负荷特性对电压稳定性影响分析
- 格式:doc
- 大小:27.50 KB
- 文档页数:6
电压稳定性浅析摘要:对电压稳定性进行了详细的分析,提出了缓解电压稳定性问题的一些措施。
关键词:电力系统电压稳定性1.电压稳定性概述电压稳定性是指电力系统维持电压的能力。
电力系统各母线电压在正常和受扰动后的动态过程中被控制在额定电压的允许偏差范围内的能力。
电压稳定性又分为幅值稳定性与波形稳定性两方面。
通常以电压偏差、电压波动与闪变、电压正弦波畸变率、频率偏差等项指标来衡量。
本地区随着农业电机井灌溉等农村用电的迅猛增长,致使用电高峰期时而出现配电网的电压低于额定值的这一电压不稳定现象,使电气设备无法正常运行,不能充分发挥其设备效益。
所以,电压稳定性有待于我们进一步探讨,以便于更加行之有效的解决电压不稳定现象。
2. 电压稳定性的分析电压稳定性问题是负荷稳定性的一个重要方面。
尽管电压失稳和电压崩溃是一个复杂的过程,但是可以通过一个简单的长线路终端接负荷的典型系统说明其发生和发展的机理,如图1:图1所示为典型的电压稳定性研究回路,其中Us为无穷大母线电压,Ur为受端负荷母线电压,P, Q分别为负荷吸收的有功和无功功率。
实际发生电压崩溃的可能性取决于负荷特性,如果为刚性的恒定功率负荷,如电动机负荷,电压崩溃会加剧;而电阻负荷具有软特性,即电压下降时其功率下降很快,所以减缓了电压崩溃的出现。
电压崩溃还可能在多回路并联输电的系统结构中发生,由于故障切除了三回并联线路中的一回路,使等值电抗增大,线路充电电容降低。
从而使输电功率因数发生变化,线损增加。
因此,系统可能发生电压不稳定。
如果受端有发电机接入,且其与负荷中心的电气距离较近,联络阻抗小。
当受端电压降低时,发电机无功出力会自动增大,起到支撑电压的作用。
因此,可以允许输电线路送很少的无功功率。
但是,通常受端发电机离负荷中心的电气距离仍较远,联络阻抗大。
所以电压降低时,发电机的无功出力增加很小,这就要求在末端增加无功补偿。
3.电压稳定性衡量指标3.1 电压偏差在某一时段内,电压幅值缓慢变化而偏离额定值的程度,以电压实际值与额定值之差AU或其百分值△ U淙表示,即:△ U=U -Jc或△ U%=[(U—Uc)/Uc]海00%式中U——检测点上电压实际值,V;Uc ――检测点电网电压的额定值,V。
电力系统负荷对电压稳定性的影响伴随着负荷水平的持续增长,远距离较大容量的输电也在迅速增加,电压系统中稳定性问题越来越受到关注。
世界范围内在近年来出现了很多电压失稳的案例,同时大部分的电压失稳问题都会致使电力系统产生崩溃,引起较大面积出现停电事故,不仅仅给点力部门及用电的企业经济带来了巨额的损失,对人民的生活带来了极大困扰。
因此,对电压稳定问题进行深入研究,具有重要的现实意义。
1 电压稳定的概述从物理学角度分析,电力系统具有的稳定性是指电压系统在某一运行极限之内维持负荷电压的能力。
这种能力主要决定于网络向负荷传输的功率是否能够能够符合其自身的功率要求。
假如被网络传送的功率无法使其符合本身的功率要求,符合的电压将会出现下降的现象,情况严重时将会电压失稳甚至电压系统出现崩溃。
国际上对电压稳定的定义为:1.1电压小干扰稳定电力系统在既定的运行状况下遭遇任何小干扰之后,处于负荷节点位置的电压与干扰之前产生的电压数值较为近似,则该系统在既定的运行点位置可认为是小干扰电压的稳定性。
1.2稳定平衡点电压电力系统在既定的运行情况下遭遇一定的干扰,假如干扰之后的负荷节点产生的电压值恢复至干扰之后的平衡点位置的电压数值,则该系统的电压是稳定性的;这个时候,系统受到干扰后的情况将返回至干扰后处于平衡点位置的稳定的吸引域内。
1.3电压崩溃电力系统在既定的情况下遭遇一定程度的干扰,干扰之后处于平衡位置的电压数值比系统运行限制数值低,则统将会出现电压崩溃;电压崩溃有可能会造成整个系统的停电或是局部性停电。
2 电压发生失稳的原理最初认为电压稳定属于一个静态问题,因此解释电压失稳的原理应从静态的观点出发。
基于广泛应用的各种潮流方程的静态依据,其物理机制的静态稳定的界定是电力网络的传输能力。
伴随着电压稳定的发展研究,考虑到发电设备及调节系统的动态性、负荷以及动态零件的其他影响,失稳动态机理随之产生。
可是因为电力系统属于一个动力非线性的复杂系统,电压失稳与崩溃的动态过程是非常复杂的,至今仍未研究彻底。
摘要摘要电压失稳与电压崩溃是电力系统研究的重要方向之一。
最近几十年以来,国内国外都发生过多起大面积停电事故,造成巨大经济财产损失,社会影响深重,是目前亟待解决的问题。
本文全面概括了电力系统静态电压稳定性的研究背景与现状,阐述了电力系统静态电压稳定性研究的重要意义。
静电电压分析是为了确定电压的稳定极限,诸多算法都存在着拐点附近不收敛的问题,本文对传统的连续潮流算法进行改进,在总结前人研究工作的基础上,克服了常规潮流雅克比矩阵奇异造成的收敛问题。
系统阐述了当前静电电压稳定分析中常用负荷模型的特点及主要问题,通过PV曲线定性分析不同负荷特性对静态电压稳定性的影响。
