初三上学期数学第一次月考试卷及答案
- 格式:docx
- 大小:47.16 KB
- 文档页数:29
九年级上学期第一次月考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)将抛物线y=﹣x2向左平移2个单位后,得到的抛物线的解析式是()A.y=﹣(x+2)2B.y=﹣x2+2 C.y=﹣(x﹣2)2D.y=﹣x2﹣22.(3分)关于二次函数y=(x+2)2﹣3的最大(小)值,叙述正确的是()A.当x=2时,有最大值﹣3 B.当x=﹣2时,有最大值﹣3C.当x=2时,有最小值﹣3 D.当x=﹣2时,有最小值﹣33.(3分)如图,在5×5正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是()A.点P B.点Q C.点R D.点M4.(3分)如图,点A,B,C,在⊙O上,∠ABO=32°,∠ACO=38°,则∠BOC等于()A.60°B.70°C.120°D.140°5.(3分)给出下列四个函数:①y=﹣2012x;②y=x+2013;③y=;④y=2015x2﹣1,当x<0时,y随x得增大而减小的函数有()A.①③B.②④C.①④D.①③④6.(3分)若函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,那么m的值为()A.0B.0或2 C.2或﹣2 D.0,2或﹣27.(3分)如图,圆心在y轴的负半轴上,半径为5的⊙B与y轴的正半轴交于点A(0,1),过点P(0,﹣7)的直线l与⊙B相交于C,D两点.则弦CD长的所有可能的整数值有()A.1个B.2个C.3个D.4个8.(3分)如图,若干全等正五边形排成环状.图中所示的是前3个五边形,要完成这一圆环还需()个五边形.A.6B.7C.8D.99.(3分)一个平面封闭图形内(含边界)任意两点距离的最大值称为该图形的“直径”,封闭图形的周长与直径之比称为图形的“周率”,下面四个平面图形(依次为正三角形、正方形、正六边形、圆)的周率从左到右依次记为a1,a2,a3,a4,则下列关系中正确的是()A.a4>a2>a1B.a4>a3>a2C.a1>a2>a3D.a2>a3>a410.(3分)已知抛物线y=ax2+bx+c(a<0)的对称轴为x=1,交x轴的一个交点为(x1,0),且﹣1<x1<0,有下列5个结论:①abc>0;②9a﹣3b+c<0;③2c<3b;④(a+c)2<b2;⑤a+b>m(am+b)(m≠1的实数)其中正确的结论有()A.1个B.2个C.3个D.4个二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的要求和要填写的内容,尽量完整地填写答案.11.(4分)如图,将弧AC沿弦AC折叠交直径AB于圆心O,则弧AC=度.12.(4分)二次函数y=2x2+4x﹣1的图象关于x轴对称的图象的解析式是.13.(4分)如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x2﹣2x﹣3,AB为半圆的直径,则这个“果圆”被y轴截得的弦CD的长为.14.(4分)如图,将半径为2,圆心角为60°的扇形纸片AOB,在直线l上向右作无滑动的滚动至扇形A′O′B′处,则顶点O经过的路线总长为.15.(4分)如图,是y=x2、y=x、y=在同一直角坐标系中图象,请根据图象写出<x<x2时x的取值范围是.16.(4分)在平面直角坐标系中,已知点A(4,0)、B(﹣6,0),点C是y轴上的一个动点,当∠BCA=45°时,点C的坐标为.三.全面答一答(本题有8个小题,共66分)解答应写出文字说明、证明过程或推演步骤.如果觉得有的题目有困难,那么把自己能写出的解答写出一部分也可以.17.(6分)如图,在△ABC中,AB=AC=8cm,∠BAC=120°.(1)作△ABC的外接圆(只需作出图形,并保留作图痕迹);(2)求它的外接圆半径.18.(8分)已知二次函数y=x2﹣4x+3.(1)求函数图象的对称轴、顶点坐标、与坐标轴交点的坐标,并画出函数的大致图象;(2)根据图象直接写出函数值y为负数时,自变量x的取值范围.19.(8分)二次函数图象过A、C、B三点,点A的坐标为(﹣1,0),点B的坐标为(4,0),点C在y轴正半轴上,且OB=OC.(1)求二次函数的解析式;(2)该二次函数在第一象限的图象上有一动点为P,且点P在移动时满足S△PAB=10,求此时点P的坐标.20.(10分)已知△ABC内接于⊙O,点D平分弧.(1)如图①,若∠BAC=2∠ABC.求证:AC=CD;(2)如图②,若BC为⊙O的直径,且BC=10,AB=6,求AC,CD的长.21.(10分)2013年10月,台风“菲特”来袭,宁波余姚被雨水“围攻”,如图,当地有一拱桥为圆弧形,跨度AB=60米,拱高PM=18米,当洪水泛滥,水面跨度缩小到30米时要采取紧急措施,当时测量人员测得水面A1B1到拱顶距离只有4米,问是否要采取紧急措施?请说明理由.22.(12分)某商家计划从厂家采购空调和冰箱两种产品共20台,空调的采购单价y1(元/台)与采购数量x1(台)满足y1=﹣20x1+1500(0<x1≤20,x1为整数);冰箱的采购单价y2(元/台)与采购数量x2(台)满足y2=﹣10x2+1300(0<x2≤20,x2为整数).(1)经商家与厂家协商,采购空调的数量不少于冰箱数量的,且空调采购单价不低于1200元,问该商家共有几种进货方案?(2)该商家分别以1760元/台和1700元/台的销售单价售出空调和冰箱,且全部售完.在(1)的条件下,问采购空调多少台时总利润最大?并求最大利润.23.(12分)已知抛物线y=ax2+bx+c(a>0)与x轴的两个交点分别为A(﹣1,0)、B(3,0),与y轴的交点为点D,顶点为C,(1)写出该抛物线的对称轴方程;(2)当点C变化,使60°≤∠ACB≤90°时,求出a的取值范围;(3)作直线CD交x轴于点E,问:在y轴上是否存在点F,使得△CEF是一个等腰直角三角形?若存在,请求出a的值;若不存在,请说明理由.参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)将抛物线y=﹣x2向左平移2个单位后,得到的抛物线的解析式是()A.y=﹣(x+2)2B.y=﹣x2+2 C.y=﹣(x﹣2)2D.y=﹣x2﹣2考点:二次函数图象与几何变换.专题:动点型.分析:易得原抛物线的顶点和平移后新抛物线的顶点,根据平移不改变二次项的系数用顶点式可得所求抛物线.解答:解:∵原抛物线的顶点为(0,0),∴新抛物线的顶点为(﹣2,0),设新抛物线的解析式为y=﹣(x﹣h)2+k,∴新抛物线解析式为y=﹣(x+2)2,故选A.点评:考查二次函数的几何变换;用到的知识点为:二次函数的平移不改变二次项的系数;左右平移只改变顶点的横坐标,左加右减.2.(3分)关于二次函数y=(x+2)2﹣3的最大(小)值,叙述正确的是()A.当x=2时,有最大值﹣3 B.当x=﹣2时,有最大值﹣3C.当x=2时,有最小值﹣3 D.当x=﹣2时,有最小值﹣3考点:二次函数的最值.分析:根据二次函数图象的性质即可求出二次函数y=(x+2)2﹣3的最大(小)值.解答:解:因为a>0,所以抛物线开口向上,因为顶点是(﹣2,﹣3),所以该二次函数有最小值,即当x=﹣2时,有最小值﹣3.故选D.点评:考查了二次函数的最值问题.根据图象的开口方向和顶点坐标即可判断它的最值情况.3.(3分)如图,在5×5正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是()A.点P B.点Q C.点R D.点M考点:垂径定理.分析:作AB和BC的垂直平分线,它们相交于Q点,根据弦的垂直平分线经过圆心,即可确定这条圆弧所在圆的圆心为Q点.解答:解:连结BC,作AB和BC的垂直平分线,它们相交于Q点.故选B.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧;垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;弦的垂直平分线经过圆心,并且平分弦所对的两条弧;平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.4.(3分)如图,点A,B,C,在⊙O上,∠ABO=32°,∠ACO=38°,则∠BOC等于()A.60°B.70°C.120°D.140°考点:圆周角定理.分析:过A、O作⊙O的直径AD,分别在等腰△OAB、等腰△OAC中,根据三角形外角的性质求出θ=2α+2β.解答:解:过A作⊙O的直径,交⊙O于D;在△OAB中,OA=OB,则∠BOD=∠OBA+∠OAB=2×32°=64°,同理可得:∠COD=∠OCA+∠OAC=2×38°=76°,故∠BOC=∠BOD+∠COD=140°.故选D点评:本题考查了圆周角定理,涉及了等腰三角形的性质及三角形的外角性质,解答本题的关键是求出∠COD及∠BOD的度数.5.(3分)给出下列四个函数:①y=﹣2012x;②y=x+2013;③y=;④y=2015x2﹣1,当x<0时,y随x得增大而减小的函数有()A.①③B.②④C.①④D.①③④考点:二次函数的性质;一次函数的性质;正比例函数的性质;反比例函数的性质.分析:根据一次函数的性质,可判断①、②;根据反比例函数的性质,可判断③;根据二次函数的性质,可判断④.解答:解:①k=﹣2012<0,y随x的而减小,故①符合题意;②k=1>0,y随x的而增大,故②不符合题意;③k=﹣2014,在每个象限内y随x的而增大,故③不符合题意;④x<0时,在对称轴的左侧,y随x的而减小,故④符合题意;故选:C.点评:本题考查了二次函数的性质,a>0时,对称轴的左侧y随x的而减小,对称轴的右侧y随x的而增大.6.(3分)若函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,那么m的值为()A.0B.0或2 C.2或﹣2 D.0,2或﹣2考点:抛物线与x轴的交点.专题:分类讨论.分析:分为两种情况:函数是二次函数,函数是一次函数,求出即可.解答:解:分为两种情况:①当函数是二次函数时,∵函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,∴△=(m+2)2﹣4m(m+1)=0且m≠0,解得:m=±2,②当函数是一次函数时,m=0,此时函数解析式是y=2x+1,和x轴只有一个交点,故选:D.点评:本题考查了抛物线与x轴的交点,根的判别式的应用,用了分类讨论思想,题目比较好,但是也比较容易出错.7.(3分)如图,圆心在y轴的负半轴上,半径为5的⊙B与y轴的正半轴交于点A(0,1),过点P(0,﹣7)的直线l与⊙B相交于C,D两点.则弦CD长的所有可能的整数值有()A.1个B.2个C.3个D.4个考点:垂径定理;坐标与图形性质;勾股定理.专题:压轴题.分析:求出线段CD的最小值,及线段CD的最大值,从而可判断弦CD长的所有可能的整数值.解答:解:∵点A的坐标为(0,1),圆的半径为5,∴点B的坐标为(0,﹣4),又∵点P的坐标为(0,﹣7),∴BP=3,①当CD垂直圆的直径AE时,CD的值最小,连接BC,在Rt△BCP中,CP==4;故CD=2CP=8,②当CD经过圆心时,CD的值最大,此时CD=直径AE=10;所以,8≤CD≤10,综上可得:弦CD长的所有可能的整数值有:8,9,10,共3个.故选C.点评:本题考查了垂径定理的知识,解答本题的关键是熟练掌握垂直弦的直径平分弦,本题需要讨论两个极值点,有一定难度.8.(3分)如图,若干全等正五边形排成环状.图中所示的是前3个五边形,要完成这一圆环还需()个五边形.A.6B.7C.8D.9考点:多边形内角与外角.专题:应用题;压轴题.分析:先根据多边形的内角和公式(n﹣2)•180°求出正五边形的每一个内角的度数,再延长五边形的两边相交于一点,并根据四边形的内角和求出这个角的度数,然后根据周角等于360°求出完成这一圆环需要的正五边形的个数,然后减去3即可得解.解答:解:五边形的内角和为(5﹣2)•180°=540°,所以正五边形的每一个内角为540°÷5=108°,如图,延长正五边形的两边相交于点O,则∠1=360°﹣108°×3=360°﹣324°=36°,360°÷36°=10,∵已经有3个五边形,∴10﹣3=7,即完成这一圆环还需7个五边形.故选B.点评:本题考查了多边形的内角和公式,延长正五边形的两边相交于一点,并求出这个角的度数是解题的关键,注意需要减去已有的3个正五边形.9.(3分)一个平面封闭图形内(含边界)任意两点距离的最大值称为该图形的“直径”,封闭图形的周长与直径之比称为图形的“周率”,下面四个平面图形(依次为正三角形、正方形、正六边形、圆)的周率从左到右依次记为a1,a2,a3,a4,则下列关系中正确的是()A.a4>a2>a1B.a4>a3>a2C.a1>a2>a3D.a2>a3>a4考点:正多边形和圆;等边三角形的判定与性质;多边形内角与外角;平行四边形的判定与性质.专题:计算题;压轴题.分析:设等边三角形的边长是a,求出等边三角形的周长,即可求出等边三角形的周率a1;设正方形的边长是x,根据勾股定理求出对角线的长,即可求出周率;设正六边形的边长是b,过F作FQ∥AB交BE于Q,根据等边三角形的性质和平行四边形的性质求出直径,即可求出正六边形的周率a3;求出圆的周长和直径即可求出圆的周率,比较即可得到答案.解答:解:设等边三角形的边长是a,则等边三角形的周率a1==3设正方形的边长是x,由勾股定理得:对角线是x,则正方形的周率是a2==2≈2.828,设正六边形的边长是b,过F作FQ∥AB交BE于Q,得到平行四边形ABQF和等边三角形EFQ,直径是b+b=2b,∴正六边形的周率是a3==3,圆的周率是a4==π,∴a4>a3>a2.故选:B.点评:本题主要考查对正多边形与圆,多边形的内角和定理,平行四边形的性质和判定,等边三角形的性质和判定等知识点的理解和掌握,理解题意并能根据性质进行计算是解此题的关键.10.(3分)已知抛物线y=ax2+bx+c(a<0)的对称轴为x=1,交x轴的一个交点为(x1,0),且﹣1<x1<0,有下列5个结论:①abc>0;②9a﹣3b+c<0;③2c<3b;④(a+c)2<b2;⑤a+b>m(am+b)(m≠1的实数)其中正确的结论有()A.1个B.2个C.3个D.4个考点:二次函数图象与系数的关系.分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:①抛物线对称轴在y轴的右侧,则a、b异号,即b>0.抛物线与y轴交于正半轴,则c>0.∵a<0,∴abc<0.故①错误;②由图示知,当x=﹣3时,y<0,即9a﹣3b+c<0,故②正确;③由图示知,x=﹣1时,y<0,即a﹣b+c<0,∵x=﹣=1,∴a=﹣b,∴a﹣b+c=﹣b﹣b+c<0,即2c<3b,故③正确;④由图示知,x=1时,y>0,即a+b+c>0∵a﹣b+c<0,∴(a+b+c)(a﹣b+c)<0,则(a+c)2﹣b2<0,∴(a+c)2<b2;故④正确;⑤∵当x=1时,y最大,即a+b+c最大,故a+b+c>am2+bm+c,即a+b>m(am+b),(m 为实数且m≠1),故⑤正确.综上所述,其中正确的结论有4个.故选:D.点评:主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的要求和要填写的内容,尽量完整地填写答案.11.(4分)如图,将弧AC沿弦AC折叠交直径AB于圆心O,则弧AC=120度.考点:翻折变换(折叠问题);等边三角形的判定与性质;圆心角、弧、弦的关系.分析:过O点作OD⊥AC交AC于D,交弧AC于E,连结OC,BC.根据垂径定理可得OD=OE,AD=CD,根据三角形中位线定理可得OD=BC,再根据等边三角形的判定和性质,以及邻补角的定义即可求解.解答:解:过O点作OD⊥AC交AC于D,交弧AC于E,连结OC,BC.∴OD=OE,AD=CD,∵AB是直径,∴∠ACB=90°,OD=BC,又∵OC=OB,∴△OBC是等边三角形,∴∠BOC=60°,∴∠AOC=180°﹣60°=120°,即弧AC=120度.故答案为:120.点评:考查了翻折变换(折叠问题),垂径定理,三角形中位线定理,等边三角形的判定和性质,以及邻补角的定义,综合性较强,难度中等.12.(4分)二次函数y=2x2+4x﹣1的图象关于x轴对称的图象的解析式是y=﹣2x2﹣4x+1.考点:二次函数图象与几何变换.分析:根据关于x轴对称的两点横坐标相同,纵坐标互为相反数即可求解.解答:解:根据题意,所求的抛物线是﹣y=2x2+4x﹣1,化简得:y=﹣2x2﹣4x+1,即二次函数y=2x2+4x﹣1的图象关于x轴对称的图象的解析式是y=﹣2x2﹣4x+1.故答案为y=﹣2x2﹣4x+1.点评:此题主要考查了根据二次函数的图象的变换求抛物线的解析式,正确记忆基本变换性质是解题关键.13.(4分)如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x2﹣2x﹣3,AB为半圆的直径,则这个“果圆”被y轴截得的弦CD的长为3+.考点:二次函数综合题.