8 地下水除铁除锰分解
- 格式:ppt
- 大小:1.61 MB
- 文档页数:76
-66-科技论坛地下水除铁除锰技术分析韩春威(辽宁省交通高等专科学校,辽宁沈阳110122)地下水是非常重要的水资源。
从人们日常生活到发展农业以至国防建设都需要用地下水。
我国许多城镇和各企事业单位都以地下水作为重要水源,东北地区的地下水资源丰富,水质较好,处理工艺简单,但铁锰含量超标却是一个较为普遍的现象,尤其地表水污染日趋严重,地下水的开发利用必将大大增加,因此地下水除铁除锰处理愈加迫切。
铁和锰都是人体的必须的微量元素,水中含有微量的铁和锰一般认为对人体无害。
我国饮用水标准GB5749-85规定,生活饮用水中铁的含量不得超过0.30mg/L ,锰的含量不得超过0.10mg/L [1]。
水中的含铁量大于0.30mg/L 时水就变浑,超过1mg/L 时,水具有铁腥味。
人体吸入过多的锰会带来某些器官的病变。
铁锰含量超标会在供水管道壁上积累铁锰沉淀物而降低输水能力,沉淀物剥落下来时会发生水质在短时间变“黑水”或“红水”的现象。
1地下水除铁除锰主要机理地下水中碳酸溶解岩层中的二价铁锰氧化物,使铁锰分别以Fe 2+,Mn 2+的形式析出,此外还有一些高价铁锰的氧化物(如Fe 2O 3,MnO 2等),在地下水所处地层缺氧的还原环境中,能被地下水中硫化氢等还原为Fe 2+,Mn 2+的形式。
铁、锰均是过渡性金属元素,其标准氧化还原,电位分别为Ψ°(Fe 3+/Fe 2+)=0.771V 及Ψ0(M nO 2/Mn 2+)=1.231V [2],锰的氧化还原电位高于铁,M n 2+比Fe 2+难以氧化。
地下水中Fe 2+,Mn 2+与空气中的氧接触后发生如下反应:4Fe 2++O 2+10H 2O=4Fe(OH)3+8H +M n 2++1/2O 2+H 2O=MnO 2+2H +Fe 2+氧化为Fe 3+,并以Fe (OH)3的形式析出,再通过沉淀、过滤就能去除,而去除水中的锰就困难得多。
在溶解氧充足的条件下,水的pH 对铁锰的氧化速率的影响起决定性作用。
关于地下水中铁、锰的去除及生产工艺用水水站的设计研究摘要:地下水中的铁、锰元素的去除治理在一定程度上影响了我国水资源的利用率,甚至地下水会出现一股腥臭的味道。
基于此,本文就从地下水中铁、锰元素的来源影响以及去除方法出发,对生产工艺用水水站的设计方法进行探讨分析。
以此,更好地满足人民日常的生产生活需求。
关键词:地下水;工艺用水生产;水站设计前言:地下水的治理方面一直是我国水环境治理中较为重视的一环,水中的铁元素以及锰元素的超标会在一定程度上影响人们的生产生活,所以有效地加强地下水中铁、锰元素的去除方法是十分必要的,这样才能有效地提升生产工艺用水水站的设计方法。
1.地下水中铁、锰元素的来源影响以及去除方法1.1生物去除法可以利用生物去除法对地下水中的铁、锰元素进行治理,主要就通过构建过滤池,利用过滤池对铁细菌进行培养,在活性过滤膜上附着进行繁殖,可以有效地吸附地下水中的铁离子,同时也可以通过溶解氧化的形式将亚铁离子氧化成为氧铁离子,进一步产生更加能量进行释放,以此保证细菌体系的始终维持生命附着的活力。
生物法去除铁、锰元素主要通过两种方法,第一个方法就是利用细菌产生酶或者其他因素对地下水中杂质去除起到了催化的作用,第二个方面就是通过生物细胞体分泌出具有活性反应的小分子与锰产生反应,通过改变水的酸碱度,对于锰元素可以起到一定程度的固化作用。
