NTC热敏电阻(-30-150)10K 4100
- 格式:pdf
- 大小:95.94 KB
- 文档页数:1
传感器SENSORSSENSOR MANUALTEMPERATUREMEASUREMENTCONTROLSHANGHAI BENMU INDUSTRY CO., LTD.上海本牧实业有限公司QUICK LINKSCONNECTINGSENSOR TECH电阻值耗散常数ResistanceThermal dissipation constantB值热时间常数B constantThermal time constant热敏电阻的电阻值R和绝对温度T之间,有以下近似关系。
Between resistance R and absolute temperature T, there is the following approximate relationship.11T1T2根据公式、可以求证任意温度T时的热敏电阻R。
Thermistor resistance R at any temperature T can be calculated from equation (1)R1: Resistance (Ω) at absolute temperature T1 (K)绝对温度T1 (K) 时的电阻值R2: Resistance (Ω) at absolute temperature T2 (K)绝对温度T2 (K) 时的电阻值A thermistor is "a thermally sensitive resistor"that is a semiconductor whose resistance varies significantly with temperature.In general,there are two types thermal senstive resistor.One is PTC (Postive Temperature Coefficient);the resistance increases as temperature increases.The other is NTC (Negative Temperature Coefficient);the resistance decreases as temperature increases.The following description is applicable only to NTC thermistors.热敏电阻是应用于信息系统与控制系统的敏感元件,主要用于对温度的测量、控制、保护及用作加热器。
WF型温度传感器WF型温度传感器●应用范围:主要应用于冰箱、空调、汽车、热水器、通讯设备、电淋浴器、饮水机、微波炉、电磁铁、食品加工、粮仓测温、医疗仪器、火灾报警、化工设备等领域,进行温度测量和控制。
●产品特点■采用全新工艺,产品性能稳定地长期工作(年电阻值漂移率≤0.1%)■电阻值、B值精度高,一致性好,具有良好的互换性(电阻值、B值精度±0.5%以内)■测温精度高,反应速度快,阻温系数可达(2-5)%/℃)■采用双层密封结构,可使用高温高湿环境■可根据客户不同参数要求,设计、制造不同的温度传感器●WF型温度传感器结构分解图●主要性能参数热敏电阻的物理特性用下列参数表示:电阻值、B值、耗散系数、热时间常数、电阻温度系数。
●电阻值:Rt(KΩ)热敏电阻的阻值与温度成指数关系,可近似表示为:R 2=R1exp〔B(1/T2-1/T1)〕 (1)其中 R2:绝对温度为T2(K)时的电阻(KΩ)R1:绝对温度为T1(K)时的电阻(KΩ)B:(T1—T2)温区内B值(K)●B值:B(K)B值决定于热敏材料的电导激活能,是反映热敏电阻阻值随温度变化快慢的参数,表达式为:B=(T1*T2/(T2-T1))*In(R1/R2) (2)其中:B:(T1—T2)温区内B值(K)R1:绝对温度为T1(K)时的电阻(KΩ)R2:绝对温度为T2(K)时的电阻(KΩ)●耗散系数:δ(mW/℃)耗散系数是热敏电阻消耗的电功与电功所造成的热敏电阻的温升值之比δ=W/(T-T a)=I2R/(T-T a) (3)其中:δ:耗散系数(mW/℃)W:热敏电阻消耗的电功(mW)T:达到热平衡后的温度值(℃)T:室温(℃)I:在温度T时加在热敏电阻上的电流值(mA)R:在温度T时加在热敏电阻上的电阻值(mA)●热时间常数:τ(sec.)·热敏电阻在零功率条件下,所处的温场由T1变化至T2,热敏电阻的温度变化有个滞后,热敏电阻的温度在初始值和最终值之间改变63.2%所需的时间就是热时间系数τ。
