《工程力学ⅱ(材料)》问题答疑材料
- 格式:pdf
- 大小:97.81 KB
- 文档页数:4
一、单选题1.考虑梁的强度和刚度,在截面面积相同时,对于抗拉和抗压强度相等的材料(如碳钢),最合理的截面形状是()。
A、圆形B、环形C、矩形D、工字形正确答案:D2.等直圆轴扭转时,其截面上()。
A、只存在切应力B、只存在正应力C、既有切应力,又有正应力D、都不对正确答案:A3.在力的作用下,不变形的物体称()。
A、固体B、刚体C、永久体D、半固体正确答案:B4.一正方形截面梁的边长为2a,其对z轴的惯性矩IZ为()。
A、4a2B、2aC、2/3a3D、4/3a4正确答案:D5.材料力学中求内力的普遍方法是()。
A、几何法B、解析法C、投影法D、截面法正确答案:D6.平面图形对任一对正交坐标轴惯性积,其数值()。
A、恒为正值B、可以是正值或等于零,不可能是负值C、可以是正值或负值,也可能等于零D、可以是正值或负值,不可能等于零正确答案:C7.下列哪个量与材料力学性质无关()。
A、弹性模量EB、剪切弹性模量GC、泊松比νD、拉应力σ正确答案:D8.一个结构中有三根拉压杆,设由这三根杆的强度条件确定的结构许用载荷分别为F1、F2、F3,且F1 > F2 > F3,则该结构的实际许可载荷[ F ]为()。
A、F1B、F2C、F3D、(F1+F3)/2正确答案:C9.作用于刚体上的两个力平衡的充分与必要条件是,这两个力( )。
A、大小相等B、大小相等,方向相反C、大小相等,方向相反,作用在一条直线上D、无关系正确答案:C10.偏心拉伸杆,横截面上除中性轴以外各点的应力状态为()。
A、单向B、二向C、三向D、视具体情况而异正确答案:A二、单选题1.下列结论中正确的是()。
A、脆性材料受拉过程中不出现屈服和颈缩现象,它们的抗压强度比抗拉强度要高的多,不宜用于受拉构件B、对于塑性材料,通常以屈服极限σs作为材料的极限应力σ0,而脆性材料则是以强度极限σb作为材料的极限应力C、对于没有明显屈服阶段的塑性材料,通常用名义屈服极限σ0.2作为材料的极限应力D、不管是脆性材料还是塑性材料,只要应力不超过材料的弹性极限σc,胡克定律总是适用的正确答案:ABC2.影响杆件工作应力的因素有()。
工程力学教程第二版课后习题答案工程力学是一门应用力学原理研究工程结构和材料力学性能的学科。
作为工程学的基础课程之一,工程力学的学习对于培养工程师的分析和解决实际工程问题的能力至关重要。
而工程力学教程第二版是一本经典的教材,其中的课后习题是帮助学生巩固所学知识的重要辅助材料。
本文将为读者提供工程力学教程第二版课后习题的答案,帮助读者更好地理解和掌握工程力学的知识。
第一章:静力学1. 问题:一根长度为L,截面为矩形的梁,其宽度为b,高度为h。
梁的两端分别固定在支座上,中间有一个集中力P作用在梁上。
求梁在P作用下的最大弯矩和最大剪力。
答案:根据静力学原理,我们可以通过平衡力和力矩来求解该问题。
首先,根据平衡力的原理,梁在P作用下的最大剪力等于P。
其次,根据力矩的原理,梁在P作用下的最大弯矩等于P乘以梁的长度L的一半。
因此,最大弯矩为PL/2。
第二章:动力学1. 问题:一个质量为m的物体以速度v沿着水平方向运动,突然撞击到一个质量为M的静止物体上。
求撞击后两个物体的速度。
答案:根据动量守恒定律,撞击前后两个物体的总动量保持不变。
设撞击后质量为m的物体的速度为v1,质量为M的物体的速度为v2。
由动量守恒定律可得mv = mv1 + Mv2。