可以去除铁元素以及锰元素的微生物较多,例如假单胞菌以及生石微菌等等都可以对地下水中的铁、锰元素的去除以及治理起到良好的作用[1]。
1.2药物氧化去除方法现今处理地下水中的铁元素以及锰元素的药物主要是利用氯氧化法、高锰酸钾氧化法、过氧化氢氧化法以及臭氧化法,四种药剂氧化治理方法。
药剂氧化去除方法主要是利用具有较强氧化性的化学药剂与地下水中铁元素以及锰元素进行氧化融合,氧化反应发生过后就可以利用沉淀工艺将氧化后的离子进行分离。
经常使用的氯氧化剂主要是二氧化氯以及次氯酸钠,治理地下水时以氯气作为氧化剂就会有效地提升地下水中铁元素的去除效率,相应的氯气与地下水的酸碱度的比值呈现正比,氯气投入多,酸碱值也会随之升高。
地下水水质除铁锰处理分析梁炳耀1 毛建华2(1.广东省佛山地质局2佛山市南海第二建筑工程有限公司)摘要:本文叙述了地下水含铁、锰超标对人体的危害,通过工程实例说明地下水中的铁、锰含量是可以采用除铁罐装置进行处理关键词:铁;锰危害;除铁罐装置;水质处理1概述水质良好的地下水取至地面,稍经消毒处理即可使用;然而,大多数地下水需经适当的处理,甚至需经特殊处理后才符合饮用水或工业用水的标准。
究其原因:一是在形成过程中溶解了地层中矿物质,使某些元素在水中的溶解量超过了容许浓度;二是人类活动造成地下水污染。
佛山地区位于富饶的珠江三角洲平原区,总面积约3800km2。
随着区域经济的发展,城市范围不断扩大,尤其是当前乡镇企业、民营企业的兴起,工业园区、城乡一体化建设蓬勃发展,用水量的需求越来越大,不少地方地下水过量开采,不少水质遭受不同程度的污染,致使水质总硬度、总矿化度不断升高,水化学类型随之发生变化。
佛山地区地下水铁(Fe2+)、锰(Mn2+)含量普遍超标,尤其是铁含量严重超标,若不经处理,则不能达到生活饮用水和工业用水的要求。
2水质中铁、锰超标的危害铁和锰都是人体必须的微量元素。
水质中含有适量的铁和锰,对人体有益无害;但是,若人体长期摄入过量的铁和锰,可致使慢性中毒,可诱发某些地方病。
地下水中的铁常以二价铁的形式溶解于水中,由于其溶解度较大,所以,刚从地下抽上来时是清澈透明的,但一经与空气接触,溶解于水中的二价铁便发生氧化,生成难溶于水的三价铁氢氧化物从水中析出。
当水中的含铁量大于0.3mg/L时,水便变浑,超过lmg/L时,水具有铁腥味。
地下水中的锰也常以二价锰的形式存在,其氧化析出的速度非常缓慢,产生沉淀后,水的色度增大,其着色能力比铁高数倍,污染能力很强;当锰含量大于0.3m/L时,水会产生异味。
水中含有过量的铁和锰时,在洗涤的衣物上会生成铁色锈斑;在光洁的卫生器具上,乃至与水接触的墙壁和地板上,都会留下难于去除的黄褐色锈斑,给生活使用带来诸多不便。
除铁锰的水处理方案进水流量Q=50m³/h,工作压力为2-3公斤,PH=6.5处理后的出水达到《生活饮用水卫生标准》(GB5749-85)规定,铁含量≤0.3㎎/L,锰含量≤0.1㎎/L,处理后的水用于日常家用,采用锰砂过滤器对水中的铁离子和锰离子进水处理,处理工艺流程为曝气→接触氧化→吸附过滤→反洗。
一、工作原理除铁锰装置的工作原理:利用氧化方法将水中低价铁离子和低价锰离子氧化成高价铁离子和高价锰离子,再经过吸咐过滤去除,达到降低水中铁锰含量的目地。
滤料采用精制石英砂和精制锰砂。
精制锰砂的主要成分是二氧化锰(MnO2)它是二价铁氧化成三价铁良好的催化剂。
