大学 几何光学习题讲义
- 格式:ppt
- 大小:1.30 MB
- 文档页数:43
几何光学实验讲义1.薄透镜焦距测量实验目的1.掌握薄透镜焦距的常用测定方法,研究透镜成像的规律。
2.理解明视距离与目镜放大倍数定义;3.掌握测微目镜的使用。
实验仪器1.LED白光点光源〔需加毛玻璃扩展光源〕2.毛玻璃3.品字形物屏4.待测凸透镜〔Φ = ,f = 150,200mm〕5.平面反射镜6.JX8测微目镜〔15X,带分划板〕7.像屏2个〔有标尺和无标尺〕8.干板架2个9.卷尺10.光学支撑件〔支杆、调节支座、磁力表座、光学平台〕基础知识1.光学系统的共轴调节在开展光学实验时,要先熟悉各光学元件的调节,然后按照同轴等高的光学系统调节原则进行粗调和细调,直到各光学元件的光轴共轴,并与光学平台平行为止。
1、粗调:将目标物、凸透镜、凹透镜、平面镜、像屏等光学元件放在光具座〔或光学平台〕上,使它们尽量靠拢,用眼睛观察,进行粗调〔升降调节、水平位移调节〕,使各元件的中心大致在与导轨〔平台〕平行的同一直线上,并垂直于光具座导轨〔平台〕。
2、细调:利用透镜二次成像法来判断是否共轴,并进一步调至共轴。
当物屏与像屏距离大于4f时,沿光轴移动凸透镜,将会成两次大小不同的实像。
假设两个像的中心重合,表示已经共轴;假设不重合,以小像的中心位置为参考〔可作一记号〕,调节透镜〔或物,一般调透镜〕的高低或水平位移,使大像中心与小像的中心完全重合,调节技巧为大像追小像,如下列图所示。
图1-1 二次成像法中物与透镜位置变化对成像的影响图1-1(a〕说明透镜位置偏低〔或物偏高〕,这时应将透镜升高〔或把物降低〕。
而在图(b〕情况,应将透镜降低〔或将物升高〕。
水平调节类似于上述情形。
当有两个透镜需要调整〔如测凹透镜焦距〕时,必须逐个进行上述调整,即先将一个透镜〔凸〕调好,记住像中心在屏上的位置,然后加上另一透镜〔凹〕,再次观察成像的情况,对后一个透镜的位置上下、左右的调整,直至像中心仍旧保持在第一次成像时的中心位置上。
注意,已调至同轴等高状态的透镜在后续的调整、测量中绝对不允许再变动2.薄透镜成像公式透镜分为会聚透镜和发散透镜两类,当透镜厚度与焦距相比甚小时,这种透镜称为薄透镜.值得注意的是,假设透镜太厚,光在透镜中的传播路径便无法忽略,光在透镜里的传播路径就必须做进一步的考虑。
光学讲义1.光的反射定律:(1)组合平面镜 (2)双镜面反射。
如图1-2-3,两镜面间夹角a =15º,OA =10cm ,A 点发出的垂直于2L 的光线射向1L 后在两镜间反复反射,直到光线平行于某一镜面射出,则从A 点开始到最后一次反射点,光线所走的路程是多少?(3)球面镜成像球面镜的焦距球面镜的反射仍遵从反射定律,法线是球面的半径。
一束近主轴的平行光线,经凹镜反射后将会聚于主轴上一点F (图1-4-1),这F 点称为凹镜的焦点。
一束近主轴的平行光线经凸面镜反射后将发散,反向延长可会聚于主轴上一点F (图1-4-2),这F 点称为凸镜的虚焦点。
焦点F 到镜面顶点O 之间的距离叫做球面镜的焦距f 。
可以证明,球面镜焦距f 等于球面半径R 的一半,即2R f =球面镜成像公式fv u 111=+ 上式是球面镜成像公式。
它适用于凹面镜成像和凸面镜成像,各量符号遵循“实取正,虚取负”的原则。
凸面镜的焦点是虚的,因此焦距为负值。
在成像中,像长和物长h 之比为成像放大率,用m 表示,uv h h m ='= 2.折射定律①折射光线在入射光线和法线所决定平面内; ②折射光线和入射光线分居法线两侧;③入射角1i 与折射角2i 满足2211sin sin i n i n =;④当光由光密介质向光疏介质中传播,且入射角大于临界角C 时,将发生全面反射现象(折射率为1n 的光密介质对折射率为2n 的光疏介质的临界角12sin n n C =)。
全反射全反射光从密度媒质1射向光疏媒质2,当入射角大于临界角211sin n a -=时,光线发图1-2-3αL 1L 2AO图1-4-1 图1-4-2生全反射。
全反射现象有重要的实用意义,如现代通讯的重要组成部分——光导纤维,就是利用光的全反射现象。
费马原理光程:光通过某一媒质的光程等于光在相同时间里在真空中所传播的几何路程。
均匀介质:ns l =非均匀介质:∑⎰→∆=iii nds sn l光总是沿着光程为极值(极大、极小、恒定)的路径从一点传播到另一点。
几何光学习题及解答1.证明反射定律符合费马原理。
证明:费马原理是光沿着光程为最小值、最大值或恒定值的路径传播。