分析:连接AC,BC,有抛物线的解析式可求出A,B,C的坐标,进而求出AO,BO,DO的长,在直角三角形ACB中,利用射影定理可求出CO的长,进而可求出CD的长.解答:解:连接AC,BC,∵抛物线的解析式为y=x2﹣2x﹣3,∴点D的坐标为(0,﹣3),∴OD的长为3,设y=0,则0=x2﹣2x﹣3,解得:x=﹣1或3,∴A(﹣1,0),B(3,0)∴AO=1,BO=3,∵AB为半圆的直径,∴∠ACB=90°,∵CO⊥AB,∴CO2=AO•BO=3,∴CO=,∴CD=CO+OD=3+,故答案为:3+.点评:本题是二次函数综合题型,主要考查了抛物线与坐标轴的交点问题、解一元二次方程、圆周角定理、射影定理,读懂题目信息,理解“果圆”的定义是解题的关键.14.(4分)如图,将半径为2,圆心角为60°的扇形纸片AOB,在直线l上向右作无滑动的滚动至扇形A′O′B′处,则顶点O经过的路线总长为π.考点:弧长的计算.专题:压轴题.分析:仔细观察顶点O经过的路线可得,顶点O经过的路线可以分为三段,分别求出三段的长,再求出其和即可.解答:解:顶点O经过的路线可以分为三段,当弧AB切直线l于点B时,有OB⊥直线l,此时O点绕不动点B转过了90°;第二段:OB⊥直线l到OA⊥直线l,O点绕动点转动,而这一过程中弧AB始终是切于直线l的,所以O与转动点P的连线始终⊥直线l,所以O点在水平运动,此时O点经过的路线长=BA’=AB的弧长第三段:OA⊥直线l到O点落在直线l上,O点绕不动点A转过了90°所以,O点经过的路线总长S=π+π+π=π.点评:本题关键是理解顶点O经过的路线可得,则顶点O经过的路线总长为三个扇形的弧长.15.(4分)如图,是y=x2、y=x、y=在同一直角坐标系中图象,请根据图象写出<x<x2时x的取值范围是﹣1<x<0或x>1.考点:二次函数与不等式(组).分析:先确定出三个函数在第一象限内的交点坐标,y=x与y=在第三象限内交点坐标,然后根据函数图象,找出抛物线图象在最上方,反比例函数图象在最下方的x的取值范围即可.解答:解:易求三个函数在第一象限内交点坐标为(1,1),y=x与y=在第三象限内交点坐标为(﹣1,﹣1),所以,<x<x2时x的取值范围是:﹣1<x<0或x>1.故答案为:﹣1<x<0或x>1.点评:本题考查了二次函数与不等式的关系,数形结合是此类题目求解的重要方法.16.(4分)在平面直角坐标系中,已知点A(4,0)、B(﹣6,0),点C是y轴上的一个动点,当∠BCA=45°时,点C的坐标为(0,12)或(0,﹣12).考点:圆周角定理;坐标与图形性质;勾股定理.专题:压轴题.分析:如解答图所示,构造含有90°圆心角的⊙P,则⊙P与y轴的交点即为所求的点C.注意点C有两个.解答:解:设线段BA的中点为E,∵点A(4,0)、B(﹣6,0),∴AB=10,E(﹣1,0).(1)如答图1所示,过点E在第二象限作EP⊥BA,且EP=AB=5,则易知△PBA为等腰直角三角形,∠BPA=90°,PA=PB=;以点P为圆心,PA(或PB)长为半径作⊙P,与y轴的正半轴交于点C,∵∠BCA为⊙P的圆周角,∴∠BCA=∠BPA=45°,即则点C即为所求.过点P作PF⊥y轴于点F,则OF=PE=5,PF=1,在Rt△PFC中,PF=1,PC=,由勾股定理得:CF==7,∴OC=OF+CF=5+7=12,∴点C坐标为(0,12);(2)如答图2所示,在第3象限可以参照(1)作同样操作,同理求得y轴负半轴上的点C 坐标为(0,﹣12).综上所述,点C坐标为(0,12)或(0,﹣12).故答案为:(0,12)或(0,﹣12).点评:本题难度较大.由45°的圆周角联想到90°的圆心角是解题的突破口,也是本题的难点所在.三.全面答一答(本题有8个小题,共66分)解答应写出文字说明、证明过程或推演步骤.如果觉得有的题目有困难,那么把自己能写出的解答写出一部分也可以.17.(6分)如图,在△ABC中,AB=AC=8cm,∠BAC=120°.(1)作△ABC的外接圆(只需作出图形,并保留作图痕迹);(2)求它的外接圆半径.考点:作图—复杂作图;三角形的外接圆与外心.分析:(1)直接作出BC,AB的垂直平分线,进而得出其交点,得出圆心进而得出△ABC 的外接圆;(2)利用等腰三角形的性质得出△ABO是等边三角形,进而求出即可.解答:解:(1)如图1所示:(2)如图2所示:连接AO,BO,∵AB=AC=8cm,∠BAC=120°,∴AO⊥BC,∴∠BAO=∠CAO=60°,又∵AO=BO,∴△ABO是等边三角形,∴AB=BO=AO=8c m.点评:此题主要考查了复杂作图以及等边三角形的判定以及等腰三角形的性质,得出△ABO是等边三角形是解题关键.18.(8分)已知二次函数y=x2﹣4x+3.(1)求函数图象的对称轴、顶点坐标、与坐标轴交点的坐标,并画出函数的大致图象;(2)根据图象直接写出函数值y为负数时,自变量x的取值范围.考点:二次函数的性质;二次函数的图象.分析:(1)将二次函数配方成顶点式后即可确定其顶点坐标及对称轴;分别令x=0和令y=0求得抛物线与坐标轴的交点坐标;(2)根据y为负值可以得到其图象位于x轴的下方,由此得解.解答:解:(1)y=x2﹣4x+3=(x﹣2)2﹣1.∴对称轴为直线x=2,顶点为(2,﹣1),与x轴交点为(1,0)和(3,0),图象为:.(2)由图象得:当y<0时,1<x<3.点评:本题考查了二次函数的性质,确定二次函数的顶点坐标及对称轴是解决有关二次函数的有关题目的关键.19.(8分)二次函数图象过A、C、B三点,点A的坐标为(﹣1,0),点B的坐标为(4,0),点C在y轴正半轴上,且OB=OC.(1)求二次函数的解析式;(2)该二次函数在第一象限的图象上有一动点为P,且点P在移动时满足S△PAB=10,求此时点P的坐标.考点:待定系数法求二次函数解析式;二次函数的性质.分析:(1)根据A(﹣1,0),B(4,0),得OB=4,则OC=4,即点C的坐标为(0,4).设图象经过A,C,B三点的二次函数的解析式为y=a(x﹣4)(x+1),根据点C(0,4)在图象上.可得出a=﹣1.从而得出所求的二次函数解析式为y=﹣(x﹣4)(x+1).即y=﹣x2+3x+4.(2)根据A、B的坐标求得AB的长,设P点的坐标为(x,﹣x2+3x+4),根据S△PAB=10,列出方程,解方程即可求得x的值,进而求得坐标.解答:解:(1)∵A(﹣1,0),B(4,0),∴OB=4,∴OC=4,即点C的坐标为(0,4).设图象经过A,C,B三点的二次函数的解析式为y=a(x﹣4)(x+1),∵点C(0,4)在图象上.∴4=a(0﹣4)(0+1),即a=﹣1.∴所求的二次函数解析式为y=﹣(x﹣4)(x+1).即y=﹣x2+3x+4,故二次函数解析式为y=﹣x2+3x+4.(2)∵点A的坐标为(﹣1,0),点B的坐标为(4,0),∴AB=5,设P点的坐标为(x,﹣x2+3x+4),∵S△PAB=10,∴×5|﹣x2+3x+4|=10,解得,x=3,或x=,∴P的坐标为(3,4)或().点评:本题考查了用待定系数法求二次函数的解析式以及二次函数的性质,解答该题时,注意转化思想的应用.20.(10分)已知△ABC内接于⊙O,点D平分弧.(1)如图①,若∠BAC=2∠ABC.求证:AC=CD;(2)如图②,若BC为⊙O的直径,且BC=10,AB=6,求AC,CD的长.考点:圆周角定理;圆心角、弧、弦的关系.专题:证明题.分析:(1)由点D平分弧得弧DC=弧DB,根据圆周角定理由∠BAC=2∠ABC得到弧BDC=2弧AC,所以弧CA=弧CD,然后根据圆心角、弧、弦的关系得AC=CD;(2)连结BD,如图②,根据圆周角定理由BC为⊙O的直径得到∠BAC=∠BDC=90°,在Rt△BAC中利用勾股定理可计算出AC=8;利用弧DC=弧DB得到DB=DC,则可判断△BCD 为等腰直角三角形,然后根据等腰直角三角形的性质得到CD的长.解答:(1)证明:∵点D平分弧,∴弧DC=弧DB,∵∠BAC=2∠ABC,∴弧BDC=2弧AC,∴弧CA=弧CD,∴AC=CD;(2)解:连结BD,如图②,∵BC为⊙O的直径,∴∠BAC=∠BDC=90°,在Rt△BAC中,∵BC=10,AB=6,∴AC==8;∵弧DC=弧DB,∴DB=DC,∴△BCD为等腰直角三角形,∴CD=BC=5.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.21.(10分)2013年10月,台风“菲特”来袭,宁波余姚被雨水“围攻”,如图,当地有一拱桥为圆弧形,跨度AB=60米,拱高PM=18米,当洪水泛滥,水面跨度缩小到30米时要采取紧急措施,当时测量人员测得水面A1B1到拱顶距离只有4米,问是否要采取紧急措施?请说明理由.考点:垂径定理的应用;勾股定理.分析:连接OA、OA1,由垂径定理可得:AM=MB=30m,再分别解Rt△AMO、Rt△ONA1即可得出A1B1的长度,将A1B1的长度与30m作比较,若它大于30m,则不需要采取紧急措施;若它小于30m,则需要采取紧急措施.解答:解:连接OA、OA1,如下图所示:由题可得:AB=60m,PM=18m,PN=4m,OA=OA1=OP=ROP⊥AB,OP⊥A1B1由垂径定理可得:AM=MB=30m在Rt△AMO中,由勾股定理可得:AO2=AM2+MO2即R2=302+(R﹣18)2解得R=34m∵PN=4m,OP=R=34m∴ON=30m在Rt△ONA1中,由勾股定理可得:A1N2=A1O2﹣ON2可得A1N=16m故A1B1=32m>30m故不用采取紧急措施.点评:本题考查了垂径定理在实际问题中的运用,另外,求是否采取紧急措施要转换为A1B1的长度是否大于30m.22.(12分)某商家计划从厂家采购空调和冰箱两种产品共20台,空调的采购单价y1(元/台)与采购数量x1(台)满足y1=﹣20x1+1500(0<x1≤20,x1为整数);冰箱的采购单价y2(元/台)与采购数量x2(台)满足y2=﹣10x2+1300(0<x2≤20,x2为整数).(1)经商家与厂家协商,采购空调的数量不少于冰箱数量的,且空调采购单价不低于1200元,问该商家共有几种进货方案?(2)该商家分别以1760元/台和1700元/台的销售单价售出空调和冰箱,且全部售完.在(1)的条件下,问采购空调多少台时总利润最大?并求最大利润.考点:二次函数的应用;一元一次不等式组的应用.专题:应用题.分析:(1)设空调的采购数量为x台,则冰箱的采购数量为台,然后根据数量和单价列出不等式组,求解得到x的取值范围,再根据空调台数是正整数确定进货方案;(2)设总利润为W元,根据总利润等于空调和冰箱的利润之和整理得到W与x的函数关系式并整理成顶点式形式,然后根据二次函数的增减性求出最大值即可.解答:解:(1)设空调的采购数量为x台,则冰箱的采购数量为台,由题意得,,解不等式①得,x≥11,解不等式②得,x≤15,所以,不等式组的解集是11≤x≤15,∵x为正整数,∴x可取的值为11、12、13、14、15,所以,该商家共有5种进货方案;(2)设总利润为W元,空调的采购数量为x台,y2=﹣10x2+1300=﹣10+1300=10x+1100,则W=(1760﹣y1)x1+(1700﹣y2)x2,=1760x﹣(﹣20x+1500)x+(1700﹣10x﹣1100),=1760x+20x2﹣1500x+10x2﹣800x+12000,=30x2﹣540x+12000,=30(x﹣9)2+9570,当x>9时,W随x的增大而增大,∵11≤x≤15,∴当x=15时,W最大值=30(15﹣9)2+9570=10650(元),答:采购空调15台时,获得总利润最大,最大利润值为10650元.点评:本题考查了二次函数的应用,一元一次不等式组的应用,(1)关键在于确定出两个不等关系,(2)难点在于用空调的台数表示出冰箱的台数并列出利润的表达式.23.(12分)已知抛物线y=ax2+bx+c(a>0)与x轴的两个交点分别为A(﹣1,0)、B(3,0),与y轴的交点为点D,顶点为C,(1)写出该抛物线的对称轴方程;(2)当点C变化,使60°≤∠ACB≤90°时,求出a的取值范围;(3)作直线CD交x轴于点E,问:在y轴上是否存在点F,使得△CEF是一个等腰直角三角形?若存在,请求出a的值;若不存在,请说明理由.考点:二次函数综合题.分析:(1)根据抛物线y=ax2+bx+c(a>0)与x轴的两个交点分别为A(﹣1,0)、B(3,0),即可求出抛物线的对称轴;(2)分别求出当∠ACB=60°和∠ACB=90°时a的值,进而求出使60°≤∠ACB≤90°时,求出a的取值范围;(3)分别写出C点和D点的坐标以及E点的坐标,再进行分类讨论证明△EHF≌△EKC,列出a的方程,解出a的值.解答:解:(1)∵抛物线y=ax2+bx+c(a>0)与x轴的两个交点分别为A(﹣1,0)、B (3,0),∴抛物线的对称轴x==1;(2)当∠ACB=60°时,△ABC是等边三角形,即点C坐标为(1,﹣2),设y=a(x+1)(x﹣3),把C点坐标(1,﹣2)代入,解得a=;当∠ACB=90°时,△ABC是等腰直角三角形,即点C坐标为(1,﹣2),设y=a(x+1)(x﹣3),把C点坐标(1,﹣2)代入,解得a=,即当点C变化,使60°≤∠ACB≤90°时,≤a≤;(3)由于C(1,﹣4a),D(0,﹣3a),设直线CD的解析式为y=kx+b,即,解得k=﹣a,b=﹣3a,直线CD的解析式为y=﹣a(x+3),故求出E点坐标为(﹣3,0);分两类情况进行讨论;①如图1,△EHF≌△FKC,即HF=CK=3,4a+1=3,解得a=;②如图2,△EHF≌△EKC,即EK=HF=3;即4a=3,解得a=;同理,当点F位于y轴负半轴上,a=。
人教版九年级上册数学第一次月考试题一、单选题1.下列方程中,关于x 的一元二次方程是()A .(x+1)2=2(x+1)B .21120x x+-=C .ax 2+bx+c =0D .x 2+2x =x 2﹣12.下列一元二次方程中,有实数根的方程是()A .2x x 10-+=B .2x 2x 30-+=C .2x x 10+-=D .2x 40+=3.抛物线2y 3(x 1)1=-+的顶点坐标是()A .()1,1B .()1,1-C .()1,1--D .()1,1-4.一元二次方程2x 2﹣3x +1=0化为(x +a )2=b 的形式,正确的是()A .23x-=162⎛⎫⎪⎝⎭B .2312x-=416⎛⎫⎪⎝⎭C .231x-=416⎛⎫⎪⎝⎭D .以上都不对5.下列抛物线中,在开口向下的抛物线中开口最大的是()A .y=x2B .y=﹣23x 2C .y=13x 2D .y=x 26.抛物线y=-3(x+1)2不经过的象限是()A .第一、二象限B .第二、四象限C .第三、四象限D .第二、三象限7.在同一直角坐标系中,一次函数y =ax +c 和二次函数y =a(x +c)2的图象大致为()A .B .C .D .8.若α,β是方程x 2+2x ﹣2005=0的两个实数根,则α2+3α+β的值为()A .2005B .2003C .﹣2005D .40109.已知关于x 的方程x 2﹣(2k ﹣1)x+k 2=0有两个不相等的实数根,那么k 的最大整数值是()A .﹣2B .﹣1C .0D .110.如图,正方形ABCD 边长为4,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 上的点,且AE =BF =CG =DH .设A 、E 两点间的距离为x ,四边形EFGH 的面积为y ,则y 与x 的函数图象可能是()A .B .C .D .二、填空题11.关于x 的方程()222510mm x x ----=是一元二次方程,那么m=_____.12.已知(x 2+y 2+1)(x 2+y 2-3)=5,则x 2+y 2的值等于_____.13.已知直角三角形的两条直角边的长恰好是方程2x 2-8x+7=0的两个根,则这个直角三角形的斜边长是______.14.已知,点A (﹣1,y 1)、B (﹣2,y 2)、C (3,y 3)分别是抛物线y =5(x ﹣2)2+k 的三个点,则y 1、y 2、y 3的大小关系为_____.(用“<”按从小到大的顺序排列)15.当x =__________时,二次函数226y x x =-+有最小值___________.16.如图,抛物线y 1=a (x+2)2+m 过原点,与抛物线y 2=12(x ﹣3)2+n 交于点A (1,3),过点A 作x 轴的平行线,分别交两条抛物线于点B ,C .下列结论:①两条抛物线的对称轴距离为5;②x=0时,y 2=5;③当x >3时,y 1﹣y 2>0;④y 轴是线段BC 的中垂线.正确结论是________(填写正确结论的序号).三、解答题17.解方程:x 2+3x ﹣4=0(公式法)18.已知关于x 的方程220x ax a ++-=.(1)当该方程的一个根为1时,求a 的值及该方程的另一根;(2)求证:不论a 取何实数,该方程都有两个不相等的实数根.19.二次函数y =a(x -h)2的图象如图,已知a =12,OA =OC ,试求该抛物线的解析式.20.已知x 1,x 2是一元二次方程2x 2﹣2x+m+1=0的两个实数根.(1)求实数m 的取值范围;(2)如果x 1,x 2满足不等式7+4x 1x 2>x 12+x 22,且m 为整数,求m 的值.21.某市场销售一批名牌衬衫,平均每天可销售20件,每件赢利40元.