高二数学证明不等式的基本方法2
- 格式:pdf
- 大小:667.18 KB
- 文档页数:10
1.2 基本不等式(二)1.理解定理3、定理4,会用两个定理解决函数的最值或值域问题.2.能运用三个正数的平均值不等式解决简单的实际问题.自学导引1.当a 、b 、c ∈R +时,a +b +c3≥3abc a =b =c 时,等号成立,称a +b +c 3为正数a ,b ,c 的算术平均值,3abc 为正数a 、b 、c 的几何平均值. 2.如果a 1,a 2,…,a n 为n 个正数,则a 1+a 2+…+a n n≥na 1a 2…a n a 1=a 2=…=a n时,等号成立.基础自测1.设a 、b 、c ∈R ,下列各不等式中成立的是( ) A.a 2+b 2≥2|ab | B.a +b ≥2ab C.a 3+b 3+c 3≥3abcD.a +b +c3≥3abc解析 由a 2+b 2-2|ab |=|a |2-2|ab |+|b |2=(|a |-|b |)2≥0,故选A. 答案 A2.函数y =x 2·(1-5x )⎝ ⎛⎭⎪⎫0≤x ≤15的最大值为( )A.4675 B. 2657 C.4645D.2675解析 由y =x 2·(1-5x )=425·52x ·52x (1-5x ) ≤425⎝⎛⎭⎪⎪⎫52x +52x +1-5x 33=4675.答案 A3.已知实数a ,b ,c 满足a +b +c =0,a 2+b 2+c 2=1,则a 的最大值是________. 解析 利用不等式求解.因为a +b +c =0,所以b +c =-a . 因为a 2+b 2+c 2=1,所以-a 2+1=b 2+c 2=(b +c )2-2bc =a 2-2bc , 所以2a 2-1=2bc ≤b 2+c 2=1-a 2, 所以3a 2≤2,所以a 2≤23,所以-63≤a ≤63,所以a max =63. 答案63知识点1 利用平均值不等式证明不等式 【例1】 已知a 、b 、c ∈R +,且a +b +c =1. 求证:1a +b +1b +c +1c +a ≥92. 证明 a +b +c =1⇒(a +b )+(b +c )+(c +a )=2, [(a +b )+(b +c )+(c +a )]⎝⎛⎭⎪⎫1a +b +1b +c +1c +a≥33(a +b )(b +c )(c +a )·313(a +b )(b +c )(c +a )=9⇒1a +b +1b +c +1c +a ≥92. ●反思感悟:认真观察要证的不等式的结构特点,灵活利用已知条件构造出能利用平均值不等式的式子.1.证明(a +b +c )⎝⎛⎭⎪⎫1a +b +1b +c +1a +c ≥92(a ,b ,c ∈R +).证明 ∵(a +b )+(b +c )+(c +a ) ≥33(a +b )(b +c )(c +a ),1a +b +1b +c +1a +c ≥331a +b ·1b +c ·1a +c , ∴(a +b +c )⎝⎛⎭⎪⎫1a +b +1b +c +1a +c ≥92.当且仅当a =b =c 时,等号成立.知识点2 利用平均值不等式求最值【例2】 若正数a ,b 满足ab =a +b +3,求ab 的取值范围. 解 方法一:∵a 、b ∈R +,且ab =a +b +3≥333ab , ∴a 3b 3≥81ab .又ab >0,∴a 2b 2≥81. ∴ab ≥9(当且仅当a =b 时,取等号). ∴ab 的取值范围是[9,+∞). 方法二:∵ab -3=a +b ≥2ab , ∴ab -2ab -3≥0且ab >0,∴ab ≥3,即ab ≥9(当且仅当a =b 时取等号) ∴ab 的取值范围是[9,+∞).●反思感悟:注意平均值不等式应用的条件是三个正数在求最值时,一定要求出等号成立时未知数的值,如果不存在使等号成立的未知数的值,则最值不存在.2.求y =sin x cos 2x ,x ∈⎝ ⎛⎭⎪⎫0,π2的最大值.