精制锰砂中的MnO2的含量很高,其除铁效果非常理想,含铁锰地下水的PH值大于5.5与精制锰砂接触即可将Fe2+氧化成Fe3+,最后生成Fe(OH)3沉淀物经精制锰砂滤层后被去除。
所以精制锰砂层起着催化和过滤双层作用。
锰砂除铁机理,除了依靠它自身的催化作用外,还有在过滤时在精制锰砂滤料表面逐渐形成一层铁质滤膜作为活性滤膜,使能起催化作用。
活性滤膜是由R 型羟氢化铁R―FeO(OH)所构成,它能与Fe2+进行离子交换反应,并置换出等当量的氢离子。
Fe2+ +FeO(OH)=FeO(OFe) + +2H+结合到化合物中二价铁,能讯速地进行氧化和水解反应,又重新生成羟其氧化铁,使催化物质得到再生。
Fe0(OFe)+ +O2 +H2O=2FeO(OH)+H+新生成的羟基氧化铁作为活性滤膜物质又参与新催化除铁过程所以活性滤膜除铁过程是一个自动催化过程。
二、运行过程①.曝气根据水质情况采用深井水余压射流曝气或压缩空气曝气等方式,管道混合溶氧,稳定可靠。
曝气法一方面是增加水中的溶解氧;二是驱除CO2,以提高水的PH值,使二价铁氧化成三价铁沉淀,然后再经过滤。
②.接触氧化滤料采用天然锰砂滤料,其具有催化和过滤双层作用。
天然锰砂的主要成分是二氧化锰(Mno2)它是将Fe2+氧化成Fe3+的良好催化剂。
地下水除铁和除锰I 工艺流程选择9.6.1 关于地下水进行除铁和除锰处理的规定。
微量的铁和锰是人体必需的元素,但饮用水中含有超量的铁和锰,会产生异味和色度。
当水中含铁量小于 0.3mg/L 时无任何异味;含铁量为 0.5mg/L 时,色度可达 30 度以上;含铁量达 1.0mg/L 时便有明显的金属味。
水中含有超量的铁和锰,会使衣物、器具洗后染色。
含锰量大于 1.5mg/L 时会使水产生金属涩味。
锰的氧化物能在卫生洁具和管道内壁逐渐沉积,产生锰斑。
当管中水流速度和水流方向发生变化时,沉积物泛起会引起“黑水”现象。
因此,《生活饮用水卫生规范》规定,饮用水中铁的含量不应超过 0.3mg/L,锰的含量不应超过 0.1mg/L 。
生产用水,由于水的用途不同,对水中铁和锰含量的要求也不尽相同。
纺织、造纸、印染、酿造等工业企业,为保证产品质量,对水中铁和锰的含量有严格的要求。
软化、除盐系统对处理水中铁和锰的含量,亦有较严格的要求。
但有些工业企业用水对水中铁和锰含量并无严格要求或要求不一。
因此,对工业企业用水中铁、锰含量不宜作出统一的规定,设计时应根据工业用水系统的用水要求确定。
9.6.2 关于地下水除铁、除锰工艺流程选择的原则规定。
试验研究和实践经验表明,合理选择工艺流程是地下水除铁、除锰成败的关键,并将直接影响水厂的经济效益。
工艺流程选择与原水水质密切相关,而天然地下水水质又是千差万别的,这就给工艺流程选择带来很大困难。
因此,掌握较详尽的水质资料,在设计前进行除铁、除锰试验,以取得可靠的设计依据是十分必要的。
如无条件进行试验也可参照原水水质相似水厂的经验,通过技术经济比较后确定除铁、除锰工艺流程。
9.6.3 地下水除铁技术发展至今已有多种方法。
如接触过滤氧化法、曝气氧化法、药剂氧化法等等。
工程中最常用的也是最经济的工艺是接触过滤氧化法。
除铁的过程是使 Fe2+氧化生成 Fe(OH)3,再将其悬浮的 Fe(OH)3粒子从水中分离出去,进而达到除铁目的。