另外,根据能量守恒定律,撞击前后两个物体的总动能保持不变。
设撞击前质量为m的物体的动能为1/2mv^2,撞击后质量为m的物体的动能为1/2mv1^2,质量为M的物体的动能为0(静止)。
由能量守恒定律可得1/2mv^2 = 1/2mv1^2 + 0。
综上所述,可以解得v1 = (m - M)v / (m + M),v2 = 2m / (m + M)。
第三章:应力分析1. 问题:一个长方体的尺寸为a×b×c,其材料的杨氏模量为E,泊松比为v。
求该长方体在x、y、z方向上的应力分量。
答案:根据应力分析的原理,我们可以通过应力的定义和杨氏模量、泊松比的关系来求解该问题。
工程力学(2)网上答疑主持人:各位同学、各位老师大家好!现在我们进行开放教育“水利水电工程专业”《工程力学(2)》的网上答疑。
问:工程力学(2)的考核方式如何?答:工程力学(2)的考核方式是形成性考核与期末考核相结合(1)形成性考核及试验占总成绩的20%;期末考核(笔试)占总成绩的80%。
(2)形成性考核共四次,按教学进度,于每次学习结束一周后交本次作业,辅导教师负责批改并评定成绩,期末将平时成绩折合成总成绩。
形成性考核及试验总成绩不及格者(即达不到12分)不得参加期末考试。
(3)期末考试由中央电大统一命题,统一考试。
问:工程力学(2)期末考试的试题类型及结构如何?答:工程力学(2)期末考试的试题类型及结构:主要为填空题、选择题(占20%);计算题(占80%)。
问:工程力学(2)期末考试答题时限及其他要求有哪些?答:答题时限:期末笔试均为120分钟。
其它说明:期末笔试:学生自带钢笔、铅笔、三角板、计算器(不得内含存储及编程功能)等工具。
问:工程力学(2)的学习内容有哪些?答:工程力学(2)是学习工程力学(1)的延续。
使用的教材仍然是李前程、安学敏编著、中国建筑出版社出版的《建筑力学》。
本学期学习的内容为该教材的第十章至第十五章的内容。
问:本学期学习的重点内容有哪些?答:本学期学习了《建筑力学》五章的内容,前四章为结构力学的内容,第十五章为材料力学的内容。
这五章可分为三部分内容:(1)梁和结构的位移,主要是进行静定梁和静定结构的位移计算。
掌握图乘法求静定结构的方法。
(2)力法、位移法和力矩分配法主要是介绍求解超静定结构的三种方法。
掌握这三种方法求解1~2次超静定结构的方法。
(3)压杆稳定是介绍细长杆件稳定性的问题。
掌握欧拉公式及其适用条件,并能够利用他进行一般的稳定性计算。
从技能角度讲,主要是掌握计算原理和计算方法。
问:第十一章梁和结构的位移有哪些学习要点?答:这一章介绍了四种求位移的方法,它们分别是:(1)梁的挠曲线近似微分方程及其积分求解梁的位移;(2)叠加法求解梁的位移;(3)单位荷载法通过积分求结构的位移;(4)单位荷载法通过图乘求解结构的位移。
一、主题讨论部分:1.可变性固体的性质和基本的假设条件。
变形固体的组织构造及其物理性质是十分复杂的,为了抽象成理想的模型,通常对变形固体作出下列基本假设:(1)连续性假设:假设物体内部充满了物质,没有任何空隙。
而实际的物体内当然存在着空隙,而且随着外力或其它外部条件的变化,这些空隙的大小会发生变化。
但从宏观方面研究,只要这些空隙的大小比物体的尺寸小得多,就可不考虑空隙的存在,而认为物体是连续的。
(2)均匀性假设:假设物体内各处的力学性质是完全相同的。
实际上,工程材料的力学性质都有一定程度的非均匀性。
例如金属材料由晶粒组成,各晶粒的性质不尽相同,晶粒与晶粒交界处的性质与晶粒本身的性质也不同;又如混凝土材料由水泥、砂和碎石组成,它们的性质也各不相同。