解 ∵x ∈⎝⎛⎭⎪⎫0,π2,∴sin x >0,y >0.y 2=sin 2x cos 4x =2sin 2x cos 2x cos 2x2≤12⎝ ⎛⎭⎪⎫2sin 2x +cos 2x +cos 2x 33=12⎝ ⎛⎭⎪⎫233=854=427.故y ≤427=239,此时,2sin 2x =cos 2x ,tan 2x =12, y 有最大值239. 知识点3 平均值不等式的实际应用【例3】 某产品今后四年的市场需求量依次构成数列{a n },n =1,2,3,4,并预测到年需求量第二年比第一年增长的百分率为P 1,第三年比第二年增长的百分率为P 2,第四年比第三年增长的百分率为P 3,且P 1+P 2+P 3=1.给出如下数据: ①27,②25,③13,④12,⑤23, 则其中可能成为这四年间市场需求量的年平均增长率的是( ) A.①② B.①③ C.②③④D.②⑤解析 设这四年间市场年需求量的年平均增长率为x (x >0),则a 4=a 1(1+x )3=a 1(1+P 1)(1+P 2)(1+P 3), ∴(1+x )3=(1+P 1)(1+P 2)(1+P 3), ∴(1+x )3=(1+P 1)(1+P 2)(1+P 3)≤⎝ ⎛⎭⎪⎫1+P 1+1+P 2+1+P 333=⎝ ⎛⎭⎪⎫433. ∴1+x ≤43,即x ≤13,对比所给数据,只有①③满足条件,故选B. 答案 B3.设长方体的体积为1 000 cm 3,则它的表面积的最小值为__________ cm 2. 解析 设长方体的长、宽、高分别为a 、b 、c , 则abc =1 000,且a >0,b >0,c >0.∴它的表面积S =2(ab +bc +ca )≥2×33(abc )2=600. 当且仅当a =b =c =10 (cm)时取“=”号. 所以它的表面积S 的最小值为600 cm 2. 答案 600课堂小结利用基本不等式解决实际问题的步骤:(1)理解题意,设出变量,一般设变量时,把要求最大值或最小值的变量定为函数;(2)建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题;(3)在定义域内,求出函数的最大值或最小值;(4)回答实际问题.随堂演练1.设f (x )=ln x ,0<a <b ,若p =f (ab ),q =f ⎝ ⎛⎭⎪⎫a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( ) A.q =r <p B.p =r <q C.q =r >pD.p =r >q解析 利用对数的运算性质和对数函数的单调性判断p ,q ,r 之间的相等与不等关系. 因为b >a >0,故a +b2<ab .又f (x )=ln x (x >0)为增函数,所以f ⎝⎛⎭⎪⎫a +b 2>f (ab ),即q >p .又r =12(f (a )+f (b ))=12(ln a +ln b )=ln ab =p .答案 B2.已知x ≥52,则f (x )=x 2-4x +52x -4有( )A.最大值54B.最小值54C.最大值1D.最小值1解析f (x )=(x -2)2+12(x -2)=12⎣⎢⎡⎦⎥⎤(x -2)+1(x -2),又∵x ≥52,x -2≥12,则f (x )≥12·2(x -2)1(x -2)=1.答案 D3.函数y =x 2·(1-3x )在⎝ ⎛⎭⎪⎫0,13上的最大值是________.解析 由y =x 2·(1-3x ) =49·32x ·32x (1-3x ) ≤49⎝⎛⎭⎪⎪⎫32x +32x +1-3x 33=3243.答案32434.用长为16 cm 的铁丝围成一个矩形,则可围成的矩形的最大面积是________ cm 2. 解析 设矩形长为x cm(0<x <8),则宽为(8-x ) cm , 面积S =x (8-x ).由于x >0,8-x >0,可得S ≤⎝ ⎛⎭⎪⎫x +8-x 22=16,当且仅当x =8-x 即x =4时,S max =16. 所以矩形的最大面积是16 cm 2. 