故D中命题错误.故选BC.8.(2022届重庆巴蜀中学月考(一),1)已知命题p:∀x∈(0,+∞),lnx>x-1,则命题p的否定是( )A.∀x∈(0,+∞),lnx≤x-1B.∃x∈(0,+∞),lnx>x-1C.∀x∈(0,+∞),lnx<x-1D.∃x∈(0,+∞),lnx≤x-1答案 D 命题∀x∈(0,+∞),lnx>x-1的否定是∃x∈(0,+∞),lnx≤x-1,故选D.9.(2022届河南10月调研,8)设p:∀x∈[2,3],kx>1,q:∃x∈R,x2+x+k≤0.若p或q为真,p 且q为假,则k的取值范围为( )A.(-∞,14)∪(12,+∞)B.[14,1 2 )C.(-∞,14]∪(12,+∞)D.(14,12)答案 C 若p 为真,则{2x >1,3x >1,解得k>12,若q 为真,则Δ=1-4k≥0,解得k≤14.因为p 或q 为真,p 且q 为假,所以p,q 一真一假. ①若p 假q 真,则{x ≤12,x ≤14,解得k≤14;②若p 真q 假,则{x >12,x >14,解得k>12.故k 的取值范围是(-∞,14]∪(12,+∞).故选C.10.(2022届江西新余月考(三),5)已知命题p:∃x∈R,使sinx=√52;命题q:∀x∈R,都有x 2+x+1>0.给出下列结论: ①命题“p∧q”是真命题 ②命题“p∧xq”是假命题 ③命题“xp∨q”是真命题 ④命题“xp∨xq”是假命题 其中正确的是( ) A.①②③ B.②③ C.②④ D.③④答案 B 由已知得命题p 为假命题,命题q 为真命题,所以p∧q 为假命题,p∧x q 为假命题,xp∨q 为真命题,xp∨x q 为真命题,所以正确的结论序号有②③,故选B. 二、填空题11.(2022届吉林10月月考,14)已知命题“∃x 0∈R,x 02-ax 0+a≤0”是假命题,则实数a 的取值范围是 . 答案 (0,4)解析 由已知可得,“∀x∈R,x 2-ax+a>0”是真命题,则Δ=a 2-4a<0,解得0<a<4.12.(2022届豫北名校联考(二),14)若命题“∀a>0,长为1,2,a 的三条线段不能构成三角形”是假命题,则实数a 的取值范围是 . 答案 (1,3)解析 根据题意可知,命题“∃a>0,使得长为1,2,a 的三条线段能构成三角形”是真命题,故{x >2-1,x <1+2,x >0,解得1<a<3,即实数a 的取值范围为(1,3).三、解答题13.(2022届广东湛江一中、深圳实验学校10月联考,18)函数f(x)=sinx+cosx+sin2x,x∈(0,π2)的值域为集合A,函数g(x)=ln x -x 2-√2x -x的定义域为集合B,记p:x∈A,q:x∈B.(1)若a=0,则p 是q 的什么条件?(2)若p 是q 的充分不必要条件,求实数a 的取值范围.解析 令t=sinx+cosx=√2sin (x +π4),则sin2x=t 2-1,因为x∈(0,π2),所以t∈(1,√2],函数f(x)的值域就是函数y=t 2+t-1,t∈(1,√2]的值域,根据二次函数的性质可知,函数y=t 2+t-1在(1,√2]上单调递增,于是可求得A=(1,√2+1].要使函数g(x)=ln x -x 2-√2x -x有意义,则有x -x 2-√2x -x>0,即[x-(a 2+√2)](x-a)<0.因为a 2+√2-a=(x -12)2+√2-14>0,所以B=(a,a 2+√2).(1)若a=0,则B=(0,√2),又A=(1,√2+1],所以可得p 是q 的既不充分也不必要条件. (2)若p 是q 的充分不必要条件,则A ⫋B,即{x ≤1,x 2+√2>√2+1,解得a<-1.14.(2022届山东济宁兖州期中,18)已知p:函数f(x)=(a-2m)x在R 上单调递减,q:关于x 的方程x 2-2ax+a 2-1=0的两根都大于1. (1)当m=3时,p 是真命题,求a 的取值范围;(2)若p 为真命题是q 为真命题的充分不必要条件,求m 的取值范围. 解析 (1)因为m=3,所以f(x)=(a-6)x.因为p 是真命题,所以0<a-6<1,解得6<a<7,故a 的取值范围是(6,7).(2)若p 是真命题,则0<a-2m<1,解得2m<a<2m+1.关于x 的方程x 2-2ax+a 2-1=0的两根分别为a-1和a+1.若q 是真命题,则a-1>1,解得a>2.因为p 为真命题是q 为真命题的充分不必要条件,所以2m≥2,所以m≥1.。
2022高考数学(理)一轮复习单元测试(配最新高考+重点)第一章集合与常用逻辑用第一章集合与常用逻辑用语单元能力测试一、选择题(本大题共12小题,每小题5分,共60分)1、(2020山东理)已知全集{}0,1,2,3,4U =,集合{}{}1,2,3,2,4A B ==,则()UC A B 为( ) A .{}1,2,4B .{}2,3,4C .{}0,2,4 D .{}0,2,3,42 .(2020浙江理)设集合A ={x |1<x <4},B ={x |x 2-2x -3≤0},则A ∩(C R B )=( )A .(1,4)B .(3,4)C .(1,3)D .(1,2)3、【2020韶关第一次调研理】若集合M 是函数lg y x =的定义域,N 是函数y =的定义域,则M ∩N 等于( )A .(0,1]B .(0,)+∞C .φD .[1,)+∞ 4、【2020厦门期末质检理2】“φ=2π”是“函数y=sin(x +φ)为偶函数的”A .充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件5.(2020湖南理)命题“若α=4π,则tanα=1”的逆否命题是( )A .若α≠4π,则tanα≠1B .若α=4π,则tan α≠1C .若tanα≠1,则α≠4πD .若tanα≠1,则α=4π6、【2020泉州四校二次联考理】命题:R p x ∀∈,函数2()2cos 23f x x x =+≤,则( )A .p 是假命题;:R p x ⌝∃∈,2()2cos 23f x x x =+≤B .p 是假命题;:R p x ⌝∃∈,2()2cos 23f x x x =+> C .p 是真命题;:R p x ⌝∃∈,2()2cos 23f x x x =+≤ D .p 是真命题;:R p x ⌝∃∈,2()2cos 23f x x x =+> 7、(2020湖北理)命题“0x ∃∈R Q ,30x ∈Q ”的否定是( )A .0x ∃∉R Q ,30x ∈QB .0x ∃∈R Q ,30x ∉QC .x ∀∉RQ ,3x ∈Q D .x ∀∈RQ ,3x ∉Q8、【2020深圳中学期末理】设集合A={-1, 0, 1},集合B={0, 1, 2, 3},定义A *B={(x, y)| x ∈A ∩B, y ∈A ∪B},则A *B 中元素个数是()A.7B.10C.25D.529、【2020粤西北九校联考理3】下列命题错误..的是( ) A. 2"2""320"x x x >-+>是的充分不必要条件;B. 命题“2320,1x x x -+==若则”的逆否命题为“21,320若则x x x =-+≠”;C.对命题:“对0,k >方程20x x k +-=有实根”的否定是:“ ∃k >0,方程20x x k +-=无实根”;D. 