地下水除铁除锰本文着重以下几个方面论述地下除铁除锰:既含铁地下水的形成;水中铁锰对生产和生活的危害;去除水中铁和锰的原理及方法;并应用于本人设计的处理能力为15400吨/日海拉尔净水所工艺流程中。
一.含铁锰地下水的形成铁在地球表面分布很广,地壳中的铁质多半分散在各种晶质岩和沉积岩中,它们都是难溶性的化合物。
这些铁质大量的进入水中,一般通过以下几种途径:1.含碳酸的地下水,对岩层中二价铁的氧化物起溶解作用。
在水的循环中,部分雨水由地表渗入地下的过程中,一般都要经过富含有机物的表土层。
土壤中的有机物在微生物的作用下,被分解而产生出大量二氧化碳,这些二氧化碳溶于水中便使地下水含有大量的碳酸。
含有碳酸的地下水经过地层的渗透和过滤,能逐渐溶解岩层中二价铁的氧化物,而生成可溶于水的重碳酸亚铁:FeO+2CO2+H2O=Fe(HCO3)2当岩层中有碳酸亚铁存在时,碳酸亚铁在碳酸作用下也能生成溶解于重碳酸亚铁。
FeCO3+CO2+H2O=Fe(HCO3)22.三价铁的氧化物在还原条件下被还原而溶解于水。
在含有机质的地层中,常由于微生物的强烈作用而处在还原条件下时,水中的溶解氧被消耗殆尽,而由于有机物的分解作用,产生出相当数量的硫化氢和二氧化碳。
在这种条件下,地层中的三价铁首先被硫化氢还原生成FeS沉淀。
Fe2O3+3H2S=2FeS+3H2O+S生成的硫化铁在碳酸作用下又生成溶解于水中的Fe(HCO3)2。
FeS+2CO2+ 2H2O= Fe(HCO3)2+H2S3.有机物质对铁质的溶解作用。
有些有机酸能将岩层中的三价铁还原成为二价铁而使之溶解于水中,还有一些有机物能和铁质生成复杂的有机铁而溶于水中。
综上所述,一般地下水中主要含有二价铁的重碳酸盐,此外,还可能含有可溶性的有机铁盐。
许多资料中介绍,铁和锰同时存在于天然水中,含铁地下水因地区不同,或多或少含有一定量的锰,只有量的多少不同,在此对地下水的锰的形成就不再详述了。
原水除铁、锰介绍1、原水除铁、除锰技术的发展与应用地下水中的铁、锰分别已经Fe2+和Mn2+离子形式存在,除铁、除锰的主要技术思路在于通过化学或生物氧化作用,将离子态的铁、锰转化为固态形式,并最终从水中分离从而净化水质。
地下水除铁除锰的主要方法包括自然氧化法、接触氧化法、生物氧化法和药剂氧化法。
其中自然氧化法、接触氧化法、药剂氧化法都是通过化学氧化的作用将水中的Fe2+、Mn2+转化为固态形式,最终去除水中的铁和锰。
属于化学氧化法;而生物氧化法是通过生物氧化作用来达到去除水中的铁和锰的目的。
1.1自然氧化法除铁、锰自然氧化法包括曝气、氧化反应、沉淀、过滤等一系列复杂的过程.曝气是先使含铁地下水与空气充分接触,让空气中的氧溶解于水中,同时大量散除地下水中的CO2,提高pH值,以利于铁锰的化学氧化。
地下水经曝气后,pH值一般在6.0---7.5之间,Fe2+氧化为Fe3+并以Fe(OH)3的形式析出,通过沉淀、过滤去除。
可是对于Mn2+的去除,只经过简单的曝气是不能实现的,因为Mn2+在pH 大于9.0时,自然氧化速率才明显加快,而地下水多呈中性,在同样的pH条件下,Mn2+的氧化比Fe2+慢得多,难以被溶解氧氧化为沉淀物而去除.所以需向地下水中投加碱(如石灰),提高pH值,才能氧化Mn2+.可见,自然氧化法除锰后尚需进一步酸化才能使用,这使工艺复杂并增加了运行费用在实际运行中由于Fe(OH)3絮体颗粒细小,易穿透滤层,除铁效果有时达不到要求.氧化和沉淀过程要求处理水在沉淀池中停留时间较长,约2~3 h,因此,该工艺设备庞大,投资高.此外,水中溶解性硅酸与Fe(OH)3形成硅铁络合物使Fe(OH)3胶体凝聚困难,影响Fe(OH)3通过絮凝从水中分离.以上问题的存在,限制了该方法在工程实践中的广泛运用,达不到高效除铁除锰的根本目标。