答案 16基础达标1.若x >0,则4x +9x2的最小值是( )A.9B.3336C.13D.不存在解析 ∵x >0,∴4x +9x 2=2x ·2x ·9x2≥332x ·2x ·9x2=3336.答案 B2.设a ,b ,c ∈(0,+∞)且a +b +c =1,令x =⎝⎛⎭⎪⎫1a -1·⎝⎛⎭⎪⎫1b -1⎝⎛⎭⎪⎫1c-1,则x 的取值范围为( )A.⎣⎢⎡⎭⎪⎫0,18B.⎣⎢⎡⎭⎪⎫18,1 C.[1,8)D.[8,+∞)解析 ∵x =⎝ ⎛⎭⎪⎫1a-1⎝ ⎛⎭⎪⎫1b-1⎝ ⎛⎭⎪⎫1c-1=1-a a ·1-b b ·1-cc=(b +c )(c +a )(a +b )abc ≥2bc ·2ca ·2ab abc=8,当且仅当a =b =c 时取等号,∴x ≥8. 答案 D3.已知x ,y 都为正数,且1x +4y=1,则xy 有( )A.最小值16B.最大值16C.最小值116D.最大值116解析 ∵x ,y ∈(0,+∞)且1x +4y=1,∴1=1x +4y ≥24xy=4xy,∴xy ≥4,∴xy ≥16,当且仅当⎩⎪⎨⎪⎧1x =4y ,1x +4y =1,x ,y ∈(0,+∞),即⎩⎪⎨⎪⎧x =2,y =8,时取等号,此时(xy )min =16. 答案 A4.已知a ,b ,∈R *,则⎝ ⎛⎭⎪⎫a b +b c +c a ⎝ ⎛⎭⎪⎫b a +c b +a c ≥________.解析 ⎝ ⎛⎭⎪⎫a b +b c +c a ⎝ ⎛⎭⎪⎫b a +c b +a c =1+1+1+ac b 2+a 2bc +b 2ac +ab c 2+bc a 2+c 2ab ≥3+2ac b 2·b 2ac+2a 2bc ·bc a 2+2abc 2+c 2ab=9. 答案 95.要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是________(单位:元). 解析 利用均值(基本)不等式解决问题.设该长方体容器的长为x m ,则宽为4xm.又设该容器的造价为y 元,则y =20×4+2⎝ ⎛⎭⎪⎫x +4x ×10,即y =80+20⎝ ⎛⎭⎪⎫x +4x (x >0).因为x +4x≥2x ·4x =4⎝ ⎛⎭⎪⎫当且仅当x =4x ,即x =2时取“=”,所以y min =80+20×4=160(元). 答案 1606.已知关于x 的不等式|x +a |<b 的解集为{x |2<x <4}. (1)求实数a ,b 的值; (2)求at +12+bt 的最大值.解 (1)由|x +a |<b ,得-b -a <x <b -a ,则⎩⎪⎨⎪⎧-b -a =2,b -a =4,解得⎩⎪⎨⎪⎧a =-3,b =1. (2)-3t +12+t=34-t +t ≤[(3)2+12][(4-t )2+(t )2] =24-t +t =4, 当且仅当4-t 3=t1,即t =1时等号成立, 故(-3t +12+t )max =4.综合提高7.已知圆柱的轴截面周长为6,体积为V ,则下列关系式总成立的是( ) A.V ≥π B.V ≤π C.V ≥18πD.V ≤18π解析 设圆柱的底面半径为r ,高为h , 则由题意得:4r +2h =6,即2r +h =3,于是有V =πr 2h ≤π·⎝ ⎛⎭⎪⎫r +r +h 33=π⎝ ⎛⎭⎪⎫333=π,当且仅当r =h 时取等号. 答案 B8.如果圆柱的轴截面周长l 为定值,那么圆柱的体积最大值是( )A.⎝ ⎛⎭⎪⎫l 63π B.⎝ ⎛⎭⎪⎫l 33π C.⎝ ⎛⎭⎪⎫l 43π D.14⎝ ⎛⎭⎪⎫l 43π 解析 l =4r +2h ,即2r +h =l2,V =πr 2h ≤⎝ ⎛⎭⎪⎫r +r +h 33π=⎝ ⎛⎭⎪⎫l 63π.答案 A9.定义运算“⊗”:x ⊗y =x 2-y 2xy(x ,y ∈R ,xy ≠0),当x >0,y >0时,x ⊗y +(2y )⊗x 的最小值为________.解析 先利用新定义写出解析式,再利用重要不等式求最值.