第11章频谱搬移电路无线通信射频电路技术与设计文光
- 格式:ppt
- 大小:1.94 MB
- 文档页数:29
rf射频技术和原理书籍RF射频技术和原理一、引言RF射频技术是一种无线通信技术,广泛应用于无线电、电视、手机、雷达等领域。
本文将介绍RF射频技术的基本原理和相关书籍。
二、RF射频技术的基本原理RF射频(Radio Frequency)是指在30kHz至300GHz的频段内的无线电频率。
射频技术是利用射频信号传输和处理信息的技术。
其基本原理包括射频信号的产生、调制、传输和接收。
1. 射频信号的产生射频信号的产生通常通过射频信号发生器实现。
发生器内部包含振荡器,通过稳定的电路结构和元器件,产生稳定的射频信号。
2. 射频信号的调制射频信号的调制是指通过改变射频信号的某些参数来携带和传输信息。
常见的调制方式有幅度调制(AM)、频率调制(FM)和相位调制(PM)等。
3. 射频信号的传输射频信号的传输通常通过天线进行。
天线是射频信号的发射和接收装置,能够将电信号转换为无线电波并辐射出去。
在传输过程中,射频信号会受到多径效应、衰减和干扰等影响。
4. 射频信号的接收射频信号的接收通常也通过天线进行。
接收天线将接收到的射频信号转换为电信号,并通过射频前端电路进行放大、滤波和解调等处理,最终得到原始信号。
三、与RF射频技术相关的书籍推荐1. 《射频技术实用手册》这本书介绍了射频技术的基本概念、原理和应用。
内容详实全面,适合初学者入门和专业人士参考。
2. 《射频电路设计与仿真》该书详细介绍了射频电路的设计方法和仿真技术。
通过案例分析和实例演示,帮助读者掌握射频电路设计的基本原理和技巧。
3. 《射频电子技术基础》这本书系统地介绍了射频电子技术的基本理论和应用。
结合实例,讲解了射频电路的设计和调试方法,对于理解射频电子技术有很大帮助。
4. 《射频电路设计与分析》该书从理论到实践,介绍了射频电路设计的基本原理和方法。
通过大量实例和仿真分析,帮助读者深入理解射频电路设计的关键技术和难点。
5. 《射频电路设计与应用》这本书介绍了射频电路的基本原理、设计方法和应用技术。
射频_微波工程师经典参考书汇总1.《射频电路设计--理论与应用》『美』 Reinhold Ludwig 著电子工业出版社个人书评:射频经典著作,建议做RF的人手一本,里面内容比较全面,这本书要反复的看,每读一次都会更深一层理解.随便提一下,关于看射频书籍看不懂的地方怎么办,我提议先看枝干或结论有个大概印象,实在弄不明白就跳过(当然可问身边同事同学或GOOGLE一下),跳过不是不管它了,而是尽量先看完自己能看懂的,看第二遍的时候再重点抓第一次没有看懂的地方,人的思维是不断升华的,知识的也是一个系统体系,有关联的,当你把每一块砖弄明白了,就自然而然推测出金字塔塔顶是怎么架设出来的。
2. 《射频通信电路设计》『中』刘长军著科学技术出版社个人书评:有拼凑之嫌(大量引用书1和《微波晶体管放大电路分析与设计》内容),但还是有可取之处,加上作者的理解,比看外文书(或者翻译本)看起来要通俗易懂,毕竟是中国人口韵。
值得一看,书上有很多归纳性的经验.3(《高频电路设计与制作》『日』市川欲一著科学技术出版社个人书评:本人说实话比较喜欢日本人写书的风格和语言,及其通俗,配上图示,极其深奥的理论看起来明明朗朗,比那些从头到尾只会搬抄公式的某些教授强们多了,本书作者的实践之作,里面都是一些作者的设计作品和设计方法,推荐一看..5. 《振荡电路设计与应用》『日』稻叶宝著科学技术出版社个人书评:这边书还不错,除了学到振荡电路设计,还学到了很多模拟电路的基础应用,唯一缺点书中的内容涉及频率的都不够高(k级,几M,几十,几百M的振荡器),做有源电路的可以看一下,整体感觉还行.6. 《锁相环电路设计与应用》『日』远坂俊昭著科学技术出版社个人书评:对PLL原理总是搞不太明白的同学可以参考此书,图形图片很多,让人很直观明白,比起其他PLL书只会千篇一律写公式强千倍。