⎰=BAnds 或恒值max .min ,在介质n 与'n 的界面上,入射光A 遵守反射定律11i i '=,经O 点到达B 点,如果能证明从A 点到B 点的所有光程中AOB 是最小光程,则说明反射定律符合费马原理。
设C 点为介质分界面上除O 点以外的其他任意一点,连接ACB 并说明光程∆ ACB>光程∆AOB由于∆ACB 与∆AOB 在同一种介质里,所以比较两个光程的大小,实际上就是比较两个路程ACB 与AOB 的大小。
从B 点到分界面的垂线,垂足为o ',并延长O B '至 B ′,使B O B O '='',连接 B O ',根据几何关系知B O OB '=,再结合11i i '=,又可证明∠180='B AO °,说明B AO '三点在一直线上,B AO ' 与AC 和B C '组成ΔB AC ',其中B C AC B AO '+〈'。
又∵CB B C AOB OB AO B O AO B AO ='=+='+=',ACB CB AC AOB =+〈∴即符合反射定律的光程AOB 是从A 点到B 点的所有光程中的极小值,说明反射定律符合费马原理。
2、根据费马原理可以导出在近轴光线条件下,从物点发出并会聚到像点的所有光线的光程都相等.由此导出薄透镜的物象公式。
证明:由QB A ~FBA 得:OF\AQ=BO\BQ=f\s 同理,得OA\BA=f '\s ',BO\BA=f\s由费马定理:NQA+NQ A '=NQQ '结合以上各式得:(OA+OB)\BA=1得证3.眼睛E 和物体PQ 之间有一块折射率为1.5的玻璃平板(见题3.3图),平板的厚度d 为30cm.求物PQ 的像 与物体PQ 之间的距离 为多少?解:.由题意知光线经两次折射后发生的轴向位移为:cmn d p p 10)321(30)11(=-=-=',即像与物的距离为cm 103.眼睛E 和物体PQ 之间有一块折射率为1.5的玻璃平板(见题3.3图),平板的厚度d 为30cm.求物PQ 的像 与物体PQ 之间的距离 为多少? 解:.由题意知光线经两次折射后发生的轴向位移为:cmn d p p 10)321(30)11(=-=-=',即像与物的距离为cm 10En=1题3.3图4.玻璃棱镜的折射棱角A 为60度,对某一波长的光其折射率为1.6.计算(1)最小偏向角;(2)此时的入射角;(3)能使光线从A 角两侧透过棱镜的最小入射角.解:由最小偏向角定义得 n=sin2A0+θ/sin 2A,得θ0=46゜16′由几何关系知,此时的入射角为:i=2A0+θ=53゜8′当在C 处正好发生全反射时:i 2’= sin-16.11 =38゜41′,i 2=A- i 2’=21゜19′∴i 1= sin -1(1.6sin 21゜19′)= 35゜34′ ∴imin =35゜34′5.图示一种恒偏向棱角镜,它相当于一个30度-60-90度棱镜与一个45度-45度度棱镜按图示方式组合在一起.白光沿i 方向入射,我们旋转这个棱镜来改变1θ,从而使任意一种波长的光可以依次循着图示的路径传播,出射光线为r.求证:如果2sin 1n=θ则12θθ=,且光束i 与 r 垂直(这就是恒偏向棱镜名字的由来). 解: i nsin sin 11=θ若θ1sin = 2n , 则 sini 1 = 21, i 1=30。
工程光学讲义主讲:刘文超湖北工业大学机械工程学院第一章几何光学基本定律与成像概念本章重点:几何光学的基本术语及基本定律、光路计算及完善成像的条件。
第一节几何光学基本定律一、光波与光线1、光波性质性质:光是一种电磁波,是横波。
我们平常看到的光波属于可见光波,波长范围390nm—780nm光波分为两种:单色光波及复色光波2、光波的传播速度ν光波的传播速度不是一个常数,而是一个变量,它主要与以下二因素:①与介质折射率n有关;②与波长λ有关系。
ν=c/n式中,c为光在真空中的传播速度;n为介质折射率。
3、光线:是没有直径、没有体积却携有能量并具有方向性的几何线。
4、光束:同一光源发出的光线的集合。
5、波面(等位相面)常见波面有:平面波、球面波、柱面波。
二、几何光学的四大基本定律1、直线传播定律:在各向同性的均匀介质中,光沿直线传播(光线是直线)。
2、独立传播定律:从不同光源发出的光束,以不同的方向通过空间某点时,彼此互不影响,各光束独立传播。
3、折射定律:入射光线、反射光线、通过投射点的法线三者位于同一平面,入射角等于反射角且大小相等符号相反。
(分居法线两侧)4、折射定律:入射光线、折射光线、通过投射点的法线三者位于同一平面,并且有:式中,I为入射角;I为折射角;n为第一种介质折射率;n为第二种介质折射率。