因为x ⊗y =x 2-y 2xy ,所以(2y )⊗x =4y 2-x 22xy .又x >0,y >0,故x ⊗y +(2y )⊗x =x 2-y 2xy +4y 2-x 22xy=x 2+2y 22xy ≥22xy 2xy=2,当且仅当x =2y 时,等号成立. 答案210.某项研究表明:在考虑行车安全的情况下,某路段车流量F (单位时间内经过测量点的车辆数,单位:辆/时)与车流速度v (假设车辆以相同速度v 行驶,单位:米/秒)、平均车长l (单位:米)的值有关,其公式为F =76 000 v v 2+18v +20l.(1)如果不限定车型,l =6.05,则最大车流量为______辆/时;(2)如果限定车型,l =5,则最大车流量比(1)中的最大车流量增加________辆/时. 解析 把所给l 值代入,分子分母同除以v ,构造基本不等式的形式求最值. (1)当l =6.05时,F =76 000v v 2+18v +121=76 000v +121v+18≤76 0002v ·121v+18=76 00022+18=1 900.当且仅当v =11米/秒时等号成立,此时车流量最大为1 900辆/时. (2)当l =5时,F =76 000v v 2+18v +100=76 000v +100v+18≤76 0002v ·100v+18=76 00020+18=2 000.当且仅当v =10米/秒时等号成立,此时车流量最大为2 000辆/时,比(1)中的最大车流量增加100辆/时.答案 (1)1 900 (2)10011.如图所示,将一矩形花坛ABCD 扩建成一个更大的矩形花坛AMPN ,要求B 在AM 上,D 在AN 上且对角线MN 过C 点,已知|AB |=3米,|AD |=2米.(1)要使矩形AMPN 的面积大于32平方米,则AN 的长应在什么范围内? (2)当AN 的长度是多少时,矩形AMPN 的面积最小?并求最小面积;(3)若AN 的长度不少于6米,则当AN 的长度是多少时,矩形AMPN 的面积最小?并求出最小面积.解 设AN 的长为x 米(x >2),矩形AMPN 的面积为y . ∵|DN ||AN |=|DC ||AM |,∴|AM |=3x x -2, ∴S 矩形AMPN =|AN |·|AM |=3x 2x -2(x >2)(1)由S 矩形AMPN >32得3x2x -2>32,∵x >2,∴3x 2-32x +64>0,即(3x -8)(x -8)>0,∴2<x <83或x >8,即AN 的长的取值范围是⎝ ⎛⎭⎪⎫2,83∪(8,+∞). (2)令y =3x 2x -2=3(x -2)2+12(x -2)+12x -2=3(x -2)+12x -2+12≥23(x -2)·12x -2+12=24, 当且仅当3(x -2)=12x -2, 即x =4时,y =3x2x -2取得最小值,即S 矩形AMPN 取得最小值24平方米.(3)令g (x )=3x +12x(x ≥4),设x 1>x 2≥4,则g (x 1)-g (x 2)=3(x 1-x 2)+12(x 2-x 1)x 1x 2=3(x 1-x 2)(x 1x 2-4)x 1x 2,∵x 1>x 2≥4,∴x 1-x 2>0,x 1x 2>16,∴g (x 1)-g (x 2)>0,∴g (x )在[4,+∞)上递增. ∴y =3(x -2)+12x -2+12在[6,+∞)上递增. ∴当x =6时,y 取得最小值,即S 矩形AMPN 取得最小值27平方米.12.甲、乙两地相距s km ,汽车从甲地匀速行驶到乙地,速度不得超过c km/h ,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v (km/h)的平方成正比,比例常数为b ,固定部分为a 元.(1)把全程运输成本y 元表示为速度v (km/h)的函数,并指出函数的定义域; (2)为了使全程运输成本最少,汽车应以多大的速度行驶? 