但由于这些组成物质的大小和物体尺寸相比很小,而且是随机排列的,因此,从宏观上看,可以将物体的性质看作各组成部分性质的统计平均量,而认为物体的性质是均匀的。
(3)各向同性假设:假设材料在各个方向的力学性质均相同。
金属材料由晶粒组成,单个晶粒的性质有方向性,但由于晶粒交错排列,从统计观点看,金属材料的力学性质可认为是各个方向相同的。
例如铸钢、铸铁、铸铜等均可认为是各向同性材料。
同样,像玻璃、塑料、混凝土等非金属材料也可认为是各向同性材料。
但是,有些材料在不同方向具有不同的力学性质,如经过辗压的钢材、纤维整齐的木材以及冷扭的钢丝等,这些材料是各向异性材料。
在材料力学中主要研究各向同性的材料。
特别注意:小变形假设不属于可变形固体的三个基本假设之一,小变形假设是可变形固体三个假设的应用条件,即在小变形条件下,可变形固体才满足连续性、均匀性和各向同性假设的基本内容。
2.杆件变形的基本形式。
根据几何形状的不同,构件可分为杆、板和壳、块体三类。
材料力学主要研究杆(或称杆件)。
杆在各种形式的外力作用下,其变形形式是多种多样的。
但不外乎是某一种基本变形或几种基本变形的组合。
《工程力学(II)(材料)》16春平时作业1一、单选题(共 10 道试题,共 40 分。
)1. 影响持久极限的主要因素是()。
. 材料的强度极限、应力集中、表面的加工质量. 材料的塑性指标、应力集中、表面的加工质量. 构件的外形. 应力集中、构件尺寸、表面加工质量正确答案:2. 低碳钢的许用力[σ]=( )。
. σp/n. σ/n. σs/n. σ/n正确答案:3. 非圆截面杆约束扭转时,横截面上()。
. 只有切应力,无正应力. 只有正应力,无切应力. 既有正应力,也有切应力. 既无正应力,也无切应力正确答案:4. 设计铸铁梁时,宜采用中性轴为()的截面。
. 对称轴. 偏于受拉边的非对称轴. 偏于受压边的非对称轴. 对称或非对称轴正确答案:5. 下列结论中正确的是()。
. 圆轴扭转时,横截面上有正应力,其大小与截面直径无关. 圆轴扭转时,截面上有正应力,也有切应力,其大小均与截面直径无关. 圆轴扭转时,横截面上只有切应力,其大小与到圆心的距离成正比正确答案:6. 构件作均变速直线运动时,关于其动应力和相应的静应力之比,即动载荷系数K有如下结论()。
. 等于1. 不等于1. 恒大于1. 恒小于1正确答案:7. 处理组合变形的一般步骤是()。
. 内力分析-外力分析-应力分析-强度计算. 应力分析-强度计算-内力分析-外力分析. 强度计算-外力分析-内力分析-应力分析. 外力分析-内力分析-应力分析-强度计算正确答案:8. 任一单元体( )。
. 在最大正应力作用面上,剪应力为零. 在最小正应力作用面上,剪应力最大. 在最大剪应力作用面上,正应力为零. 在最小剪应力作用面上,正应力最大正确答案:9. 依据力的可传性原理,下列说法正确的是(). 力可以沿作用线移动到物体内的任意一点. 力可以沿作用线移动到任何一点. 力不可以沿作用线移动. 力可以沿作用线移动到刚体内的任意一点。
正确答案:10. 柔性约束反力其方向沿着柔性约束()被约束物体。
《工程力学(II)(材料)》命题作业:背景资料:在工程建设中,低碳钢是典型的塑性材料,铸铁是典型的脆性材料,作为两种最常见的材料力学的研究对象。
从这两个不同类别材料的实验现象中可以看出塑性材料和脆性材料的受力现象,了解其中的力学性能。
作业名称:低碳钢和铸铁在拉伸试验中的力学性能?请详细阐述这两种材料拉伸试验的实验现象,并根据工作段的伸长量和荷载间的关系大致分类。
