人工智能与神经网络
- 格式:doc
- 大小:50.50 KB
- 文档页数:5
神经网络与人工智能的发展历程近年来,随着信息技术的快速发展,人们对于人工智能越来越感兴趣。
其中最重要的一个分支就是神经网络,它可以通过训练和学习,实现类似于人类的行为和决策能力。
本文将从神经网络的起源,基本概念,发展历程,应用等方面来介绍一下神经网络与人工智能的发展历程。
神经网络的起源神经网络的诞生可以追溯到上个世纪50年代的早期,当时,在生物学家、数学家和计算机专家之间的合作下,人们对大脑是如何处理信息的这个问题有了全新的认识。
他们开始模拟人脑的结构,以此来研究和解决计算机处理信息的问题。
1958年,一个名为Perceptron的神经网络模型被提出获得了广泛关注,这一模型具有一定的分类能力。
神经网络的基本概念神经网络,亦称为人工神经网络,简称ANN(Artificial Neural Network),是由大量集成的人工神经元(也称为节点)构成的计算模型。
它具有自学习、自适应和容错能力,可以模拟人类的认知、决策等处理过程。
神经网络模型的基本组成包括输入层、隐藏层和输出层。
输入层:神经网络模型的输入数据,例如图像、声音、文本等,是经过预处理后的、数字化的数据。
隐藏层:隐藏层是神经网络的处理核心,它是由许多人工神经元组成,可以分成多层。
每一层的神经元通过加权计算对自己的输入信号进行处理,经过学习,调整权重,不断优化处理能力。
输出层:输出层是神经网络最终得到的结果,例如数字分类、图像识别、语音识别等。
输出层通常采用Softmax函数对结果进行概率归一化,对输入数据标签进行分类输出。
神经网络的发展历程经过长时间的研究和开发,神经网络逐渐成为人工智能领域最重要的分支之一。
在过去的几十年中,神经网络经历了不断的改进和发展,从最初的单层卷积神经网络(LeNet-5)到深度学习中越来越复杂的多层卷积神经网络模型模型(例如AlexNet, GoogLeNet, ResNet, VGG等)。
此外,还有循环神经网络、自编码器、GAN等。
人工智能与神经网络考试试题一、选择题(每题 5 分,共 30 分)1、以下哪个不是人工智能的应用领域?()A 医疗诊断B 金融投资C 艺术创作D 传统手工制造业2、神经网络中的神经元通过什么方式进行连接?()A 随机连接B 全连接C 部分连接D 以上都不对3、在训练神经网络时,常用的优化算法是()A 随机梯度下降B 牛顿法C 二分法D 以上都是4、下列关于人工智能和神经网络的说法,错误的是()A 人工智能包括神经网络B 神经网络是实现人工智能的一种方法C 人工智能就是神经网络D 神经网络具有学习能力5、下面哪种激活函数常用于神经网络?()A 线性函数B 阶跃函数C Sigmoid 函数D 以上都是6、神经网络的层数越多,其性能一定越好吗?()A 一定B 不一定C 肯定不好D 以上都不对二、填空题(每题 5 分,共 30 分)1、人工智能的英文缩写是_____。
2、神经网络中的“学习”是指通过调整_____来优化模型性能。
3、常见的神经网络架构有_____、_____等。
4、训练神经网络时,为了防止过拟合,可以采用_____、_____等方法。
5、深度学习是基于_____的一种机器学习方法。
6、神经网络中的损失函数用于衡量_____与_____之间的差异。
三、简答题(每题 10 分,共 20 分)1、请简要说明人工智能和机器学习的关系。
答:人工智能是一个广泛的概念,旨在让计算机能够像人类一样思考和行动,实现智能的表现。
机器学习则是实现人工智能的重要手段之一。
机器学习专注于让计算机通过数据和算法进行学习,自动发现数据中的模式和规律,从而能够对新的数据进行预测和决策。
机器学习为人工智能提供了技术支持,使计算机能够从大量数据中获取知识和技能,不断提升智能水平。
