活塞式制冷压缩机
- 格式:ppt
- 大小:4.13 MB
- 文档页数:64
活塞式制冷压缩机选择活塞式制冷压缩机应根据名义工况制冷量或计算理论排气量,查制冷压缩机产品样本,选择制冷压缩机型号和台数。
在选择时掌握以下原则:1)选择台数尽可能少,制冷量大时选大型机。
一般最少二台。
机房内的压缩机应尽可能少,这样可以减少运行管理工作量,制冷管道的布置方便,因此,应尽量选择大型机,但考虑到制冷系统的可靠性,最少选择两台。
2)尽量选同系列压缩机。
为减少维修中配件的数量,制冷压缩机的缸径尽量选用相同的,因为,相同缸径的压缩机的活塞、连杆、缸套、气阀等完全一致。
[例题1] 已知某氨制冷系统蒸发温度为-10℃,冷凝温度为35℃,机器负荷j Q =195000W ,试对制冷压缩机进行选型计算。
[解]1.确定设计工况下的D λ和vD q 值根据蒸发温度0t =-10℃,冷凝温度k t =35℃,设计工况下无过冷(本题没有提及设置再冷却器),查表4—1和表4—5分别得D λ=0.47,vD q = 2588.23/m kJ 。
2.确定压缩机名义工况下的N λ、vN q 值根据表1-3,氨压缩机的名义工况为蒸发温度0t =-15℃,冷凝温度k t =30℃,查表4-1得,N λ=0.73。
根据蒸发温度0t =-15℃,过冷温度g t =25℃,查表4-5得,vN q =2128.33/m kJ 。
3.计算所需压缩机名义工况产冷量 将有关数据代入公式(4-5)中得: vD D N v N jN q q Q Q λλ==1950002.258874.03.212873.0⨯⨯⨯=158183 (W ) 4.确定压缩机的型号和台数由压缩机产品样本查出(表4-3),一台6AW10型制冷压缩机,其名义制冷量N Q =81280W 。
根据压缩机选型原则,选两台6AW10型制冷压缩机,可满足需要即: N Q ∑=2×81280=162560 (W ) 或用理论排气量进行选型计算,由式(4—6)得 vDD jh q Q V ∙=λ6.3=2.258874.01950006.3⨯⨯=366.5 (h m /3)同样选配两台6AW10型制冷压缩机,可满足要求,由压缩机产品样本查得两台压缩机的总理论排气量为:h V =2×190.2=380.4 (h m /3)(二)双级压缩机的选择双级压缩机有单级双级机和配组式双级压缩机。
活塞式制冷压缩机常见的三种类型
活塞式制冷压缩机是一种在制冷行业来说较为常用的冷水机组,但是对于活塞式制冷压缩机的具体分类大家却知道的较为少见,因此兆雪小柯就为您总结一些活塞式制冷压缩机的具体分类来为您详细介绍一下这些基本的产品知识。
在工业制冷行业,比较常用的制冷压缩机有螺杆式、活塞式和离心式之分。
活塞式压缩机多用于箱体密封式结构的冷水机(称为水冷箱式冷水机),该压缩机按照密封型式分为全封闭式、半封闭式和开启式三种。
1、开启式压缩机:它的特点是由轴的动力输入端伸出机体,用联轴器或皮带轮等传动装置与电动机联接。
曲轴伸出机体处用轴封装置加以密封。
由于轴封装置不可能实现完全的密封,冷水机内制冷剂及润滑油的泄漏和外界空气的渗入是不可避免的。
因此,这种压缩机不宜用于充灌量小,且不设空气分离器的小型自动化工业制冷冷水机。
2、半封闭式压缩机:它的特点是机体和电动机壳体采用螺栓联接,用密封垫片密封,从而形成一个密闭的机身。
电动机直接装于压缩机的曲轴上。
这种压缩机的密封性比开启式的好,可减少甚至避免渗漏。
3、全封闭式压缩机:它的特点是机体和电动机共同装于一个封闭的壳体内,壳体接缝处采用焊接。
从外观上看,只有吸气、排气接管和电动机的接线柱,这种压缩机的密封性是最好的。
不管是采用哪种形式的活塞式制冷压缩机,这种冷水机我们可以统称为活塞式冷水机,也是目前各行业最为常用的机型之一。