为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.求:(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元?(2)要使商场平均每天赢利最多,请你帮助设计方案.22.把二次函数y=a(x-h)2+k的图象先向左平移2个单位,再向上平移4个单位,得到二次函数y=12(x+1)2-1的图象.(1)试确定a,h,k的值;(2)指出二次函数y=a(x-h)2+k的开口方向,对称轴和顶点坐标.23.如图,用同样规格黑白两色的正方形瓷砖铺设长方形地面,请观察下列图形,并解答有关问题:(1)在第n个图中,第一横行共块瓷砖,第一竖列共有块瓷砖;(均用含n 的代数式表示)铺设地面所用瓷砖的总块数为(用含n的代数式表示,n表示第n个图形)(2)上述铺设方案,铺一块这样的长方形地面共用了506块瓷砖,求此时n的值;(3)是否存在黑瓷砖与白瓷砖块数相等的情形?请通过计算加以说明.24.如图是二次函数y=(x+m)2+k的图象,其顶点坐标为M(1,﹣4)(1)求出图象与x 轴的交点A 、B 的坐标;(2)在二次函数的图象上是否存在点P ,使S △PAB =54S △MAB ?若存在,求出点P 的坐标;若不存在,请说明理由.25.如图,(图1,图2),四边形ABCD 是边长为4的正方形,点E 在线段BC 上,∠AEF=90°,且EF 交正方形外角平分线CP 于点F ,交BC 的延长线于点N,FN ⊥BC .(1)若点E 是BC 的中点(如图1),AE 与EF 相等吗?(2)点E 在BC 间运动时(如图2),设BE=x ,△ECF 的面积为y .①求y 与x 的函数关系式;②当x 取何值时,y 有最大值,并求出这个最大值.参考答案1.A2.C3.A4.C5.B6.A7.B8.B9.C10.A11.-2 12.4.13.314.y3<y1<y2 15.15 16.①③④17.x1=﹣4,x2=118.(1)12,32-;(2)证明见解析.19.y=12(x-2)220.(1)m≤-12;(2)整数m的值为-2,-1.21.(1)20元;(2)每件衬衫应降价15元,商场盈利最多,共1250元.22.(1)1,1,52a h k===-(2)开口向下,对称轴是x=1的直线,顶点(1,-5)23.(1)n+3,n+2,n2+5n+6或(n+2)(n+3);(2)20;(3)不存在24.(1)A(﹣1,0),B(3,0);(2)存在合适的点P,坐标为(4,5)或(﹣2,5).25.(1)AE=EF;(2)①y=-12x2+2x(0<x<4),②当x=2,y最大值=2.。
九年级数学上册第一次月考试卷(附答案)一.单选题。
(每小题4分,共48分)1.下列各组线段中,成比例线段的一组是()A.1,2,3,4B.2,3,4,6C.1,3,5,7D.2,4,6,82.反比例函数y=6x的图象分别位于()A.第一、三象限B.第一、四象限C.第二、三象限D.第二、四象限3.如图,AD∥BE∥CF,AB=3,BC=6,DE=2,则EF的值为()A.2B.3C.4D.5(第3题图)(第4题图)(第9题图)4.如图,在△ABC中,点D,E分别在AB,AC上,若DE∥BC,ADAB =25,DE=6cm,则BC的长为()A.9cmB.12cmC.15cmD.18cm5.点A(a,1)在双曲线y=3x上,则a的值是()A.1B.﹣1C.3D.﹣36.如果两个相似多边形的周长比是2:3,那么它们的面积比是()A.4:9B.2:3C.√2:√3D.16:817.若点A(2,y1),B(﹣1,y2),C(4,y3),都在反比例函数y=8x的图象上,则y1,y2,y3的大小比较是()A.y1<y2<y3B.y2<y3<y1C.y1<y3<y2D.y2<y1<y38.连续掷两枚质地均匀的硬币,两枚正面朝上的概率是()A.14B.12C.13D.349.如图,点A是函数y=kx图象上一点,AB垂直x轴于点B,若S△ABO=4,则k的值为()A.4B.8C.﹣4D.﹣810.某时刻测得身高1.8米的人在阳光下的影长是1.5米,同一时刻,测得某旗杆的影长是12米,则该旗杆的高度是()A.10米B.12米C.14.4米D.15米11.若反比例函数y=kx的图象的两个分支位于第一、三象限,则一次函数y=kx-k的图象大致是()A. B. C. D.12.若反比例函数y=a-1x(a>1,x<0)图象上有两个点(x1,y1)和(x2,y2),设m=(x1-x2)(y1-y2),则y=mx-m不经过第()象限.A.一B.二C.三D.四二.填空题。
人教版九年级上册数学第一次月考试题一、单选题1.下列方程中,属于一元二次方程的是()A 0=B .2x +1=0C .20y x +=D .21x =12.方程(x+3)(x-4)=0的根是()A .123,4x x =-=B .123,4x x ==C .1234,x x ==-D .123,4x x =-=-3.已知关于x 的方程260--=x kx 的一个根为x=4,则实数k 的值为()A .25B .52C .2D .54.用配方法解方程2250x x --=时,原方程应变形为()A .()216x +=B .()216x -=C .()229x +=D .()229x -=5.已知方程2380x x --=的两个解分别为12,x x ,则1212,x x x x +⋅的值分别是()A .3,-8B .-3,-8C .-3,8D .3,86.某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒.设平均每次降价的百分率为x ,根据题意所列方程正确的是()A .236(1)3625x -=-B .236(12)25x -=C .236(1)25x -=D .225(1)36x -=7.抛物线22(2)1y x =-+的顶点坐标是()A .()2,1B .()2,1-C .()1,2D .()1,2-8.抛物线2y ax bx c =++的图象如图所示,则一元二次方程20ax bx c ++=的解是()A .x=-1B .x=3C .x=-1或x=3D .无法确认9.将抛物线y=4x 2向右平移1个单位,再向上平移3个单位,得到的抛物线是()A .y=4(x+1)2+3B .y=4(x ﹣1)2+3C .y=4(x+1)2﹣3D .y=4(x ﹣1)2﹣310.二次函数2(2)1y x =+-的图像大致为()A .B .C .D .二、填空题11.将方程()()3152x x x -=+化为一元二次方程的一般式______.12.一元二次方程x 2﹣4=0的解是_________.13.已知关于x 的一元二次方程22(2)(21)10m x m x -+++=有两个不相等的实数根,则m 的取值范围是______14.函数243y x x =-++有_____(填“最大”或“最小”),所求最值是_______15.抛物线2y ax bx c =++与x 轴的交点坐标为(1,0)-和(3,0),则这条抛物线的对称轴是x =______.16.已知二次函数23(1)y x k =-+的图象上三点1(2,)A y ,2(3,)B y ,3(4,)C y -,则1y 、2y 、3y 的大小关系是_____.17.将抛物线247y x x =++沿竖直方向平移,使其顶点在x 轴上,且过点A (m ,n ),B (m+10,n ),则n=________三、解答题18.解方程:(1)2410x x --=(2)()255x x-=-19.已知抛物线y=4x 2-11x-3.(1)求它的对称轴;(2)求它与x 轴,y 轴的交点坐标.20.已知关于x 的方程(1)若该方程的一个根为,求的值及该方程的另一根;(2)求证:不论取何实数,该方程都有两个不相等的实数根.21.如图,抛物线2y x bx c =-++经过坐标原点,并与x 轴交于点A (2,0).(1)求此抛物线的解析式:(2)设抛物线的顶点为B ,求∆OAB 的面积S .22.如图,某农场要建一个长方形的养鸡场,鸡场的一边靠墙,墙长25m ,另外三边木栏围着,木栏长40m .(1)若养鸡场面积为200m 2,求鸡场靠墙的一边长.(2)养鸡场面积能达到250m 2吗?如果能,请给出设计方案,如果不能,请说明理由23.已知抛物线()2114y a x =-+与直线21y x =+的一个交点的横坐标是2(1)求a 的值;(2)请在所给的坐标系中,画出函数21(1)4y a x =-+与21y x =+的图象,并根据图象,直接写出12y y ≥时x 的取值范围24.大润发超市以每件30元的价格购进一种商品,试销中发现每天的销售量y (件)与每件的销售价x (元)之间满足一次函数1623y x=-(1)写出超市每天的销售利润w (元)与每件的销售价x (元)之间的函数关系式;(2)如果超市每天想要获得销售利润420元,则每件商品的销售价应定为多少元?(3)如果超市要想获得最大利润,每件商品的销售价定为多少元最合适?最大销售利润为多少元?25.如图所示,抛物线2y x mx n =-++经过点A (1,0)和点C (4,0),与y 轴交于B(1)求抛物线所对应的解析式.(2)连接直线BC ,抛物线的对称轴与BC 交于点E ,F 为抛物线的顶点,求四边形AECF 的面积.(3)x 轴上是否存在一点P ,使得PB+PE 的值最小,若存在,请求出P 点坐标,若不存在,请说明理由.参考答案1.B 2.A 3.B 4.B 5.A 6.C 7.A 8.C 9.B 10.D11.238100x x --=12.x=±213.34m >且2m ≠14.最大715.116.123y y y <<17.2518.(1)2x =±,(2)5x =或4x =19.(1)x=118(2)该抛物线与x 轴的交点坐标为(3,0),1-,04⎛⎫⎪⎝⎭;该抛物线与y 轴的交点坐标为(0,-3).20.(1)m=1;0(2)见解析21.(1)y =−x 2+2x ;(2)122.(1)20m .(2)不能达到250m 2,理由见解析.23.(1)a=-1;(2)图见解析,-1≤x≤224.(1)w=-32x +252x -4860;(2)40或44;(3)42元,432元25.(1)254y x x =-+-;(2)458;(3)存在,P (2011,0)。
人教版九年级上册数学第一次月考试卷一、选择题。
(每小题只有一个正确答案)1.下列是二次函数的是()A .22y x =+B .21y x =+C .11y x=-+D .220(0)ax a -=≠2.若关于x 的一元二次方程20x x m -+=的一个根是1x =,则m 的值是()A .1B .0C .-1D .23.关于x 的一元二次方程220(0,40)ax bx c a b ac ++=≠->的根是()A .2b a ±B .2b a -C .2b -D .2b a-±4.下列一元二次方程没有实数根的是()A .2210x x ++=B .220x x ++=C .210x -=D .2210x x --=5.用配方法解方程2640x x +-=时,配方结果正确的是()A .()235x +=B .()265x +=C .()2313x +=D .()2613x +=6.对于二次函数()212y x =--+的图象与性质,下列说法正确的是()A .对称轴是直线1x =,最大值是2B .对称轴是直线1x =,最小值是2C .对称轴是直线1x =-,最大值是2D .对称轴是直线1x =-,最小值是27.若关于x 的一元二次方程ax 2+2x -12=0(a <0)有两个不相等的实数根,则a 的取值范围是()A .a <-2B .a >-2C .-2<a <0D .-2≤a <08.据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%.假定2018年的年增长率保持不变,2016年和2018年我省有效发明专利分别为a 万件和b 万件,则()A .b=(1+22.1%×2)aB .b=(1+22.1%)2aC .b=(1+22.1%)×2aD .b=22.1%×2a9.将抛物线y=2x 2平移后得到抛物线y=2x 2+1,则平移方式为()A .向左平移1个单位B .向右平移1个单位C .向上平移1个单位D .向下平移1个单位10.二次函数y=ax 2+bx+c (a≠0)的图象如图所示,下列结论:①ac >0;②当x≥1时,y 随x 的增大而减小;③2a+b=0;④b 2-4ac <0;⑤4a-2b+c >0,其中正确的个数是()A .1B .2C .3D .4二、填空题11.方程x 2=9的解为_____.12.把一元二次方程2346x x =-化成一般式是__________.13.已知函数24y x x m =-+的图象与x 轴只有一个交点,则m 的值为_______.14.已知二次函数2y x =,在14x -≤≤内,函数的最小值为______________.15.抛物线y =(x -h )2-k 的顶点坐标为(-3,1),则h -k=______________16.已知关于x 的方程2x mx 60+-=的一个根为2,则这个方程的另一个根是__.17.二次函数y =ax 2+bx +c (a ≠0)的部分对应值如下表:则二次函数y =ax 2+bx +c 在x =2时,y =_________.X …-3-20135…y…7-8-9-57…三、解答题18.解方程,2230x x +-=.19.已知抛物线的顶点为(1,4),与y 轴交点为(0,3),求该抛物线的解析式.20.若关于x 的二次方程(m+1)x 2+5x+m 2﹣3m=4的常数项为0,求m 的值.21.关于x 的一元二次方程x 2+(2m +1)x +m 2-1=0有两个不相等的实数根.(1)求m 的取值范围;(2)写出一个满足条件的m 的值,并求此时方程的根.22.己知:二次函数y =ax 2+bx +6(a ≠0)与x 轴交于A ,B 两点(点A 在点B 的左侧),点A ,点B 的横坐标是一元二次方程x 2﹣4x ﹣12=0的两个根.(1)求出点A ,点B 的坐标.(2)求出该二次函数的解析式.23.为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.24.如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度y (单位:m )与飞行时间x (单位:s )之间具有函数关系y=﹣5x 2+20x ,请根据要求解答下列问题:(1)在飞行过程中,当小球的飞行高度为15m 时,飞行时间是多少?(2)在飞行过程中,小球从飞出到落地所用时间是多少?(3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?25.如图,已知抛物线y=-x2+4x+m与x轴交于A,B两点,AB=2,与y轴交于点C.(1)求抛物线的解析式;(2)若P为对称轴上一点,要使PA+PC最小,求点P的坐标.参考答案1.A【分析】直接利用二次函数以及一次函数的定义分别判断得出答案.【详解】A、y=x2+2,是二次函数,故此选项正确;B、y=-2x+1,是一次函数,故此选项错误;C 、y=1x-+1,不是二次函数,故此选项错误;D 、()2200x a -=≠,是一次二次方程,故此选项错误;故选A .【点睛】此题主要考查了二次函数与一次函数定义,正确把握相关定义是解题关键.2.B 【分析】根据一元二次方程的解的定义,把x=1代入一元二次方程可得到关于m 的一元一次方程,然后解一元一次方程即可.【详解】把x=1代入x 2-x+m=0得1-1+m=0,解得m=0.故选B .【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.3.D 【详解】当20,40a b ac ≠->时,一元二次方程20ax bx c ++=的求根公式为x =2b b ac a-.故选D.4.B 【分析】通过计算方程根的判别式,满足0 即可得到结论.【详解】解:A 、2=2411=0-⨯⨯ ,方程有两个相等的实数根,故本选项错误;B 、2=1421=-70-⨯⨯ ,方程没有实数根,故本选项正确;C 、2=04(1)=40-⨯- ,方程有两个不相等的实数根,故本选项错误;D 、2=(-2)41(1)=80-⨯⨯- ,方程有两个不相等的实数根,故本选项错误;故答案为B.【点睛】本题考查了根的判别式,熟练掌握一元二次方程的根与判别式的关系是解题的关键.(1)当0 ,方程有两个不相等的两个实数根;(2)当=0 ,方程有两个相等的两个实数根;(3)当0 时,方程无实数根.5.C 【分析】将常数项移到等式的右边,再两边配上一次项系数的一半可得.【详解】∵x 2+6x=4,∴x 2+6x+9=4+9,即(x+3)2=13,故选C .【点睛】本题主要考查配方法解一元二次方程,熟练掌握配方法的基本步骤是解题的关键.6.A 【分析】根据抛物线的图象与性质即可判断.【详解】解:由抛物线的解析式:y=-(x-1)2+2,可知:对称轴x=1,开口方向向下,所以有最大值y=2,故选:A .【点睛】本题考查二次函数的性质,解题的关键是正确理解抛物线的图象与性质,本题属于基础题型.7.C【分析】由关于x 的一元二次方程ax 2+2x -12=0(a <0)有两个不相等的实数根可得2214244202b ac a a ⎛⎫∆=-=-⨯⨯-=+> ⎪⎝⎭,解不等式即可求出a 的取值范围.