可以说机器学习是人工智能的核心组成部分,但人工智能不仅仅局限于机器学习,还包括其他技术和方法,如知识表示、推理、规划等。
2、简述神经网络中反向传播算法的原理。
神经网络在人工智能中的作用与优势人工智能(Artificial Intelligence, AI)是当今科技领域的热门话题。
在过去的几十年里,人们对AI的研究不断深入,并取得了许多重要的突破。
神经网络作为人工智能的重要组成部分之一,发挥着关键的作用。
本文将从神经网络的定义、作用以及优势三个方面,探讨神经网络在人工智能中的重要性。
首先,我们先来了解一下神经网络。
神经网络是一种模拟生物神经系统结构和功能的数学模型。
它由大量互相连接的人工神经元构成,这些神经元之间的连接强度可以进行学习和调整。
神经网络通过对数据进行多层次的处理和分析,模拟人类大脑对信息的处理方式,从而实现对复杂问题的解决。
神经网络在人工智能中起到了至关重要的作用。
首先,神经网络在模式识别方面具有强大的能力。
通过从大量的数据中学习和提取特征,神经网络可以识别和分类不同的模式。
例如,在图像识别领域,神经网络能够准确地辨别图像中的人物、物体和场景,具有很高的准确性和鲁棒性。
其次,神经网络在预测和决策方面也具有重要的作用。
通过对历史数据的分析和训练,神经网络可以预测未来的趋势和结果。
这在金融市场、天气预报和医学诊断等领域有着广泛的应用。
同时,神经网络还可以通过学习和自适应的方式,做出决策并适应环境的变化。
这使得神经网络在自动驾驶、智能机器人等领域具有广阔的发展前景。
此外,神经网络还能够实现大规模并行计算,提高计算效率。
神经网络的结构可以同时处理多个输入,并在不同的神经元之间进行并行计算。
这使得神经网络在处理大量数据和复杂计算任务时能够快速且高效地完成。
与传统的计算方法相比,神经网络具有更高的速度和更好的性能表现。
在人工智能的发展过程中,神经网络不仅具备强大的学习能力,还可以不断优化和改进。
通过不断调整神经网络的结构和参数,我们可以改进神经网络的性能和准确度。
这种灵活性和可调性使得神经网络适用于各种不同的任务和应用场景。
无论是语音识别、自然语言处理还是机器翻译,神经网络都可以为其提供支持。
神经网络在人工智能中的应用随着科技的不断进步,人工智能成为了当下最热门的领域之一。
而其中一个重要的技术就是神经网络。
神经网络在人工智能中的应用不仅可以让机器更好地学习人类的思维方式,还可以解决许多实际问题。
本文将探讨神经网络在人工智能中的应用,并为您介绍其工作原理。
一、神经网络的工作原理神经网络是一种仿照人类神经系统而创造的计算模型。
它由许多神经元组成,每个神经元都与其他神经元连接并通过神经突触进行信息交换。
神经网络的每个神经元都有着“权重”,与其连接的神经元会将信息通过神经突触传输给它,并将信息的值乘上“权重”传递过去。
接收到信息后,神经元会根据权重的不同加权计算后,输出一个值。
这个值可能被其他神经元接收并进行下一轮的计算。
二、神经网络在图像识别中的应用神经网络在人工智能中的应用非常广泛。
其中最为经典的应用莫过于图像识别技术。
以汽车驾驶为例,在自动驾驶汽车中,图像传感器捕获前面的路况及道路信息,神经网络通过学习这些信息并进行运算,可以快速而准确地识别前方物体的类别、速度和距离等信息,让车辆做出正确的决策和操作。
三、神经网络在自然语言处理中的应用神经网络在自然语言处理中也有着广泛的应用。
比如在聊天机器人或语音助手中,神经网络可以利用已有的语言资源,通过计算机学习的方式模仿人类的模式,从而能够更为自然地解析和生成语言。
同时,神经网络也可以通过对文本进行分类或情感分析等任务,从海量的语言数据中挖掘有价值的信息。
四、神经网络在金融领域中的应用金融领域是神经网络的另一个应用领域。