解 (1)因为汽车每小时的运输成本为bv 2+a (元), 全程时间为sv (小时),故y =s v(bv 2+a ),即y =s ⎝ ⎛⎭⎪⎫a v +bv ,v ∈(0,c ].(2)由于a v+bv ≥2ab ,当且仅当v = ab时取等号,故 ①若 ab ≤c ,则当v = ab时,y 取最小值. ②若a b >c ,则先证y =s ⎝ ⎛⎭⎪⎫a v +bv ,v ∈(0,c ]为单调减函数,事实上,当v 1、v 2∈(0,c ],且v 1<v 2,则y 1-y 2=s ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a v 1+bv 1-⎝ ⎛⎭⎪⎫a v 2+bv 2=s ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a v 1-a v 2+(bv 1-bv 2)=s (v 1-v 2)⎝⎛⎭⎪⎫b -a v 1v 2 =sb (v 1-v 2)·v 1v 2-abv 1v 2,∵v 1、v 2∈(0,c ],v 1<v 2, ∴v 1-v 2<0,v 1v 2>0,v 1<ab ,v 2< a b. 进而v 1v 2<a b,从而y 1-y 2>0.故y =s ⎝ ⎛⎭⎪⎫a v+bv ,v ∈(0,c ]为单调减函数,由此知当v =c 时,y 取得最小值. 综上可知,若ab ≤c ,则当v = ab时,y 取得最小值;a b >c,则当v=c时,y取得最小值.若。
不等式证明的基本方法
1.数学归纳法:归纳法是数学证明中最常用的方法之一,通常用来证
明自然数的性质。
对于不等式证明来说,如果我们希望证明不等式对于所
有自然数都成立,可以使用数学归纳法。
首先证明当自然数为1时不等式
成立,然后假设当自然数为k时不等式成立,再证明当自然数为k+1时不
等式也成立。
通过这种逐步推导的方法,可以证明不等式对于所有自然数
都成立。
2.数学推理法:数学推理法是一种基于数学定理和公理的推理方法,
通过逻辑推理来证明不等式的成立。
这种方法通常需要使用一些已知的数
学定理和性质来推导出不等式。
例如,可以使用数学的四则运算定律、平
方差公式、三角不等式等来推导不等式。
3.数学变换法:数学变换法是一种将不等式进行变换的方法,通过变
换不等式的形式来证明不等式的成立。
这种方法通常需要使用一些数学中
常见的变换方法,例如平方去根、换元法、倍加倍减等。
通过适当的变换,可以将不等式转化为更简单的形式,从而更容易证明。
无论采用哪种方法,不等式的证明都需要逻辑严谨、推理正确,以及
对数学定理和性质的熟练应用。
在实际证明中,常常需要综合运用多种方
法来解决问题,使得证明更加简洁和明了。
此外,证明中的每一步变换和
推理都需要严格地说明和证明,避免出现漏洞和错误。
证明基本不等式的方法基本不等式是解决数学不等式问题中常用的方法,其核心思想是将一个不等式转化为另一个更简单的不等式,从而得到所需的解集。
在证明基本不等式的方法上,可以分为以下几种常见的方式:1.数学归纳法:数学归纳法是证明基本不等式的一种常用方法。
首先,我们需要证明当不等式成立时,对于一些特定的值$n$,不等式也成立。
接着,我们假设当$n=k$时不等式成立,可以通过这个假设证明当$n=k+1$时不等式成立。
最后,根据归纳法的原理,我们可以得出不等式对于所有自然数$n$成立。
2.递推法:递推法是证明基本不等式的另一种常用方法。
我们首先找到一个较小的数$k$,证明不等式对于这个特定的数成立。
然后,我们假设当$n=k$时不等式成立,接着通过这个假设证明当$n=k+1$时不等式也成立。
最后,根据递推法的原理,我们可以得出不等式对于所有自然数$n$成立。
3.反证法:反证法是证明基本不等式的另一种有效方法。
我们首先假设不等式不成立,即假设存在一些数使得不等式不成立。
接着,我们通过一系列的推导和推理,得出矛盾的结论。
这表明我们的假设是错误的,即不等式是成立的。
4.变量替换法:变量替换法是证明基本不等式的一种常用方法。
