10-4固-液界面
- 格式:ppt
- 大小:2.27 MB
- 文档页数:30
表面吉布斯自由能和表面张力1、界面:密切接触的两相之间的过渡区(约几个分子的厚度)称为界面(interface),通常有液-气、液-固、液-液、固-气、固-液等界面,如果其中一相为气体,这种界面称为表面(surface)。
2、界面现象:由于界面两侧的环境不同,因此表面层的分子与液体内的分子受力不同:1.液体内部分子的吸引力是对称的,各个方向的引力彼此抵销,总的受力效果是合力为零;2.处在表面层的分子受周围分子的引力是不均匀的,不对称的。
由于气相分子对表面层分子的引力小于液体内部分子对表面层分子的引力,所以液体表面层分子受到一个指向液体内部的拉力,力图把表面层分子拉入内部,因此液体表面有自动收缩的趋势;同时,由于界面上有不对称力场的存在,使表面层分子有自发与外来分子发生化学或物理结合的趋势,借以补偿力场的不对称性。
由于有上述两种趋势的存在,在表面会发生许多现象,如毛细现象、润湿作用、液体过热、蒸气过饱和、吸附作用等,统界面现象。
3、比表面(Ao)表示多相分散体系的分散程度,定义为:单位体积(也有用单位质量的)的物质所具有的表面积。
用数学表达式,即为:A0=A/V高分散体系具有巨大的表面积。
下表是把一立方厘米的立方体逐渐分割成小立方体时,比表面的增长情况。
高度分散体系具有巨大表面积的物质系统,往往产生明显的界面效应,因此必须充分考虑界面效应对系统性质的影响。
4、表面功在温度、压力和组成恒定时,可逆地使表面积增加dA所需要对体系做的功,称为表面功(ω’)。
-δω’=γdA(γ:表面吉布斯自由能,单位:J.m-²)5、表面张力观察界面现象,特别是气-液界面的一些现象,可以觉察到界面上处处存在着一种张力,称为界面张力(interface tension)或表面张力(surface tension)。
它作用在表面的边界面上,垂直于边界面向着表面的中心并与表面相切,或者是作用在液体表面上任一条线两侧,垂直于该线沿着液面拉向两侧。
材料加工原理(液态成型部分)复习题:名词解释:1、自发形核在不借助任何外来界面的均匀熔体中形核的过程。
2、非自发形核在不均匀熔体中,依靠外来杂质界面或各种衬底形核的过程。
3、气孔为梨形、圆形、椭圆形的孔洞,表面较光滑,一般不在铸件表面露出,大孔独立存在,小孔则成群出现。
4、非金属夹杂物在炼钢过程中,少量炉渣、耐火材料及冶炼中反应产物可能进入钢液,形成非金属夹杂物。
5、残余应力产生应力原因消除后,铸件中仍然存在的应力。
6、充型能力液态金属充满铸型型腔,获得尺寸精确、轮廓清晰的成型件的能力。
7、缩孔指铸件在冷凝过程中收缩而产生的孔洞,形状不规则,孔壁粗糙。
8、缩松铸件断面上出现的分散而细小的缩孔。
9、铸造应力铸件在发生体积膨胀或收缩时,往往受到外界的约束或铸件各部分之间的相互制约而不能自由地进行,于是在变形的同时产生应力10、单相合金凝固过程中只析出一个固相的合金 (固溶体,金属间化合物,纯金属)11、多相合金凝固过程中同时析出两个以上新相的合金(共晶、包晶、偏晶转变的合金)12、溶质再分配合金在凝固时,随着温度不同,液固相成分发生改变,且由于固相成分与液相原始成分不同,排出溶质在液-固界面前沿富集,并形成浓度梯度,从而造成溶质在液、固两相重新分布,这种现象称之为“溶质再分配”现象。
13、平衡凝固在接近平衡凝固温度的低过冷度下进行的凝固过程。
14、溶质分配系数一定温度下,处于平衡状态时,组分在固定相中的浓度和在流动相中的浓度之比15、动力学过冷度物体实际结晶温度与理论结晶温度的差。
液态成型理论基础:1、纯金属和实际合金的液态结构有何不同?举例说明。
答:(1)纯金属的液态结构是由原子集团、游离原子、空穴或裂纹组成。
原子集团的空穴或裂纹内分布着排列无规则的游离原子,这样的结构处于瞬息万变的状态,液体内部存在着能量起伏。