通过对交易数据进行分析,神经网络可以不仅仅依靠人工算法来预测股市的走势和汇率的变化等趋势,而且还能够进行风险分析和交易信号的生成。
基于神经网络的这种智能分析方法,目前在金融领域已经得到了广泛的应用。
五、神经网络的发展前景神经网络在人工智能领域的应用,可以帮助人们实现更加准确、快速、便捷的决策以及增强人机交互的效果。
随着技术的不断发展,神经网络的发展前景也是非常广阔的。
人工智能专家系统与神经网络的应用与优缺点人工智能(AI)是一种模拟人类智能的技术,它通过模仿人类的思维和行为,使机器能够自主地处理复杂任务。
人工智能专家系统和神经网络是AI中两个重要的子领域,它们都在不同的领域有广泛的应用。
本文将探讨人工智能专家系统和神经网络的应用以及它们的优缺点。
一、人工智能专家系统的应用人工智能专家系统是一种基于知识的计算机系统,它模拟了领域专家解决问题的过程。
专家系统通过收集和整理专家的知识,将其编码为规则和推理机制,使系统能够模拟专家的决策过程。
以下是人工智能专家系统的应用领域:医疗诊断:专家系统可以通过收集大量的病例数据和医学知识,对疾病进行精确的诊断和治疗。
它可以帮助医生更快速、准确地做出诊断,提高医疗水平。
企业管理:专家系统可以用于企业决策制定和管理。
通过评估和分析大量的数据,它可以帮助企业领导层做出更明智的决策,提高企业的效率和竞争力。
工业控制:专家系统可以应用于工业生产中的自动控制系统,使生产过程更加自动化、高效化。
它可以根据传感器收集到的数据进行实时监测和控制,提高生产质量和效率。
二、人工神经网络的应用人工神经网络是一种仿真人脑神经元结构和工作方式的计算模型。
它由大量的人工神经元和连接它们的权重组成,通过学习和调整权重来预测结果或解决问题。
以下是人工神经网络的应用领域:图像识别:神经网络可以用于图像识别和分类。
通过训练神经网络,它可以学习到不同图像的特征和模式,并能够自动识别出不同类别的图像。
自然语言处理:神经网络可以用于自然语言处理任务,如语言翻译、情感分析等。
它可以学习语言的语法和语义规则,并能够生成准确的翻译结果或情感分析报告。
金融预测:神经网络可以用于金融市场的预测和分析。
通过学习历史数据和市场规律,它可以预测股票价格、货币兑换率等金融指标的变化趋势。
三、人工智能专家系统的优缺点人工智能专家系统的优点之一是它可以利用专家的知识和经验,进行准确、快速的决策。
人脑神经网络与人工智能技术的差异与联系随着科技的不断进步,人工智能技术已融入人们的日常生活。
但是,智能机器的行为和人类行为之间存在很大的差异,其中的原因是极其复杂的。
本文旨在探究人脑神经网络与人工智能技术的差异与联系,并分析它们在未来的发展趋势。
人脑神经网络的长处一个普遍的共识是,人的大脑与其他生物灵长类动物的大脑交互作用较小,而且比任何其他动物的大脑都要复杂得多。
然而,即使是人的大脑,我们也仅仅只是了解了其表层。
人类的大脑内有数十亿的神经元(neurons),以及它们之间的连接——突触(synapses)。
随着神经元的活动,它们形成了复杂的网络连接,这些网络负责控制我们的思考、行动和感觉。
人脑神经网络有许多优势。
例如,人类的大脑可以识别视觉刺激、解释语言并做出感性判断。
而且,由于人类的基因组是如此复杂,所以人类的大脑可以执行非线性计算,这使得人类可以更好地处理新的信息和不可预测的事件。
现代人工智能技术(AI)复制了许多人脑神经网络的特性,并在某些领域取得了巨大成功。
例如,深度学习(deep learning)是一种人工神经网络,模仿了人类的大脑,现在在人脸识别、自然语言处理等领域取得了巨大的成功。
其他的人工智能技术,在某些领域也取得了很好的成果。
例如,基于规则的系统使用基于规则的推理,来解决需要单独明确的步骤和指令的问题。
例如,机器人的程序可以使用基于规则的系统,让机器人识别障碍物,或是接触到物体。