我们首先对不等式进行变量替换,将其转化为一个使用其他变量的等价不等式。
然后,通过对这个等价不等式进行一系列的变换和推导,我们可以得出所需的结论。
5.辅助不等式法:辅助不等式法是证明基本不等式的一种有效方法。
我们首先找到一个与原不等式相关的不等式,这个不等式往往更容易证明。
然后,我们通过对这个辅助不等式的推导和推理,结合原不等式的特点,得出所需的结论。
无论采用哪种方法,证明基本不等式的关键在于用恰当的方法将其转化为另一个更简单或更容易证明的不等式。
此外,在证明过程中需要注意推导的合理性和严密性,关注每一步的符号变化和不等式的严格性,避免出现错误的结论。
在证明过程中,也可以适当地运用数学知识和技巧,如代数运算、函数性质和数列性质等,使证明更加简洁和高效。
不等式证明的基本方法与策略总结不等式证明在数学研究、数学建模以及各种工程问题中都有重要的应用价值。
同时,不等式证明也是各种数学竞赛中的重头戏。
本文将总结不等式证明的基本方法与策略,以便读者更好地理解不等式证明的思路和套路。
一、基本方法1. 套路化:对于一些经典不等式如柯西不等式等,可以先了解它的证明方法,将其归纳总结出来,然后通过类比去证明其他不等式。
2. 变形:对于一个不等式,可以通过一些代数变形,将其转换为其他形式,更容易被证明出来。
如将两个不等式的左侧相乘,右侧相乘,再相减,得到新的不等式。
或者将一个不等式的左右两侧都平方,再相减,也可以得到新的不等式。
3. 等价转换:将不等式转化为等价形式,然后再利用已有的定理进行证明。
如将一个不等式的等号两侧同时加上一个数,就可以转化为另一个不等式,然后再进行证明。
4. 递推:递推是一种常用的证明方法,它可以将一个复杂的不等式转化为一个比较简单的不等式,然后通过多次递推证明出原不等式。
递推的关键在于找到一个递推式和一个初始条件。
二、基本策略1. 二分法:二分法是一种常用的证明策略,它将一个不等式的左右两侧分别处理,然后比较两侧的大小关系得到证明的结论。
2. 置换对称法:置换对称法指的是将一组变量按照一定的置换方式进行对称化,然后证明得到不等式后,再通过恢复变量之间的关系,得到原始不等式。
3. 大杀器策略:大杀器策略指的是使用一些已知的定理和公式来证明不等式。
如柯西不等式、阿贝尔不等式、托肯不等式等,这些定理都是不等式证明中比较重要的工具。
4. 分段讨论法:分段讨论法是一种常用的证明策略,适用于证明一些具有特定性质的不等式。
它将不等式的变量进行合理的分段,然后分别证明每个分段中的不等式。
三、小结总的来说,不等式证明的基本方法和策略都比较常用和灵活,在实际应用中需要根据具体问题进行灵活运用。
同时,在证明不等式之前,需要对不等式的基本定义和定理进行系统化的学习和掌握,才能更好地利用这些理论工具进行证明。
不等式证明基本方法一、数学归纳法数学归纳法是证明自然数性质的一种基本方法,对于与整数有关的不等式,我们也可以利用数学归纳法进行证明。
其基本思路是先证明当n=1时不等式成立,再假设当n=k时不等式成立,然后通过数学推理证明当n=k+1时不等式也成立。
二、反证法当我们尝试利用数学归纳法证明不等式时,有时可能会遇到困难,这时我们可以尝试使用反证法。
反证法的证明过程是:先假设不等式不成立,然后推导出与已知条件或已证明的定理矛盾的结论,从而证明原不等式的正确性。
三、插值法插值法也是一种常见的不等式证明方法。
其基本思路是在待证不等式的两边加入适当的不等式,并利用不等式的传递性和可加减性进行推导,最终得到待证不等式的真假结论。
四、绝对值法对于涉及绝对值的不等式,我们可以利用绝对值的性质进行证明。
例如,对于,a-b,>c这样的绝对值不等式,我们可以根据绝对值的定义将其拆分为两个不等式,再分别进行证明。
另外,利用绝对值不等式的性质,我们还可以进行变量替换等操作,将原不等式化简为更简单的形式进行证明。
五、特殊化方法特殊化方法是指将不等式中的一些变量或参数取特殊值,从而达到简化不等式的目的。