若命题:,p x A B p ∈⋃⌝则是x A x B ∉∉且;10、【江西省新钢中学2020届高三第一次考试】在△ABC 中,设命题,sin sin sin :Ac C b B a p ==命题q:△ABC 是等边三角形,那么命题p 是命题q 的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件11、(2020浙江宁波市期末)已知()f x 是定义在实数集R 上的增函数,且(1)0f =,函数()g x 在(,1]-∞上为增函数,在[1,)+∞上为减函数,且(4)(0)0g g ==,则集合{|()()0}x f x g x ≥= ( )(A ) {|014}x x x ≤≤≤或(B ){|04}x x ≤≤(C ){|4}x x ≤ (D ) {|014}x x x ≤≤≥或 12.定义:设A 是非空实数集,若∃a ∈A ,使得关于∀x ∈A ,都有x ≤a (x ≥a ),则称a 是A 的最大(小)值 .若B 是一个不含零的非空实数集,且a 0是B 的最大值,则( )A .当a 0>0时,a -10是集合{x -1|x ∈B }的最小值B .当a 0>0时,a -10是集合{x -1|x ∈B }的最大值C .当a 0<0时,-a -10是集合{-x -1|x ∈B }的最小值D .当a 0<0时,-a -10是集合{-x -1|x ∈B }的最大值二、填空题(本大题共4小题,每小题5分,共20分,把正确答案填在题中横线上) 13、(2020上海理)若集合}012|{>+=x x A ,}21|{<-=x x B ,则A ∩B=_________ .14、【2020江西师大附中高三下学期开学考卷】若自然数n 使得作加法(1)(2)n n n ++++运算均不产生进位现象,则称n 为“给力数”,例如:32是“给力数”,因323334++不产生进位现象;23不是“给力数”,因232425++产生进位现象.设小于1000的所有“给力数”的各个数位上的数字组成集合A ,则集合A 中的数字和为__________ 15、【2020三明市一般高中高三上学期联考】下列选项叙述:①.命题“若1x ≠,则2320x x -+≠”的逆否命题是“若2320x x -+=,则1x =” ②.若命题p :2,10x R x x ∀∈++≠,则p ⌝:2,10x R x x ∃∈++= ③.若p q ∨为真命题,则p ,q 均为真命题④.“2x >”是“2320x x -+>”的充分不必要条件 其中正确命题的序号有_______ 16、【2020泉州四校二次联考理】已知集合22{(,)||||1|1},{(,)|(1)(1)1}A x y x a y B x y x y =-+-≤=-+-≤,若A B φ⋂≠,则实数a 的取值范畴为 .三、解答题(本大题共6小题,共70分,解承诺写出文字说明、证明过程或演算步骤)17.(本小题满分12分) (2011年朝阳区高三上学期期中)设关于x 的不等式(1)0()x x a a --<∈R 的解集为M ,不等式2230x x --≤的解集为N .(Ⅰ)当1a =时,求集合M ;(Ⅱ)若M N ⊆,求实数a 的取值范畴.18、(本小题满分12分) 【山东省潍坊一中2020届高三时期测试理】已知集合{}}0)1(2|{,0)13(2)1(3|22<+--=<+++-=a x a x x B a x a x x A ,(Ⅰ)当a=2时,求B A ⋂;(Ⅱ)求使A B ⊆的实数a 的取值范畴19.(本小题满分10分) 【2020北京海淀区期末】若集合A 具有以下性质: ①A ∈0,A ∈1;②若A y x ∈,,则A y x ∈-,且0≠x 时,Ax∈1.则称集合A 是“好集”. (Ⅰ)分别判定集合{1,0,1}B,有理数集Q 是否是“好集”,并说明理由; (Ⅱ)设集合A 是“好集”,求证:若A y x ∈,,则A y x ∈+; (Ⅲ)对任意的一个“好集”A ,分别判定下面命题的真假,并说明理由. 命题p :若A y x ∈,,则必有A xy ∈; 命题q :若A y x ∈,,且0≠x ,则必有Axy∈;20、(本小题满分12分)(山东省潍坊市2020届高三上学期期中四县一校联考) 已知集合{}{}R x x B x x x R x A x x ∈<=++≥+∈=-,42|,)23(log )126(log |32222.求⋂A (C R B ).21.(本小题满分12分)已知c >0,设命题p :函数y =c x为减函数,命题q :当x ∈[12,2]时,函数f (x )=x +1x >1c 恒成立.假如p 或q 为真命题,p 且q 为假命题,求c 的取值范畴.22.(本小题满分12分) 【山东省微山一中2020届高三10月月考理】设集合A 为函数y =ln(-x 2-2x +8)的定义域,集合B 为函数y =x +1x +1的值域,集合C 为不等式(ax -1a )(x +4)≤0的解集. (1)求A ∩B ; (2)若C ⊆∁R A ,求a 的取值范畴.祥细答案 一、选择题 1、【答案】C【解析】}4,0{=A C U,因此{0,24}U C A B =() ,,选C.2. 【答案】B【解析】A =(1,4),B =(-1,3),则A ∩(C R B )=(3,4).【答案】B 3、【答案】A【解析】因为集合M 是函数lg y x =的定义域,;0>x N 是函数y = 因此01≥-x ,(](](0,),,1,0,1M N M N =+∞=-∞⋂=4、【答案】A【解析】φ=2π时,y=sin(x +φ)=x cos 为偶函数;若y=sin(x +φ)为偶函数,则k=ϕZk ∈+,2ππ;选A;5、【答案】C【解析】因为“若p ,则q ”的逆否命题为“若p ⌝,则q ⌝”,因此 “若α=4π,则tanα=1”的逆否命题是 “若tanα≠1,则α≠4π”.6、【答案】D【解析】3)62sin(212sin 32cos 12sin 3cos 2)(2≤++=++=+=πx x x x x x f ;P 是真命题;:R p x ⌝∃∈,2()2cos 23f x x x =+>;7、【答案】D解析:依照对命题的否定知,是把谓词取否定,然后把结论否定.因此选D 8、【答案】B【解析】解:A ∩B ={ 0, 1},A ∪B {-1, 0, 1, 2, 3},x 有2种取法, y 有5种取法由乘法原理得2×5=10,故选B 。