实际的液态合金是由各种成分的原子集团、游离原子、空穴、裂纹、杂质气泡组成的鱼目混珠的“混浊”液体,也就是说,实际的液态合金除了存在能量起伏外,还存在结构起伏、成分起伏。
第五章固-液界面要求:掌握Young 方程和接触角;了解粘附功和内聚能,Young-Dupre公式,接触角的测定方法,接触角的滞后现象,以及固体表面的润湿过程;理解固液界面的电性质,即扩散双电层理论,包括:Gouy-Chapman理论,Debye-Hukel 对Gouy-Chapman公式的近似处理,Stern对Gouy-Chapman和Debye-Hukel 理论的发展;理解动电现象,平面双电层之间的相互作用,球状颗粒之间的相互作用;掌握新相形成,即成核理论,以及促进成核的方法。
§5.1 Young方程和接触角1、固体表面的润湿固体被某种液体润湿或不能润湿,叫亲某种液体或疏(憎)某种液体,例如:亲水性(疏油性,疏气性);亲油性(亲气性,疏水性)。
根据水对固体表面的亲、疏性大小,水滴在固体表面,会出现如图5-1所示三种情况。
三相接触周边:液滴在固体表面,会存在固液气三相接触线,将液滴在固体表面铺展平衡时的固液气三相接触线叫三相平衡接触周边。
σ和平衡接触角或接触角θ:三相平衡周边任意一点上的液气界面张力lg σ之间的夹角,叫润湿接触角θ,如图5-2所示。
液固界面张力ls接触角θ可定量描述固体被液体润湿的大小,接触角越小,润湿性越好,接触角越大,润湿性越差。
一般分下面三种情况:(1)θ< 90o 时:被润湿,润湿过程对外做功,有放热现象;(2)θ= 90o时:中等,无现象;(3)θ> 90o 时: 不被润湿,外界对系统做功,有吸热现象。
3、Young 方程如图5-2 所示,润湿周边任意一点上,当润湿达平衡时,其在水平方向上的受力合力应为零,则应有: 0cos lg =-+sg ls σθσσθσσσc o s lg +=ls sg (5-1) 上述方程即为Young 方程,它是研究固液润湿作用的基础方程。
§5.2 粘附功和内聚能设有α,β两相,其相界面张力为αβσ,如图5-3所示,在外力作用下分离为独立的α,β两相,表面张力分别为βασσ,。
7.4 液-固及液-气(空气)界面现象7.4.1润湿现象7.4.1.1 接触角液体对固体表面的润湿作用是界面现象的一个重要方面,它主要研究液体对固体表面的亲合状况。
例如水能润湿玻璃,但不能润石蜡。
荷叶上的水珠可以自由滚动,说明水不能润湿荷叶。
一般来说,若液体能润湿固体,则液体呈凸透镜状;若不能润湿,则呈椭球状,如图。
液体对固体的润湿的程度可用接触角来衡量。
所谓接触角就是固-液界面经液相到气-液界面所转过的角度。
接触角越小,润湿越好。
一般以θ=90°为分界线。
θ<90°,为能润湿;θ=0°为完全润湿。
θ>90°,为不润湿;θ=180°,为完全不润湿。
现在我们导出接触角与界面张力之间的关系。
点O 的液体受到三个表面张力的作用:s g -σ力图将点O 的液体拉向左方,以覆盖气-固界面,使气-固界面缩小;s l -σ力图将点O 的液体向右拉,以缩小液-固界面;l g -σ力图将点O 的液体沿切线方向向上拉,以缩小液-气界面。
在固体为光滑平面的情况下,润湿平衡时,有s g -σ=s l -σ+l g -σθcos或(1)式(1)就是表示界面张力和接触角关系的杨氏(Yong )方程。
因θcos ≤1,所以lg sl s g ----σσσ≤1 或s l s g ---σσ ≤l g -σ或(2)所以由下面的公式和图形可得上图。
lg sl s g ----=σσσθcos所以完全润湿的条件为s l s g ---σσ>l g -σ即(3)完全不润湿的条件为s l s g ---σσ<-l g -σ即(4)7.4.1.2 粘附功、内聚功、浸湿功和铺展系数恒温恒压可逆条件下,将气-液和气-固界面转变为液-固界面,如果各界面都是单位面积时,该过程吉布斯自由能的变化是G ∆=l g s g s l -----σσσ= W a (5)W a 叫粘附功(work of adhesion )。