人工智能技术的成功在很大程度上要归结于计算和存储技术的发展。
由于云计算机技术的不断普及,现场数据处理和大规模的分布式模型训练技术已经成为现实。
这种快速的计算速度为深度学习等机器学习算法的性能带来了质的飞跃。
然而,与人脑神经网络相比,人工智能技术仍有很大优化的空间。
人工智能技术最大的问题就是其设计的算法通常是预测性的(predictive),它们需要大量的训练数据才能进行学习。
这就要求算法适用的场景必须是有限且已知的。
人工智能神经网络人工智能神经网络(Artificial Neural Networks,ANN)是一种模拟人脑神经网络的计算模型。
它由一些简单的单元(神经元)组成,每个神经元都接收一些输入,并生成相关的输出。
神经元之间通过一些连接(权重)相互作用,以完成某些任务。
神经元神经元是神经网络中的基本单元,每个神经元都有多个输入和一个输出。
输入传递到神经元中,通过一些计算生成输出。
在人工神经网络中,神经元的模型是将所有输入加权求和,将权重乘以输入值并加上偏差值(bias),然后将结果带入激活函数中。
激活函数决定神经元的输出。
不同类型的神经元使用不同的激活函数,如Sigmond函数、ReLU函数等。
每个神经元的输出可以是其他神经元的输入,这些连接和权重形成了一个图,即神经网络。
神经网络神经网络是一种由多个神经元组成的计算模型。
它以输入作为网络的初始状态,将信息传递到网络的每个神经元中,并通过训练来调整连接和权重值,以产生期望的输出。
神经网络的目的是通过学习输入和输出之间的关系来预测新数据的输出。
神经网络的设计采用层次结构,它由不同数量、形式和顺序的神经元组成。
最简单的网络模型是单层感知器模型,它只有一个神经元层。
多层神经网络模型包括两种基本结构:前向传播神经网络和循环神经网络。
前向传播神经网络也称为一次性神经网络,通过将输入传递到一个或多个隐藏层,并生成输出。
循环神经网络采用时间序列的概念,它的输出不仅与当前的输入有关,还与以前的输入有关。
训练训练神经网络是调整其连接和权重值以达到期望输出的过程。
训练的目的是最小化训练误差,也称为损失函数。
训练误差是神经网络输出与期望输出之间的差异。
通过训练,可以将网络中的权重和偏置调整到最佳值,以最大程度地减小训练误差。
神经网络的训练过程通常有两种主要方法:1.前向传播: 在此方法中,神经网络的输入通过网络经过一种学习算法来逐步计算,调整每个神经元的权重和偏置,以尽可能地减小误差。
人工智能和神经网络有什么联系与区别人工智能和神经网络有什么联系与区别?神经网络:神经网络是现代人工智能的最重要的分支,讨论神经网络的理论基础,算法设计与开发,工程应用,代码展示与交流;人工智能就是对信息展开智能化处置的一种模式,主要存有两种处理方式[9]:3.7.1专家系统分词法从仿真人脑的功能启程,将分词过程看做就是科学知识推理小说的过程,结构推理小说网络,将分词所需的汉语词法、句法、语义科学知识分离出来,把科学知识则表示、知识库结构与保护做为考量的中心。
科学知识分成:常识性科学知识,使用“语义网络”则表示;启发性科学知识,使用“产生式规则”则表示。
专家系统优点就是知识库不易保护和管理,但对外界的信息变化不脆弱。
3.7.2神经网络分词法演示人脑的运转,原产处置,创建排序模型,将分词科学知识集中、隐式地取走神经网络内部,通过自学和训练发生改变内部的权值,以达至恰当的分词效果。
该分词方法的关键,是知识库的非政府和网络推理小说规则的创建。
神经网络分后词法具备对外界变化脆弱、反应快速,且具备自学、自非政府的能力;缺点是对尚无科学知识保护更新困难,网络模型抒发繁杂,训练时间短。
3.7.3神经网络专家系统分词法神经网络专家系统分后词法就是将神经网络分后词法与专家系统分后词法融合出来的一种方法。
即为利用了专家系统科学知识隐式抒发的优势,又利用神经网络自学、自非政府的特点,这就是基于人工智能的分词方法一种有益的尝试。