织金二中高三数学第一轮复习测试题测试内容:集合与常用逻辑用语班级:高三( )班 姓名:___________ 成绩:___________一、选择题(共12个小题,每小题5分,满分60分) 1.设全集 U ={0,1,2,3,4,5},集合A ={2,3},B ={y |y =log 2(x -1),x ∈A },则集合(∁U A )∩(∁U B )=( )A .{0,4,5,2}B .{0,4,5}C .{2,4,5}D .{1,3,5} 2.设集合M ={x |x 2-x <0},N ={x |x 2<4},则( )A .M ∩N =∅B .M ∩N =MC .M ∪N =MD .M ∪N =R 3.已知x ∈R ,那么|x |>1是x >1的( )A .充分不必要条件B .必要不充分条件4.已知p :x -1x ≤0,q :4x +2x -m ≤0,若p 是q 的充分条件,则实数m 的取值范围是( )A .m >2+ 2B .m ≤2+ 2C .m ≥2D .m ≥65.命题:“对任意x ∈R ,都有x 2+1>2x ”的否定是( )A .不存在x ∈R ,使得x 2+1>2xB .存在x ∈R ,使得x 2+1>2xC .不存在x ∈R ,使得x 2+1≤2xD .存在x ∈R ,使得x 2+1≤2x 6.下列命题中是假命题的是( )A .∃α,β∈R ,使sin(α+β)=sin α+sin βB .∃m ∈R ,使f (x )=(m -1)·xm 2-4m +3是幂函数,且在(0,+∞)上单调递减C .∀φ∈R ,函数f (x )=sin(2x +φ)都不是偶函数D .∀a >0,函数f (x )=ln 2 x +ln x -a 有零点7.如图,已知R 是实数集,集合A ={x |log 12(x -1)>0},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2x -3x <0,则阴影部分表示的集合是( )A .[0,1]B .[0,1)C .(0,1)D .(0,1]8.已知p :x -1x ≤0,q :4x +2x -m ≤0,若p 是q 的充分条件,则实数m 的取值范围是( )A .m >2+ 2B .m ≤2+ 2C .m ≥2D .m ≥69.已知a <0,函数f (x )=ax 2+bx +c .若x 0满足关于x 的方程2ax +b =0,则下列选项的命题中为假命题的是( )A .∃x ∈R ,f (x )≤f (x 0)B .∃x ∈R ,f (x )≥f (x 0)C .∀x ∈R ,f (x )≤f (x 0)D .∀x ∈R ,f (x )≥f (x 0) 10.设φ∈R ,则“φ=0”是“f (x )=cos(x +φ)(x ∈R )为偶函数”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 11.已知命题p :∃x ∈R ,mx 2+1≤0,命题q :∀x ∈R ,(m +2)x 2+1>0, 若p ∧q 为真命题,则实数m 的取值范围是( )A .(-∞,-2)B .[-2,0)C .(-2,0)D .(0,2)12.若f (x )是R 上的减函数,且f (0)=3,f (3)=-1,设P ={x |-1<f (x +t )<3}, Q ={x |f (x )<-1},若“x ∈P ”是“x ∈Q ”的充分不必要条件,则实数t 的取值范围是( )A .t ≤0B .t ≥0C .t ≤-3D .t ≥-3二、填空题(共4个小题,每小题5分,满分20分)13.已知U =R ,集合A ={x |x 2-x -2=0},B ={x |mx +1=0},B ∩∁U A =∅,则m =________.14.命题“若m >0,则关于x 的方程x 2+x -m =0有实数根”与它的逆命题、否命题、逆否命题中,真命题的个数为________.15.设命题p :-1≤4x -3≤1;命题q :x 2-(2a +1)x +a (a +1)≤0,若綈p 是綈q 的必要不充分条件.则实数a 的取值范围是________.16.已知命题p :关于x 的方程a 2x 2+ax -2=0在[-1,1]上有解;命题q :只有一个实数x 满足不等式x 2+2ax +2a ≤0.若命题“p 或q ”是假命题,则a 的取值范围是________.三、解答题(共6个题,满分70分) 17.(10分)已知A={x||x-a|<4},B={x||x-2|>3}.(1)若a=1,求A∩B;(2)若A∪B=R,求实数a的取值范围.18.(12分)分别写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假.(1)若x、y都是奇数,则x+y是偶数;(2)若x>2,y>3,则x+y>5. 19.(12分)写出由下列各组命题构成的“p或q”,“p且q”,“非p”形式的新命题,并判断其真假.(1)p:2是4的约数,q:2是6的约数;(2)p:矩形的对角线相等,q:矩形的对角线互相平分;(3)p:方程x2+x-1=0的两实根的符号相同,q:方程x2+x-1=0的两实根的绝对值相等.20.(12分)已知c >0,设命题p :函数y =c x为减函数.命题q :当x ∈⎣⎢⎡⎦⎥⎤12,2时,函数f (x )=x +1x >1c 恒成立.如果p 或q 为真命题,p 且q 为假命题.求c 的取值范围.21.(12分)集合A ={x |x 2-2ax +4a 2-3=0},B ={x |x 2-x -2=0},C ={x |x 2+2x -8=0}.(1)是否存在实数a 使A ∩B =A ∪B ?若存在,试求a 的值,若不存在,说明理由; (2)若∅ A ∩B ,A ∩C =∅,求a 的值.22.(12分)已知集合A ={t |t 使{x |x 2+2tx -4t -3≥0}=R },集合B ={t |t 使{x |x 2+2tx -2t =0}≠∅},其中x ,t 均为实数. (1)求A ∩B ;(2)设m 为实数,g (m )=m 2-3,求M ={m |g (m )∈A ∩B }.。
专题一集合与常用逻辑用语备考篇【考情探究】课标解读考情分析备考指导主题内容一、集合的概念与运算1.理解集合的含义,能用自然语言、图形语言、集合语言(列举法或描述法)表示集合.2.理解集合之间的包含关系,能识别给定集合的子集,在具体问题中了解全集与空集的含义.3.理解两个集合的并集与交集的含义,并会求它们的交集与并集;理解给定一个集合的子集的补集含义,会求给定子集的补集;会用韦恩(Venn)图表示集合间的基本关系及运算.1.考查内容:从近五年高考看,本专题重点考查集合的交、并、补运算,所给的数集既有连续型(如2020新高考Ⅰ卷第1题直接给出了两个连续型集合,求它们的并集,而2020课标Ⅰ卷理数第1题则是先求出一元一次、一元二次不等式的解集,后给定了集合交集来求参数的值)、又有离散型的数集(如2020课标Ⅱ卷文数第1题与2020天津卷第1题);对充分条件、必要条件的考查常与其他知识结合(如2020北京卷的第9题以三角函数中的诱导公式为背景考查了充分、必要条件的推理判断);全(特)称命题的考查相对较少.2.本专题是历年必考的内容,在选择题、填空题中出现较多,多以给定的集合或不等式的解集为载体,以集合1.对于给定的集合,首先应明确集合的表示方法,对于描述法表述的集合,要明确集合的元素是什么(是数集、点集等),明确集合是不等式的解集,是函数的定义域还是值域,把握集合中元素的属性是重点.2.了解命题及其逆命题、否命题与逆否命题;通过对概念的理解,会分析四种命题的关系,会写出一个命题的其他三个命题,并判断其真假.能用逻辑联结词正确地表达相关的数学命题.3.对于充分、必要条件的判断问题,必须明确题目中的条件与结论分别是什么,它们之间的互推关系是怎样的,要加强这方面的训练.4.关于全称命题与特称二、常用逻辑用语1.理解必要条件、充分条件与充要条件的意义.2.理解全称量词与存在量词的意义.3.能正确地对含有一个量词的命题进行否定.语言和符号语言为表现形式,考查集合的交、并、补运算;也会与解不等式、函数的定义域、值域相结合进行考查.3.对于充分、必要条件的判断,含有一个量词的命题的否定可以与每一专题内容相关联,全称命题及特称命题是重要的数学语言,高考考题充分体现了逻辑推理的核心素养.命题,一般考查命题的否定.对含有一个量词的命题进行真假判断,要学会用特值检验.【真题探秘】命题立意已知给定的两个连续型的数集,求它们的并集.