介绍一种典型负荷模型ZIP负荷模型,运用改进连续潮流法对ZIP负荷不同组成进行定量分析,并与采用恒阻抗负荷模型,恒电流负荷模型和恒功率负荷模型仿真得到的结果进行了比较。
为提高提高系统电压水平,防止电压失稳。
我们采用在AVR上加装电压稳定器的方法。
在仿真分析中我们可以很明显看到PSS可以有效的增加阻尼,抑制低频振荡。
同时我们还改变PSS参数来分析比较不同参数对PSS效果的影响。
基于新型电力系统分析工具PSAT建立测试模型进行仿真,结果表明PSS可以有效的增加阻尼,抑制低频振荡,它为电力系统工程师提供了一种提高电力系统电压稳定性的强有力的手段。
另外本文总结归纳了提高电力系统电压稳定的策略措施.对电力系统的规划、运行具有一定的参考价值。
关键词:静态电压稳定;连续潮流;ZIP负荷;PSAT ;电压稳定器江苏科技大学工学硕士学位论文AbstractAbstractThe voltage stability and voltage collapse is an important direction of electric power systems research in recent decades. Large area have not electricity supply is often happen at home and abroad, cause huge economic loss, property loss and social influence. It is thought to be the problems to be solved.This topic generally summarized background and current study situation of power system static voltage stability. Describe meaning of the electric power system static voltage stability research. The electrostatic voltage analysis is to identify the limit of the voltage stability, there are many algorithms have problems about no convergence near inflection point, this topic improve the traditional continuous flow algorithm, at the conclusion of the study based on the before work, overcome the problem of conventional flow jacobian matrix do not convergence. Introduced the current static voltage stability analysis used in the characteristics of load model. Through the PV curve of different load characteristics analysis the influence of static voltage stability. Introduces a typical load model of ZIP load model. Using an improved continuous flow method analysis ZIP load of different quantitative, compared simulation results between with the constant impedance load model, constant current load model and constant power load model. For improving system voltage level, prevent the voltage stability, we adopt the method of install the voltage stabilizer on AVR. In the simulation analysis, we can clearly see PSS can effectively increase the damping, restrain low frequency oscillation. And at the same time, we also change PSS parameters to analysis the affect comparing with different parameters of the PSS. Based on the new power system analysis