活塞式制冷压缩机理想工作过程
活塞式制冷压缩机是一种常见的压缩机类型,广泛应用于空调、制冷设备等领域。
本文将介绍活塞式制冷压缩机的理想工作过程。
活塞式制冷压缩机的理想工作过程分为四个步骤:吸入、压缩、冷却和排出。
首先是吸入阶段。
在吸入阶段,活塞向下运动,扩大了气缸内的容积。
随着容积的增大,外界空气以低压进入气缸内,形成吸入气体。
同时,进气阀门打开,有利于气体的吸入。
接下来是压缩阶段。
在压缩阶段,活塞向上运动,减小了气缸内的容积。
气体在此过程中被压缩,温度和压力逐渐增加。
进气阀门关闭,以防止气体的逆流。
然后是冷却阶段。
在冷却阶段,压缩的气体进入冷凝器。
在冷凝器中,通过散热器的冷却,气体的温度降低,通过与周围环境的热交换,将热量散发到外部。
最后是排出阶段。
在排出阶段,冷却后的气体进入膨胀阀。
膨胀阀的作用是控制气体的流量,并将气体导入蒸发器。
在膨胀器中,气体通过蒸发过程吸收蒸发器内的热量,从而降低蒸发器内的温度。
通过这样的一系列过程,活塞式制冷压缩机将工质从低温低压状态转变为高温高压状态。
这样的状态将有利于制冷系统的运行。
需要注意的是,上述过程是基于理想条件下的描述。
实际情况中,压缩机的工作过程可能受到不同因素的影响,如摩擦、压力损失等。
因此,在实际工作中需要对这些因素进行考虑和优化,以提高制冷系统的效率和性能。
活塞式制冷压缩机是一种重要的制冷设备。
了解其理想工作过程有助于我们更好地理解制冷系统的运作原理,为相关领域的设计和应用提供指导。
活塞式制冷压缩机的活塞在汽缸中往返一次,曲轴旋转一周时,依次进行了压缩、排气、膨胀、吸气四个过程,完成了一次吸排气过程。
①压缩,当活塞从下止点开始往上移动时,汽缸内的制冷剂蒸气受到压缩,此时吸气阀片在汽缸压力增大的作用下,迅速关闭。
随着活塞的移动,汽缸内制冷剂蒸气的压力和温度均随之上升,当汽缸内气体的压力升至略高于排气腔中的压力时,排气阀打开,压缩过程结束。
②排气活塞在电动机驱动下,继续向上止点方向运动。
汽缸内的高温、高压制冷剂蒸气不断排出,直到活塞到达上止点位里时,排气过程结束。
③膨胀当活塞从上止点开始向下止点方向运动时,由于汽缸余隙容积的存在,留在余隙容积中的制冷剂蒸气就开始膨胀。
其压力和温度也随之下降。
当压力下降到与吸气压力相等时,膨胀过程结束.在膨胀过程中,吸气阀和排气阀都处于关闭状态。
④吸气活塞在电动机动驱动下继续从上止点向下止点方向运动,当汽缸内蒸气压力开始低于吸气压力时,在压差的作用下,吸气阀片打开,吸气过程开始,直到活塞移至下止点时,吸气过程结束。
吸气过程结束后,活塞又在电动机驱动下,再从下止点向上止点方向运动,重新进行压缩过程。
由此可见,活塞在汽缸中每往复运动一次,也就是曲轴每转一圈,就会依次对制冷系统中的制冷剂进行压缩、排气、膨胀和吸气四个过程,压缩机周而复始地运作,迫使制冷
剂在系统中循环流动,达到制冷目的。
空调活塞式压缩机原理
空调活塞式压缩机是一种常用于空调和制冷设备中的压缩机。
它通过一个或多个活塞的上下往复运动来实现压缩空气或制冷剂。
首先,活塞式压缩机由一个外壳、气缸、曲轴、连杆和活塞组成。
在工作时,制冷剂经过进气阀进入气缸。
然后,活塞向下运动,减少气缸的容积,使制冷剂被压缩。
同时,排气阀关闭,阻止制冷剂倒流。
随后,当活塞到达最低点时,它开始向上运动。
这会导致气缸容积增加,从而降低了制冷剂的压力。
在活塞上升的过程中,排气阀打开,使得压缩空气或制冷剂被推向管道系统。
这种上下往复的过程不断重复,从而实现了压缩空气或制冷剂的循环。
通过控制活塞的运动速度和频率,可以调节压缩机的输出功率和制冷能力。
总结而言,空调活塞式压缩机通过活塞上下往复运动来压缩空气或制冷剂,并通过排气阀进行循环和输送。
这种原理使得它成为一种可靠且广泛应用于空调和制冷系统中的压缩机。