1.2微生物氧化法20世纪80年代后期,我国的张杰院士等对除锰滤池进行了深入研究,发现滤沙表面有大量微生物繁殖,由此提出了生物催化氧化除铁的新思路,并于90年代在我国率先开展了地下水生物除锰新技术的理论及应用研究.生物除锰的过程包括扩散、吸附和氧化3个阶段.在扩散阶段,Mn2+由水中向生物膜表面扩散;在吸附阶段,扩散到生物膜表面的Mn2+通过范德华引力和细菌胞外分泌物被吸附到生物膜的表面上;在氧化阶段,被吸附的Mn2+被氧化为MnO2,该过程可能包含两个方面,一是在微生物周围及内部形成了一个碱性的微环境,Mn2+在扩散到微生物表面及进入生物膜内部的过程中,被水中溶解氧迅速氧化.二是吸附在生物膜表面的Mn2+在微生物胞外酶的催化下被氧化成MnO2.在滤池中接种铁锰氧化细菌,经培养,熟料表面形成一个复杂的微生物生态系统,该系统中存在着大量具有锰氧化能力的细菌.滤层的活性就来自于附着的锰氧化细菌的活性.细菌在载体上再生出新的吸附表面,从而使吸附、氧化、再生处于动态平衡.生物法是利用微生物技术提出的新方法,该法提高了除锰效果,降低了工程投资及运行费用,是目前该领域的最新发展方向.但在工程实践中,由于各地水质的差异,生物除锰滤柱缺乏规范化的调试运行方法,在反冲洗时间、周期和强度、滤速、溶氧量、滤层厚度、滤料粒径等的选择上没有统一的标准.如何在保证出水合格的前提下缩短滤料的成熟时间、减小水头损失仍是一个应不断研究的课题.1.3接触氧化法地下水经过简单曝气后,直接进入滤池,在滤料表面催化剂的作用下,Fe2+、Mn2+被氧化后直接被滤层截留去除.该法的机理是自催化氧化反应,起催化作用的是滤料表面的铁质和锰质活性滤膜.铁质活性滤膜吸附水中的Fe2+,被吸附的Fe2+在活性滤膜的催化作用下迅速氧化为Fe3+,并且生成物作为催化剂又参与新的催化反应.同理,Mn2+在滤料表面锰质活性滤膜的作用下,被水中的溶解氧氧化为MnO:并吸附在滤料表面,使滤膜不断更新.接触氧化法是目前应用最为广泛的处理技术。
地下水中常常含有可溶性铁盐和锰盐,影响水的色度,另外,在管壁和过滤材料中蓄积铁、锰沉淀物会降低送水能力,影响水处理。
工业生产会影响到生产器的品质和机械的寿命,对饮用有害人类的健康。
除铁锰过滤器主要包括除去系统中的铁锰离子,净化水质。
我国饮用地下水的农村和城市很多,地下水一般水质较好,作为生活、生产用水水源,具有很多优点,因此优先考虑。
但在很多地区地下水中铁、锰含量超标,如果水中铁、锰含量高时,除影响生活用水对色、味、嗅等感官指标的要求,在用具、洗涤物上产生斑渍外,还会影响人类身体健康。
下面是小编整理的关于地下水去除铁锰离子的方法与工艺分析等内容,希望能对于去除铁锰离子方面起到一些参考价值。
井水除铁/地下水除铁锰处理方法:①根据水质的不同可选择一级或二级处理系统,根据水量选择单台或多台并联系统。
②除铁锰的工艺流程应根据下列条件确定:a.当原水含铁量≤10mg/L、含锰量≤0.5mg/l采用单级处理系统,当含铁量<20mg/l 或锰含量>1mg/l时,采用二级除铁锰处理系统。