【详解】∵关于x 的一元二次方程ax 2+2x -12=0(a <0)有两个不相等的实数根,∴2214244202b ac a a ⎛⎫∆=-=-⨯⨯-=+> ⎪⎝⎭,解得:a >−2,∵a <0,∴−2<a <0.故选C .【点睛】本题考查一元二次方程根的判别式,掌握根的判别式的应用为解题关键.8.B 【详解】【分析】根据题意可知2017年我省有效发明专利数为(1+22.1%)a 万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a ,由此即可得.【详解】由题意得:2017年我省有效发明专利数为(1+22.1%)a 万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a 万件,即b=(1+22.1%)2a 万件,故选B.【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键.9.C 【解析】根据二次函数图象的平移规律“上加下减,左加右减”,将原抛物线以各个选项描述的平移方式进行平移可以获得不同的解析式,与题目中给出的解析式一致的选项即为正确选项.A 选项:将原抛物线向左平移1个单位,平移后的抛物线应为y =2(x +1)2,故A 选项错误;B 选项:将原抛物线向右平移1个单位,平移后的抛物线应为y =2(x -1)2,故B 选项错误;C 选项:将原抛物线向上平移1个单位,平移后的抛物线应为y =2x 2+1,故C 选项正确;D 选项:将原抛物线向下平移1个单位,平移后的抛物线应为y =2x 2-1,故D 选项错误.因此,本题应选C.点睛:本题考查了二次函数图象平移的相关知识.二次函数图象向上或向下平移时,应将平移量以“上加下减”的方式作为常数项添加到原解析式中;二次函数图象向左或向右平移时,应先以“左加右减”的方式将自变量x 和平移量组成一个代数式,再用该代数式替换原解析式中的自变量x .要特别注意理解和记忆二次函数图象左右平移时其解析式的相关变化.10.B 【详解】(1)由图可知,0 0a c ><,,∴0ac <,故①错;(2)由图可知,当1≥x 时,y 随x 的增大而增大,故②错;(3)由图可知,抛物线的对称轴为直线:12bx a=-=,∴2b a =-,即20a b +=,故③正确;(4)由图可知,抛物线和x 轴有两个不同的交点,∴240b ac ->,故④错;(5)由图可知,当2x =-时,图象在x 轴上方,即当2x =-时,420y a b c =-+>,故⑤正确;∴有2个结论正确,故选B.11.x=±3【分析】直接用开平方法求解即可.【详解】解:∵29x =,∴x=±3.故答案为:x=±3.【点睛】本题考查了解一元二次方程-直接开平方法,解决本题的关键是理解平方根的定义,注意一个正数的平方根有两个,这两个数互为相反数.12.23460x x -+=【分析】方程整理为一般形式即可.【详解】方程整理得:3x 2-4x+6=0,故答案为3x 2-4x+6=0.【点睛】此题考查了一元二次方程的一般形式,其一般形式为ax 2+bx+c=0(a≠0).13.4【分析】由抛物线与x 轴只有一个交点,得到根的判别式等于0,即可求出m 的值.【详解】∵函数y=x 2-4x+m 的图象与x 轴只有一个交点,∴b 2-4ac=(-4)2-4×1×m=0,解得:m=4,故答案为4【点睛】此题考查了抛物线与x 轴的交点,熟练掌握二次函数的性质是解本题的关键.14.0【分析】根据二次函数的性质即可判断出函数的最小值.【详解】∵a=1>0,∴二次函数2y x =的图象开口向上,∴二次函数2y x =的图象在14x -≤≤内有最低点,为原点(0,0),故二次函数2y x =,在14x -≤≤内,函数的最小值为0,故答案为0.【点睛】本题主要考查了二次函数的图象与性质.熟记二次函数的图象与性质是解题关键.15.-2【分析】根据二次函数的顶点式可直接进行求解.【详解】解:由题意得:h=-3,k=-1,∴()312h k -=---=-;故答案为-2.【点睛】本题主要考查二次函数的顶点式,熟练掌握二次函数的性质是解题的关键.16.-3.【解析】∵方程2x mx 60+-=的一个根为2,设另一个为a ,∴2a=-6,解得:a=-3.17.-8【分析】观察表中的对应值得到x =−3和x =5时,函数值都是7,则根据抛物线的对称性得到对称轴为直线x =1,所以x =0和x =2时的函数值相等.【详解】解:∵x =−3时,y =7;x =5时,y =7,∴二次函数图象的对称轴为直线x =1,∴x =0和x =2时的函数值相等,∴x =2时,y =−8.故答案为:−8.【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.18.1231x x ,=-=【分析】利用因式分解法求一元二次方程的解即可.【详解】原方程因式分解得:(3)(1)0x x +-=∴1231x x ,=-=【点睛】本题考查利用因式分解法求一元二次方程的解.熟练掌握因式分解法是解答本题的关键.19.y=-(x-1)2+4.【分析】根据顶点坐标设其顶点式,再将(0,3)代入求解可得.【详解】设抛物线的解析式为y=a (x-1)2+4,将点(0,3)代入,得a+4=3.解得a=-1,抛物线的解析式为y=-(x-1)2+4.【点睛】解题的关键是熟练掌握待定系数法求函数解析式.20.4【解析】试题分析:根据方程中常数项为0,求出m 的值,检验即可.试题解析:解:∵关于x 的二次方程(m+1)x 2+5x+m 2﹣3m ﹣4=0的常数项为0,∴m 2﹣3m ﹣4=0,即(m ﹣4)(m+1)=0,解得:m=4或m=﹣1,当m=﹣1时,方程为5x=0,不合题意;则m 的值为4.考点:一元二次方程的一般形式.21.(1)m >-54;(2)x 1=0,x 2=-3.【详解】试题分析:(1)由方程有两个不相等的实数根即可得出△>0,代入数据即可得出关于m 的一元一次不等式,解不等式即可得出结论;(2)结合(1)结论,令m=1,将m=1代入原方程,利用因式分解法解方程即可得出结论.试题解析:(1)∵关于x 的一元二次方程2x +(2m+1)x+2m ﹣1=0有两个不相等的实数根,∴△=()()2221411m m +-⨯⨯-=4m+5>0,解得:m >54-;(2)m=1,此时原方程为2x +3x=0,即x (x+3)=0,解得:1x =0,2x =﹣3.考点:根的判别式;解一元二次方程——因式分解法;解一元一次不等式.22.(1)A (-2,0),B (6,0),(2)y=-12x 2+2x+6.【分析】(1)利用因式分解法解方程x 2-4x-12=0即可得到A 点和B 点坐标;(2)设交点式y=a (x+2)(x-6)=ax 2-4ax-12a ,则-12a=6,解得a=-12,所以抛物线解析式为y=-12x 2+2x+6.【详解】(1)解方程x 2-4x-12=0得x 1=-2,x 2=6,所以A (-2,0),B (6,0),(2)因为抛物线与x 轴交于点A (2,0),B (6,0),则抛物线解析式为y=a (x+2)(x-6)=ax 2-4ax-12a ,则-12a=6,解得a=-12,所以y=-12x 2+2x+6.【点睛】本题考查了抛物线与x 轴的交点问题:从二次函数的交点式y=a (x-x 1)(x-x 2)(a ,b ,c 是常数,a≠0)中可直接得到抛物线与x 轴的交点坐标(x 1,0),(x 2,0).也考查了二次函数的性质.23.(1)20%;(2)10368万元.【解析】试题分析:(1)首先设该县投入教育经费的年平均增长率为x ,然后根据增长率的一般公式列出一元二次方程,然后求出方程的解得出答案;(2)根据增长率得出2017年的教育经费.试题解析:(1)设该县投入教育经费的年平均增长率为x.则有:6000=8640解得:=0.2=-2.2(舍去)所以该县投入教育经费的年平均增长率为20%(2)因为2016年该县投入教育经费为8640万元,且增长率为20%所以2017年该县投入教育经费为8640×(1+20%)=10368(万元)考点:一元二次方程的应用24.(1)在飞行过程中,当小球的飞行高度为15m 时,飞行时间是1s 或3s ;(2)在飞行过程中,小球从飞出到落地所用时间是4s ;(3)在飞行过程中,小球飞行高度第2s 时最大,最大高度是20m .【详解】分析:(1)根据题目中的函数解析式,令y=15即可解答本题;(2)令y=0,代入题目中的函数解析式即可解答本题;(3)将题目中的函数解析式化为顶点式即可解答本题.详解:(1)当y=15时,15=﹣5x 2+20x ,解得,x 1=1,x 2=3,答:在飞行过程中,当小球的飞行高度为15m 时,飞行时间是1s 或3s ;(2)当y=0时,0═﹣5x 2+20x ,解得,x 3=0,x 2=4,∵4﹣0=4,∴在飞行过程中,小球从飞出到落地所用时间是4s ;(3)y=﹣5x 2+20x=﹣5(x ﹣2)2+20,∴当x=2时,y 取得最大值,此时,y=20,答:在飞行过程中,小球飞行高度第2s 时最大,最大高度是20m .点睛:本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答.25.(1)243y x x =-+-;(2)P 点坐标为(2,-1)【分析】(1)设点A 的坐标为()1,0x ,点B 的坐标为()2,0x ,然后根据AB=2及抛物线的对称轴可求解A 、B 的坐标,进而抛物线解析式可求;(2)连接BC ,交直线x =2于点P ,则PA =PB ,则有PA +PC =PB +PC =BC ,所以此时PA +PC 最小,然后求出直线BC 的解析式,进而问题可求.【详解】解:(1)设点A 的坐标为()1,0x ,点B 的坐标为()2,0x ,2121222x x x x +⎧=⎪⎨⎪-=⎩,∴1213x x =⎧⎨=⎩,把点A 的坐标(1,0)代入24y x x m =-++得3m =-,所以抛物线的解析式为243y x x =-+-;(2)解:连接BC ,交直线x =2于点P ,则PA =PB,如图所示:∴PA +PC =PB +PC =BC ,∴此时PA +PC 最小,设直线BC 的解析式为y =kx +b ,把C (0,-3),B (3,0)代入得330b k b =-⎧⎨+=⎩,解得31b k =-⎧⎨=⎩,∴直线BC 的解析式为y =x -3,当x =2时,y =x -3=2-3=-1,∴P 点坐标为(2,-1).【点睛】本题主要考查二次函数的综合,熟练掌握二次函数的性质是解题的关键.。
九年级(上)第一次月考数学试卷一、选择题(每小题3分,共24分在下列各个小题中,均给出了四个答案,其中有且只有一个正确答案,将正确答案代号填入括号内)1.下列方程是一元二次方程的是()A. B.C. D.2.如果,则的值为()A. B. C. D.3.如右图所示,折叠矩形,使点落在边的点处,为折痕,已知,,则的长等于()A. B. C. D.4.一元二次方程的解是()A. B.C.,D.,5.若代数式与代数式的值相等,则的值是()A.或B.或C.或D.或6.方程的左边配成完全平方后所得方程为()A. B.C. D.以上答案都不对7.关于的一元二次方程的一根为,则的值是()A. B. C. D.8.三角形两边的长分别是和,第边的长是一元二次方程的一个实数根,则该三角形的周长是()A. B.或 C. D.或二、填空题(每小题3分,共24分)9.根据下列表格的对应值,判断(,,,为常数)的一个解的取值范围是________10.如图,中,∠,把绕点逆时针旋转,得,则∠的度数为________.11.已知是关于的方程的一个根,则________.12.方程的根是________.13.已知是方程的根,求的值为________.14.关于的方程有两个相等的实根,则________.15.已知是方程的一个根,则代数式的值是________.16.某种药品经过两次降价,由每盒元调至元,若设平均每次降价的百分率为,则由题意可列方程为________.三、解答题(第17-20题28分,21题8分24题8分,25题10分共54分)17.解方程:(配方法).18.解方程:.19.解方程:(分解因式法).20.解方程.21.如图,在中,∠,点从点开始沿边向点以的速度匀速移动,同时另一点由点开始以的速度沿着匀速移动,几秒时,的面积等于?22.如图,是一张边长为的正方形纸片,,分别为,的中点,沿过点的折痕将角翻折,使得点落在上的点′处,折痕交于点,则________.23.在方格中的位置如图所示.请在方格纸上建立平面直角坐标系,使得、两点的坐标分别为、.并求出点的坐标;作出关于横轴对称的,再作出以坐标原点为旋转中心、旋转后的,并写出,两点的坐标.四、解答题24.李大妈加盟了“红红”全国烧烤连锁店,该公司的宗旨是“薄利多销”,经市场调查发现,当羊肉串的单价定为角时,每天能卖出串,在此基础上,每加价角李大妈每天就会少卖出串,考虑了所有因素后李大妈的每串羊肉串的成本价为角,若李大妈每天销售这种羊肉串想获得利润是元,那么请问这种羊肉串应怎样定价?25.如图甲,在中,∠为锐角.点为射线上一动点,连接,以为一边且在的右侧作正方形.解答下列问题:如果,∠.①当点在线段上时(与点不重合),如图乙,线段、之间的位置关系为________,数量关系为________.②当点在线段的延长线上时,如图丙,①中的结论是否仍然成立,为什么?如果,∠,点在线段上运动.试探究:当满足一个什么条件时,(点、重合除外)?画出相应图形,并说明理由.(画图不写作法)26.阅读下面的例题,范例:解方程,解:当时,原方程化为,解得:,(不合题意,舍去).当时,原方程化为,解得:,(不合题意,舍去).∴原方程的根是,请参照例题解方程.答案1. 【答案】B【解析】本题根据一元二次方程的定义求解.一元二次方程必须满足三个条件:是整式方程;含有一个未知数,且未知数的最高次数是;二次项系数不为.以上三个条件必须同时成立,据此即可作出判断.【解答】解:、不是方程,错误;、符合一元二次方程的定义,正确;、原式可化为,是一元四次方程,错误;、是分式方程,错误.故选.2. 【答案】C【解析】先把原式的右边利用完全平方公式展开,再利用等式的对应项的系数相等可求.【解答】解:∵,∴,∴.故选.3. 【答案】A【解析】由为折痕,可得,由矩形,可得,∠,设出的长,在直角三角形中利用勾股定理列出方程,通过解方程可得答案.【解答】解:设,则,∵矩形,∴,∠,∵为折痕,∴,中,,∴,解得.故选.4. 【答案】C【解析】观察发现方程的两边同时加后,左边是一个完全平方式,即,即原题转化为求的平方根.【解答】解:移项得:,∴,即,.故选:.5. 【答案】B【解析】由两个代数式的值相等,可以列出一个一元二次方程,分析方程的特点,用分组分解法进行因式分解,求出方程的两个根.【解答】解:因为这两个代数式的值相等,所以有:,,,或,∴或.故选.6. 【答案】A【解析】把方程变形得到,方程两边同时加上一次项的系数一半的平方,两边同时加上即可.【解答】解:∵∴∴∴.故选.7. 【答案】A【解析】根据一元二次方程解的定义把代入方程求,然后根据一元二次方程的定义确定满足条件的的值.【解答】解:把代入方程得,解得,而,所以.故选.8. 【答案】C【解析】由于第边的长是一元二次方程的一个实数根,那么求出方程的根就可以求出三角形的周长.【解答】解:∵,∴,∴或,当时,三角形的三边分别为、和,∴该三角形的周长是;当时,三角形的三边分别为、和,而,∴三角形不成立.故三角形的周长为.故选.9. 【答案】【解析】根据上面的表格,可得二次函数的图象与轴的交点坐标即为方程的解,当时,;当时,;则二次函数的图象与轴的交点的横坐标应在和之间.【解答】解:∵当时,;当时,;∴方程的一个解的范围是:.故答案为:.10. 【答案】【解析】直接利用旋转的性质求解.【解答】解:∵绕点逆时针旋转,得,∴∠.故答案为.11. 【答案】【解析】根据一元二次方程解的定义把代入得到关于的方程,然后解关于的方程即可.【解答】解:把代入得,解得.故答案为.12. 【答案】或【解析】原方程的左边是两个一次因式乘积的形式,而方程的右边为,可令每个一次因式的值为,得到两个一元一次方程,解这两个一元一次方程即可求出原方程的解.【解答】解:,或,解得或.13. 【答案】【解析】把方程的解代入方程,两边同时除以,可以求出代数式的值.【解答】解:把代入方程有:两边同时除以有:.故答案是:.14. 【答案】【解析】由方程有两个相等的实数根结合根的判别式即可得出关于的一元二次方程,解方程即可得出结论.【解答】解:∵方程有两个相等的实根,∴,解得:.故答案为:.15. 【答案】【解析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.【解答】解:把代入方程,得到,所以.故本题答案为.16. 【答案】【解析】本题可设平均每次降价的百分率是,则第一次降价后药价为元,第二次在元的基础之又降低,变为即元,进而可列出方程,求出答案.【解答】解:设平均每次降价的百分率是,则第二次降价后的价格为元,根据题意得:,故答案为:.17. 【答案】解:∵,,即,∴,∴,.【解析】先移项得到,再把方程两边加上得到,即,然后利用直接开平方法求解.【解答】解:∵,,即,∴,∴,.18. 【答案】解:由原方程,得,∴,∴,或解得,,或.