作业要求:1.现象内容要详细,回答要有条理;2.字数控制在600~800字;3.可以分享自己的理解,请勿抄袭。
述碳钢和铸铁在工程建设中,低碳钢是典型的塑性材料,铸铁是典型的脆性材料,两种最广泛使用的材料。
那么,受力时,分别有哪些现象呢?在外力作用下(如拉伸、冲击等)仅产生很小的变形即破坏断裂的材料,称为塑性材料。
顾名思义,在外力作用下,低碳钢虽然产生较显著变形而不被破坏的材料,相反在外力作用下,铸铁发生微小变形即被破坏的材料。
低碳钢低碳钢为塑性材料,开始时遵守胡克定律沿直线上升,比例极限以后变形加快,但无明显屈服阶段。
相反地,图形逐渐向上弯曲。
这是因为在过了比例极限后,随着塑性变形的迅速增长,而试件的横截面积逐渐增大,因而承受的载荷也随之增大。
从实验我们知道,低碳钢试件可以被压成极簿的平板而一般不破坏。
因此,其强度极限一般是不能确定的。
我们只能确定的是压缩的屈服极限应力。
低碳钢的整个试验过程中工作段的伸长量与荷载的关系由拉伸图表示。
做实验时,可利用万能材料试验机的自动绘图装置会出其拉伸图拉力F与伸长量△L的关系曲线。
铸铁铸铁为脆性材料,其压缩图在开始时接近于直线,与纵轴之夹角很小,以后曲率逐渐增大,最后至破坏,因此只确定其强度极限。
σbc=Fbc/S 铸铁试件受压力作用而缩短,表明有很少的塑性变形的存在。
当载荷达到最大值时,试件即破坏,并在其表面上出现了倾斜的裂缝(裂缝一般大致在与横截面成45°的平面上发生)铸铁受压后的破坏是突然发生的,这是脆性材料的特征。
《工程力学2习题解答》建筑1001班陈飞力学教研室编著1-2. 试求图示结构mm 和nn 两截面上的内力,并指出AB 和BC 两杆属何种基本变形。
解:(1)求约束反力:取杆AB 为研究对象∑∑∑=⨯-⨯==-+===0233 003 000BCABCAAN M N Y Y X X 解得:kN Y kN N A BC 1 2==(2)求m-m 截面内力:将杆AB 沿截面m-m 截开, 取左半部分kNm Y M kN Y Q A m-m A m m 11 1=⨯===-AB 杆发生弯曲变形。
(3)求n-n 截面内力:取杆BC 为研究对象,截开n-n 截面kN N N BC n n 2==-BC 杆发生拉伸变形1-3. 拉伸试件A 、B 两点的距离l 称为标距,在拉力作用下,用引伸仪量出两点距离的增量为Δl =5×10-2mm 。
若l 的原长为l =10cm ,试求A 、B 两点间的平均应变。
解:平均应变为42105100105Δ--⨯=⨯==l l m ε1-4. 图示三角形薄板因受外力而变形。
角点B 垂直向上的位移为0.03mm ,但AB和BC 仍保持为直线。
试求沿OB 的平均应变,并求AB 、BC 两边在B 点夹角的变化。
解:(1) 求OB 方向的平均线应变n4105.212003.0Δ120-⨯=====l l mmOA OB m ε (2)求AB 与BC 两边的角应变4105.2'22-⨯=-=OB AO arctg πγ2-1. 试求图示各杆1-1、2-2、3-3截面的轴力, 并作轴力图。
解: (a)(1)求约束反力kNR R X 500203040 0==-++-=∑(2)求截面1-1的轴力kNN NR X 500011==+-=∑(3)求截面2-2的轴力kNN NR X 10040 022==++-=∑(4)求截面3-3的轴力(a) (b)kNN NR X 2003040 033-==+++-=∑(5)画轴力图(b)(1)求截面1-1的轴力01=N(2)求截面2-2的轴力 PN4022==(3)求截面3-3的轴力PN P P NX 304 033==-+=∑(4)画轴力图2-2. 作用图示零件上的拉力P=38kN ,试问零件内最大拉应力发生于哪个横截面上?并求其值。