好书,值得收藏~7. 《信号完整性分析》『美』 Eric Bogatin著电子工业出版社个人书评:前几章用物理的方法看电子,感觉不好理解,写的感觉很拗口,翻译好像也有些不到位,但后面几章写的确实好,尤其是关于传输线的,对你理解信号的传输的实际过程,能建立一个很好的模型,推荐大家看一下,此书还是不错的.(看多了RF的,换换胃口)8. 《高速数字设计》『美』 Howard Johnson著电子工业出版社个人书评:刚刚卓越买回来,还没有动“她”呢,随便翻了下目录,做高速电路和PCB Layout的工程师一看要看下,这本书也是经典书喔~10.《EMC电磁兼容设计与测试案例分析》『中』郑军奇著电子工业出版社个人书评:实战性和很强的一本书,本人做产品经常要送去信息产业部电子研究5所做EMC测试,认证.产品认证是产品成功的临门一脚,把这脚球踢好,老板会很赏识你的,如果你也负责产品的EMC,这本书必读。
射频电路篇本次培训内容:手机各级电路原理及故障检修1,基带电路发话电路、受话电路、蜂鸣电路、耳机电路、 背光电路、马达电路、按键电路、充电电路、开 关机电路、摄像电路、蓝牙电路、FM电路、显示 电路、SIM卡电路、TF卡电路2,射频电路接收电路、发射电路一、手机通用的接收与发射流程天线:ANT 声表面滤波器:SAWfilter 低噪声放大器:LNA 功放:PA手机通用的接收与发射流程1、信号接收流程: 天线接收——天线匹配电路——双工器——滤波(声 表面滤波器SAWfilter)——放大(低噪声放大器 LNA)——RX_VCO混频(混频器Mixer)——放大 (可编程增益放大器PGA)——滤波——IQ解调(IQ 调制器)——(进入基带部分)GMSK解调——信道均 衡——解密——去交织——语音解码——滤波—— DAC——放大——话音输出。
手机通用的接收与发射流程2、信号发射流程: 话音采集——放大——ADC——滤波——语音编码——交织——加密——信道均衡——GMSK调制—— (进入射频部分)IQ调制(IQ调制器)——滤波—— 鉴相鉴频(鉴相鉴频器)——滤波——TX_VCO混频 (混频器Mixer)——功率放大(PA)——双工器—— 天线匹配电路——天线发射。
手机通用的接收与发射流程3、射频电路原理框图:二、射频电路的主要元件及工作原理天线:ANT 声表面滤波器:SAWfilter 低噪声放大器:LNA 功放:PA射频电路的主要元件及工作原理1、天线、匹配网络、射频连接器: • 天线(E600):作用是将高频电磁波转化为高频信号电流。
射频电路的主要元件及工作原理• 天线匹配网络(L604、C611、C614):主要是完成主板与 天线之间的功率匹配,以使天线的效率尽可能高。
射频连接器(J600):又叫同轴连接器或射频开关,作 用主要是为手机的测试提供端口。
其内部是簧片的接触结 构,相当于一个机械开关,通常状态下开关处于闭合状态, 当射频线探头插入射频连接器时,簧片一端将与主板的天线 通路断开,而与射频线探头接触,此时手机与测试仪器之间 就通过射频连接器与射频线进行信号的传输。
第5章 频谱的线性搬移电路分为频谱的线性搬移电路和非线性搬移电路。
线性搬移电路:频谱结构不发生变化,如振幅调制与解调、混频。
非线性搬移电路:频谱结构也发生了变化。
频率调制与解调、相位调制与解调等电路5.1 非线性电路的分析方法有两种分析方法:1、级数展开分析2、线性时变分析5.1.1 非线性函数的级数展开分析法//////////////////////////////////////////////////////////////////////////////////////////补充:泰勒级数1、定理 (泰勒定理) 正次幂设函数在区域D 内解析,为D 内的一点,)(z f 0z R 为到D 的边界上各点的最短距离,则当时,可展开为幂级数0z R z z <−||0)(z f n n n R z z z f n C z z C z f n n )()(00||)(!100)(−========∑∞=<−=其中 n=0,1,2,… )(z f 在处的泰勒展开式是唯一的。
0z //////////////////////////////////////////////////////////////////////////////////////////非线性器件的伏安特性,可用下面的非线性函数来表示: i =f (u ) (5-1)式中, u 为加在非线性器件上的电压。
一般情况下, u =E Q +u 1+u 2,其中E Q 为静态工作点,u 1和u 2为两个输入电压。