使用包含专家系统和神经网络在内的人工智能技术去研究汉语自动分词与其它方法存有显著相同。
本质上谈,它就是一种对人脑思维方式的演示,试图用数字模型去迫近人们对语言重新认识的过程。
在汉语自动分词研究中,应用专家系统的时间比较短,引入神经网络技术的研究才刚刚起步,存在许多有待进一步解决的问题。
专家系统的缺点是不能从经验中学习,当知识库庞大时难以维护,要进行多歧义字段切分时耗时较长,同时在知识表示、知识获取和知识验证等方面存在一些问题。
人工智能中的神经网络原理近年来,人工智能技术的快速发展已经为各行各业带来了极大的变革和发展机遇,而神经网络以其独特的优势而成为了人工智能中最为重要的一种技术手段。
那么,什么是神经网络?它在人工智能技术中又具有哪些应用?我们今天就来详细探讨一下神经网络的相关原理。
一、神经网络原理神经网络是一种信息处理系统,它模拟人脑的神经网络系统,并通过不断的学习与调整来优化其处理能力。
神经网络主要分为三个部分:输入层、中间层和输出层。
其中,输入层主要负责接收输入的信息,中间层则根据输入信息进行处理和计算,并将信息传递到下一层,而输出层则输出最终结果。
在神经网络的计算过程中,每个节点都有一个数学模型,即神经元。
神经元通过计算来处理输入信息,并把计算结果交给下一层神经元进行处理。
神经元的计算模型最基础的形式是线性模型和非线性模型,其中非线性模型最为常见和有效。
二、神经网络的学习和训练神经网络的优势在于其可以不断地从数据中学习和优化自己的处理能力,而这就需要神经网络不断地进行训练和调整。
神经网络的训练主要通过反向传播算法进行实现,即将网络计算结果与实际结果进行比对,计算误差并向反方向对网络进行调整,以最小化误差并优化网络性能。
三、神经网络在人工智能中的应用神经网络在人工智能中有着极为广泛的应用领域。
其中最为常见的应用就是图像和语音识别。
在图像识别方面,神经网络通过对大量图像进行训练,从而能够对新的图像进行较为准确的识别和分类。
在语音识别方面,神经网络同样是非常有效的技术手段,它能够根据语音信号进行分析和处理,从而实现较高的音频识别率。
此外,神经网络还可以用于自然语言处理、推荐系统、机器翻译、医学诊断等许多领域的应用中。
随着技术的不断发展与突破,神经网络在人工智能中的应用前景还将日益广阔。
总结:通过上面的简单介绍,我们可以看到神经网络在人工智能中的重要性和优越性。
神经网络的应用范围已经广泛涵盖了许多领域,尤其在图像和语音识别方面得到了广泛应用和高度认可。
神经网络在人工智能中的应用人工智能(Artificial Intelligence,简称AI)是计算机科学的一个重要分支,旨在使计算机能够模拟和执行人类智能活动。
神经网络(Neural Network)作为人工智能的核心技术之一,通过模拟人脑神经元之间的连接和信息传递方式,实现了对复杂问题的学习和处理能力。
本文将探讨神经网络在人工智能中的应用,并分析其在不同领域中的优势和挑战。
神经网络的基本原理神经网络是由大量相互连接的人工神经元构成的计算模型。
每个神经元接收来自其他神经元的输入,并通过激活函数对这些输入进行加权求和,然后将结果传递给下一层神经元。
通过多层次的连接和反馈机制,神经网络可以从输入数据中提取特征,并根据这些特征进行分类、预测或决策。
图像识别与处理图像识别是人工智能领域中一个重要的研究方向,而神经网络在图像识别与处理方面具有显著优势。
通过训练大量的图像数据,神经网络可以学习到图像中的特征,并能够准确地识别出物体、人脸、文字等。
例如,深度学习模型中的卷积神经网络(Convolutional Neural Network,简称CNN)在图像分类、目标检测和图像生成等任务中取得了重大突破。