活塞式制冷压缩机的四个过程活塞式制冷压缩机是一种常见的压缩机类型,广泛应用于制冷、空调等领域。
它通过四个不同的过程来完成压缩和冷却的工作。
下面将详细介绍这四个过程。
第一个过程是吸气过程。
在这个过程中,制冷压缩机的活塞向后运动,扩大了活塞腔容积。
此时,制冷剂从外部低压侧(蒸发器)进入。
在吸入过程中,活塞运动快速,吸入阀门打开,制冷剂被抽入压缩机内部。
这个过程中,温度低、压力低。
第二个过程是压缩过程。
在这个过程中,活塞开始向前运动,缩小了活塞腔容积。
同步,压缩腔的温度和压力开始上升。
制冷剂受到了压缩,分子间的间距变小,分子与分子之间发生了碰撞,从而使制冷剂的温度和压力上升。
这个过程中,温度高、压力高。
第三个过程是冷却过程。
在这个过程中,压缩机通过冷却系统将压缩的制冷剂降温。
制冷剂进入冷凝器,通过冷却器冷却。
在冷却过程中,制冷剂的温度和压力开始下降。
冷却后,制冷剂会变成液体状态。
第四个过程是放气过程。
在这个过程中,活塞继续向前运动,改变了活塞腔的容积,使得放气阀门打开。
此时,高压制冷剂被排出到外部高压侧(冷凝器)。
放气过程中,制冷剂的温度和压力继续下降。
这四个过程循环进行,不断地完成制冷剂的压缩和冷却。
通过这个过程,制冷压缩机能够将低温低压的制冷剂压缩成高温高压的制冷剂,从而实现制冷的效果。
同时,通过冷却过程,制冷剂的温度也会降低,以便下一个循环的吸气过程。
总之,活塞式制冷压缩机的四个过程(吸气、压缩、冷却、放气)共同完成了制冷剂的压缩和冷却,从而实现了制冷的目的。
在应用领域广泛的制冷压缩机中,活塞式制冷压缩机以其简单、可靠的特点得到了广泛的应用。
它在制冷领域的发展中起到了重要的作用。
活塞式制冷压缩机的工作原理及结构活塞式制冷压缩机的工作原理及结构第一节活塞式制冷压缩机工作原理1、活塞压缩机的分类按使用的制冷剂来分,有氨压缩机和氟利昂压缩机两种。
按压缩级数来分,有单级压缩和双级压缩两种。
按汽缸中心线的位置分,有直立式、V型、W型和S(扇)型。
按压缩机的总体结构来分,有开启式、半封闭式、全封闭式三种2、活塞式压缩机的工作过程1)理想工作过程在分析活塞式压缩机的工作过程中,可以先把实际过程简化成理想过程。
简化时假定:a.压缩机没有余隙容积;b.吸、排气过程没有容积损失;c.压缩过程是理想的绝热过程;d.无泄漏损失。
这样,压缩机的理想工作过程可用图2-1所示的P―V图来表示。
纵坐标表示压力P,横坐标表示活塞在汽缸中移动时形成的容积V。
在图中,4→1表示吸气过程,活塞从上止点开始向右移动,排气阀(片)关闭,吸气阀(片)打开,在压力P1下吸入制冷剂气;1→2表示压缩过程,活塞从下止点向左移动,制冷剂从压力P1绝热压缩到P2,此过程吸、排气阀均关闭;2→3表示排气过程,活塞左行至2位置时排气阀打开,活塞继续左行,在压力P2下把制冷剂排出汽缸。
由于假设没有余隙容积,活塞运行到3点时制冷剂全部排出。
当活塞再次向右移动时进行下一次的吸气过程。
2)实际工作过程压缩机的实际工作过程与理想工作过程有很大不同。
实际过程存在余隙容积;吸排气阀有阻力,工作时存在压力损失;汽缸壁与制冷剂之间有热交换,非绝热过程;有漏损失。
a.余隙容积的影响(容积系数λV)余隙:活塞运动到上止点位置时,活塞顶与阀座之间保持一定的间隙,称为余隙,余隙所形成的容积称为余隙容积。
造成余隙的主要原因是:防止曲柄连杆机构受热延伸时不至于使活塞撞击阀座而引起机器损坏;排气阀的通道占据一定的空间;运动部件的磨损使零件配合间隙变大;活塞环与阀盖之间的环型空间。
余隙容积的存在,在排气过程结束时不能将汽缸内的气体全部排净,有一部分高压气体残留在余隙容积内,这样在下一次吸气开始前,这一部分气体首先膨胀减压,在压力降低到低于吸气压力才能开始吸气。