解题指导1.进行集合运算时,首先看集合是否最简,能化简先化简,再运算.2.注意数形结合思想的应用(1)离散型数集或抽象集合间的运算,常借助Venn图求解. (2)连续型数集的运算,常借助数轴求解,运用数轴时要特别注意端点是实心还是空心.拓展延伸1.集合中的元素的三个特征,特别是无序性和互异性在解题时经常用到,解题后要进行检验,要重视符号语言与文字语言之间的相互转化.2.对连续数集间的运算,借助数轴的直观性,进行合理转化;对已知连续数集间的关系,求其中参数的取值范围时,要注意等号能否取到.3.空集是任何集合的子集,是任何非空集合的真子集,关注对空集的讨论,防止漏解.4.解题时注意区分两大关系:一是元素与集合的从属关系:二是集合与集合的包含关系.5.Venn图图示法和数轴图示法是进行集合交、并、补运算的常用方法.[教师专用题组]1.真题多维细目表考题涉分题型难度考点考向解题方法核心素养2020新高考Ⅰ,1 5单项选择题易集合的运算集合的并集运算数轴法数学运算2020新高考Ⅱ,1 5单项选择题易集合的运算集合的并集运算定义法数学运算2020课标Ⅰ理,2 5选择题易集合的运算解不等式、集合的交集运算定义法数学运算2020课标Ⅰ文,1 5选择题易集合的运算解不等式、集合的交集运算定义法数学运算2020北京,1 4选择题易集合的运算集合的交集运算定义法数学运算2020天津,1 5选择题易集合的运算集合的交、补集运算定义法数学运算2020天津,2 5选择题易充分、必要条件解不等式、充分、必要条件的判断定义法逻辑推理2020北京,9 4选择题难充分、必要条件诱导公式、角的终边位置与角大小关系、充分、必要条件的判断定义法逻辑推理风格.2.2020年新高考考查内容主要体现在以下方面:①新高考Ⅰ卷第1题,新高考Ⅱ卷第1题直接给出了两个集合求它们的并集或交集,课标Ⅰ卷理数则是需要求出一元一次、一元二次不等式的解集,同时通过它们的交集确定参数的值,北京卷与新高考Ⅰ卷相近,直接求两个给定集合的交集;②2020年新高考Ⅰ卷第5题以学生参加体育锻炼为背景考查了利用韦恩(Venn)图求两个集合交集中元素所占总体的比例问题,体现了集合的应用价值;③2020年北京卷第9题以三角函数中的诱导公式为背景考查了充分、必要条件的判断.3.在备考时还要适当关注求集合的补集运算,对含有一个量词的命题的真假判断,集合与充分、必要条件相结合的命题方式,在不同背景下抽象出数学本质的方法等.应强化在知识的形成过程、知识的迁移中渗透学科素养.§1.1 集合 基础篇 【基础集训】考点一 集合及其关系1.若用列举法表示集合A ={(x ,x )|{2x +x =6x -x =3},则下列表示正确的是 ( )A.A ={x =3,y =0}B.A ={(3,0)}C.A ={3,0}D.A ={(0,3)} 答案 B2.若集合M ={x ||x |≤1},N ={y |y =x 2,|x |≤1},则 ( ) A.M =N B.M ⊆N C.M ∩N =⌀ D.N ⫋M 答案 D3.已知集合A ={x ∈R|x 2+x -6=0},B ={x ∈R|ax -1=0},若B ⊆A ,则实数a 的值为 ( ) A.13或-12B.-13或12C.13或-12或0 D.-13或12或0答案 D4.已知含有三个实数的集合既可表示成{x ,x x,1},又可表示成{a 2,a +b ,0},则a 2021+b 2021等于 . 答案 -1考点二 集合的基本运算5.已知集合M ={x |-1<x <3},N ={x |-2<x <1},则M ∩N = ( )A .(-2,1)B .(-1,1)C .(1,3)D .(-2,3) 答案 B6.已知全集U =R,A ={x |x ≤0},B ={x |x ≥1},则集合∁U (A ∪B )=( ) A.{x |x ≥0} B.{x |x ≤1}C.{x|0≤x≤1}D.{x|0<x<1}答案 D7.已知集合A={x|x2-2x-3>0},B={x|lg(x+1)≤1},则(∁R A)∩B= ()A.{x|-1≤x<3}B.{x|-1≤x≤9}C.{x|-1<x≤3}D.{x|-1<x<9}答案 C8.全集U={x|x<10,x∈N*},A⊆U,B⊆U,(∁U B)∩A={1,9},A∩B={3},(∁U A)∩(∁U B)={4,6,7},则A∪B=.答案{1,2,3,5,8,9}[教师专用题组]【基础集训】考点一集合及其关系1.(2018广东茂名化州二模,1)设集合A={-1,0,1},B={x|x>0,x∈A},则B= ()A.{-1,0}B.{-1}C.{0,1}D.{1}答案D由题意可知,集合B由集合A中为正数的元素组成,因为集合A={-1,0,1},所以B={1}.2.设集合A={y|y=x2+2x+5,x∈R},有下列说法:①1∉A;②4∈A;③(0,5)∈A.其中正确的说法个数是()A.0B.1C.2D.3答案C易知A={y|y≥4},所以①②都是正确的;(0,5)是点,而集合A中元素是数,所以③是错误的.故选C.3.(2020陕西西安中学第一次月考,1)已知集合A={x|x≥-1},则正确的是 ()A.0⊆AB.{0}∈AC.⌀∈AD.{0}⊆A答案D对于A,0∈A,故A错误;对于B,{0}⊆A,故B错误;对于C,空集⌀是任何集合的子集,即⌀⊆A,故C错误;对于D,由于集合{0}是集合A的子集,故D正确.故选D.4.(2019辽宁沈阳质量检测三,2)已知集合A={(x,y)|x+y≤2,x,y∈N},则A中元素的个数为()A.1B.5C.6D.无数个答案C由题意得A={(0,0),(0,1),(0,2),(1,0),(1,1),(2,0)},所以A中元素的个数为6.故选C.5.(2020广西桂林十八中8月月考,1)已知集合A={1,a},B={1,2,3},那么 ()A.若a=3,则B⊆AB.若a=3,则A⫋BC.若A⊆B,则a=2D.若A⊆B,则a=3答案B当a=3时,A={1,3},又因为B={1,2,3},所以A⫋B.若A⊆B,则a=2或3.故选B. 6.(2019辽宁师大附中月考,2)已知集合A={0,1},B={x|x⊆A},则下列集合A与B的关系中正确的是()A.A⊆BB.A⫋BC.B⫋AD.A∈B答案D因为x⊆A,所以B={⌀,{0},{1},{0,1}},则集合A={0,1}是集合B中的一个元素,所以A∈B,故选D.,x≠0},集合B={x|x2-4 7.(2020安徽江淮十校第一次联考,1)已知集合A={x|x=x+1x≤0},若A∩B=P,则集合P的子集个数为()A.2B.4C.8D.16答案B A={y|y≤-2或y≥2},B={-2≤x≤2},则P=A∩B={-2,2},所以P的子集个数为4,故选B.8.(2019广东六校9月联考,2)已知集合A={-1,1},B={x|ax+1=0},若B⊆A,则实数a的所有可能取值的集合为()A.{-1}B.{1}C.{-1,1}D.{-1,0,1}答案D因为B⊆A,所以当B=⌀,即a=0时满足条件;},又知B⊆A,当B≠⌀时,a≠0,∴B={x|x=-1x∈A,∴a=±1.∴-1x综上可得实数a的所有可能取值集合为{-1,0,1},故选D.易错警示由于空集是任何集合的子集,又是任何非空集合的真子集,所以遇到“A⊆B或A⫋B且B≠⌀”时,一定要注意讨论A=⌀和A≠⌀两种情况,A=⌀的情况易被忽略,从而导致失分.9.