自然语言处理自然语言处理(Natural Language Processing,简称NLP)是人工智能领域中另一个重要的研究方向,旨在使计算机能够理解和处理人类语言。
神经网络在自然语言处理中的应用也取得了显著进展。
通过训练大量的文本数据,神经网络可以学习到语言的语法规则和语义信息,并能够进行文本分类、情感分析、机器翻译等任务。
例如,循环神经网络(Recurrent Neural Network,简称RNN)在机器翻译和语音识别等任务中取得了重要成果。
数据挖掘与预测数据挖掘是从大量数据中发现有价值的信息和模式的过程,而神经网络在数据挖掘与预测方面具有很强的能力。
通过训练大量的数据样本,神经网络可以学习到数据之间的关联性和规律,并能够进行数据分类、回归分析、异常检测等任务。
人工智能与神经网络摘要:人工智能的定义可以分为两部分,即“人工”和“智能”。
“人工”比较好理解,争议性也不大。
有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步,等等。
但总的来说,“人工系统”就是通常意义下的人工系统。
关键词:人工智能,神经网络一、人工智能“人工智能”一词最初是在1956 年Dartmouth学会上提出的。
从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。
人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。
人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。
但不同的时代、不同的人对这种“复杂工作”的理解是不同的。
例如繁重的科学和工程计算本来是要人脑来承担的,现在计算机不但能完成这种计算, 而且能够比人脑做得更快、更准确,因之当代人已不再把这种计算看作是“需要人类智能才能完成的复杂任务”, 可见复杂工作的定义是随着时代的发展和技术的进步而变化的, 人工智能这门科学的具体目标也自然随着时代的变化而发展。
它一方面不断获得新的进展,一方面又转向更有意义、更加困难的目标。
目前能够用来研究人工智能的主要物质手段以及能够实现人工智能技术的机器就是计算机, 人工智能的发展历史是和计算机科学技术的发展史联系在一起的。
除了计算机科学以外, 人工智能还涉及信息论、控制论、自动化、仿生学、生物学、心理学、数理逻辑、语言学、医学和哲学等多门学科。
人工智能学科研究的主要内容包括:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。
人工智能的定义可以分为两部分,即“人工”和“智能”。
“人工”比较好理解,争议性也不大。
有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步,等等。
但总的来说,“人工系统”就是通常意义下的人工系统。
关于什么是“智能”,就问题多多了。
这涉及到其它诸如意识(consciousness)、自我(self)、思维(mind)(包括无意识的思维(unconscious_mind)等等问题。
人唯一了解的智能是人本身的智能,这是普遍认同的观点。
但是我们对我们自身智能的理解都非常有限,对构成人的智能的必要元素也了解有限,所以就很难定义什么是“人工”制造的“智能”了。
因此人工智能的研究往往涉及对人的智能本身的研究。
其它关于动物或其它人造系统的智能也普遍被认为是人工智能相关的研究课题。
人工智能目前在计算机领域内,得到了愈加广泛的重视。
并在机器人,经济政治决策,控制系统,仿真系统中得到应用。
著名的美国斯坦福大学人工智能研究中心尼尔逊教授对人工智能下了这样一个定义:“人工智能是关于知识的学科――怎样表示知识以及怎样获得知识并使用知识的科学。