【解析】将原方程转化为一般形式,然后利用因式分解法解方程即可.【解答】解:由原方程,得,∴,∴,或解得,,或.19. 【答案】解:∵,∴,∴,∴,∴或,∴,.【解析】先移项,然后利用平方差公式分解因式,这样转化为两个一元一次方程,解一元一次方程即可.【解答】解:∵,∴,∴,∴,∴或,∴,.20. 【答案】解:,则有,∴;解得,或;①当时,;②当时,.【解析】设,则原方程变为,然后解关于的方程,最后再来求的值.【解答】解:,则有,∴;解得,或;①当时,;②当时,.21. 【答案】解:设秒后,的面积等于平方米,或.∵,∴应舍去,所以当秒时面积平方米.【解析】根据勾股定理先求出的长,然后根据运动速度,设秒后,的面积等于平方米,从而可列方程求解.【解答】解:设秒后,的面积等于平方米,或.∵,∴应舍去,所以当秒时面积平方米.22. 【答案】【解析】由是一张边长为的正方形纸片,,分别为,的中点,可得,,由翻折可得′,′,在′与′中,利用勾股定理可求得答案.【解答】解:∵是一张边长为的正方形纸片,、分别为,的中点,∴,,为折痕,∴′,′,′中,′′,∴′,′中,设,则′,∴′,解得.故答案为:.23. 【答案】解:坐标系如图所示,;; ,如图所示,,.【解析】根据已知点的坐标,画出坐标系,由坐标系确定点坐标;; 由轴对称性画,由关于原点中心对称性画,可确定写出,两点的坐标.【解答】解:坐标系如图所示,;; ,如图所示,,.24. 【答案】解:设这种羊肉串定价为角,,化简得:,解得:(舍去),,故这种羊肉串应定价为角.【解析】设这种羊肉串定价为角,根据当羊肉串的单价定为角时,每天能卖出串,在此基础上,每加价角李大妈每天就会少卖出串,考虑了所有因素后李大妈的每串羊肉串的成本价为角,若李大妈每天销售这种羊肉串想获得利润是元,可列方程求解.【解答】解:设这种羊肉串定价为角,,化简得:,解得:(舍去),,故这种羊肉串应定价为角.25. 【答案】垂直,相等; 当∠时,(如图).理由:过点作交的延长线于点,则∠,∵∠,∠∠,∴∠,∴∠∠,∴,在与中,∠∠,∴,∴∠∠,∠∠∠,即.【解析】①根据正方形的性质得到∠∠,推出,根据全等三角形的性质即可得到结论;②由正方形的性质可推出,根据全等三角形的性质得到,∠∠,根据余角的性质即可得到结论;; 过点作交或的延长线于点,于是得到∠,可推出∠∠,证得,根据的结论于是得到结果.【解答】解:①正方形中,,∵∠∠,∴∠∠,在与中,∠∠,∴,∴,∠∠,∴∠∠,即;; 当∠时,(如图).理由:过点作交的延长线于点,则∠,∵∠,∠∠,∴∠,∴∠∠,∴,在与中,∠∠,∴,∴∠∠,∠∠∠,即.26. 【答案】解:,当时,原方程化为,解得:,(不合题意,舍去).; 当时,原方程化为,解得:,(不合题意,舍去).故原方程的根是,.【解析】分为两种情况:当时,原方程化为,; 当时,原方程化为,求出方程的解即可.【解答】解:,当时,原方程化为,解得:,(不合题意,舍去).; 当时,原方程化为,解得:,(不合题意,舍去).故原方程的根是,.。
年 班 姓名 一、选择题(每题3分;共39分)1.一元二次方程x 2+6x ﹣6=0配方后化为( ) A .(x ﹣3)2=3B .(x ﹣3)2=15C .(x +3)2=15D .(x +3)2=32、已知点P (﹣1;4)在反比例函数ky x=(k ≠0)的图象上;则k 的值是( ) A .14-B .14C .4D .﹣4 3、【2018广东省东莞市二模】下列函数中;当x >0时;y 随x 的增大而减小的是( )A .y =2xB .y =﹣4xC .y =3x +2D .y =x 2﹣34.【2018广州市番禹区】二次函数y =x 2+bx 的图象如图;对称轴为直线x =1;若关于x 的一元二次方程x 2+bx ﹣t =0(t 为实数)在﹣1<x <4的范围内有解;则t 的取值范围是( )A .t ≥﹣1B .﹣1≤t <3C .﹣1≤t <8D .3<t <85、抛物线222++-=kx x y 与x 轴交点的个数为( )A 、0B 、1C 、2D 、以上都不对6、某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念;全班共送1035张照片;如果全班有x 名同学;根据题意;列出方程为( ) A .x (x +1)=1035B .x (x ﹣1)=1035C . x (x +1)=1035D . x (x ﹣1)=10357.二次函数c bx ax y ++=2的y 与x 的部分对应值如下表:则下列判断正确的是( )x … 1- 0 1 3 … y…3-131…A .抛物线开口向上B .抛物线与y 轴交于负半轴C .当x =4时;y >0D .方程02=++c bx ax 的正根在3与4之间8、(3分)某市2004年底已有绿化面积300公顷;经过两年绿化;绿化面积逐年增加;到2006年底增加到363公顷.设绿化面积平均每年的增长率为x ;由题意;所列方程正确的是( ) A .300(1+x )=363 B .300(1+x )2=363C .300(1+2x )=363D .363(1﹣x )2=300 二、填空题(每题3分;共21分)9.(3分)关于x 的方程x 2+5x ﹣m =0的一个根是2;则m =____________10、已知二次函数244y ax x =++的图象与x 轴有两个交点;则a 的取值范围是_____________ 11、若二次函数y =2x 2的图象向左平移2个单位长度后;得到函数y =2(x +h )2的图象;则h = .12.如图;A 、B 是反比例函数y =kx图象上关于原点O 对称的两点; BC ⊥x 轴;垂足为C ;连线AC 过点D (0;﹣).若△ABC 的面积为7;则点B 的坐标为 .13、当a ;二次函数224y ax x =+-的值总是负值.14、A 市“安居工程”新建成的一批楼房都是8层高;房子的价格y (元/平方米)随楼层数x (楼)的变化而变化(x =1;2;3;4;5;6;7;8);已知点(x ;y )都在一个二次函数的图像上(如下图所示);则6楼房子的价格为 元/平方米.15、如下图为二次函数y =ax 2+bx +c 的图象;在下列说法中:①ac <0; ②方程ax 2+bx +c =0的根是x 1= -1; x 2= 3 ③a +b +c >0 ④当x >1时;y 随x 的增大而增大. 以上说法中;正确的有________ _____。
第一次月考试卷(人教版九年级数学上册前两章)一.细心选一选(每小题3分,共30分.)1、x 为何值时,32+x 在实数范围内有意义( ) A 32≥x B 32-≥x C 23-≥x D 23≥x 2、下列计算正确的是() A .16= ±4 B .131227=- C .24÷ 6= 4 D .32×6=2 3、n 20是整数,则正整数n 的最小值是( )A 。
4B 。
5C 。
6 D.74、下列方程是关于x 的一元二次方程的是( );A 、02=++c bx axB 、2112=+xx C 、1222-=+x x x D 、)1(2)1(32+=+x x5 、方程5)3)(1(=-+x x 的解是 ( );A 、3,121-==x xB 、2,421-==x xC 、3,121=-=x xD 、2,421=-=x x6、一元二次方程的2650x x +-=配成完全平方式后所得的方程为 ( )A .2(3)14x -=B .2(3)14x +=C .21(6)2x += D .以上答案都不对 7、一元二次方程06242=-+-m x x 有两个相等的实数根,则m 等于 ( )A. 2 B 。
3 C. 4 D. 58、若2,1x x 是方程012=-+x x 的两根,则)2()2(222121-+⋅-+x x x x 的值为( ) A.2 B.-2 C.—1 D.19、若b b -=-3)3(2,则( )A .b 〉3B .b 〈3C .b ≥3D .b ≤310、为执行“两免一补"政策,某地区2011年投入教育经费2500万元,预计2013年投入3600万元,设这两年投入教育经费的年平均增长率为x ,则下列方程正确的是( )A 、2500 x 2=3600;B 、2500(1+x ) 2=3600;C 、2500(1+x %) 2=3600;D 、2500(1+x ) +2500(1+x ) 2=3600二、耐心填一填(将正确答案填在相应的横线上。
2024-2025学年度第一学期第一次月考模拟试卷一、单选题1. 下列是一元二次方程的是( )A. 20ax bx c ++=B. 22x x −=C. ()222x x x −=−D. 11x x+= 2. 一元二次方程2310x x −−=的根的情况为( )A. 无实数根B. 有一个实数根C. 有两个相等的实数根D. 有两个不相等的实数根3. 一元二次方程2430x x −+=配方后变形为( )A. ()241x −=B. ()221x −=C. ()241x +=D. ()221x += 4. 若关于x 一元二次方程2690kx x −+=有两个不相等的实数根,则k 的取值范围是( )A. 1k >B. 0k ≠C. 1k <D. 1k <且0k ≠ 5. 将抛物线2y x =先向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线对应的函数解析式为( )A. ()223y x =−+B. ()232y x =−+ C. ()223y x =++ D. ()232y x =−− 6. 若()()()1232,,1,,2,A y B y C y −是抛物线()221y x a =−+上的三点,则123,,y y y 为的大小关系为( )A 123y y y >> B. 132y y y >> C. 321y y y >> D. 312y y y >> 7. 若抛物线242y kx x =−−与x 轴有两个交点,则k 的取值范围为( )A. 2k >−B. 2k ≥−C. 2k >−且0k ≠D. 2k ≥−且0k ≠ 8. 二次函数2y ax bx c =++图象上部分点的对应值如下表则使0y <的x 的取值范围为( ) x 3− 2− 1− 01 2 3 4 y 60 4− 6− 6− 4− 0 6A. 0x <B. 12x >C. 23x −<<D. 2x <−或3x >的.二、填空题9. 已知m 是方程2520x x −−=的一个根,则22101m m −−=______. 10. 一元二次方程()2110x k x +++=有两个相等的实数根,那么k 的值为_____. 11. 若关于x 的一元二次方程()22240m x mx m −++−=有一个根是0,则m 的值为________ 12. 用一根长22cm 的铁丝围成面积是230cm 的矩形.假设矩形的一边长是cm x ,则可列出方程_____________________13. 如图,已知抛物线2y ax bx c ++与直线y kx m =+交于()3,1A −−、()0,3B 两点,则关于x 的不等式2ax bx c kx m ++≥+的解集是________.14. 抛物线()232y x =−−−的顶点坐标是________ .15. 已知二次函数()214y x =+−,当02x ≤≤时,函数值y 取值范围为__________16. 飞机着陆后滑行的距离(米)关于滑行时间(秒)的函数解析式为260 1.5s t t =−,则飞机着陆后滑行_________秒才停下来.17. 如图所示,,A B 分别为22(2)1y x =−−图象上的两点,且直线AB 垂直于y 轴,若2AB =,则点B 的纵坐标为________.18. 如图,横截面为抛物线的山洞,山洞底部宽为8米,最高处高163米,现要水平放置横截面为正方形的箱子,其中两个顶点在抛物线上的大箱子,在大箱子的两侧各放置一个横截面为正方形的小箱子,则小箱子的正方形的最大边长为______米.三、解答题19. 商场销售某种拖把,已知这种拖把的进价为80元/套,售价为120元/套,商场每天可销售20套、国庆假期临近,该商场决定采取适当的降价措施,经调查:这种拖把的售价每降价1元,平均每天可多售出2套,设这种拖把每套降价x 元.(1)降价后每套拖把盈利______元,平均每天可销售______套(用含x 的代数式表示);(2)为扩大销售量,尽快减少库存,当每套拖把降价多少元时,该商场销售这种拖把平均每天能盈利1242元?(3)该商场销售这种拖把平均每天的盈利能否达到1400元?若能,求出x 的值;若不能,请说明理由. 20. 解方程:(1)2(2x 1)9+=;(2)2x 2﹣4x =1(配方法);(3)22x 5x 10−+=;(4) ()2(x 3)4x 3x 0−−−= 21. 随着科技的发展,某省正加快布局以5G 等为代表的新兴产业.据统计,目前该省5G 基站数量约为1.5万座,计划到今年底,全省5G 基站数是目前的4倍;到后年底,全省5G 基站数量将达到17.34万座.(1)计划在今年底,全省5G 基站数量是多少万座?(2)按照计划,从今年底到后年底,全省5G 基站数量的年平均增长率为多少?22. 如图,老李想用长为70m 的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD ,并在边BC 上留一个2m 宽的门(建在EF 处,另用其他材料).(1)当羊圈的边AB 的长为多少米时,能围成一个面积为2640m 的羊圈?(2)羊圈的面积能达到2650m 吗?如果能,请你给出设计方案;如果不能,请说明理由.23. 已知函数()214y x =−−+.(1)当x =____________时,抛物线有最大值,____________.(2)当x ____________时,y 随x 的增大而增大.(3)该函数可以由函数2y x =−的图象经过怎样的平移得到?(4)该抛物线与x 轴交于点____________,与y 轴交于点____________.(写坐标)(5)在下面的坐标系中画出该抛物线的图象.24. 已知图象的顶点坐标是()2,1,且与x 轴的一个交点坐标是()3,0,求此二次函数的解析式. 25. 已知:二次函数()221y x m x m =−++−. (1)求证:该抛物线与x(2)设抛物线与x 轴的两个交点是A B 、(A 在原点左边,B 在原点右边),且3AB =,求此时抛物线的解析式.26. 若直线5y x =−与y 轴交于点A ,与x 轴交于点B ,二次函数2y ax bx c =++的图象经过点A ,点B ,且与x 轴交于点()1,0C −.(1)求二次函数解析式;(2)若点P 为直线AB 下方抛物线上一点,连接PA ,PB ,求ABP 面积的最大值及此时点P 的坐标;是的2024-2025学年度第一学期第一次月考模拟试卷一、单选题1. 下列是一元二次方程的是( )A. 20ax bx c ++=B. 22x x −=C. ()222x x x −=−D. 11x x += 【答案】B【解析】【分析】本题主要考查了一元二次方程的识别.本题根据一元二次方程的定义解答.【详解】解:A 、当0a ≠时,20ax bx c ++=是一元二次方程,故本选项不符合题意; B 、22x x −=是一元二次方程,故本选项符合题意;C 、变形为22x =不是一元二次方程,故本选项不符合题意;D 、11x x+=含有分式,不是一元二次方程,故本选项不符合题意; 故选:B2. 一元二次方程2310x x −−=的根的情况为( )A. 无实数根B. 有一个实数根C. 有两个相等的实数根D. 有两个不相等的实数根【答案】D【解析】【分析】本题考查一元二次方程根的情况,涉及一元二次方程根的判别式,由题中一元二次方程得到判别式,即可判断答案,熟记一元二次方程根的情况与判别式符号关系是解决问题的关键.【详解】解:一元二次方程2310x x −−=, 3,1,1a b c ==−=−,()()21431∴∆−−××−112=+130=>,∴一元二次方程2310x x −−=的根的情况为有两个不相等的实数根,故选:D .3. 一元二次方程2430x x −+=配方后变形为( )A. ()241x −=B. ()221x −=C. ()241x +=D. ()221x +=【答案】B【解析】【分析】本题考查了解一元二次方程—配方法,掌握配方法是解题的关键.先把常数项移到方程右边,再把方程两边加上4,然后把方程左边写成完全平方形式即可.【详解】解:2430x x −+=,∴243x x −=−,∴24434x x −+=−+,即()221x −=.故选:B4. 若关于x 的一元二次方程2690kx x −+=有两个不相等的实数根,则k 的取值范围是( )A. 1k >B. 0k ≠C. 1k <D. 1k <且0k ≠ 【答案】D【解析】【分析】本题考查了一元二次方程的定义和一元二次方程根的判别式.根据一元二次方程根的判别式,即可求解.【详解】解:∵关于x 的一元二次方程2690kx x −+=有两个不相等的实数根,∴()26490k ∆=−−×>,且0k ≠,解得:1k <且0k ≠,即k 的取值范围是1k <且0k ≠.故选:D5. 将抛物线2y x =先向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线对应的函数解析式为( )A. ()223y x =−+B. ()232y x =−+ C. ()223y x =++ D. ()232y x =−− 【答案】B【解析】【分析】本题考查函数图象的平移,解题的关键是要熟练掌握函数的平移规律:“左加右减,上加下减”,根据函数图象平移规律即可得到答案.