展开成E Q 处的泰勒级数,可得∑∞=+=++++++++=02212122122110)( )()()(n n n n u u a u u a u u a u u a a i LL式中,a n(n =0,1,2,…)为各次方项的系数,由下式确定: )(!1)(!1Q )(QE f n du u f d n a n E u n n n === (5-3) 由于∑=−=+nm m m n m n nu u C u u 02121)( (5-4)式中,为二项式系数,故)!(!/!m n m n C m n −=∑∑=−∞==n m m m n m n n n u u C a i 0210 (5-5)以下分析, u 2=0情况,见p144作用在非线性器件上的两个电压均为余弦信号,即u 1=U 1cos ω1t ,u 2=U 2cos ω2t ,利若用式(5-7)和三角函数的积化和差公式)cos(21)cos(1cos cos x y x y x ++−=2y (5-9) 由式(5-5)不难看出,i 中将包含由下列通式表示的无限多个频率组合分量5.1.2 线性时变电路分析法对式(5-1)在 E Q +u 2上对i 用泰勒级数展开,有ωp,q =|±p ω1±q ω2|++=u u E f i 1Q )(L L +++++′′++′++=n n u u E f n u u E f u u E f u E f 12Q )(212Q 12Q 2Q 2)(!1 )(!21)()( 5-11 ―――――――――――――――――――――――――――由于5-5和5-11是等价的。
5.2解(a)阻抗/导纳类型:0L Z Z jX =-(b)阻抗/导纳类型:2200220L X Z jXZ Z Z X-=+5.5解:要达到最大功率传输,需要匹配网络的输出阻抗Z out 等于负载阻抗Z L 的共轭 即*Z (10020)out L Z j ==-。
匹配网络设计如下:电抗X1与源阻抗串联,电抗X2与负载阻抗并联。
*211221()1Z 11()s out L s s jX Z jX Z Z j X X jX Z jX +===++++ (1) 再把源阻抗和负载阻抗写成:Z R s s s jX =+,Z R L L L jX =+。
把(1)式可改写成:22112R ()R R ()s s L L s s jX X X X jX j X X X -+=-+++ (2) 分离实部和虚部后可得:1221R R ()()0s L L s s X X X X X X X +++++= (3)122R ()R ()0L s s L X X X X X ++-+= (4)解析上述几个公式可得:2s LX =21R (R s sL L X X R =由此可得两种匹配网络:匹配网络1:X1是电感L=0.938nH,X2是电容C=5.21pF;匹配网络2:X1是电容C=2.98pF,X2是电感L=6.02nH ;Matlab 代码如下:ZS = 10+j*25;ZL = 100+j*20;Z0 = 50;F = 960e6;get_matching(ZS,ZL,f,Z0);function[fig_num,network] = get_matching(ZS,ZL,f,Z0_in)global rf_Network;global Z0;Z0 = Z0_in;RL = real(ZL);XL = imag(ZL);RS = real(ZS);XS = imag(ZS);N = 0;X1(1) = (RL*XS+sqrt(RL*RS*(RS^2+XS^2-RL*RS)))/(RS-RL); X1(2) = (RL*XS-sqrt(RL*RS*(RS^2+XS^2-RL*RS)))/(RS-RL); X1(3) = -XL-sqrt(-RL^2+RL*RS+RL/RS*XS^2);X1(4) = -XL+sqrt(-RL^2+RL*RS+RL/RS*XS^2);If(imag(X1(1)) == 0 &imag (X2(1)) == 0)for(m = 1:2)N = N+1;fig_num(N)=Smith_Chart;init_network;Add_stunt_impedance(ZS);fprintf(\nNetwork#%d\n:N);fprintf(‘nource ->’);fprintf(‘shunt’);if(X1(m) >=0 )L1=X1(m)/(2*pi*f);fprintf(‘inductor(&.2eH)->,L1’);Add_shunt_inductor(L1);elseC1=-1/(2*pi*f)/X1(m);fprintf(‘capacitor’(%.2eF)->;C1);Add_shunt_capacitor(C1);end;fprintf(‘series’);if(X2(m)>=0)L2 = X2(m)/(2*pi*t);fprintf(“inductor(%.2eH)->,L2”);Add_series_inductor(L2);ElseC2 = -1/(2*pi*f)/X2(m);fprintf(‘capacitor(%.2eF)->;C2’);Add_series_capacitor(C2);fprintf(‘load\n’);rf_imp_transform(f,fig_num(N));network(N,;,;) = rf_Network;end;end;X1(1) = -XS+sqrt(-RS^2+RL*RS+RS/RL*XL^2);X1(2) = -XS-sqrt(-RS^2+RL*RS+RS/RL*XL^2);X2(1) = (-RS*XL+sqrt(RL*RS*(RL^2+XL^2-RL*RS)))/(RS-RL); X2(2) = (-RS*XL-sqrt(RL*RS*(RL^2+XL^2-RL*RS)))/(RS-RL); If(imag(X1(1)) == 0 &imag (X2(1)) == 0)for(m = 1:2)N = N+1;fig_num(N)=Smith_Chart;init_network;Add_stunt_impedance(ZS);fprintf(\nNetwork#%d\n:N);fprintf(‘nource ->’);fprintf(‘shunt’);if(X1(m) >=0 )L1=X1(m)/(2*pi*f);fprintf(‘inductor(&.2eH)->,L1’);Add_shunt_inductor(L1);elseC1=-1/(2*pi*f)/X1(m);fprintf(‘capacitor’(%.2eF)->;C1);Add_shunt_capacitor(C1);end;fprintf(‘series’);if(X2(m)>=0)L2 = X2(m)/(2*pi*t);fprintf(“inductor(%.2eH)->,L2”);Add_series_inductor(L2);ElseC2 = -1/(2*pi*f)/X2(m);fprintf(‘capacitor(%.2eF)->;C2’);Add_series_capacitor(C2);end;fprintf(‘load\n’);rf_imp_transform(f,fig_num(N));network(N,;,;) = rf_Network;end;5.11解:按照P150页的公式G =0.4L , 2t tan tan(*)18d πλβλ===, 202011G *20.04L t Y t Z +>==与公式(5.60)矛盾 5.14解:5.17解: 归一化负载阻抗:0z 0.50.6L L Z j Z ==-;2*54d d πβλ︒== 在Smith 原图上找到z L 点,继而得到00.48180︒Γ=∠-;以2倍电长度顺时针旋转0Γ,得到()d in Γ,此点亦可确定归一化输入阻抗z ()0.380.28in d j =+或者()1914in Z d j =+;亦可得到此处对应的SWR 是2.95.18解:信号源与负载之间实现最大功率传输的条件是信号源阻抗与负载阻抗共轭相等;匹配网络的输出阻抗为50M Z =,3015T Z j =+.(1)L 型匹配:阻抗M Z 的值等于T Z 先与电容C 并联再与电感L 串联,1150M L T CZ jX Z jB -=+=+ (1) 其中C B C ω=,L X L ω=;将公式(1)分别简化为实部和虚部两个公式解析出C 与L 的值。