tools PSAT test model established simulation. The results show that PSS can effectively increase the damping , restrain the low frequency oscillation. It provides a improve mean for electric power system voltage stability.In addition, This subject is summarized how to improve the power system voltage stability; has certain reference value to power system planning and operation.Keywords: Static V oltage Stability ;Continuation Power Flow ;ZIP Load ;PSAT ;PSS江苏科技大学工学硕士学位论文目录目录摘要 (I)Abstract (III)第一章绪论 (1)1.1 电压稳定性研究的意义和背景 (1)1.2 国内外研究状况与展望 (2)1.3 本文的主要工作 (3)第二章电压失稳的理论基础 (4)2.1 电压稳定的概念 (4)2.2 电压稳定的分类 (5)2.3 电压失稳的机理研究 (5)2.4 电压稳定性的研究方法 (8)2.4.1 静态电压稳定分析 (8)2.4.2 基于微分方程的动态研究 (9)2.5 本章小结 (10)第三章连续潮流在静态电压稳定性研究中的应用 (11)3.1 连续潮流法原理 (11)3.2 连续潮流的求解 (15)3.2.1 连续潮流构成 (15)3.2.2 方程参数化 (15)3.2.3 预测环节 (18)3.2.4 校正环节 (19)3.2.5 步长控制环节 (20)3.3 一种新的实用的变步长方法 (21)3.4 仿真分析 (24)3.5本章小结 (28)第四章负荷特性对静态电压稳定性的影响 (29)4.1 引言 (29)4.2 负荷的静态模型 (29)4.3 负荷特性对静态电压稳定的影响 (31)4.3.1静态负荷的电压稳定性 (31)4.3.2 负荷静态电压特性对系统电压稳定性的影响 (33)4.4 简单系统采用ZIP负荷模型的PV曲线分析 (33)4.4.1恒功率负荷对简单系统影响分析 (33)4.4.2 采用ZIP负荷模型的PV曲线 (34)4.5 复杂系统的静态电压PV曲线分析 (36)4.5.1 zip负荷模型对复杂系统影响分析 (36)4.5.2 仿真分析 (37)4.6 本章小结 (41)江苏科技大学工学硕士学位论文第五章PSS对静电电压影响的仿真分析 (43)5.1 PSAT软件介绍 (43)5.1.1 PSAT特点简介 (43)5.1.2 主界面 (44)5.1.3 PSAT的结构 (45)5.1.4 PSAT模型库 (46)5.2 PSS简介 (47)5.3 PSS工作原理 (48)5.4 PSS的数学模型 (49)5.4.1 IEEE标准PSS-1A模型 (50)5.4.2 IEEE标准PSS-2A模型 (50)5.5 仿真分析 (51)5.6本章小结 (55)第六章提高电力系统静态电压稳定性的措施 (57)6.1静态电压稳定控制措施 (57)6.2 系统运行方面的措施 (58)6.3 建立正确的模型 (59)6.4本章小结 (59)结束语 (61)参考文献 (63)攻读硕士期间发表的学术论文 (67)致谢 (69)附录 (71)ContentContentAbstract(Chinese) (I)Abstract(English) (III)Chapter 1 Introduction (1)1.1 Significance and background of voltage stability study (1)1.2 Research state in home and abroad (2)1.3 Main works (3)Chapter 2 Theory basis of voltage stability (4)2.1 Concept of voltage stability (4)2.2 Classification of voltage stability (5)2.3 Mechanism of voltage stability (5)2.4 Research methods of voltage stability (8)2.4.1 Analysis of static voltage stability (8)2.4.2 Dynamic research based on differential equation (9)2.5 Summary (10)Chapter 3 Continuous power flow used in the voltage stability (11)3.1 