(2019河南豫南九校第一次联考,13)已知集合A={1,2,3},B={1,m},若3-m∈A,则非零实数m的值是.答案 2解析若3-m=1,则m=2,符合题意;若3-m=2,则m=1,此时集合B中的元素不满足互异性,故m≠1;若3-m=3,则m=0,不符合题意.故答案为2.考点二集合的基本运算1.(2019金丽衢十二校高三第一次联考,1)若集合A=(-∞,5),B=[3,+∞),则(∁R A)∪(∁R B)=()A.RB.⌀C.[3,5)D.(-∞,3)∪[5,+∞)答案D∁R A=[5,+∞),∁R B=(-∞,3),所以(∁R A)∪(∁R B)=(-∞,3)∪[5,+∞).2.(2019河南中原联盟9月联考,1)已知集合A={x|(x-1)·(x-2)>0},B={x|y=√2x-1},则A ∩B= ()A.[12,1)∪(2,+∞) B.[12,1)C.(12,1)∪(2,+∞) D.R答案A因为集合A={x|(x-1)(x-2)>0}={x|x<1或x>2},B={x|y=√2x-1}={x|x≥12},所以A∩B=[12,1)∪(2,+∞),故选A.3.(2018河北石家庄3月质检,1)设集合A={x|-1<x≤2},B={x|x<0},则下列结论正确的是()A.(∁R A)∩B={x|x<-1}B.A∩B={x|-1<x<0}C.A∪(∁R B)={x|x≥0}D.A∪B={x|x<0}答案B∵A={x|-1<x≤2},B={x|x<0},∴∁R A={x|x≤-1或x>2},∁R B={x|x≥0}.对于选项A,(∁R A)∩B={x|x≤-1},故A错误;对于选项B,A∩B={x|-1<x<0},故B正确;对于选项C,A∪(∁R B)={x|x>-1},故C错误;对于选项D,A∪B={x|x≤2},故D错误.故选B.名师点拨 对于集合的交、并、补运算,利用数轴求解能减少失误.4.(2020山东夏季高考模拟,1)设集合A ={(x ,y )|x +y =2},B ={(x ,y )|y =x 2},则A ∩B = ( ) A.{(1,1)} B.{(-2,4)} C.{(1,1),(-2,4)} D.⌀ 答案 C 本题主要考查集合的含义及集合的运算. 联立{x +x =2,x =x 2,消y 可得x 2+x -2=0,∴x =1或-2, ∴方程组的解为{x =1,x =1或{x =-2,x =4,从而A ∩B ={(1,1),(-2,4)},故选C .5.(2019山东济南外国语学校10月月考,1)已知R 为实数集,集合A ={x |(x +1)2(x -1)x>0},B ={x |(x +1)(x -12)>0},则图中阴影部分表示的集合为 ( )A.{-1}∪[0,1]B.[0,12]C.[-1,12]D.{-1}∪[0,12] 答案 D ∵(x +1)2(x -1)x>0,∴x ≠-1且x (x -1)>0,∴x <-1或-1<x <0或x >1,∴A ={x |x <-1或-1<x <0或x >1}. ∵(x +1)(x -12)>0,∴x >12或x <-1,∴B ={x |x >12或x <-1}.∴A ∪B ={x |x <-1或-1<x <0或x >12}.故图中阴影部分表示的集合为∁R (A ∪B )={-1}∪{x |0≤x ≤12},即{-1}∪[0,12].故选D .综合篇 【综合集训】考法一 集合间基本关系的求解方法1.(2021届江苏扬州二中期初检测,2)已知集合A ={x |x 2+x =0,x ∈R},则满足A ∪B ={0,-1,1}的集合B 的个数是( )A.4B.3C.2D.1 答案 A2.(2020山东滨州6月三模)已知集合M ={x |x =4n +1,n ∈Z},N ={x |x =2n +1,n ∈Z},则 ( ) A.M ⫋N B.N ⫋M C.M ∈N D.N ∈M 答案 A3.(2019辽宁沈阳二中9月月考,14)设集合A={x|2a+1≤x≤3a-5},B={x|3≤x≤22}.若A⊆(A∩B),则实数a的取值范围为.答案(-∞,9]考法二集合运算问题的求解方法}, 4.(2021届河南郑州一中开学测试,1)已知全集U=R,集合A={x|y=lg(1-x)},B={x|x=√x 则(∁U A)∩B= ()A.(1,+∞)B.(0,1)C.(0,+∞)D.[1,+∞)答案 D5.(2020浙江超级全能生第一次联考,1)记全集U=R,集合A={x|x2-4≥0},集合B={x|2x≥2},则(∁U A)∩B= ()A.[2,+∞)B.⌀C.[1,2)D.(1,2)答案 C6.(2021届湖湘名校教育联合体入学考,1)设全集U=A∪B={x|-1≤x<3},A∩(∁U B)={x|2<x<3},则集合B= ()A.{x|-1≤x<2}B.{x|-1≤x≤2}C.{x|2<x<3}D.{x|2≤x<3}答案 B7.(2020山东德州6月二模,1)若全集U={1,2,3,4,5,6},M={1,3,4},N={2,3,4},则集合(∁U M)∪(∁U N)等于()A.{5,6}B.{1,5,6}C.{2,5,6}D.{1,2,5,6}答案 D8.(2021届重庆育才中学入学考试,1)已知集合A={x|0<x<4,x∈Z},集合B={y|y=m2,m∈A},则A∩B= ()A.{1}B.{1,2,3}C.{1,4,9}D.⌀答案 A[教师专用题组]【综合集训】考法一集合间基本关系的解题方法1.已知集合M={1,m},N={n,log2n},若M=N,则(m-n)2015=.答案-1或0解析 因为M =N ,所以{1,m }={n ,log 2n }. 当n =1时,log 2n =0,则m =0,所以(m -n )2015=-1; 当log 2n =1时,n =2,则m =2,所以(m -n )2015=0.故(m -n )2015=-1或0.2.已知集合A ={x |x =2x +13,x ∈Z },B =,则集合A 、B 的关系为 . 答案 A =B 解析 A =,B ={x |x =13(2x +3),x ∈Z }.∵{x |x =2n +1,n ∈Z}={x |x =2n +3,n ∈Z},∴A =B.故答案为A =B.3.设集合A ={-2},B ={x |ax +1=0,a ∈R},若A ∩B =B ,则a 的值为 . 答案 0或12解析 ∵A ∩B =B ,∴B ⊆A. ∵A ={-2}≠⌀,∴B =⌀或B ≠⌀.当B =⌀时,方程ax +1=0无解,此时a =0,满足B ⊆A. 当B ≠⌀时,a ≠0,则B ={-1x }, ∴-1x∈A ,即-1x=-2,解得a =12.综上,a =0或a =12.4.已知集合A ={x |x <-1或x >4},B ={x |2a ≤x ≤a +3}.若B ⊆A ,则实数a 的取值范围为 .答案 (-∞,-4)∪(2,+∞)解析 ①当B =⌀时,只需2a >a +3,即a >3; ②当B ≠⌀时,根据题意作出如图所示的数轴.可得{x +3≥2x ,x +3<-1或{x +3≥2x ,2x >4, 解得a <-4或2<a ≤3.综上可得,实数a的取值范围为(-∞,-4)∪(2,+∞).考法二集合运算问题的求解方法1.(2017北京东城二模,1)已知全集U是实数集R.如图所示的韦恩图表示集合M={x|x>2}与N={x|1<x<3}的关系,那么阴影部分所表示的集合为()A.{x|x<2}B.{x|1<x<2}C.{x|x>3}D.