【详解】解:将抛物线2y x =先向上平移2个单位长度,得到22y x =+,再向右平移3个单位长度,得到()232y x =−+, 故选:B .6. 若()()()1232,,1,,2,A y B y C y −是抛物线()221y x a =−+上三点,则123,,y y y 为的大小关系为( )A. 123y y y >>B. 132y y y >>C. 321y y y >>D. 312y y y >>【答案】B【解析】【分析】本题主要考查了二次函数的性质,掌握当抛物线开口方向向上时,离对称轴越远,函数值越大成为解题的关键.先确定抛物线的对称轴,再确定抛物线开口向上,此时离对称轴越远,函数值越大,据此即可解答.【详解】解:∵()221y x a =−+,∴抛物线的对称轴为直线1x =,开口向上,∴离对称轴越远,函数值越大,∵点()12,A y −离对称轴最远,点()21,B y 在对称轴上,∴132y y y >>.故选:B .7. 若抛物线242y kx x =−−与x 轴有两个交点,则k 的取值范围为( )A. 2k >−B. 2k ≥−C. 2k >−且0k ≠D. 2k ≥−且0k ≠ 【答案】C【解析】【分析】本题主要考查了二次函数与一元二次方程之间的关系,二次函数的定义,二次函数与x 轴有两个交点,则与之对应的一元二次方程有两个不相等的实数根,据此利用判别式求出k 的取值范围,再结合二次项系数不为0即可得到答案.【详解】解:∵抛物线242y kx x =−−与x 轴有两个交点, 的∴()()2Δ44200k k =−−×−⋅> ≠ , ∴2k >−且0k ≠,故选:C .8. 二次函数2y ax bx c =++图象上部分点的对应值如下表则使0y <的x 的取值范围为( ) x 3− 2− 1− 01 2 3 4 y 60 4− 6− 6− 4− 0 6A. 0x <B. 12x >C. 23x −<<D. 2x <−或3x >【答案】C【解析】 【分析】本题主要考查了二次函数的性质,先求出二次函数的表达式,再根据与x 轴的交点即可求出0y <的x 的取值范围,解题的关键是求出二次函数2y ax bx c ++的表达式.【详解】解:由表格可知2y ax bx c ++经过()2,0−,()3,0,()0,6−,设解析式为()()23y a x x =+−∴()()02036a +−=−, 解得:1a =,∴抛物线解析式为()()2236y x x x x =+−=−−,∴抛物线图象开口向上,与x 轴的交点为()2,0−,()3,0,∴0y <时x 的取值范围是23x −<<,故选:C .二、填空题9. 已知m 是方程2520x x −−=的一个根,则22101m m −−=______. 【答案】3【解析】【分析】本题考查一元二次方程的根的定义、代数式求值,根据一元二次方程的根的定义,将m 代入2520x x −−=,求出252m m −=,即可求出22101m m −−的值.【详解】解:∵m 是方程2520x x −−=的一个根,∴252m m −=,∴()2221012512213,m m m m −−=−−=×−=故答案为:3. 10. 一元二次方程()2110x k x +++=有两个相等的实数根,那么k 的值为_____. 【答案】1或3−【解析】【分析】本题考查了根的判别式:一元二次方程()200ax bx c a ++=≠的根与24b ac ∆=−有如下关系:当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程无实数根.根据判别式的意义得到()2Δ1410k =+−×=,然后解关于k 的方程即可. 【详解】解:由题意得:()2Δ1410k =+−×=,即:()214k +=,解得:1k =或3−,故答案为:1或3−. 11. 若关于x 的一元二次方程()22240m x mx m −++−=有一个根是0,则m 的值为________ 【答案】2−【解析】【分析】此题考查了一元二次方程的定义及方程的解的定义,将0x =代入方程求出2m =±,再根据一元二次方程的定义求出2m ≠,由此得到答案,正确理解一元二次方程的定义及方程的解的定义是解题的关键.【详解】解:将0x =代入()22240m x mx m −++−=,得240m −=, 解得2m =±,∵20m −≠,∴2m ≠,∴2m =−,故答案为2−.12. 用一根长22cm 的铁丝围成面积是230cm 的矩形.假设矩形的一边长是cm x ,则可列出方程_____________________ 【答案】22=302x x −【解析】【分析】本题考查了一元二次方程的运用,要掌握运用长方形的面积计算公式S ab =来解题的方法.本题可根据长方形的周长可以用x 表示另一边长的值,然后根据面积公式即可列出方程.【详解】解:一边长为 c m x ,则另一边长为22cm 2x −, 得22=302x x −. 故答案为:22=302x x −. 13. 如图,已知抛物线2y ax bx c ++与直线y kx m =+交于()3,1A −−、()0,3B 两点,则关于x 的不等式2ax bx c kx m ++≥+的解集是________.【答案】30x −≤≤【解析】【分析】本题考查了二次函数与不等式的关系,主要利用了数形结合的思想,解题关键在于对图象的理解,题目中的不等式的含义为:二次函数的图象在一次函数图象上方时,自变量x 的取值范围.根据图象,写出抛物线在直线上方部分的x 的取值范围即可.【详解】∵抛物线2y ax bx c ++与直线y kx m =+交于()3,1A −−、()0,3B 两点, ∴由函数图象可得,不等式2ax bx c kx m ++≥+的解集是30x ≤≤﹣,故答案为:30x −≤≤.14. 抛物线()232y x =−−−的顶点坐标是________ . 【答案】()3,2− 【解析】【分析】本题考查了二次函数2()y a x h k =−+(a ,h ,k 为常数,0a ≠)性质,2()y a x h k =−+是抛物线的顶点式,a 决定抛物线的形状和开口方向,其顶点是(,)h k ,对称轴是直线x h =. 【详解】解:物线()232y x =−−−的顶点坐标是()3,2−.故答案为:()3,2−.15. 已知二次函数()214y x =+−,当02x ≤≤时,函数值y 的取值范围为__________ 【答案】35y −≤≤##53x ≥≥− 【解析】【分析】本题考查二次函数的图象与性质,根据题意得当1x >−时,y 随x 的增大而增大,求得当0x =时,=3y −;2x =时,5y =,即可求解.【详解】解:由题意得,10a =>,对称轴1x =−, ∴当1x >−时,y 随x 增大而增大, ∵当0x =时,=3y −;2x =时,5y =,∴当02x ≤≤时,函数值y 的取值范围为35y −≤≤, 故答案为:35y −≤≤.16. 飞机着陆后滑行的距离(米)关于滑行时间(秒)的函数解析式为260 1.5s t t =−,则飞机着陆后滑行_________秒才停下来. 【答案】20 【解析】【分析】本题主要考查二次函数的应用,飞机停下时,也就是滑行距离最远时,即在本题中需求出s 最大时对应的t 值,根据顶点坐标的实际意义可得答案. 【详解】∵()2260 1.5 1.520600s t t t =−=−−+, ∴当20t =时,s 取得最大值600, ∴飞机着陆后滑行20秒才停下来.的的故答案:20.17. 如图所示,,A B 分别为22(2)1y x =−−图象上的两点,且直线AB 垂直于y 轴,若2AB =,则点B 的纵坐标为________.【答案】1 【解析】【分析】本题主要考查二次函数图象的对称性,能够熟练运用对称轴求点的横坐标是解题关键.求出对称轴后根据对称性求点B 横坐标,再代入解析式即可解答. 【详解】解:∵()2221y x =−−, ∴抛物线对称轴为直线2x =, ∵2AB =,∴点B 横坐标为213+=,将3x =代入()2221y x =−−得1y =, ∴点B 的纵坐标为1. 故答案为:118. 如图,横截面为抛物线的山洞,山洞底部宽为8米,最高处高163米,现要水平放置横截面为正方形的箱子,其中两个顶点在抛物线上的大箱子,在大箱子的两侧各放置一个横截面为正方形的小箱子,则小箱子正方形的最大边长为______米.【解析】为【分析】本题主要考查了二次函数的实际应用,先建立解析中坐标系,则()4,0A ,设大小正方形的边长分别为2m ,n ,则点B 、C 的坐标分别为:()(),2,m m m n n +,,利用待定系数法求出抛物线解析式为211633y x =−+,再把B 、C 坐标代入求解即可.【详解】解:建立如下平面直角坐标系,则点()4,0A ,设大小正方形的边长分别为2m ,n ,则点B 、C 的坐标分别为:()(),2,m m m n n +,、设抛物线的表达式为:()21603y ax a =+≠, 将点A 的坐标代入上式得:160163a =+,解得13a =−,∴抛物线的表达式为:213y x =− 将点B 、C 的坐标代入上式得:()2211623311633m m n m n =−+ =−++①②,由①得1228m m ==−,(舍去),解得:2m n = = 或2m n = =(舍去),米.. 三、解答题19. 商场销售某种拖把,已知这种拖把的进价为80元/套,售价为120元/套,商场每天可销售20套、国庆假期临近,该商场决定采取适当的降价措施,经调查:这种拖把的售价每降价1元,平均每天可多售出2套,设这种拖把每套降价x 元.(1)降价后每套拖把盈利______元,平均每天可销售______套(用含x 的代数式表示);(2)为扩大销售量,尽快减少库存,当每套拖把降价多少元时,该商场销售这种拖把平均每天能盈利1242元?(3)该商场销售这种拖把平均每天的盈利能否达到1400元?若能,求出x 的值;若不能,请说明理由. 【答案】(1)()40x −,2x(2)每套拖把降价17元时,能让利于顾客并且商家平均每天能赢利1242元; (3)不能,理由见解析 【解析】【分析】此题考查了一元二次方程的实际应用,解题的关键是正确分析题目中的等量关系. (1)设每套拖把降价x 元,根据题意列出代数式即可;(2)设每套拖把降价x 元,则每套的销售利润为()40x −元,平均每天的销售量为()202x +套,根据题意列出一元二次方程求解即可;(3)设每套拖把降价y 元,则每套的销售利润为()12080y −−元,平均每天的销售量为()202y +套,根据题意列出一元二次方程,然后依据判别式求解即可. 【小问1详解】解:设每套拖把降价x 元,则每天销售量增加2x 套,即每天销售()202x +套, 每套拖把盈利()1208040x x −−=−元.故答案为:()40x −,()202x +; 【小问2详解】解:设每套拖把降价x 元,则每套的销售利润为()40x −元,平均每天的销售量为()202x +套,依题意得:()()402021242x x −+=, 整理得:2302210x x −+=,解得:121317x x ==,. 又∵需要尽快减少库存,∴17x =.答:每套拖把降价17元时,能让利于顾客并且商家平均每天能赢利1242元; 【小问3详解】解:商家不能达到平均每天盈利1400元,理由如下:设每套拖把降价y 元,则每套的销售利润为()12080y −−元,平均每天的销售量为()202y +套,依题意得:()()120802021400y y −−+=, 整理得:2303000y y −+=. ∵()22Δ43041300300<0b ac =−=−−××=−, ∴此方程无实数解, 即不可能每天盈利1400元. 20. 解方程:(1)2(2x 1)9+=; (2)2x 2﹣4x =1(配方法); (3)22x 5x 10−+=;(4) ()2(x 3)4x 3x 0−−−=【答案】(1)121,2x x ==−;(2)1211x x ;(3)12x x ;(4)1233,5x x == 【解析】【分析】(1)直接开平方法解方程即可;(2)先方程两边除以2,将二次项系数化为1,再在方程两边同时加上1,配方开平方即可解答; (3)确定a 、b 、c ,求出△值,当判断方程有解时,带入公式求解即可; (4)整理方程,利用因式分解法解方程即可. 【详解】(1)2(2x 1)9+= 开平方,得:2x 13+=±, 解得:121,2x x ==−; (2)22x 41x −=,二次项系数化为1,得:21x 22x −=, 配方,得:21x 2112x −+=+, 即23(x 1)2−=,开方,得:1x −=解得:1211x x (3)22x 5x 10−+= ∵a=2,b=﹣5,c=1,∴△=224(5)42117b ac −=−−××=﹥0,∴x =,解得:12x x =(4)()2(x 3)4x 3x 0−−−= ()2(x 3)4x 30x +−−=(3)(53)0x x −−=∴30x −=或530x −=,解得:1233,5x x ==. 【点睛】本题考查解一元二次方程的方法,熟练掌握一元二次方程的各种解法的步骤和注意点,灵活选用解法是解答的关键.21. 随着科技的发展,某省正加快布局以5G 等为代表的新兴产业.据统计,目前该省5G 基站数量约为1.5万座,计划到今年底,全省5G 基站数是目前的4倍;到后年底,全省5G 基站数量将达到17.34万座.(1)计划在今年底,全省5G 基站数量是多少万座?(2)按照计划,从今年底到后年底,全省5G 基站数量的年平均增长率为多少? 【答案】(1)6万座 (2)70% 【解析】【分析】本题考查有理数乘法的应用,一元二次方程的实际应用:(1)根据计划到今年底,全省5G 基站数是目前的4倍,列出算式计算即可;(2)设全省5G 基站数量的年平均增长率为x ,根据题意,列出一元二次方程,进行求解即可 【小问1详解】解:由题意得:1.546×=(万座); 答:计划在今年底,全省5G 基站数量是6万座. 【小问2详解】解:设全省5G 基站数量的年平均增长率为x ,由题意得:()26117.34x +=,解得:120.7, 2.7x x ==−(不符合题意,舍去); 答:全省5G 基站数量的年平均增长率为70%.22. 如图,老李想用长为70m 的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD ,并在边BC 上留一个2m 宽的门(建在EF 处,另用其他材料).(1)当羊圈的边AB 的长为多少米时,能围成一个面积为2640m 的羊圈?(2)羊圈的面积能达到2650m 吗?如果能,请你给出设计方案;如果不能,请说明理由. 【答案】(1)当羊圈的边AB 的长为16m 或20m 时,能围成一个面积为2640m 的羊圈 (2)羊圈的面积不能达到2650m ,理由见解析 【解析】【分析】本题考查了一元二次方程的应用,根据题意列出一元二次方程,解一元二次方程是解题的关键. (1)设羊圈的边AB 的长为m x ,则边BC 的长为()722m x -根据题意列出一元二次方程,解方程即可求解;(2)同(1)的方法建立方程,根据方程无实根即可求解. 【小问1详解】解:设羊圈的边AB 的长为m x ,则边BC 的长为()722m x -,根据题意,得()722640x x −=,化简,得2363200x x −+=,解方程,得116x =,220x =,当116x =时,72240x −=, 当220x =时,72232x −=.答:当羊圈的边AB 的长为16m 或20m 时,能围成一个面积为2640m 的羊圈. 【小问2详解】不能,理由如下:根据题意,得()722650x x −=, 化简,得2363250x x −+=,()22436432540b ac −=−×=−−< , ∴该方程没有实数根. ∴羊圈的面积不能达到2650m 23. 已知函数()214y x =−−+.(1)当x =____________时,抛物线有最大值,是____________. (2)当x ____________时,y 随x 的增大而增大.(3)该函数可以由函数2y x =−的图象经过怎样的平移得到?(4)该抛物线与x 轴交于点,与y 轴交于点____________.(写坐标) (5)在下面的坐标系中画出该抛物线的图象.【答案】(1)1;4 (2)1<(3)见解析 (4)(1,0)−和(3,0);(0,3) (5)见解析 【解析】【分析】本题考查了二次函数的性质、抛物线与x 轴的交点坐标、二次函数图象与几何变换以及二次函数的最值,熟练掌握二次函数的性质是解题的关键.(1)根据二次函数的顶点式找出抛物线的顶点坐标,再根据二次项系数为1−得出抛物线开口向下,由此即可得出结论;(2)根据抛物线开口方向结合抛物线的对称轴,即可找出单增区间;(3)找出函数2y x =−的顶点坐标,结合函数2(1)4y x =−−+的顶点坐标,即可找出平移的方法; (4)令0y =可得出关于x 的一元二次方程,解方程求出x 值,由此得出抛物线与x 轴的交点坐标;令0x =求出y 值,由此即可得出抛物线与y 轴的交点坐标;(5)列表,描点,连线即可画出该抛物线的图象. 