《工程材料力学性能》(第二版)课后答案第一章材料单向静拉伸载荷下的力学性能一、解释下列名词滞弹性:在外加载荷作用下,应变落后于应力现象。
静力韧度:材料在静拉伸时单位体积材科从变形到断裂所消耗的功。
弹性极限:试样加载后再卸裁,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。
比例极限:应力—应变曲线上符合线性关系的最高应力。
包申格效应:指原先经过少量塑性变形,卸载后同向加载,弹性极限(ζP)或屈服强度(ζS)增加;反向加载时弹性极限(ζP)或屈服强度(ζS)降低的现象。
解理断裂:沿一定的晶体学平面产生的快速穿晶断裂。
晶体学平面--解理面,一般是低指数,表面能低的晶面。
解理面:在解理断裂中具有低指数,表面能低的晶体学平面。
韧脆转变:材料力学性能从韧性状态转变到脆性状态的现象(冲击吸收功明显下降,断裂机理由微孔聚集型转变微穿晶断裂,断口特征由纤维状转变为结晶状)。
静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。
是一个强度与塑性的综合指标,是表示静载下材料强度与塑性的最佳配合。
二、金属的弹性模量主要取决于什么?为什么说它是一个对结构不敏感的力学姓能?答案:金属的弹性模量主要取决于金属键的本性和原子间的结合力,而材料的成分和组织对它的影响不大,所以说它是一个对组织不敏感的性能指标,这是弹性模量在性能上的主要特点。
改变材料的成分和组织会对材料的强度(如屈服强度、抗拉强度)有显著影响,但对材料的刚度影响不大。
三、什么是包辛格效应,如何解释,它有什么实际意义?答案:包辛格效应就是指原先经过变形,然后在反向加载时弹性极限或屈服强度降低的现象。
特别是弹性极限在反向加载时几乎下降到零,这说明在反向加载时塑性变形立即开始了。
包辛格效应可以用位错理论解释。
第一,在原先加载变形时,位错源在滑移面上产生的位错遇到障碍,塞积后便产生了背应力,这背应力反作用于位错源,当背应力(取决于塞积时产生的应力集中)足够大时,可使位错源停止开动。
第二章汇交力系2.1在刚体的A 点作用有四个平面汇交力。
其中 F i = 2kN , F 2=3kN , F 3=lkN , 方向如题2.1图所示。
用解析法求该力系的合成结果。
解 F RXX = R cos3°0 F 4 COS °45 2 cksF60 EosKN F R y 八 丫 =F 1 sin300 - F 4 cos450 F 2 sin60° - F 3 cos450 = 2.54KNF R 「F RX • F Ry =2.85KN(F R ,X) =arcta 门邑=63.0702.2题2.2图所示固定环受三条绳的作用,已知 F i = 1kN , F 2=2kN , F 3=l.5kN 。
合成结果。
题 2一2 D解:2.2图示可简化为如右图所示F RX = » X 二 F 2 F 3COS 600 =2.75KN F Ry 「丫 四-F 3sin600 = -0.3KNF R F FRX F Ry=2.77KNF 4=2.5kN,1.29求该力系的题2.1图2.3力系如题2.3图所示。
已知:F I = 100N , F 2=50N , F 3=50N ,求力系的合力。