{x|x≤1}答案D由题中韦恩图知阴影部分表示的集合是∁U(M∪N).∵M∪N={x|x>1},∴∁U(M∪N)={x|x≤1}.2.(2017安徽淮北第二次模拟,2)已知全集U=R,集合M={x|x+2a≥0},N={x|log2(x-1)<1},若集合M∩(∁U N)={x|x=1或x≥3},则()A.a=12B.a≤12C.a=-12D.a≥12答案C∵log2(x-1)<1,∴x-1>0且x-1<2,即1<x<3,则N={x|1<x<3},∵U=R,∴∁U N={x|x≤1或x≥3},又∵M={x|x+2a≥0}={x|x≥-2a},M∩(∁U N)={x|x=1或x≥3},∴-2a=1,解得a=-12.故选C.3.设U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0},若(∁U A)∩B=⌀,则m=.答案1或2解析A={-2,-1},由(∁U A)∩B=⌀,得B⊆A,∵方程x2+(m+1)x+m=0的判别式Δ=(m+1)2-4m=(m-1)2≥0,∴B≠⌀.∴B={-1}或B={-2}或B={-1,-2}.①若B={-1},则m=1;②若B={-2},则-(m+1)=(-2)+(-2)=-4,且m=(-2)×(-2)=4,这两式不能同时成立,∴B≠{-2};③若B={-1,-2},则-(m+1)=(-1)+(-2)=-3,且m=(-1)×(-2)=2,由这两式得m=2.经检验,m=1和m=2符合条件.∴m=1或2.11。
阶段性测试题一(集合与常用逻辑用语) 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间120分钟。
第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的。
) 1.(文)(2011·巢湖市质检)设U={1,2,3,4,5},A={1,2,3},B={2,3,4},则下列结论中正确的是()A.A⊆B B.A∩B={2}C.A∪B={1,2,3,4,5} D.A∩(∁U B)={1}[答案] D(理)(2011·安徽百校联考)已知集合M={-1,0,1},N={x|x=ab,a,b∈M且a≠b},则集合M与集合N的关系是()A.M=N B.M NC.N M D.M∩N=∅[答案] C[解析]∵a、b∈M且a≠b,∴a=-1时,b=0或1,x=0或-1;a=0时,无论b取何值,都有x=0;a=1时,b=-1或0,x =-1或0.综上知N={0,-1},∴N M.2.(2011·合肥质检)“a=1”是“函数f(x)=lg(ax+1)在(0,+∞)上单调递增”的()A.充分必要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件[答案] C[解析]a=1时,f(x)=lg(x+1)在(0,+∞)上单调递增;若f(x)=lg(ax +1)在(0,+∞)上单调递增,∵y =lg x 是增函数,∴y =ax +1在(0,+∞)上单调递增,∴⎩⎨⎧a >0a ×0+1>0,∴a >0,故选C. 3.(2011·福州期末)已知p :|x |<2;q :x 2-x -2<0,则綈p 是綈q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[答案] A[解析] ∵p :-2<x <2,∴綈p :x ≤-2或x ≥2; q :-1<x <2,∴綈q :x ≤-1或x ≥2, ∴綈p 是綈q 的充分不必要条件.4.(2011·福州期末)在△ABC 中,“AB →·AC →=BA →·BC →”是“|AC →|=|BC→|”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 [答案] C[解析] 如图,在△ABC 中,过C 作CD ⊥AB ,则|AD →|=|AC →|·cos ∠CAB ,|BD →|=|BC →|·cos ∠CBA ,AB →·AC →=BA →·BC →⇔|AB →|·|AC →|·cos ∠CAB =|BA →|·|BC →|·cos ∠CBA ⇔|AC →|·cos ∠CAB =|BC →|·cos ∠CBA ⇔|AD→|=|BD →|⇔|AC →|=|BC →|,故选C.5.(文)(2011·山东日照调研)设α、β是两个不同的平面,l 、m 为两条不同的直线,命题p:若α∥β,l⊂α,m⊂β则l∥m;命题q:l ∥α,m⊥l,m⊂β,则α⊥β.则下列命题为真命题的是() A.p或q B.p且qC.綈p或q D.p且綈q[答案] C[解析]p为假命题,q为假命题,故p或q,p且q,p且綈q 均为假命题,选C.(理)(2011·辽宁省丹东四校联考)已知α、β、γ为互不重合的三个平面,命题p:若α⊥β,β⊥γ,则α∥γ;命题q:若α上不共线的三点到β的距离相等,则α∥β.对以上两个命题,下列结论中正确的是()A.命题“p且q”为真B.命题“p或綈q”为假C.命题“p或q”为假D.命题“綈p且綈q”为假[答案] C[解析]如图(1),正方体中,相邻三个面满足β⊥α,β⊥γ,但α⊥γ,故p为假命题;如图(2),α∩β=l,直线AB,CD是α内与l平行且与l距离相等的两条直线,则直线AB,CD上任意一点到平面β的距离都相等,三点A、B、C不共线,且到平面β的距离相等,故命题q为假命题,∴“p或q”为假命题.6.(2011·宁夏银川一中检测)下列结论错误的...是() A.命题“若p,则q”与命题“若綈q,则綈p”互为逆否命题B.命题p:∀x∈[0,1],e x≥1,命题q:∃x∈R,x2+x+1<0,则p∨q为真C.“若am2<bm2,则a<b”的逆命题为真命题D.若p∨q为假命题,则p、q均为假命题[答案] C[解析]根据四种命题的构成规律,选项A中的结论是正确的;选项B中的命题p是真命题,命题q是假命题,故p∨q为真命题,选项B中的结论正确;当m=0时,a<b⇒/ am2<bm2,故选项C中的结论不正确;选项D中的结论正确.7.(文)(2011·福州期末)已知集合M={y|y=x2+1,x∈R},N={y|y=x+1,x∈R},则M∩N等于()A.(0,1),(1,2) B.{(0,1),(1,2)}C.{y|y=1或y=2} D.{y|y≥1}[答案] D[解析]由集合M、N的代表元素知M、N都是数集,排除A、B;又M={y|y≥1},N=R,∴选D.(理)(2011·陕西宝鸡质检)已知集合A={x|y=1-x2,x∈Z},B ={y|y=x2+1,x∈A},则A∩B为()A.∅B.{1}C.[0,+∞) D.{(0,1)}[答案] B[解析]由1-x2≥0得,-1≤x≤1,∵x∈Z,∴A={-1,0,1},当x∈A时,y=x2+1∈{2,1},即B={1,2},∴A∩B={1}.8.(2011·天津河西区质检)命题p:∀x∈[0,+∞),(log32)x≤1,则()A.p是假命题,綈p:∃x0∈[0,+∞),(log32)x0>1B.p是假命题,綈p:∀x∈[0,+∞),(log32)x≥1C .p 是真命题,綈p :∃x 0∈[0,+∞),(log 32)x 0>1D .p 是真命题,綈p :∀x ∈[0,+∞),(log 32)x ≥1 [答案] C[解析] ∵0<log 32<1,∴y =(log 32)x 在[0,+∞)上单调递减,∴0<y ≤1,∴p 是真命题;∀的否定为“∃”,“≤”的否定为“>”,故选C.9.