”而另一个美国麻省理工学院的温斯顿教授认为:“人工智能就是研究如何使计算机去做过去只有人才能做的智能工作。
”这些说法反映了人工智能学科的基本思想和基本内容。
即人工智能是研究人类智能活动的规律,构造具有一定智能的人工系统,研究如何让计算机去完成以往需要人的智力才能胜任的工作,也就是研究如何应用计算机的软硬件来模拟人类某些智能行为的基本理论、方法和技术。
人工智能(Artificial Intelligence,简称AI)是计算机学科的一个分支,二十世纪七十年代以来被称为世界三大尖端技术之一(空间技术、能源技术、人工智能)。
也被认为是二十一世纪(基因工程、纳米科学、人工智能)三大尖端技术之一。
这是因为近三十年来它获得了迅速的发展,在很多学科领域都获得了广泛应用,并取得了丰硕的成果,人工智能已逐步成为一个独立的分支,无论在理论和实践上都已自成一个系统。
人工智能是研究使计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。
人工智能将涉及到计算机科学、心理学、哲学和语言学等学科。
可以说几乎是自然科学和社会科学的所有学科,其范围已远远超出了计算机科学的范畴,人工智能与思维科学的关系是实践和理论的关系,人工智能是处于思维科学的技术应用层次,是它的一个应用分支。
从思维观点看,人工智能不仅限于逻辑思维,要考虑形象思维、灵感思维才能促进人工智能的突破性的发展,数学常被认为是多种学科的基础科学,数学也进入语言、思维领域,人工智能学科也必须借用数学工具,数学不仅在标准逻辑、模糊数学等范围发挥作用,数学进入人工智能学科,它们将互相促进而更快地发展。
二、神经网络神经网络是:思维学普遍认为,人类大脑的思维分为抽象(逻辑)思维、形象(直观)思维和灵感(顿悟)思维三种基本方式。
逻辑性的思维是指根据逻辑规则进行推理的过程;它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理;这一过程可以写成串行的指令,让计算机执行。
然而,直观性的思维是将分布式存储的信息综合起来,结果是忽然间产生想法或解决问题的办法。
这种思维方式的根本之点在于以下两点:1.信息是通过神经元上的兴奋模式分布储在网络上;2.信息处理是通过神经元之间同时相互作用的动态过程来完成的。
人工神经网络就是模拟人思维的第二种方式。
这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。
虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。
“人脑是如何工作的?”“人类能否制作模拟人脑的人工神经元?”多少年以来,人们从医学、生物学、生理学、哲学、信息学、计算机科学、认知学、组织协同学等各个角度企图认识并解答上述问题。
在寻找上述问题答案的研究过程中,近年来逐渐形成了一个新兴的多学科交叉技术领域,称之为“神经网络”。
神经网络的研究涉及众多学科领域,这些领域互相结合、相互渗透并相互推动。
不同领域的科学家又从各自学科的兴趣与特色出发,提出不同的问题,从不同的角度进行研究。
人工神经网络首先要以一定的学习准则进行学习,然后才能工作。
现以人工神经网络对手写“A”、“B”两个字母的识别为例进行说明,规定当“A”输入网络时,应该输出“1”,而当输入为“B”时,输出为“0”。
所以网络学习的准则应该是:如果网络作出错误的的判决,则通过网络的学习,应使得网络减少下次犯同样错误的可能性。
首先,给网络的各连接权值赋予(0,1)区间内的随机值,将“A”所对应的图象模式输入给网络,网络将输入模式加权求和、与门限比较、再进行非线性运算,得到网络的输出。
在此情况下,网络输出为“1”和“0”的概率各为50%,也就是说是完全随机的。
这时如果输出为“1”(结果正确),则使连接权值增大,以便使网络再次遇到“A”模式输入时,仍然能作出正确的判断。