【小问1详解】解: 函数解析式为2(1)4y x =−−+,∴抛物线的开口向下,顶点坐标为(1,4). ∴当1x =时,抛物线有最大值,是4.故答案为:1;4; 【小问2详解】解: 抛物线的开口向下,对称轴为1x =,∴当1x <时,y 随x 的增大而增大.故答案为:1<; 【小问3详解】解: 函数2y x =−的顶点坐标为(0,0),∴将函数2y x =−的图象先向右平移1个单位长度,再向上平移4个单位长度即可得出函数2(1)4y x =−−+的图象.【小问4详解】解:令0y =,则有2(1)40x −−+=, 解得:11x =−,23x =,∴该抛物线与x 轴的交点坐标为(1,0)−和(3,0).当0x =时,2(01)43y =−−+=, ∴该抛物线与y 轴的交点坐标为(0,3).故答案为:(1,0)−和(3,0);(0,3). 【小问5详解】 解:列表:x 1−0 1 2 3 y343描点,连线,该抛物线的图象如图:.24. 已知图象的顶点坐标是()2,1,且与x 轴的一个交点坐标是()3,0,求此二次函数的解析式. 【答案】()221y x =−−+ 【解析】【分析】本题主要考查了求二次函数解析式,先把解析式设顶点式,再利用待定系数法求解即可. 【详解】解:设此二次函数解析式为()()2210y a x a =−+≠,把()3,0代入()()2210y a x a =−+≠中得:()20321a =−+,解得1a =−,∴此二次函数解析式为()221y x =−−+. 25. 已知:二次函数()221y x m x m =−++−.(1)求证:该抛物线与x 轴一定有两个交点;(2)设抛物线与x 轴的两个交点是A B 、(A 在原点左边,B 在原点右边),且3AB =,求此时抛物线的解析式.【答案】(1)见解析 (2)2y x x 2−− 【解析】【分析】(1)根据()()22Δ2418m m m =+−−=+的符号,即可求解,为(2)由根与系数关系,列出()()2224A B A B A B AB x x x x x x =−=+−⋅,即可求解,本题考查了根的判别式,根据系数关系,解题的关键是:熟练掌握根的判别式,根据系数关系.【小问1详解】证明:()()22Δ2418m m m =+−−=+,20m ≥ ,2Δ880m ∴=+≥>,故抛物线与x 轴一定有两个交点,【小问2详解】解:令0y =,得()2210x m x m −++−=, 由(1)知Δ0>,2A B x x m ∴+=+,1A B x x m ⋅=−,()()()()22224241A B A B A B AB x x x x x x m m =−=+−⋅=+−−, ()()22419m m ∴+−−=,解得1m =±,A 在原点左边,B 在原点右边,10A B x x m ∴⋅=−<,1m ∴<,1m ∴=−,故抛物线的表达式为:2y x x 2−−.26. 若直线5y x =−与y 轴交于点A ,与x 轴交于点B ,二次函数2y ax bx c =++的图象经过点A ,点B ,且与x 轴交于点()1,0C −.(1)求二次函数的解析式;(2)若点P 为直线AB 下方抛物线上一点,连接PA ,PB ,求ABP 面积的最大值及此时点P 的坐标;【答案】(1)245y x x =−−(2)当52x =时,ABP S 最大,最大为1258,这时点P 的坐标为535,24 − 【解析】【分析】本题考查二次函数的综合应用,熟练掌握的图像和性质是解题的关键. (1)利用待定系数法求函数解析式即可;(2)过点P 作PQ x ⊥轴交AAAA 于点Q ,设点P 的坐标为()2,45x x x −−,则点Q 的坐标为(),5x x −,则25PQ x x =−+,然后根据ABPS PQ OB =⋅ 计算即可. 【小问1详解】解:当xx =0时,5y =−,∴点A 的坐标为()0,5−, 当0y =时,50x −=,解得5x =,∴点B 的坐标为()5,0,设抛物线的解析式为()()51y a x x =−+,代入()0,5−得:55a −=−,解得:1a =,∴二次函数的解析式为()()25145y x x x x =−+=−−; 【小问2详解】解:过点P 作PQ x ⊥轴交AAAA 于点Q ,设点P 的坐标为()2,45x x x −−,则点Q 的坐标为(),5x x −, ∴225(45)5PQ x x x x x =−−−−=−+, ∴()2211551255522228ABP S PQ OB x x x =⋅=×−+×==−−+ , 当52x =时,ABP S 最大,最大为1258,这时点P 的坐标为535,24 − .。
初三上学期数学第一次月考试卷及答案一、选择题(本大题15个小题,每小题4分,共60分)1.(4分)在方程x2+x=y, x﹣2x2=3,(x﹣1)(x﹣2)=0,x2﹣=4,x(x﹣1)=1中,一元二次方程的个数是()A. 1个 B. 2个 C. 3个 D. 4个2.(4分)如图,在ABCD中,增加一个条件四边形ABCD就成为矩形,这个条件是()A. AB=CD B.∠A+∠C=180° C. BD=2AB D.AC⊥BD3.(4分)如图,在周长为12的菱形ABCD中,∠BAC=60°,则对角线AC的长为()A. 3 B. 6 C. 9 D. 124.(4分)一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是()A. x﹣6=﹣4 B. x﹣6=4 C. x+6=4 D. x+6=﹣45.(4分)如图,点E在正方形ABCD的边BC的延长线上,且BE=BD,则∠E的度数为()A.45° B.60° C.67.5° D.75°6.(4分)在数学活动课上,老师和同学们判断一个四边形窗框是否为菱形,下面是某合作小组的4位同学拟定的方案,其中准确的是()A.测量对角线是否相互垂直 B.测量两组对边是否分别相等C.测量四个角是否相等 D.测四条边是否相等7.(4分)把方程﹣2x2+x+8=1化为二次项系数为正数的一般形式后,它的常数项是()A. 7 B.﹣7 C.﹣8 D.﹣98.(4分)如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED为菱形的是()A. AB=BC B. AC=BC C.∠B=60° D.∠ACB=60°9.(4分)用配方法解方程4x2﹣3x=4时应在方程的两边同时加上()A. B. C. D.10.(4分)如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是()A.矩形 B.菱形 C.正方形 D.梯形11.(4分)如图,在正方形ABCD中,点E、F分别在CD、BC上,且BF=CE,连接BE、AF相交于点G,则下列结论不准确的是()A. BE=AF B.∠DAF=∠BECC.∠AFB+∠BEC=90° D.AG⊥BE12.(4分)用配方法解关于x的一元二次方程x2﹣2x﹣m=0,配方后得到的方程为()A.(x﹣1)2=m﹣1 B.(x﹣1)2=m+1 C.(x﹣1)2=1﹣m D.(x﹣1)2=m2﹣113.(4分)m是方程x2+x﹣1=0的根,则式子m3+2m2+2014的值为()A. 2014 B. 2015 C. 2016 D. 201714.(4分)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A. 1 B. C. 4﹣2 D. 3 ﹣415.(4分)如图,将矩形ABCD沿对角线BD折叠,使点C和点C′重合,BC′交AD于点E,若AB=4,AD=8,则DE的长为()A. 2 B. 3 C. 4 D. 5二、填空题(本大题5个小题,每小题4分,共20分)16.(4分)根据如表确定一元二次方程x2+2x﹣9=0的一个解的范围是.x 0 1 2 3 4x2+2x﹣9 ﹣9 ﹣6 ﹣1 6 1517.(4分)点O是矩形ABCD的对角线AC的中点,点M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为.18.(4分)如图,从正方形ABCD上截取宽为2cm的矩形BCEF,剩下矩形AFED的面积为48cm2,则正方形ABCD的边长为cm .19.(4分)如图,正方形ABCD的边长为2,P为正方形ABCD内一点,且△PBC为等腰三角形,则△CDP的面积为.20.(4分)如图,在菱形ABCD中,AB=4,∠C=120°,AE⊥BC于E,AF⊥CD于F,连接EF,则△AEF的面积为.三、解答题(本大题8个小题,共70分)21.(6分)用配方法解方程:3x2+8x+4=0.22.(6分)如图,在菱形ABCD中,AC、BD交于点O,DE⊥AB于E,若AC=8,BD=6,求DE的长.23.(8分)在正方形ABCD中,AC为对角线,E为AC上一点,连接EB、ED.(1)求证:△BEC≌△DEC;(2)延长BE交AD于F,当∠BED=120°时,求∠EFD的度数.24.(8分)已知:如图,在ABCD中,O为对角线BD的中点,过点O 的直线EF分别交AD,BC于E,F两点,连结BE,DF.(1)求证:△DOE≌△BOF;(2)当∠DOE等于多少度时,四边形BFDE为菱形?请说明理由.25.(10分)有两个正方形,小正方形的边长比大正方形的边长的一半多1cm,大正方形的面积比小正方形的面积的2倍多4cm2.(1)若设大正方形的边长为xcm,请列出方程,并将其化为一般形式.(2)完成下表:x 5 6 7 8 9 10ax2+bx+c(3)根据上表求出大正方形的边长.26.(10分)如图,已知矩形ABCD的边长AB=3cm,BC=6cm,某一时刻,动点M从点A出发沿AB方向以1cm∕s的速度向点B匀速运动;同时,动点N从点D沿DA方向以2cm∕s的速度向点A匀速运动.经过多少时间,△AMN的面积等于矩形ABCD面积的?27.(10分)如图,在平行四边形ABCD中,∠DAB=60°,AB=2AD,点E、F分别是AB、CD的中点,过点A作AG∥BD,交CB的延长线于点G.(1)求证:四边形DEBF是菱形;(2)请判断四边形AGBD是什么特殊四边形?并加以证明.28.(12分)如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.(1)求证:EB=GD;(2)判断EB与GD的位置关系,并说明理由;(3)若AB=2,AG= ,求EB的长.参考答案与试题解析一、选择题(本大题15个小题,每小题4分,共60分)1.(4分)在方程x2+x=y, x﹣2x2=3,(x﹣1)(x﹣2)=0,x2﹣=4,x(x﹣1)=1中,一元二次方程的个数是()A. 1个 B. 2个 C. 3个 D. 4个考点:一元二次方程的定义.分析:本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项实行验证,满足这四个条件者为准确答案.解答:解:x2+x=y方程含有两个未知数,故错误;x﹣2x2=3,(x﹣1)(x﹣2)=0,x(x﹣1)=1符合一元二次方程的定义,准确;x2﹣ =4,不是整式方程,故错误.故选:C.点评:本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的次数是2.2.(4分)如图,在ABCD中,增加一个条件四边形ABCD就成为矩形,这个条件是()A. AB=CD B.∠A+∠C=180° C. BD=2AB D.AC⊥BD考点:矩形的判定.分析:根据矩形的判定(有一个角是直角的平行四边形是矩形).解答:解:根据矩形的判定(有一个角是直角的平行四边形是矩形)可得∠A+∠B=180°,∠A+∠C=180°故∠B=∠C=90°增加的条件是∠A+∠C=180°.故选B.点评:考查了矩形的判定,矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形.3.(4分)如图,在周长为12的菱形ABCD中,∠BAC=60°,则对角线AC的长为()A. 3 B. 6 C. 9 D. 12考点:菱形的性质.分析:根据菱形的四条边都相等求出边长,再判断出△ABC是等边三角形,然后根据等边三角形的三条边都相等解答.解答:解:∵菱形的周长为 12,∴菱形的边长AB=BC=12÷4= 3,∵∠BAC=60°,∴△ABC是等边三角形,∴AC=AB=3.故选A.点评:本题考查了菱形的性质,等边三角形的判定与性质,是基础题,熟记各性质是解题的关键.4.(4分)一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是()A. x﹣6=﹣4 B. x﹣6=4 C. x+6=4 D. x+6=﹣4考点:解一元二次方程-直接开平方法.分析:方程两边直接开平方可达到降次的目的,进而可直接得到答案.解答:解:(x+6)2=16,两边直接开平方得:x+6=±4,则:x+6=4,x+6=﹣4,故选:D.点评:本题主要考查了直接开平方法解一元二次方程,关键是将方程右侧看做一个非负已知数,根据法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解.5.(4分)如图,点E在正方形ABCD的边BC的延长线上,且BE=BD,则∠E的度数为()A.45° B.60° C.67.5° D.75°考点:正方形的性质.分析:根据正方形的对角线平分一组对角线求出∠CBD=45°,再根据等腰三角形两底角相等列式计算即可得解.解答:解:在正方形ABCD中,∠CBD=45°,∵BE=BD,∴∠E= (180°﹣45°)=67.5°.故选C.点评:本题考查了正方形的性质,等腰三角形的性质,熟记各性质并准确识图是解题的关键.6.(4分)在数学活动课上,老师和同学们判断一个四边形窗框是否为菱形,下面是某合作小组的4位同学拟定的方案,其中准确的是()A.测量对角线是否相互垂直 B.测量两组对边是否分别相等C.测量四个角是否相等 D.测四条边是否相等考点:菱形的判定.专题:应用题.分析:根据菱形的判定定理分别实行解答即可得出答案.菱形的判定定理有:(1)邻边相等的平行四边形是菱形;(2)四条边都相等的四边形是菱形;(3)对角线互相垂直的平行四边形的四边形是菱形.解答:解:A、对角线是否垂直不能判定形状;B、所有的平行四边形的对边均相等,故错误;C、四个角均相等的四边形是矩形,不能判定形状;D、其中四边形的四条边都相等,能判定菱形.故选D.点评:此题考查了菱形的判定,用到的知识点是菱形的判定定理,难度不大.7.(4分)把方程﹣2x2+x+8=1化为二次项系数为正数的一般形式后,它的常数项是()A. 7 B.﹣7 C.﹣8 D.﹣9考点:一元二次方程的一般形式.分析:把方程移项得到﹣2x2+x+7=0,再方程两边同时除以﹣1得2x2﹣x﹣7=0,再找常数项即可.解答:解:﹣2x2+x+8=1移项,得﹣2x2+x+7=0,方程两边同时除以﹣1得2x2﹣x﹣7=0,常数项是﹣7,故选:B.点评:一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.8.(4分)如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED为菱形的是()A. AB=BC B. AC=BC C.∠B=60° D.∠ACB=60°考点:菱形的判定;平移的性质.分析:首先根据平移的性质得出AB CD,得出四边形ABCD为平行四边形,进而利用菱形的判定得出答案.解答:解:∵将△ABC沿BC方向平移得到△DCE,∴AB CD,∴四边形ABCD为平行四边形,当AC=BC时,平行四边形ACED是菱形.故选:B.点评:此题主要考查了平移的性质和平行四边形的判定和菱形的判定,得出AB CD是解题关键.9.(4分)用配方法解方程4x2﹣3x=4时应在方程的两边同时加上()A. B. C. D.考点:解一元二次方程-配方法.分析:先方程两边都除以4,再方程两边都加上一次项系数一半的平方,即可得出答案.解答:解:4x2﹣3x=4,x2﹣ x=1,x2﹣ x+()2=1+()2,即方程两边都加上,故选D.点评:本题考查了解一元二次方程的应用,解此题的关键是能准确配方,题目比较好,难度适中.10.(4分)如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是()A.矩形 B.菱形 C.正方形 D.梯形考点:旋转的性质;矩形的判定.分析:根据旋转的性质可得AE=CE,DE=EF,再根据对角线互相平分的四边形是平行四边形判断出四边形ADCF是平行四边形,然后利用等腰三角形三线合一的性质求出∠ADC=90°,再利用有一个角是直角的平行四边形是矩形解答.解答:解:∵△ADE绕点E旋转180°得△CFE,∴AE=CE,DE=EF,∴四边形ADCF是平行四边形,∵AC=BC,点D是边AB的中点,∴∠ADC=90°,∴四边形ADCF矩形.故选:A.点评:本题考查了旋转的性质,矩形的判定,主要利用了对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形的判定方法,熟练掌握旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键.11.(4分)如图,在正方形ABCD中,点E、F分别在CD、BC上,且BF=CE,连接BE、AF相交于点G,则下列结论不准确的是()A. BE=AF B.∠DAF=∠BECC.