(2010·广东湛江模拟)“若x ≠a 且x ≠b ,则x 2-(a +b )x +ab ≠0”的否命题是( )A .若x =a 且x =b ,则x 2-(a +b )x +ab =0.B .若x =a 或x =b ,则x 2-(a +b )x +ab ≠0.C .若x =a 且x =b ,则x 2-(a +b )x +ab ≠0.D .若x =a 或x =b ,则x 2-(a +b )x +ab =0. [答案] D10.(2011·四川资阳市模拟)“cos θ<0且tan θ>0”是“θ为第三角限角”的( )A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件[答案] A[解析] ∵cos θ<0,∴θ为第二或三象限角或终边落在x 轴负半轴上,∵tan θ>0,∴θ为第一或三象限角,∴θ为第三象限角,故选A.11.(文)(2011·湖南长沙一中月考)设命题p :∀x ∈R ,|x |≥x ;q :∃x ∈R ,1x =0.则下列判断正确的是( )A .p 假q 真B .p 真q 假C .p 真q 真D .p 假q 假 [答案] B[解析] ∵|x |≥x 对任意x ∈R 都成立,∴p 真,∵1x =0无解,∴不存在x ∈R ,使1x =0,∴q 假,故选B.(理)(2011·福建厦门市期末)下列命题中,假命题是( ) A .∀x ∈R,2x -1>0 B .∃x ∈R ,sin x = 2 C .∀x ∈R ,x 2-x +1>0 D .∃x ∈N ,lg x =2[答案] B[解析] 对任意x ∈R ,总有|sin x |≤1,∴sin x =2无解,故选B. 12.(2011·辽宁大连期末)已知全集U =R ,集合A ={x |x =2n ,n ∈N }与B ={x |x =2n ,n ∈N },则正确表示集合A 、B 关系的韦恩(Venn)图是( )[答案] A[解析] n =0时,20=1∈A ,但1∉B,2×0=0∈B ,但0∉A ,又当n =1时,2∈A 且2∈B ,故选A.[点评] 自然数集N 中含有元素0要特别注意,本题极易因忽视0∈N 导致错选C.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上)13.已知命题甲:a +b ≠4,命题乙:a ≠1且b ≠3,则命题甲是命题乙的________条件.[答案] 既不充分也不必要[解析] 当a +b ≠4时,可选取a =1,b =5,故此时a ≠1且b ≠3不成立(∵a =1).同样,a ≠1且b ≠3时,可选取a =2,b =2,此时a +b =4,因此,甲是乙的既不充分也不必要条件.[点评] 也可通过逆否法判断非乙是非甲的什么条件. 14.方程x 24-t +y 2t -1=1表示曲线C ,给出以下命题:①曲线C 不可能为圆; ②若1<t <4,则曲线C 为椭圆; ③若曲线C 为双曲线,则t <1或t >4; ④若曲线C 为焦点在x 轴上的椭圆,则1<t <52.其中真命题的序号是______(写出所有正确命题的序号). [答案] ③④[解析] 显然当t =52时,曲线为x 2+y 2=32,方程表示一个圆;而当1<t <4,且t ≠52时,方程表示椭圆;当t <1或t >4时,方程表示双曲线,而当1<t <52时,4-t >t -1>0,方程表示焦点在x 轴上的椭圆,故选项为③④.15.(文)函数f (x )=log a x -x +2(a >0且a ≠1)有且仅有两个零点的充要条件是________.[答案] a >1[解析] 若函数f (x )=log a x -x +2(a >0,且a ≠1)有两个零点,即函数y =log a x 的图象与直线y =x -2有两个交点,结合图象易知,此时a >1;当a >1时,函数f (x )=log a x -x +2(a >0,且a ≠1)有两个零点,∴函数f (x )=log a x -x +2(a >0,且a ≠1)有两个零点的充要条件是a >1.(理)(2010·济南模拟)设p :⎩⎪⎨⎪⎧4x +3y -12≥03-x ≥0x +3y ≤12,q :x 2+y 2>r 2(x ,y∈R ,r >0),若p 是q 的充分不必要条件,则r 的取值范围是________.[答案] ⎝ ⎛⎭⎪⎫0,125 [解析]设A ={(x ,y )|⎩⎪⎨⎪⎧4x +3y -12≥03-x ≥0x +3y ≤12},B ={(x ,y )|x 2+y 2>r 2,x ,y ∈R ,r >0},则集合A 表示的区域为图中阴影部分,集合B 表示以原点为圆心,以r 为半径的圆的外部,设原点到直线4x +3y -12=0的距离为d ,则d =|4×0+3×0-12|5=125,∵p 是q 的充分不必要条件,∴A B ,则0<r <125.16.(2011·河南豫南九校联考)下列正确结论的序号是________. ①命题∀x ∈R ,x 2+x +1>0的否定是:∃x ∈R ,x 2+x +1<0. ②命题“若ab =0,则a =0,或b =0”的否命题是“若ab ≠0,则a ≠0且b ≠0”.③已知线性回归方程是y ^=3+2x ,则当自变量的值为2时,因变量的精确值为7.④若a ,b ∈[0,1],则不等式a 2+b 2<14成立的概率是π4.[答案] ②[解析] ∀x ∈R ,x 2+x +1>0的否定应为∃x ∈R ,x 2+x +1≤0,故①错;对于线性回归方程y ^=3+2x ,当x =2时,y 的估计值为7,故③错;对于0≤a ≤1,0≤b ≤1,满足a 2+b 2<14的概率为p =14×π×⎝ ⎛⎭⎪⎫1221×1=π16,故④错,只有②正确.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)(文)(2011·重庆南开中学期末)已知函数f (x )=x +1x -2的定义域是集合A ,函数g (x )=lg[x 2-(2a +1)x +a 2+a ]的定义域是集合B .(1)分别求集合A 、B ;(2)若A ∪B =B ,求实数a 的取值范围. [解析] (1)A ={x |x ≤-1或x >2} B ={x |x <a 或x >a +1}.(2)由A ∪B =B 得A ⊆B ,因此⎩⎪⎨⎪⎧a >-1a +1≤2所以-1<a ≤1,所以实数a 的取值范围是(-1,1]. (理)已知函数f (x )=6x +1-1的定义域为集合A ,函数g (x )=lg(-x 2+2x +m )的定义域为集合B .(1)当m =3时,求A ∩(∁R B );(2)若A ∩B ={x |-1<x <4},求实数m 的值.[解析]由6x+1-1≥0知,0<x+1≤6,∴-1<x≤5,A={x|-1<x≤5}.(1)当m=3时,B={x|-1<x<3}则∁R B={x|x≤-1或x≥3}∴A∩(∁R B)={x|3≤x≤5}.(2)A={x|-1<x≤5},A∩B={x|-1<x<4},∴有-42+2·4+m=0,解得m=8.此时B={x|-2<x<4},符合题意.18.(本小题满分12分)(文)已知函数f(x)是R上的增函数,a、b ∈R,对命题“若a+b≥0,则f(a)+f(b)≥f(-a)+f(-b).”(1)写出其逆命题,判断其真假,并证明你的结论;(2)写出其逆否命题,判断其真假,并证明你的结论.