F2F 3解:2.3图示可简化为如右图所示80 一 BAC - J - arcta n 53°60 F RX 二' X 二 F 3 —F 2COS J -80KN F R y 八丫二 F 「F 2S in v -140KNF R 「F Rx —F Ry “61.25 KN (F R ,X)二arctan^ =60.25。
2.4球重为 W = 100N ,悬挂于绳上,并与光滑墙相接触,如题 2.4图所示。
已知- =30 ,试求绳所受的拉力及墙所受的压力。
解:2.4图示可简化为如右图所示' X =F 推- F 拉 sin ;; =0'丫二 F 拉 cos : _W =0W(F R ,X)二 arctan 二-6.2题2.4图F拉.F 拉=115.47N , F 推= 57.74N.墙所受的压力F=57.74N2.5均质杆AB 重为W 、长为I ,两端置于相互垂直的两光滑斜面上,如题 2.5图所示。
材料力学实验的常见问题解答材料力学实验是研究物质的强度、刚度和耐久性等力学性能的重要手段。
然而,在进行材料力学实验时,常常会遇到一些问题。
本文将针对一些常见的问题进行解答,帮助读者更好地进行材料力学实验研究。
问题一:如何准确测量材料的应力和应变?回答:测量材料的应力和应变是材料力学实验的基础工作。
测量应力可以通过应力传感器或称力传感器来完成。
应力传感器是一种能够转换外加载荷作用下的力值为电信号的装置。
使用应力传感器可以将材料受到的力转化为电信号,进而得到材料的应力。
而测量应变则可通过应变传感器来实现。
应变传感器有电阻应变片、应变导线等多种形式,能够测得材料的应变值。
问题二:如何选择适当的加载方式?回答:根据实验目的和要求,选择适当的加载方式非常重要。
常见的加载方式包括拉伸、压缩、剪切和扭转等。
对于不同材料和实验目的,选择不同的加载方式可达到最好的实验效果。
例如,要研究金属材料的强度和塑性特性,选择拉伸载荷是较为常见的实验方式。
问题三:在实验过程中如何保持载荷的稳定性?回答:保持载荷的稳定性对于材料力学实验至关重要。
在实验中,可以采用机械加载设备或液压加载设备来保持载荷的稳定。
机械加载设备需要根据实验需求进行调整和固定,而液压加载设备则可通过流量和压力控制来实现载荷的稳定。
问题四:如何处理实验数据?回答:在材料力学实验中,处理实验数据是不可或缺的步骤。
可以使用数据采集系统将实验数据记录下来,并且使用相应的软件进行数据处理和分析。
常见的数据处理方法包括曲线拟合、数据平滑等。
值得注意的是,处理实验数据时需要注意数据的准确性和可靠性,以避免误解和错误结论的产生。
问题五:如何评估材料的力学性能?回答:评估材料的力学性能是材料力学实验的重点之一。
根据实验结果,可以得到材料的强度、刚度、韧性等性能参数。
通过计算和分析这些参数,可以对材料进行综合评估,并且与标准进行比较,以判断材料是否满足特定需求。
问题六:如何提高实验的精度?回答:提高实验精度是材料力学实验中的重要目标。
第一篇理论力学篇模块一刚体任务一刚体的受力分析(P11)一、简答题1.力的三要素是什么?两个力使刚体平衡的条件是什么?答:力的三要素,即力的大小、力的方向和力的作用点。
两个力使刚体处于平衡状态的必要和充分条件:两个力的大小相等,方向相反,作用在同一直线上。
2.二力平衡公理和作用与反作用公理都涉及二力等值、反向、共线,二者有什么区别?答:平衡力是作用在同一物体上,而作用力与反作用力是分别作用在两个不同的物体上。