如果输出为“0”(即结果错误),则把网络连接权值朝着减小综合输入加权值的方向调整,其目的在于使网络下次再遇到“A”模式输入时,减小犯同样错误的可能性。
如此操作调整,当给网络轮番输入若干个手写字母“A”、“B”后,经过网络按以上学习方法进行若干次学习后,网络判断的正确率将大大提高。
这说明网络对这两个模式的学习已经获得了成功,它已将这两个模式分布地记忆在网络的各个连接权值上。
当网络再次遇到其中任何一个模式时,能够作出迅速、准确的判断和识别。
一般说来,网络中所含的神经元个数越多,则它能记忆、识别的模式也就越多。
心理学家和认知科学家研究神经网络的目的在于探索人脑加工、储存和搜索信息的机制,弄清人脑功能的机理,建立人类认知过程的微结构理论。
生物学、医学、脑科学专家试图通过神经网络的研究推动脑科学向定量、精确和理论化体系发展,同时也寄希望于临床医学的新突破;信息处理和计算机科学家研究这一问题的目的在于寻求新的途径以解决目前不能解决或解决起来有极大困难的大量问题,构造更加逼近人脑功能的新一代计算机。
人工神经网络是由大量的简单基本元件——神经元相互联接而成的自适应非线性动态系统。
每个神经元的结构和功能比较简单,但大量神经元组合产生的系统行为却非常复杂。
人工神经网络反映了人脑功能的若干基本特性,但并非生物系统的逼真描述,只是某种模仿、简化和抽象。
与数字计算机比较,人工神经网络在构成原理和功能特点等方面更加接近人脑,它不是按给定的程序一步一步地执行运算,而是能够自身适应环境、总结规律、完成某种运算、识别或过程控制。
人工神经元的研究起源于脑神经元学说。
19世纪末,在生物、生理学领域,Waldeger等人创建了神经元学说。
人们认识到复杂的神经系统是由数目繁多的神经元组合而成。
大脑皮层包括有100亿个以上的神经元,每立方毫米约有数万个,它们互相联结形成神经网络,通过感觉器官和神经接受来自身体内外的各种信息,传递至中枢神经系统内,经过对信息的分析和综合,再通过运动神经发出控制信息,以此来实现机体与内外环境的联系,协调全身的各种机能活动。
神经元也和其他类型的细胞一样,包括有细胞膜、细胞质和细胞核。
但是神经细胞的形态比较特殊,具有许多突起,因此又分为细胞体、轴突和树突三部分。
细胞体内有细胞核,突起的作用是传递信息。
树突是作为引入输入信号的突起,而轴突是作为输出端的突起,它只有一个。
树突是细胞体的延伸部分,它由细胞体发出后逐渐变细,全长各部位都可与其他神经元的轴突末梢相互联系,形成所谓“突触”。
在突触处两神经元并未连通,它只是发生信息传递功能的结合部,联系界面之间间隙约为(15~50)×10米。
突触可分为兴奋性与抑制性两种类型,它相应于神经元之间耦合的极性。
每个神经元的突触数目正常,最高可达10个。
各神经元之间的连接强度和极性有所不同,并且都可调整、基于这一特性,人脑具有存储信息的功能。
利用大量神经元相互联接组成人工神经网络可显示出人的大脑的某些特征。
下面通过人工神经网络与通用的计算机工作特点来对比一下:若从速度的角度出发,人脑神经元之间传递信息的速度要远低于计算机,前者为毫秒量级,而后者的频率往往可达几百兆赫。
但是,由于人脑是一个大规模并行与串行组合处理系统,因而,在许多问题上可以作出快速判断、决策和处理,其速度则远高于串行结构的普通计算机。
人工神经网络的基本结构模仿人脑,具有并行处理特征,可以大大提高工作速度。
人脑存贮信息的特点为利用突触效能的变化来调整存贮内容,也即信息存贮在神经元之间连接强度的分布上,存贮区与计算机区合为一体。
虽然人脑每日有大量神经细胞死亡(平均每小时约一千个),但不影响大脑的正常思维活动。
普通计算机是具有相互独立的存贮器和运算器,知识存贮与数据运算互不相关,只有通过人编出的程序使之沟通,这种沟通不能超越程序编制者的预想。