b.当原水含铁量≤2.0毫克/升、含锰量≤1.5毫克/升时,可采用:原水曝气—单级过滤除铁除锰c.当原水含铁量或含锰量超过上述数值时,应通过试验确定;可采用:原水曝气—氧化—一次过滤除铁—二次过滤除锰d.当除铁受硅酸盐影响时,应通过试验确定。
必要时可采用:原水曝气—一次过滤除铁(接触氧化)—曝气——二次过滤除锰③除锰滤池滤前水的pH值宜达到7.5以上,二次过滤除锰滤池的滤前水含铁量宜控制在0.5mg/l以下。
在地下水除铁除锰的过程中,曝气的作用很大,目前将地下水净化处理后饮用的地区非常多,地下水处理的设备也很多,但工艺上基本一致,在这种情况下,能够省电、节水、处理效果好的设备成为地下水处理设备选择的关键。
,曝气过程在设备中完成,同时设备能够有效去除水体中的铁、锰、有机物(磷、氮、尿素、溶解酶)等,水中的悬浮物去除率99.5%,出水浊度0.3-4NTU。
我国饮用地下水的农村和城市很多,地下水一般水质较好,作为生活、生产用水水源,具有很多优点,因此优先考虑。
但在很多地区地下水中铁、锰含量超标,如果水中铁、锰含量高时,除影响生活用水对色、味、嗅等感官指标的要求,在用具、洗涤物上产生斑渍外,还会影响人类身体健康。
下面是小编整理的关于地下水去除铁锰离子的方法与工艺分析等内容,希望能对于去除铁锰离子方面起到一些参考价值。
地下水除铁方法:方法一:曝气氧化除铁法原理:利用空气中的氧将二价铁氧化成三价铁,使之析出,然后经过沉淀、过滤去除。
工艺流程:地下水去除铁锰离子的方法与工艺工艺特点:1、曝气不是完全为了充氧,不可忽视的是散失CO2,恢复地下水本来的OH- 浓度,提高PH值。
2、停留时间应由曝气氧化试验得出的完全氧化时间来决定,只考虑氧化速度是不充分的。
3、溶解性硅酸含量对曝气氧化铁有明显影响。
4、曝气氧化除铁不需要投加药剂,滤池负荷低,运行稳定,是一种经济的除铁方法。
方法二:氯氧化除铁法原理:含铁地下水经过加氯氧化后,通过絮凝、沉淀和过滤去除水中生成的Fe(OH)3的悬浮物。
当原水含铁量小时,可省去沉淀,当原水含铁量更小时,还可省去絮凝池,采用投氯后直接过滤。
工艺流程:地下水去除铁锰离子的方法与工艺工艺特点:1、只要投加必要的氯量,二价铁瞬间就完成氧化,达到Fe2+浓度为零。
2、向原水管中投氯,通过管内混合就可以顺利进行二价铁的氧化。
3、在沉淀池中除去氢氧化铁绒粒、悬浮物的主要目的是减轻滤池的负荷。
4、过滤时除铁工艺不可缺少的操作单元。
5、氯氧化法的适应性很强,几乎适用于各种水质,这是它的最大优点。
方法三、接触过氯氧化除铁法原理:经曝气后含铁地下水经过天然滤池的滤层过滤,水中的二氧化铁的氧化反应能迅速在滤层中完成,并同时将铁质截留于滤层中,从而完成除铁过程。
工艺流程:地下水去除铁锰离子的方法与工艺工艺特点:1、曝气仅仅是为了将空气中的氧气向原水中充入,以达到增加溶解氧浓度的目的,并不考虑二价铁的氧化问题。
《地下水接触氧化法除铁、锰制软化水综合实验》一实验目的地下水去除铁、锰是为了达到饮用要求和进行水质软化必须进行得给水处理过程。
对于饮水过程中的除铁、锰是为保证饮用水能够达到饮用水标准和保护身体健康进行的处理,而软化水处理过程中除铁、锰是为了防止离子交换树脂中毒。
因此,地下水除铁、锰对于给水处理过程很重要。
本实验就是使学生通过实验过程设计和综合性的实验获得某一地下水的基本处理参数,所得的实验数据应能指导该水质的软化处理工艺和设备的设计和制作、加工。