∠AFB+∠BEC=90° D.AG⊥BE考点:正方形的性质;全等三角形的判定与性质.专题:证明题;压轴题.分析:分析图形,根据正方形及三角形性质找到各角边的关系就很容易求解.解答:解:∵ABCD是正方形∴∠ABF=∠C=90°,AB=BC∵BF=CE∴△ABF≌△BCE∴AF=BE(第一个准确)∠BAF=∠CBE,∠BFA=∠BEC(第三个错误)∵∠BAF+∠DAF=90°,∠BAF+∠BFA=90°∴∠DAF=∠BEC(第二个准确)∵∠BAF=∠CBE,∠BAF+∠AFB=90°∴∠CBE+∠AFB=90°∴AG⊥BE(第四个准确)所以不准确的是C,故选C.点评:此题主要考查了学生对正方形的性质及全等三角形的判定的掌握情况.12.(4分)用配方法解关于x的一元二次方程x2﹣2x﹣m=0,配方后得到的方程为()A.(x﹣1)2=m﹣1 B.(x﹣1)2=m+1 C.(x﹣1)2=1﹣m D.(x﹣1)2=m2﹣1考点:解一元二次方程-配方法.分析:把常数项﹣m移项后,应该在左右两边同时加上一次项系数﹣2的一半的平方.解答:解:把方程x2﹣2x﹣m=0的常数项移到等号的右边,得到x2﹣2x=m,方程两边同时加上一次项系数一半的平方,得到x2﹣2x+1=m+1,配方得(x﹣1)2=m+1.故选:B.点评:本题考查了配方法解一元二次方程.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,使方程的二次项的系数为1,一次项的系数是2的倍数.13.(4分)m是方程x2+x﹣1=0的根,则式子m3+2m2+2014的值为()A. 2014 B. 2015 C. 2016 D. 2017考点:一元二次方程的解.分析:把m代入x2+x﹣1=0得到m2+m﹣1=0,即m2+m=1,把m2+m=1代入式子:m3+2m2+2014,再将式子变形为m(m2+m)+m2+2014的形式,即可求出式子的值.解答:解:∵m是方程x2+x﹣1=0的根,∴m2+m﹣1=0,即m2+m=1,∴m3+2m2+2014=m(m2+m)+m2+2014=m+m2+2014=1+2014=2015.故选B.点评:考查了一元二次方程的解,代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式m2+m的值,然后利用“整体代入法”求代数式的值.14.(4分)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A. 1 B. C. 4﹣2 D. 3 ﹣ 4考点:正方形的性质.专题:压轴题.分析:根据正方形的对角线平分一组对角可得∠ABD=∠ADB=45°,再求出∠D AE的度数,根据三角形的内角和定理求∠AED,从而得到∠DAE=∠AED,再根据等角对等边的性质得到AD=DE,然后求出正方形的对角线BD,再求出BE,最后根据等腰直角三角形的直角边等于斜边的倍计算即可得解.解答:解:在正方形ABCD中,∠ABD=∠ADB=45°,∵∠BAE=22.5°,∴∠DAE=90°﹣∠BAE=90°﹣22.5°=67.5°,在△ADE中,∠AED=180°﹣45°﹣67.5°=67.5°,∴∠DAE=∠AED,∴AD=DE=4,∵正方形的边长为4,∴BE=BD﹣DE=4 ﹣4,∵EF⊥AB,∠ABD=45°,∴△BEF是等腰直角三角形,∴EF= BE= ×(4 ﹣4)=4﹣2 .故选:C.点评:本题考查了正方形的性质,主要利用了正方形的对角线平分一组对角,等角对等边的性质,正方形的对角线与边长的关系,等腰直角三角形的判定与性质,根据角的度数的相等求出相等的角,再求出DE=AD是解题的关键,也是本题的难点.15.(4分)如图,将矩形ABCD沿对角线BD折叠,使点C和点C′重合,BC′交AD于点E,若AB=4,AD=8,则DE的长为()A. 2 B. 3 C. 4 D. 5考点:翻折变换(折叠问题).分析:首先根据题意得到BE=DE,然后根据勾股定理得到关于线段AB、AE、BE的方程,解方程即可解决问题.解答:解:设ED=x,则AE=8﹣x;∵四边形ABCD为矩形,∴AD∥BC,∴∠EDB=∠DBC;由题意得:∠EBD=∠DBC,∴∠EDB=∠EBD,由勾股定理得:BE2=AB2+AE2,即x2=42+(8﹣x)2,解得:x=5,故选D.点评:该命题主要考查了几何变换中的翻折变换及其应用问题;解题的关键是根据翻折变换的性质,结合全等三角形的判定及其性质、勾股定理等几何知识,灵活实行判断、分析、推理或解答.二、填空题(本大题5个小题,每小题4分,共20分)16.(4分)根据如表确定一元二次方程x2+2x﹣9=0的一个解的范围是2<x<3.x 0 1 2 3 4x2+2x﹣9 ﹣9 ﹣6 ﹣1 6 15考点:估算一元二次方程的近似解.分析:观察表格可知,随x的值逐渐增大,x2+2x﹣9的值在2~3之间由负到正,故可判断x2+2x﹣9=0时,对应的x的值在2<x<3之间.解答:解:根据表格可知,x2+2x﹣9=0时,对应的x的值在2<x<3之间,故答案为2<x<3.点评:本题考查了二次函数图象与一元二次方程的解之间的关系.关键是观察表格,确定函数值由负到正时,对应的自变量取值范围.17.(4分)点O是矩形ABCD的对角线AC的中点,点M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为20.考点:矩形的性质.专题:计算题.分析:根据矩形的性质得出DC=AB=5,∠D=∠ABC=90°,根据勾股定理求出AC,求出AM、OM、BO,即可求出答案.解答:解:∵四边形ABCD是矩形,∴DC=AB=5,∠D=∠ABC=90°,由勾股定理得:AC= =13,∵点O是矩形ABCD的对角线AC的中点,点M是AD的中点,∴OM= CD= ,BO= AC= ,AM= AD=6,∴四边形ABOM的周长为:AB+BO+OM+AM=5+ + +6=20,故答案为:20.点评:本题考查了矩形的性质,直角三角形斜边上中线,三角形的中位线的应用,解此题的关键是求出四边形ABOM的各个边的长度.18.(4分)如图,从正方形ABCD上截取宽为2cm的矩形BCEF,剩下矩形AFED的面积为48cm2,则正方形ABCD的边长为8cm.考点:一元二次方程的应用.专题:几何图形问题.分析:首先设出正方形的边长,然后表示出矩形的宽,利用矩形的面积公式实行计算即可.解答:解:设正方形的边长为xcm,则AF的长为(x﹣2),根据题意得:x(x﹣2)=48,解得:x=8或x=﹣6(舍去),故答案为:8.点评:本题考查了一元二次方程的应用,能够根据设出的正方形的边长表示出矩形的宽是解答本题的关键.19.(4分)如图,正方形ABCD的边长为2,P为正方形ABCD内一点,且△PBC为等腰三角形,则△CDP的面积为1.考点:正方形的性质;等腰三角形的性质.分析:首先利用等腰三角形的性质得出PE=1,进而利用三角形面积求法得出即可.解答:解:过点P作PE⊥DC于点E,∵△PBC为等腰三角形,∴P在线段BC的垂直平分线上,∴PE= BC=1,∴△CDP的面积为:×2×1=1.故答案为:1.点评:此题主要考查了正方形的性质以及等腰三角形的性质,得出PE 的长是解题关键.20.(4分)如图,在菱形ABCD中,AB=4,∠C=120°,AE⊥BC于E,AF⊥CD于F,连接EF,则△AEF的面积为3 .考点:菱形的性质.分析:首先利用菱形的性质及等边三角形的判定可得判断出△AEF是等边三角形,再根据三角函数计算出AE=EF的值,再过A作AM⊥EF,再进一步利用三角函数计算出AM的值,即可算出三角形的面积.解答:解:∵四边形ABCD是菱形,∠C=120°,∴AB∥CD,BC=CD,∴∠B=∠D=180°﹣120°=60°,∵AE⊥BC,AF⊥CD,∴ABAE=ADAF,∠BAE=∠DAF=30°,∴AE=AF,∵∠B=60°,∴∠BAD=120°,∴∠EAF=120°﹣30°﹣30°=60°,∴△AEF是等边三角形,∴AE=EF,∠AEF=60°,∵AB=4,∴AE=2 ,∴EF=AE=2 ,过A作AM⊥EF,∴AM=AEsin60°=3,∴△AEF的面积是:EFAM= ×2 ×3=3 .故答案为:3 .点评:此题考查菱形的性质,等边三角形的判定及三角函数的使用.关键是掌握菱形的性质,证明△AEF是等边三角形.三、解答题(本大题8个小题,共70分)21.(6分)用配方法解方程:3x2+8x+4=0.考点:解一元二次方程-配方法.分析:首先把方程的二次项系数化为1,移项,然后在方程的左右两边同时加上一次项系数一半的平方,左边就是完全平方式,右边就是常数,然后利用平方根的定义即可求解.解答:解:由3x2+8x+4=0,得移项,得3x2+8x=﹣4,化系数为1,得x2+ x=﹣,配方,得x2+ x+()2=﹣ +()2,即(x﹣)2= ,开方,得x﹣=± ,解得 x1=2,x2= .点评:本题考查了配方法解一元二次方程.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,使方程的二次项的系数为1,一次项的系数是2的倍数.22.(6分)如图,在菱形ABCD中,AC、BD交于点O,DE⊥AB于E,若AC=8,BD=6,求DE的长.考点:菱形的性质.分析:根据菱形性质求出AC⊥BD,AO=OC,BO=DO,求出AO和BO,根据勾股定理求出AB,根据菱形面积的求法求出即可.解答:解:∵四边形ABCD是菱形,∴AC⊥BD,AO=OC,BO=DO,∵AC=8,BD=6,∴∠AOB=90°,AO=4,BO=3,由勾股定理得:AB= =5,由菱形面积公式得:AC×BD=AB×DE,∴ ×8×6=5×DE,∴DE=4.8.点评:本题考查了勾股定理,菱形的性质的应用,解此题的关键是得出关于DE的方程.23.(8分)在正方形ABCD中,AC为对角线,E为AC上一点,连接EB、ED.(1)求证:△BEC≌△DEC;(2)延长BE交AD于F,当∠BED=120°时,求∠EFD的度数.考点:正方形的性质;全等三角形的判定与性质.专题:计算题;证明题.分析:(1)在证明△BEC≌△DEC时,根据题意知,使用SAS公理就行;(2)根据全等三角形的性质知对应角相等,即∠BEC=∠DEC= ∠BED,又由对顶角相等、三角形的一个内角的补角是另外两个内角的和求得∠EFD=∠BEC+∠CAD.解答:(1)证明:∵四边形ABCD是正方形,∴BC=CD,∠ECB=∠ECD=45°.∴在△BEC与△DEC中,∴△BEC≌△DEC(SAS).(2)解:∵△BEC≌△DEC,∴∠BEC=∠DEC= ∠BED.∵∠BED=120°,∴∠BEC=60°=∠AEF.∴∠EFD=60°+45°=105°.点评:解答本题要充分利用正方形的特殊性质、全等三角形的判定与性质、以及对顶角相等等知识.24.(8分)已知:如图,在ABCD中,O为对角线BD的中点,过点O 的直线EF分别交AD,BC于E,F两点,连结BE,DF.(1)求证:△DOE≌△BOF;(2)当∠DOE等于多少度时,四边形BFDE为菱形?请说明理由.考点:平行四边形的性质;全等三角形的判定与性质;菱形的判定.专题:几何综合题.分析:(1)利用平行四边形的性质以及全等三角形的判定方法得出△DOE≌△BOF(ASA);(2)首先利用一组对边平行且相等的四边形是平行四边形得出四边形EBFD是平行四边形,进而利用垂直平分线的性质得出BE=ED,即可得出答案.解答:(1)证明:∵在ABCD中,O为对角线BD的中点,∴BO=DO,∠EDB=∠FBO,在△EOD和△FOB中,∴△DOE≌△BOF(ASA);(2)解:当∠DOE=90°时,四边形BFDE为菱形,理由:∵△DOE≌△BOF,∴OE=OF,又∵OB=OD∴四边形E BFD是平行四边形,∵∠EOD=90°,∴EF⊥BD,∴四边形BFDE为菱形.点评:此题主要考查了平行四边形的性质以及全等三角形的判定与性质和菱形的判定等知识,得出BE=DE是解题关键.25.(10分)有两个正方形,小正方形的边长比大正方形的边长的一半多1cm,大正方形的面积比小正方形的面积的2倍多4cm2.(1)若设大正方形的边长为xcm,请列出方程,并将其化为一般形式.(2)完成下表:x 5 6 7 8 9 10ax2+bx+c ﹣7 0 9 20 33 48(3)根据上表求出大正方形的边长.考点:一元二次方程的应用.专题:几何图形问题.分析:(1)可设大正方形的边长为xcm,从而能够表示出小正方形的边长,然后根据题意就可建立关于x的方程,再将其化为一般形式即可.(2)只需将x所对应的值代入x2﹣4x﹣12即可解决问题.(3)由表可知大正方形的边长就是使得代数式x2﹣4x﹣12的值等于0的x的值.解答:解:(1)设大正方形的边长为xcm,则小正方形的边长为( x+1)cm.根据题意,得x2=2( x+1)2+4,整理得:x2﹣4x﹣12=0.(2)当x=5时,x2﹣4x﹣12=﹣7;当x=6时,x2﹣4x﹣12=0;当x=7时,x2﹣4x﹣12=9;当x=8时,x2﹣4x﹣12=20;当x=9时,x2﹣4x﹣12=33;当x=10时,x2﹣4x﹣12=48.故答案分别为:﹣7、0、9、20、33、48.(3)由表格可知:当x=6时,x2﹣4x﹣12=0.故由上表能知道大正方形的边长,该边长是6cm.点评:本题主要是考查一元二次方程的应用,将问题设计成问题串的形式,指引了思维的方向,有利于问题的解决.26.(10分)如图,已知矩形ABCD的边长AB=3cm,BC=6cm,某一时刻,动点M从点A出发沿AB方向以1cm∕s的速度向点B匀速运动;同时,动点N从点D沿DA方向以2cm∕s的速度向点A匀速运动.经过多少时间,△AMN的面积等于矩形ABCD面积的?考点:一元二次方程的应用;矩形的性质.专题:几何图形问题.分析:易得AM,AN的长,利用△AMN的面积等于矩形ABCD面积的列出等式求解即可.解答:解:设经过t秒,S△AMN等于S矩形ABCD的,AM=t,AN=6﹣2t,,,t2﹣3t+2=0,t1=2,t2=1.答:经过1秒或2秒时,△AMN的面积等于矩形ABCD面积的.点评:考查一元二次方程的应用;得到三角形的面积与矩形面积的关系式是解决本题的关键.27.(10分)如图,在平行四边形ABCD中,∠DAB=60°,AB=2AD,点E、F分别是AB、CD的中点,过点A作AG∥BD,交CB的延长线于点G.(1)求证:四边形DEBF是菱形;(2)请判断四边形AGBD是什么特殊四边形?并加以证明.考点:矩形的判定;等边三角形的判定与性质;三角形中位线定理;平行四边形的性质;菱形的判定.专题:几何综合题.分析:(1)利用平行四边形的性质证得△AED是等边三角形,从而证得DE=BE,问题得证;(2)利用平行四边形的性质证得∠ADB=90°,利用有一个角是直角的平行四边形是矩形判定矩形.解答:(1)证明:∵四边形ABCD是平行四边形∴AB∥CD且AB=CD,AD∥BC且AD=BCE,F分别为AB,CD的中点,∴BE= AB,DF= CD,∴BE=DF,∴四边形DEBF是平行四边形在△ABD中,E是AB的中点,∴AE=BE= AB=AD,而∠DAB=60°∴△AED是等边三角形,即DE=AE=AD,故DE=BE∴平行四边形DEBF是菱形.(2)解:四边形AGBD是矩形,理由如下:∵AD∥BC且AG∥DB∴四边形AGBD是平行四边形由(1)的证明知AD=DE=AE=BE,∴∠ADE=∠DEA=60°,∠EDB=∠DBE=30°故∠ADB=90°∴平行四边形AGBD是矩形.点评:本题考查了矩形的性质、等边三角形的判定及性质、三角形中位线定理等知识,解题的关键是弄清菱形及矩形的判定方法.28.(12分)如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.(1)求证:EB=GD;(2)判断EB与GD的位置关系,并说明理由;(3)若AB=2,AG= ,求EB的长.考点:正方形的性质;全等三角形的判定与性质;勾股定理.专题:几何综合题;压轴题.分析:(1)在△GAD和△EAB中,∠GAD=90°+∠EAD,∠EAB=90°+∠EAD,得到∠GAD=∠EAB从而△GAD≌△EAB,即EB=GD;(2)EB⊥GD,由(1)得∠ADG=∠ABE则在△BDH中,∠DHB=90°所以EB⊥GD;(3)设BD与AC交于点O,由AB=AD=2在Rt△ABD中求得DB,所以得到结果.解答:(1)证明:在△GAD和△EAB中,∠GAD=90°+∠EAD,∠EAB=90 °+∠EAD∴∠GAD=∠EAB,∵四边形EFGA和四边形ABCD是正方形,∴AG=AE,AB=AD,在△GAD和△EAB中,∴△GAD≌△EAB(SAS),∴EB=GD;(2)解:EB⊥GD.理由如下:∵四边形ABCD是正方形,∴∠DAB=90°,∴∠AMB+∠ABM=90°,又∵△AEB≌△AGD,∴∠GDA=∠EBA,∵∠HMD=∠AMB(对顶角相等),∴∠HDM+∠DMH=∠AMB+∠ABM=90°,∴∠DHM=180°﹣(∠HDM+∠DMH)=180°﹣90°=90°,∴EB⊥GD.(3)解:连接AC、BD,BD与AC交于点O,∵AB=AD=2,在Rt△ABD中,DB= ,在Rt△AOB中,OA=OB,AB=2,由勾股定理得:2AO2=22,OA= ,即OG=OA+AG= + =2 ,∴EB=GD= .点评:本题考查了正方形的性质,考查了利用其性质证得三角形全等,并利用证得的条件求得边长.。