NTC负温度系数热敏电阻工作原理NTC是Negative Temperature Coefficient 的缩写,意思是负的温度系数,泛指负温度系数很大的半导体材料或元器件,所谓NTC热敏电阻器就是负温度系数热敏电阻器。
它是以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制造而成的。
这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。
温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。
NTC热敏电阻器在室温下的变化范围在10 O~1000000欧姆,温度系数-2%~-6.5%。
NTC热敏电阻器可广泛应用于温度测量、温度补偿、抑制浪涌电流等场合。
NTC负温度系数热敏电阻专业术语零功率电阻值RT(Ω)RT指在规定温度T 时,采用引起电阻值变化相对于总的测量误差来说可以忽略不计的测量功率测得的电阻值。
电阻值和温度变化的关系式为:RT = RN expB(1/T –1/TN)RT :在温度T (K )时的NTC 热敏电阻阻值。
RN :在额定温度TN (K )时的NTC 热敏电阻阻值。
T :规定温度(K )。
B :NTC 热敏电阻的材料常数,又叫热敏指数。
exp:以自然数e 为底的指数(e = 2.71828 …)。
该关系式是经验公式,只在额定温度TN 或额定电阻阻值RN 的有限范围内才具有一定的精确度,因为材料常数B 本身也是温度T 的函数。
额定零功率电阻值R25 (Ω)根据国标规定,额定零功率电阻值是NTC 热敏电阻在基准温度25 ℃时测得的电阻值R25,这个电阻值就是NTC 热敏电阻的标称电阻值。
通常所说NTC 热敏电阻多少阻值,亦指该值。
材料常数(热敏指数)B 值(K )B 值被定义为:RT1 :温度T1 (K )时的零功率电阻值。
RT2 :温度T2 (K )时的零功率电阻值。
T1、T2 :两个被指定的温度(K )。
NTCNTC负温度系数热敏电阻工作原理NTC是Negative Temperature Coefficient 的缩写,意思是负的温度系数,泛指负温度系数很大的半导体材料或元器件,所谓NTC热敏电阻器就是负温度系数热敏电阻器。
它是以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制造而成的。
这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。
温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。
NTC热敏电阻器在室温下的变化范围在10O~欧姆,温度系数-2%~-6.5%。
NTC热敏电阻器可广泛应用于温度测量、温度补偿、抑制浪涌电流等场合。
NTC负温度系数热敏电阻专业术语零功率电阻值 RT(Ω)RT指在规定温度 T 时,采用引起电阻值变化相对于总的测量误差来说可以忽略不计的测量功率测得的电阻值。
电阻值和温度变化的关系式为:RT = RNexpB(1/T – 1/TN)RT :在温度 T ( K )时的 NTC 热敏电阻阻值。
RN :在额定温度 TN ( K )时的 NTC 热敏电阻阻值。
T :规定温度( K )。
B : NTC 热敏电阻的材料常数,又叫热敏指数。
exp:以自然数 e 为底的指数(e = 2.71828 …)。
该关系式是经验公式,只在额定温度 TN 或额定电阻阻值 RN 的有限范围内才具有一定的精确度,因为材料常数B 本身也是温度 T 的函数。
额定零功率电阻值 R25 (Ω)根据国标规定,额定零功率电阻值是 NTC 热敏电阻在基准温度25 ℃ 时测得的电阻值 R25,这个电阻值就是NTC 热敏电阻的标称电阻值。