Principle of continuous power flow (11)3.2 Solution of continuous power flow (15)3.2.1 Constitute of continuous power flow (15)3.2.2 Parametric equation (15)3.2.3 Prediction tache (18)3.2.4 Correction tache (19)3.2.5 Step control tache (20)3.3 A new practical step control method (21)3.4 Simulation (24)3.5 Summary (28)Chapter 4 Static Voltage Stability Influenced by the Load Characteristics (29)4.1 Introdution (29)4.2 Load static model (29)4.3 Static voltage stability influenced by load characteristics (31)4.3.1 V oltage stability of static load (31)4.3.2 Static voltage stability influenced by load static characteristics (33)4.4 PV curve analysis of simple system uses ZIP load (33)4.4.1 Influence by simple system uses constant power load influence (33)4.4.2 PV curve under ZIP Load Model (34)4.5 Complex system static voltage PV curve analysis (36)4.5.1 Influence by complex system uses ZIP load (36)4.5.2 Simulation (37)4.6 Summary (41)Chapter 5 PSS on the Impact of Static Voltage Stability (43)江苏科技大学工学硕士学位论文5.1 Introduction about PSAT (43)5.1.1 Introduction about PSAT’s characteristics (43)5.1.2 Main interface (44)5.1.3 PSAT’s structure (45)5.1.4 PSAT’s model library (46)5.2 PSS introduction (47)5.3 Structure of PSS (48)5.4 PSS mathematical model (49)5.4.1 IEEE standard PSS-1A model (50)5.4.2 IEEE standard PSS-2A model (50)5.5 Simulation (51)5.6 Summary (55)Chapter 6 Methods to improve power system static voltage stability (57)6.1 Measures for static voltage stability control (57)6.2 Measures for operation of the system (58)6.3 Establishing correct model (59)6.4 Summary (59)Conclusions (61)References (63)Published Acadmic Papers Duing Graduate (67)Thanks (69)Appendix (71)第1章绪论第一章绪论1.1 电压稳定性研究的意义和背景电力系统是一个复杂的包含很多电气和机电设备的大规模非线性系统,而电力系统稳定性分析作为电力运行和规划当中非常重要的一环,一直受到学界的广泛关注[1]。
电力系统中非线性负荷的特性分析在当今的电力系统中,非线性负荷的应用越来越广泛。
从常见的家用电器如变频空调、电脑,到工业领域中的电弧炉、变频器等,非线性负荷已成为电力系统中不可忽视的一部分。
了解非线性负荷的特性对于保障电力系统的稳定运行、提高电能质量以及进行合理的规划和设计都具有重要意义。
非线性负荷与传统的线性负荷在电气特性上有着显著的区别。
线性负荷遵循欧姆定律,其电流与电压成正比,而非线性负荷的电流与电压关系不再是简单的线性比例关系。
这导致非线性负荷在电力系统中会产生一系列特殊的影响。
非线性负荷的一个重要特性是产生谐波电流。
当非线性负荷接入电力系统时,由于其内部的电力电子器件或磁性元件的非线性特性,会使电流发生畸变,出现基波频率整数倍的谐波分量。