二实验内容1 设计地下水接触氧化法除铁、锰及软化处理实验工艺2 设计制作实验设备3 实验验证及改进(包括监测及测试)4 实验结果及结论三实验材料Φ100Χ2000有机玻璃柱3根,Φ8Χ2000有机玻璃管1根,万能胶,法兰盘三付,4分、6分塑胶软管,绑线,锰砂(0-2mm),101阳离子树脂,粗粒盐,过滤棉适量。
四实验仪器及药品哈納铁、锰测试仪,EDTA滴定法测水中总硬度器皿及药品,分析天平。
五实验步骤1 实验任务书进行初步设计方案的设计。
工艺流程:2 指导教师对设计方案进行评价、修正,确定指导性方案。
3 根据设计方案进行接触氧化法除铁、锰滤床和离子交换柱制作。
用万能胶将法兰、水槽与有机玻璃柱粘住。
固化12小时以上,同时,锰砂床应粘接滤阻水头损失观测管(Φ8Χ2000有机玻璃管)。
4 将5公斤粗粒盐制成饱和盐水,撇去浮沫。
5 用饱和盐水浸泡设计用量的101阳离子树脂12h。
6 根据设计方案将设计用量锰砂装入接触氧化床中。
锰砂装入前应用过滤棉将清水孔衬好,防止过滤过程中跑细砂,也可用80目以上滤布衬贴。
7 锰砂反洗。
用6分塑胶软管与锰砂床清水口连接,另一端接到地下水龙头上。
适当开启水龙头阀门,向锰砂床反洗注水,当浑水从水槽溢出,加大反洗水量,直到锰砂膨胀40%左右,继续反洗直至出清水。
(反水强度控制在15升/秒)。
8 锰砂正洗。
将锰砂床调整为过滤状态,从水槽加入地下水进行正洗(过滤),洗水从清水口排出。
地下水和废水预处理工艺中去除铁的主要方法1:空气曝气法去除锰、铁,空气曝气是应用最多的一种方法。
目的是为了向水中溶入氧,散去co2提高ph值,使fe2+向fe3+转化,然后形成fe(oh)3的絮凝体沉淀过滤而除去。
曝气的方式有水射式曝气、跌水曝气、空气压缩机曝气、淋水或喷水曝气、曝气塔曝气等。
2:氯水解法氯就是比溶解氧更弱的氧化剂,能够快速地将二价铁水解成三价铁。
可以增加反应和结晶时间,精简处置系统,在ph值4~10的范围内都可以出现。
当水中不含铵盐或含氮有机物时,加氯量减小。
3:高锰酸钾氧化法用于处理硬度较大的含铁地下水。
高锰酸钾是比氯和氧更强烈的氧化剂,能迅速地将二价铁氧化成三价铁,生成密室的絮凝体,易于为砂滤池所截留。
4:碰触过滤法以硫酸锰、氯化锰和高锰酸钾反反复复处置锰砂、绿砂、人造沸石或其他阴离子互换剂,可使之表面粘附一层高价锰的氧化物,当含铁水通过这种滤料时,二价铁便被水解除去。
适合于处置含铁浓度不少于10mg/l的原水。
5:离子交换法水中溶解的亚铁离子可用离子交换法除去,除去的过程和软化法一样。
适用于水需同时软化,且要求水中无氧气,不含二价铁离子以外的其他形式的铁质。
6:化学沉淀法重新加入石灰后,水中产生feco3结晶出,然后轻易由过滤器除去。
在ph值8.0-8.5就可以出现反应,建议水中没有氧气,一般需要一个密闭的压力反应器和压力滤池系统。
7:混凝沉淀过滤法当地下水含有有机铁或胶体状铁时,一般氧化法不能将铁去除,需用混凝剂,通过混凝、沉淀、过滤可获得良好的效果。
8:电解法在金属铝电极间通过原水,由水电解产生新生氧而水解水中亚铁盐,同时从电极中释出的铝离子可以分解成氢氧化钠,溶解悬浊的铁氧化物,展开汇聚、结晶、过滤器。
9:用铁细菌处理法利用铁细菌可以使水中溶解的铁氧化为不溶性的fe3+而聚集起来。
如发式纤毛细菌、赫氏纤毛细菌、含铁嘉氏铁柄杆菌、多胞铁细菌等。
操作简单,费用低廉,是一种慢速过滤法,适用于水量小的情况。