以上我们分析了四大定律,下面我们讲一下光学中一个非常重要的现象-全反射现象。
三、全反射现象(又称完全内反射)1、定义:从光密介质射入到光疏介质,并且当入射角大于临界角时,在二种介质的分界面上光全部返回到原介质中的现象。
2、临界角是:折射角刚好为900的入射角。
其数学表示形式如下:根据折射定律3、全反射发生的条件要想发生全反射,必须满足以下二个条件:①入射光必须从光密介质射入到光疏介质;②入射角必须大于临界角。
4、全反射的应用。
①反射棱镜:棱镜是光学设计时使用的比较多的一类光学元件,而其中的部分棱镜就利用了全反射的特点。
几何光学习题课1基本知识在经典物理的范畴内,光是电磁播,其传播规律由麦克斯韦方程组来描述,但由于光的波长很短,在研究的问题中涉及到的尺度远大于光波波长时,光的波动性可以忽略,用光线来取代波线,由此建立起来的光传播理论就是所谓的几何光学。
几何光学在方法上是几何的,在物理上不涉及光的本质。
1. 折射率 几何光学的三个定律 全反射 折射率的定义:vc n =,c 是光在真空中的速度,v 是光在该种媒质中的传播速度;相对折射率的定义:1212n n n =。
光的直线传播定律:在均匀媒质中光沿直线传播。
光的反射和折射定律:(1)反射线和折射线都在入射面内,并分居在法线的两侧;(2)反射角等于入射角;(3)折射角与入射角的正弦比与入射角无关,是一个与媒质和光的波长有关的常数(相对折射率)。
(斯涅耳定律)全反射:当光线从光密媒质(2n )射向光疏媒质(21n n <)时,当入射角等于或大于某一角度时(临界角121/sin n n i C -=),折射光线消失,光线全部反射的现象。
2.棱镜与色散 偏向角:'11i i +=δ,1i :入射角,'1i :出射角;最小偏向角产生的充要条件:'11i i =或'22i i =作用:用来测透明介质的折射率:)2sin(/)2sin(minαδα+=n 。
色散产生的原因:介质的折射率n 是光束波长的函数,)(λn n =棱镜可以用做光谱仪,进行光谱分离。
3.光程 费马原理 光程:⎰=PQndlQP)(,光程可以理解为在相同的时间内光线在真空中传播的距离。
注意,光程是一个非常重要的一个概念,在后面的课程中研究光的干涉、衍射、位相延迟时要经常用到。
费马原理:QP 两点间光线的实际路径是光程)(QP为平稳的路径。
数学表达式为:0=⎰PQndl δ注意:费马原理的实质是揭示光线在媒质中沿什么路径传播。
4.光的可逆性原理当光线的方向反转时,光线将沿着同一路径传播。
前言1.个人介绍2.课程内容、地位与应用∙几何光学:研究光的传播方向(光线学)∙物理光学:电磁波3.教学计划(36学时,9周)4.考试形式:平时20%,考试80%5.学习态度和方法:∙掌握基本原理;∙主动扩展6.课堂要求:∙不许旷课∙旷课三次则没有成绩内容简介:∙几何光学:研究光的传播方向(光线学)1、2章理论基础3~6章理论分析7~9应用∙物理光学:电磁波光学的研究内容:我们通常把光学分成几何光学、物理光学和量子光学。
几何光学是从几个由实验得来的基本原理出发,来研究光的传播问题的学科。
它利用光线的概念、折射、反射定律来描述光在各种媒质中传播的途径,它得出的结果通常总是波动光学在某些条件下的近似或极限。
物理光学是从光的波动性出发来研究光在传播过程中所发生的现象的学科,所以也称为波动光学。
它可以比较方便的研究光的干涉、光的衍射、光的偏振,以及光在各向异性的媒质中传插时所表现出的现象。
波动光学的基础就是经典电动力学的麦克斯韦方程组。
波动光学不详论介电常数和磁导率与物质结构的关系,而侧重于解释光波的表现规律。
波动光学可以解释光在散射媒质和各向异性媒质中传播时现象,以及光在媒质界面附近的表现;也能解释色散现象和各种媒质中压力、温度、声场、电场和磁场对光的现象的影响。
量子光学1900年普朗克在研究黑体辐射时,为了从理论上推导出得到的与实际相符甚好的经验公式,他大胆地提出了与经典概念迥然不同的假设,即“组成黑体的振子的能量不能连续变化,只能取一份份的分立值”。
1905年,爱因斯坦在研究光电效应时推广了普朗克的上述量子论,进而提出了光子的概念。
他认为光能并不像电磁波理论所描述的那样分布在波阵面上,而是集中在所谓光子的微粒上。
在光电效应中,当光子照射到金属表面时,一次为金属中的电子全部吸收,而无需电磁理论所预计的那种累积能量的时间,电子把这能量的一部分用于克服金属表面对它的吸力即作逸出功,余下的就变成电子离开金属表面后的动能。