通常所说 NTC 热敏电阻多少阻值,亦指该值。
材料常数(热敏指数) B 值( K )B 值被定义为:RT1 :温度 T1 ( K )时的零功率电阻值。
RT2 :温度 T2 ( K )时的零功率电阻值。
B值是热敏电阻器的材料常数,即热敏电阻器的芯片(一种半导体陶瓷)在经过高温烧结后,形成具有一定电阻率的材料,每种配方和烧结温度下只有一个B值,所以种之为材料常数。
B值可以通过测量在25摄氏度和50摄氏度(或85摄氏度)时的电阻值后进行计算。
B值与产品电阻温度系数正相关,也就是说B值越大,其电阻温度系数也就越大。
温度系数就是指温度每升高1度,电阻值的变化率。
采用以下公式可以将B值换算成电阻温度系数:
电阻温度系数=B值/T^2 (T为要换算的点绝对温度值)
NTC热敏电阻器的B值一般在2000K-6000K之间,不能简单地说B值是越大越好还是越小越好,要看你用在什么地方。
一般来说,作为温度测量、温度补偿以及抑制浪涌电阻用的产品,同样条件下是B值大点好。
因为随着温度的变化,B值大的产品其电阻值变化更大,也就是说更灵敏。
以上就是按我自己的理解所做的回答,我是做这个的,如果你还有什么问题,可以加我为好友,或给我发送信息。
B值是热敏电阻器的材料常数,即热敏电阻器的芯片(一种半导体陶瓷)在经过高温烧结后,形成具有一定电阻率的材料,每种配方和烧结温度下只有一个B值,所以种之为材料常数。
B值可以通过测量在25摄氏度和50摄氏度(或85摄氏度)时的电阻值后进行计算。
B值与产品电阻温度系数正相关,也就是说B值越大,其电阻温度系数也就越大。
温度系数就是指温度每升高1度,电阻值的变化率。
采用以下公式可以将B值换算成电阻温度系数:
电阻温度系数=B值/T^2 (T为要换算的点绝对温度值)
NTC热敏电阻器的B值一般在2000K-6000K之间,不能简单地说B值是越大越好还是越小越好,要看你用在什么地方。
一般来说,作为温度测量、温度补偿以及抑制浪涌电阻用的产品,同样条件下是B值大点好。
因为随着温度的变化,B值大的产品其电阻值变化更大,也就是说更灵敏。
以上就是按我自己的理解所做的回答,我是做这个的,如果你还有什么问题,可以加我为好友,或给我发送信息。
一.热敏电阻常规知识1.热敏电阻2.NTC/PTC1.热敏电阻1.热敏电阻:电阻值随温度变化而变化的电阻。
2.NTC/PTCNTC(Negative Temperature Coefficient)负温度系数热敏电阻温度升高时,电阻值下降的热敏电阻。
PTC(Positive Temperature Coefficient)正温度系数热敏电阻温度升高时,电阻值上升的热敏电阻。
二. NTC热敏电阻制作制作流程图1. NTC热敏电阻制作流程图1.NTC热敏电阻制造热敏电阻制造流程图三.NTC热敏电阻结构与材料1.结构2.材料1.结构2.材料(1)包封料:阻燃硅树脂(2)热敏电阻本体:金属氧化物陶瓷(3)电极:Ag膏(4)焊料:Pb/Sn/Cu(5)引线:镀锡铜线四.NTC热敏电阻基本特性1.零功率电阻值2.B常数3.热耗散系数4.热时间常数5.最大稳态电流6.残余电阻值7.最大允许电容容量1.零功率电阻值在规定的温度下测得的热敏电阻器的直流电阻值。
温度没有特别的规定,就是指25 ℃。
15EBG4280460115D2-15@25℃(Ω)LG 品番抑制浪涌电流用零功率电阻值2. B 常数B 常数:反映热敏电阻的电阻值随着温度变化而变化敏感程度的指数。
B 常数越高热敏电阻的热敏感程度就越高。
3200EBG4280460115D2-15(K )LG 品番抑制浪涌电流用B常数3.热耗散系数热敏电阻耗散功率的变化与相应的温升值之比。
41EBG4280460115D2-15(mW/℃)LG 品番抑制浪涌电流用热耗散系数4.热时间常数热时间常数:表示热敏电阻热性能反应程度的常数。
热敏电阻自热后冷却其温升的63.2%所需要的时间。
没有特殊说明规定从25 ℃上升至85 ℃再下降。
70EBG4280460115D2-15时间(秒)LG 品番抑制浪涌电流用热时间常数5.最大最大稳态电流最大稳态电流:热敏电阻能够连续施加电流的最大值。