这些谐波电流在电力系统中流动,会增加线路损耗,导致设备发热,降低设备的使用寿命。
同时,谐波电流还可能引起电力系统中的电压畸变,影响其他设备的正常运行。
以常见的变频器为例,其通过对电源进行快速的开关操作来实现变频调速的功能。
在这个过程中,电流会出现急剧的变化,产生丰富的谐波。
这些谐波电流不仅会影响变频器自身的性能,还可能通过电网传播到其他设备,造成诸如电机转矩脉动、电容器过热甚至损坏等问题。
另一个显著特性是引起功率因数的变化。
非线性负荷的功率因数通常不是恒定的,可能会随着工作状态的改变而变化。
这给电力系统的无功补偿带来了挑战。
如果无功补偿不合理,可能导致电网电压波动,影响电能质量和电力系统的稳定性。
电弧炉是工业中常见的非线性负荷,其工作过程中功率因数会频繁变化。
在熔化金属的不同阶段,电弧的长度和电流大小都会改变,从而导致功率因数的波动。
这种波动会使得电网中的无功功率需求不稳定,给电网的运行和控制带来困难。
此外,非线性负荷还具有冲击性和不对称性。
一些设备如电焊机、起重机等在启动或工作过程中会产生瞬间的大电流冲击,这可能导致电网电压的骤降,影响其他设备的正常运行。
智能电网中的负荷特性分析在当今社会,电力已经成为了我们生活和生产中不可或缺的重要能源。
随着科技的不断进步和人们对电力需求的日益增长,智能电网应运而生。
而在智能电网中,负荷特性的分析是一项至关重要的任务,它对于电网的规划、运行和管理都有着深远的影响。
负荷特性,简单来说,就是指电力用户在不同时间、不同条件下对电力的需求和使用特点。
要深入理解智能电网中的负荷特性,我们首先需要了解负荷的分类。
从用户类型来看,负荷可以分为工业负荷、商业负荷和居民负荷。
工业负荷通常具有较大的用电功率,其用电规律往往与生产流程和设备运行密切相关。
比如,钢铁厂的电炉在生产时会消耗大量电能,而在设备检修期间用电则大幅减少。
商业负荷,如商场、写字楼等,其用电高峰一般出现在白天营业时间段,而且受季节和节假日的影响较大。
居民负荷则主要与人们的日常生活习惯相关,例如晚上家庭用电较多,夏季空调用电增加等。
从负荷的时间特性来看,又可以分为日负荷、周负荷和年负荷。
日负荷呈现出明显的峰谷变化,一般早上和傍晚是用电高峰,深夜则是低谷。
周负荷在工作日和周末可能会有所不同,一些办公区域在周末的用电量会显著下降。
年负荷则受到季节和气候的影响,夏季和冬季由于空调和采暖的需求,用电量通常较高。
智能电网中的负荷特性具有一些新的特点。
随着各种智能电器和设备的普及,负荷的随机性和不确定性增加。
比如,电动汽车的充电时间和充电量就具有较大的随机性,如果大量电动汽车同时充电,可能会给电网带来瞬间的巨大负荷。
此外,分布式能源的接入也对负荷特性产生了影响。
分布式能源如太阳能光伏发电、小型风力发电等,其出力具有间歇性和波动性。
当分布式能源大量接入电网时,用户可能既是电力的消费者,又是电力的生产者,这使得负荷的流向和大小变得更加复杂。
为了准确分析智能电网中的负荷特性,我们需要借助一系列的技术手段和工具。
首先是数据采集,通过智能电表等设备,实时采集用户的用电数据,包括电压、电流、功率等信息。
电力系统中的电压稳定性研究与控制随着工业化进程的加速和人们对电力需求的不断增长,电力系统的稳定性问题日益突出。
而电力系统中的电压稳定性问题尤为重要,它关系到整个系统的正常运行和供电的可靠性。
本文将从电力系统的电压稳定性研究和控制两个方面进行论述,希望为电力系统的稳定发展提供一些思路和方法。
一、电压稳定性研究电压稳定性是指电力系统的电压在外界干扰下能够保持在合理的范围内,不产生异常波动的能力。
影响电力系统电压稳定性的因素有很多,主要包括负荷特性、电源特性、传输线路特性、电网结构等。
为了研究电压稳定性,需要对这些因素进行全面分析与建模,并通过相应的数学模型和仿真实验来验证。
1. 负荷特性分析负荷是指电力系统中各类用户的用电需求,其特性对电压稳定性有着重要影响。
电力系统的负荷可以分为平衡负荷和非平衡负荷两种情况。
平衡负荷是指系统中各个节点的电阻、电感和电容负载相等,并且相位差义无反顾的电力负载。
非平衡负荷常见于电力系统的特定条件下,如突发的电气设备故障或突发性的天气变化等。
在研究电压稳定性时,需要将负荷特性纳入考虑,以便分析其对电压的影响和稳定性的需求。
2. 电源特性分析电源是电力系统中能够提供电能的装置,包括火电、水电、风电等。
电源的稳定性直接关系到电力系统的稳定性。
在电压稳定性研究中,需要首先分析电源的特性,如输出功率的波动性、电压的波动性以及频率的误差等。
通过建立电源模型,并考虑其与系统中其他元件的协调关系,可以对电压稳定性进行全面分析。
3. 传输线路特性分析传输线路是电力系统中用于输电的关键元件,其电气特性和电磁特性直接影响电力系统的稳定性。
在研究电压稳定性时,需要对传输线路的电阻、电感、电容以及传输功率等进行详细分析,并考虑其与系统中其他元件的耦合关系。
通过建立传输线路模型,并进行仿真实验,可以评估电压稳定性的敏感性和稳定性。
