七年级数学上册去括号
- 格式:doc
- 大小:47.00 KB
- 文档页数:4
初中数学七年级上册知识归纳:去括号初学去括号,由于对去括号法则掌握不够准确,常常出现各种各样的错误,归纳起来主要有以下几种.一、去括号时忘记变号例1 计算:4(536)x x x --+-.错解:原式=4536x x x ++-=126x -.剖析:括号前是“-”号,把括号和它前面的“-”号去掉后,原括号各项的符号都要改变.本题错在只改变了括号内的第一项的符号,而后两项的符号忘记改变了.正解:原式=4536x x x +-+=66x +.二、去括号时,括号前符号忘记去掉例2 化简22232(51)x x x x -+--+.错解:原式=22232(5)1x x x x -+--+-=2223251x x x x -+++-=2721x x -+.剖析:此题去括号时,只记住括号前是“-”号的,去括号后括号内各项符号均改变,但忘记了整个括号前“-”号要去掉,故为错误.正解:原式=2223251x x x x -+-+-=2321x x -+.三 去括号时漏乘例3 化简:22232[2(2)4]a a ab a ab ---+.错解:原式=22232[224]a a ab a ab ---+=2223424a a ab a ab ---+=2-+.22a ab剖析:以上解法有两种典型错误:一是忽视括号前面的负号,去掉括号时,括在括号里的各项应改变符号;二是忽视括号前面的数字,去掉括号时,应运用乘法分配律.正解:原式=222--++a a ab a ab32[224]=222a a ab a ab-+--34428=2--.34a ab。
六种方法帮你去括号在整式的加减运算中,去括号是重要的一环。
如何去掉括号呢?下面介绍几种去括号的方法,供同学们参考。
一、直接去括号例1 化简:()()532x x y y x --+-。
分析:由于括号前面的系数是1和1-,可以利用去括号的法则直接去括号。
解:原式532x x y y x =-++- 55x y =-+。
二、局部合并,再去括号 例2 化简:2222221530.532a b ab a b ab a b a b ⎛⎫----+⎪⎝⎭。
分析:由于括号外的25a b 和23a b 及括号内的212a b 和20.5a b -是同类项,所以可以先将它们分别合并后,再去括号。
解:原式()22283a b ab ab =--- 22283a b ab ab =-+ 2282a b ab =-。
三、整体合并,再去括号例3 化简:()()()()5432a b c a b c a b c a b c -+-+-+-+-+-。
分析:若按常规方法先去括号再合并,显然运算量较大,容易出错,而如果把()a b c -+和()a b c +-分别看作整体,先合并,再去括号,这样比先去括号再合并简便。
解:原式()()86a b c a b c =-+-+- 888666a b c a b c =-+--+ 21414a b c =-+。
四、改变常规顺序,巧去括号例4 化简:()23222318612x y xy xy x y ⎡⎤---⎣⎦。
分析:若先去中括号,则小括号前的“-”号变为“+”号,再去小括号时,括号内各项不用变号。
这样就减少了某些项的反复变号,不易出错。
解:原式()23222318612x y xy xy x y =-+- 23222318612x y xy xy x y =-+- 23265x y xy =-。
五、利用乘法分配律去括号 例5 化简:()()()2211312563a a a a ⎡⎤-+-++-⎢⎥⎣⎦。
精讲精练1. 去括号方程中含有括号时,解方程过程中把括号去掉的过程叫去括号。
去括号的目的是把方程化简,便于解方程。
去括号的依据:乘法分配律和去括号法则。
去括号的方法:由内向外去括号,即先去小括号,再去中括号,最后去大括号;也可以由外向内去括号。
注意:(1)不要漏乘括号内的项;(2)去括号后要注意各项(原括号内)的符号变化情况,特别是括号前为负号时,括号内部各项都要变号。
如:3(x+2)+1=103x+6+1=103x=3x=12. 去分母。
去分母的方法:在方程的两边同乘以各分母的最小公倍数,使未知数的系数和常数都变为整数。
去分母的依据:等式两边乘同一个数,或除以同一个不为 0 的数,结果仍相等。
注意:(1)不要漏乘不含分母的项;(2)分数线有括号作用,去掉分母后,如果分子是多项式或者是负数,要加括号。
如:()()1212331622336241x x x x x x x -++=-+=+-+=+=例题1 (武汉模拟)解方程:10y+2(7y -2)=5(4y+3)+3y 。
思路分析:解此方程可依据乘法分配律和乘法法则,以及去括号法则整理,即可解此一元一次方程。
答案:去括号,得10y+14y-4=20y+15+3y,移项,得10y+14y-20y-3y=15+4,合并同类项,得y =19。
例题2(拱墅区期末)解方程:。
思路分析:此方程含有多重括号,一般应先去小括号,再去中括号,但此题中与均得到整数,且计算简捷,因此可先去中括号,再去小括号。
答案:去中括号,得x-+3=-2,去小括号,得x-+1+3=-2,移项,得x-=-2-1-3,合并,得x=-6,系数化为1,得x =-8。
例题3(漳州期末)解方程思路分析:本方程是带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解,再选择即可。
易错点是常数项“2”忽略乘以6。
答案:去分母,得2(x-1)-(x+2)=3(4-x)+2×6,去括号,得2x-2-x-2=12-3x+12,移项,得2x-x+3x=12+2+2+12,合并同类项,得4x=28,系数化为1得,x=7。