例如,对于含有幂函数的不等式,我们可以通过取特殊值使得幂函数变为常数或者线性函数,从而将原不等式化简为更简单的形式。
综上所述,不等式证明的基本方法包括数学归纳法、反证法、插值法、绝对值法和特殊化方法等。
在具体的证明过程中,我们需要根据待证不等式的特点选择合适的方法,并灵活运用各种数学工具和技巧,从而得到准确的证明结论。
数学归纳法证明不等式的两个技巧数学归纳法是一种数学证明方法,常用于证明自然数的性质。
它的基本思想是:首先证明当n为一些特定的自然数时,不等式成立;然后假设当n为一些自然数时,不等式也成立;最后利用这个假设证明当n为n+1时,不等式仍然成立。
下面将介绍两种常用的数学归纳法证明不等式的技巧。
技巧一:基础情况的证明在使用数学归纳法证明不等式时,首先需要证明基础情况,即当n为一些特定的自然数时,不等式是否成立。
例如,我们想要证明对于任意的正整数n,都有1+2+3+...+n≤n²。
基础情况是n=1时,不等式左边为1,右边为1²=1,不等式成立。
技巧二:归纳假设的运用假设当n为一些自然数时,不等式也成立,即假设1+2+3+...+n≤n²成立。
然后我们要利用这个假设来证明当n为n+1时,不等式仍然成立。
例如,我们要证明对于任意的正整数n,都有1+2+3+...+n+(n+1)≤(n+1)²。
根据归纳假设,我们可以得到1+2+3+...+n≤n²,所以我们可以将不等式右边的(n+1)²展开为n²+2n+1现在,我们需要证明1+2+3+...+n+(n+1)≤n²+2n+1、我们可以逐步将左边拆分成两部分,即(1+2+3+...+n)+(n+1)。
根据归纳假设,我们知道前一部分不大于n²,所以该不等式可以进一步简化为n²+(n+1)≤n²+2n+1最后,可以发现左边的n²+(n+1)小于等于右边的n²+2n+1,因为(n+1)小于等于2n+1、所以,我们得到了当n为n+1时,不等式仍然成立。
综上所述,通过基础情况的证明和归纳假设的运用,可以使用数学归纳法证明不等式。
这两个技巧可以帮助我们在证明过程中合理利用已有的条件和假设,从而简化证明的过程。
第2节证明不等式的基本方法证明不等式的基本方法总结如下:一、利用数学分析中的中值定理、极值、单调性等性质进行证明。
1.利用中值定理:利用连续函数介值定理或拉格朗日中值定理,根据函数的一些性质,可以推出不等式的成立。
例如,证明一个凸函数在区间上的函数值不小于端点的函数值。
2.利用极值:通过求导或其他方法,找到函数的极值点,然后证明这些极值点就是不等式的最小(最大)值点。
例如,证明两数之积不大于它们的平方和,可以通过求导得到函数的极值点,然后通过证明这个极值点为最小值点来完成。
3.利用单调性:如果已知函数在一些区间上是严格递增(递减)的,可以通过证明不等式在一些特殊点成立,并通过函数的单调性推出在整个区间上成立。
例如,证明一个正数的倒数小于它自己,则可以先证明在0到1之间成立,然后利用单调性推出在整个正数范围内成立。
二、利用数学归纳法进行证明。
如果不等式中的变量是正整数,可以利用数学归纳法进行证明。
首先证明当n=1时不等式成立,然后假设当n=k时不等式成立,再证明当n=k+1时不等式也成立。
例如,证明n个正数的平均值不小于它们的几何平均值,可以先证明当n=1时成立,然后假设当n=k时成立,再证明当n=k+1时也成立,最后利用数学归纳法推出结论。
三、利用代数方法。
1.利用等价变形:对于一个复杂的不等式,可以通过进行等价变形来简化证明。
通过将不等式的两边同时加上或减去一些式子,或者将不等式两边同时乘以或除以一些式子,可以得到一个等价的不等式,然后证明这个等价的不等式。
例如,证明正数的n次方大于等于它的平方,可以将不等式两边同时开方,然后证明这个等价的不等式。
2. 利用加减法、乘除法不等式:对于一个分式或多项式不等式,可以通过利用加减法、乘除法的不等式性质,将不等式化简为更简单的形式,再进行证明。
例如,证明a+b≤2ab,则可以将两边同时减去a+b再加上2,利用不等式的性质简化后得到ab≥1,再证明这个等价的不等式。