[解析](1)逆命题是:若f(a)+f(b)≥f(-a)+f(-b),则a+b≥0,真命题.用反证法证明:设a+b<0,则a<-b,b<-a,∵f(x)是R上的增函数,∴f(a)<f(-b),f(b)<f(-a),∴f(a)+f(b)<f(-a)+f(-b),这与题设f(a)+f(b)≥f(-a)+f(-b)矛盾,所以逆命题为真.(2)逆否命题:若f(a)+f(b)<f(-a)+f(-b),则a+b<0,为真命题.由于互为逆否命题同真假,故只需证原命题为真.∵a+b≥0,∴a≥-b,b≥-a,又∵f(x)在R上是增函数,∴f (a )≥f (-b ),f (b )≥f (-a ).∴f (a )+f (b )≥f (-a )+f (-b ),∴原命题真,故逆否命题为真. (理)(2011·厦门双十中学月考)在平面直角坐标系xOy 中,直线l 与抛物线y 2=2x 相交于A 、B 两点.(1)求证:“如果直线l 过点(3,0),那么OA →·OB→=3”是真命题. (2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由.[解析] (1)设l :x =ty +3,代入抛物线y 2=2x ,消去x 得y 2-2ty -6=0.设A (x 1,y 1),B (x 2,y 2),∴y 1+y 2=2t ,y 1·y 2=-6,OA →·OB →=x 1x 2+y 1y 2=(ty 1+3)(ty 2+3)+y 1y 2=t 2y 1y 2+3t (y 1+y 2)+9+y 1y 2=-6t 2+3t ·2t +9-6=3.∴OA →·OB→=3,故为真命题. (2)(1)中命题的逆命题是:“若OA →·OB→=3,则直线l 过点(3,0)”它是假命题.设l :x =ty +b ,代入抛物线y 2=2x ,消去x 得y 2-2ty -2b =0. 设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2t ,y 1·y 2=-2b .∵OA →·OB →=x 1x 2+y 1y 2=(ty 1+b )(ty 2+b )+y 1y 2=t 2y 1y 2+bt (y 1+y 2)+b 2+y 1y 2=-2bt 2+bt ·2t +b 2-2b =b 2-2b , 令b 2-2b =3,得b =3或b =-1,此时直线l 过点(3,0)或(-1,0).故逆命题为假命题.19.(本小题满分12分)(文)(2011·华安、连城、永安、漳平龙海,泉港六校联考)已知集合A ={x |x 2-2x -3≤0,x ∈R },B ={x |x 2-2mx+m 2-4≤0,x ∈R ,m ∈R }.(1)若A ∩B =[0,3],求实数m 的值;(2)若A ⊆∁R B ,求实数m 的取值范围.[解析] A ={x |-1≤x ≤3}B ={x |m -2≤x ≤m +2}.(1)∵A ∩B =[0,3],∴⎩⎪⎨⎪⎧ m -2=0m +2≥3,⎩⎪⎨⎪⎧m =2m ≥1,∴m =2. 故所求实数m 的值为2.(2)∁R B ={x |x <m -2或x >m +2}A ⊆∁RB ,∴m -2>3或m +2<-1.∴m >5或m <-3.因此实数m 的取值范围是m >5或m <-3.(理)(2011·山东潍坊模拟)已知全集U =R ,非空集合A ={x |x -2x -(3a +1)<0},B ={x |x -a 2-2x -a<0}. (1)当a =12时,求(∁U B )∩A ;(2)命题p :x ∈A ,命题q :x ∈B ,若q 是p 的必要条件,求实数a 的取值范围.[解析] (1)当a =12时,A ={x |x -2x -52<0}={x |2<x <52},B ={x |x -94x -12<0}={x |12<x <94}.∴(∁U B )∩A ={x |x ≤12或x ≥94}∩{x |2<x <52}={x |94≤x <52}.(2)若q 是p 的必要条件,即p ⇒q ,可知A ⊆B ,由a 2+2>a ,得B ={x |a <x <a 2+2},当3a +1>2,即a >13时,A ={x |2<x <3a +1},⎩⎪⎨⎪⎧a ≤2a 2+2≥3a +1,解得13<a ≤3-52; 当3a +1=2,即a =13时,A =∅,符合题意;当3a +1<2,即a <13时,A ={x |3a +1<x <2}.⎩⎪⎨⎪⎧a ≤3a +1a 2+2≥2,解得-12≤a <13; 综上,a ∈[-12,3-52].20.(本小题满分12分)(2010·常德模拟)已知命题p :∀x ∈[1,2],x 2-a ≥0.命题q :∃x 0∈R ,使得x 20+(a -1)x 0+1<0.若“p 或q ”为真,“p 且q ”为假,求实数a 的取值范围.[解析] 由条件知,a ≤x 2对∀x ∈[1,2]成立,∴a ≤1;∵∃x 0∈R ,使x 20+(a -1)x 0+1<0成立,∴不等式x 2+(a -1)x +1<0有解,∴Δ=(a -1)2-4>0,∴a >3或a <-1;∵p 或q 为真,p 且q 为假,∴p 与q 一真一假.①p真q假时,-1≤a≤1;②p假q真时,a>3.∴实数a的取值范围是a>3或-1≤a≤1.21.(本小题满分12分)(文)已知函数f(x)=x2-2x+5,若存在一个实数x0,使不等式f(x0)-m>0成立,求实数m的取值范围.[解析]不等式f(x0)-m>0可化为m<f(x0),若存在一个实数x0使不等式m<f(x0)成立,只需m<f(x)min.又∵f(x)=x2-2x+5=(x-1)2+4,∴f(x)min=4,∴m<4.故所求实数m的取值范围是(-∞,4).(理)(2011·雅安中学期末)设函数f(x)=(x+1)ln(x+1),若对所有的x≥0,都有f(x)≥ax成立,求实数a的取值范围.[解析]令g(x)=(x+1)ln(x+1)-ax,则g′(x)=ln(x+1)+1-a,令g′(x)=0,解得x=e a-1-1.(1)当a≤1时,对所有x>0,g′(x)>0.所以g(x)在[0,+∞)上是增函数.又g(0)=0,所以对x≥0,有g(x)≥g(0),即当a≤1时,对于所有x≥0,都有f(x)≥ax.(2)当a>1时,对于0<x<e a-1-1,g′(x)<0,所以g(x)在(0,e a-1-1)上是减函数.又g(0)=0,所以对0<x<e a-1-1,有g(x)<g(0),即f(x)<ax.所以当a>1时,不是对所有的x≥0,都有f(x)≥ax成立.综上所述a的取值范围是(-∞,1].22.(本小题满分12分)若规定E={a1,a2,…,a10}的子集{ai1,ai2,…,ai n}为E的第k个子集,其中k=2i1-1+2i2-1+…+2i n-1,则(1){a1,a3}是E的第几个子集?(2)求E的第211个子集.[解析](1)由k的定义可知k=21-1+23-1=5.因此{a1,a3}是E的第5个子集.(2)∵21-1=1,22-1=2,23-1=4,24-1=8,…k=211,且211=128+64+16+2+1,∴i1=1,i2=2,i3=5,i4=7,i5=8,故E的第211个子集是{a1,a2,a5,a7,a8}.[点评]本题是新定义题型,构思新颖,视角独特,亮点明显,对考生在新情境下灵活运用所学知识分析,解决问题的能力要求较高,有较高的区分度.。