3.为什么说二力平衡公理、加减平衡力系公理和力的可传性都只适用于刚体?答:因为非刚体在力的作用下会产生变形,改变力的传递方向。
例如,软绳受两个等值反向的拉力作用可以平衡,而受两个等值反向的压力作用就不能平衡。
4.什么是二力构件?分析二力构件受力时与构件的形状有无关系。
答:工程上将只受到两个力作用处于平衡状态的构件称为二力构件。
二力构件受力时与构件的形状没有关系,只与两力作用点有关,且必定沿两力作用点连线,等值,反向。
5.确定约束力方向的原则是什么?活动铰链支座约束有什么特点?答:约束力的方向与该约束阻碍的运动方向相反。
在不计摩擦的情况下,活动铰链支座只能限制构件沿支承面垂直方向的移动。
因此活动铰链支座的约束力方向必垂直于支承面,且通过铰链中心。
6.说明下列式子与文字的意义和区别:(1)12=F F ,(2)12F F =, (3)力1F 等效于力2F 。
答:若12=F F ,则一般只说明两个力大小相等,方向相反。
若12F F =,则一般只说明两个力大小相等,方向是否相同,难以判断。
若力1F 等效于力2F ,则两个力大小相等,方向和作用效果均相同。
7.如图1-20所示,已知作用于物体上的两个力F1与F2,满足大小相等、方向相反、作用线相同的条件,物体是否平衡?答:不平衡,平衡是指物体相对于惯性参考系保持静止或匀速直线运动的状态,而图中AC 杆与CB 杆会运动,两杆夹角会在力的作用下变大。
二、分析计算题1.试画出图1-21各图中物体A 或构件AB 的受力图(未画重力的物体重量不计,所有接触均为光滑接触)。
一、主题讨论部分:1.可变性固体的性质和基本的假设条件。
变形固体的组织构造及其物理性质是十分复杂的,为了抽象成理想的模型,通常对变形固体作出下列基本假设:(1)连续性假设:假设物体内部充满了物质,没有任何空隙。
而实际的物体内当然存在着空隙,而且随着外力或其它外部条件的变化,这些空隙的大小会发生变化。
但从宏观方面研究,只要这些空隙的大小比物体的尺寸小得多,就可不考虑空隙的存在,而认为物体是连续的。
(2)均匀性假设:假设物体内各处的力学性质是完全相同的。
实际上,工程材料的力学性质都有一定程度的非均匀性。
例如金属材料由晶粒组成,各晶粒的性质不尽相同,晶粒与晶粒交界处的性质与晶粒本身的性质也不同;又如混凝土材料由水泥、砂和碎石组成,它们的性质也各不相同。
但由于这些组成物质的大小和物体尺寸相比很小,而且是随机排列的,因此,从宏观上看,可以将物体的性质看作各组成部分性质的统计平均量,而认为物体的性质是均匀的。
(3)各向同性假设:假设材料在各个方向的力学性质均相同。
金属材料由晶粒组成,单个晶粒的性质有方向性,但由于晶粒交错排列,从统计观点看,金属材料的力学性质可认为是各个方向相同的。
例如铸钢、铸铁、铸铜等均可认为是各向同性材料。
同样,像玻璃、塑料、混凝土等非金属材料也可认为是各向同性材料。
但是,有些材料在不同方向具有不同的力学性质,如经过辗压的钢材、纤维整齐的木材以及冷扭的钢丝等,这些材料是各向异性材料。
在材料力学中主要研究各向同性的材料。
注意:可变形固体的基本假设有三个,其中并不包括小变形假设。
2.杆件变形的基本形式。
根据几何形状的不同,构件可分为杆、板和壳、块体三类。
材料力学主要研究杆(或称杆件)。
杆在各种形式的外力作用下,其变形形式是多种多样的。
但不外乎是某一种基本变形或几种基本变形的组合。
杆的基本变形可分为:(1)轴向拉伸或压缩:直杆受到与轴线重合的外力作用时,杆的变形主要是轴线方向的伸长或缩短。
这种变形称为轴向拉伸或压缩,如图(a)、(b)所示。