4. 电网结构分析电网结构指的是电力系统中各个节点之间的连接关系和布局方式。
山东大学硕士学位论文电力系统静态电压稳定性的研究姓名:于永进申请学位级别:硕士专业:电力系统及其自动化指导教师:栾兆文20050510山东大学硕士学位论文摘要近年来,电力系统电压稳定性的研究受到普遍关注。
本文以电压静态稳定性为研究方向,综述了静态电压稳定性常见的计算方法,着重致力于静态电压稳定判据的推导以及静态电压稳定指标的求取,并就其他一些相关内容进行了较为深入的讨论。
本文首先对利用PV曲线的aP/≤V判据做简单回顾,讨论负荷特性对电压稳定性的影响。
在广义雅可比矩阵的基础上,推导出考虑负荷特性的静态电压稳定条件,然后结合鼻型曲线的特点,推导出考虑负荷特性的静态电压稳定实用判掘,并指出:系统在鼻型曲线上半支运行时的静态电压稳定性主要取决于网络的电压一功率传输特性,而系统在鼻型曲线下半支运行时的静态电压稳定性主要取决于负荷的静态电压特性。
电力系统的电压失稳、电压崩溃、及负荷失稳是电压稳定问题中最基本的重要概念,它们既相互联系又有本质区别。
正确和客观地认识它们之间的关系,对深入研究电压稳定问题的机理具有重要意义。
负荷稳定性是电力系统电压稳定性的最主要和最关键的方面。
本文综述和比较了静态电压稳定性指标,根据戴维南等值将整个系统等值为一简单的两节点系统,在此基础上进行电压稳定性分析,推出一种根据定义的节点电压稳定性的指标VSI能快速估计节点电压稳定和求取临界负荷因子k‘的方法,并将该方法扩展到考虑负荷特性和无功限制的情况。
算例分析表明,该方法是一种简单、快速、有效的方法。
最后,本文从系统特性方面探讨了影响电压稳定性的因素,这不仅对静态指标的构造有一定指导作用,更为主要的是为采取措施以最大限度地提高系统稳定性提供理论基础。
关键词:电压稳定:实用判据;电压崩溃;静态电压稳定指标;负荷因子;无功限制Ill山东大学硕士学位论文Abstract:Duringrecentyearsthestudyonvoltagestabilityhasalreadyreceivedwidespreadattentionofmanyresearches.Concentratingonthestaticvoltagestability,thispapersummarizesthecommoncalculationmethodsofstaticvoltagesstabilityandpaysmoreattentiononthestaticvoitagestabilitycriterionandthestaticvoltagestabilityindex.Manyothermattersrelatedtostaticvoltagestabilityarealsodiscussed.Firstly,thepaperreviews%矿。
电力系统中负荷特性分析与优化的研究进展在当今社会,电力系统作为支撑国民经济发展和人民生活的重要基础设施,其稳定、高效运行至关重要。
而负荷特性作为电力系统运行中的关键因素,对于电力系统的规划、设计、运行和控制都有着深远的影响。
深入研究电力系统中负荷特性的分析与优化,不仅有助于提高电力系统的可靠性和经济性,还能更好地适应不断变化的电力需求和能源结构。
一、负荷特性的基本概念与分类负荷特性,简单来说,就是电力负荷在不同时间、不同条件下的用电规律和特点。
它主要包括负荷的功率特性、电能特性和时间特性等方面。
从功率特性来看,负荷可以分为恒功率负荷、恒电流负荷和恒阻抗负荷。
恒功率负荷的功率不随电压和电流的变化而变化,如照明设备;恒电流负荷的电流保持恒定,功率随电压的变化而变化,如某些电炉;恒阻抗负荷的阻抗保持不变,功率随电压和电流的变化而变化,如大部分电动机。
从电能特性角度,负荷又可分为有功负荷和无功负荷。
有功负荷是将电能转化为其他形式能量的负荷,如电动机、电炉等;无功负荷则主要用于建立电磁场,不对外做功,如变压器、电抗器等。
按时间特性划分,负荷可分为季节性负荷、日周期性负荷和随机性负荷。
季节性负荷受季节影响较大,如夏季的空调负荷;日周期性负荷在一天内呈现明显的规律变化,如居民的生活用电;随机性负荷则具有较大的不确定性,如突发事件引起的负荷变化。
二、负荷特性分析的方法与技术传统的负荷特性分析方法主要包括统计分析、曲线拟合和时域分析等。
统计分析通过对大量历史负荷数据的统计,获取负荷的均值、方差、概率分布等特征;曲线拟合则是用数学函数来逼近负荷曲线,以描述负荷的变化规律;时域分析则侧重于研究负荷在时间轴上的变化趋势。
随着信息技术的发展,现代负荷特性分析方法不断涌现。
基于人工智能的方法,如神经网络、支持向量机等,能够处理复杂的非线性负荷特性,提高分析的准确性和适应性。
数据挖掘技术能够从海量的负荷数据中发现隐藏的模式和规律,为负荷预测和优化提供有力支持。
电力系统中负荷特性分析与优化在现代社会中,电力系统的稳定运行对于经济发展和人们的日常生活至关重要。
而负荷作为电力系统的重要组成部分,其特性的分析与优化对于提高电力系统的效率、可靠性和经济性具有重要意义。
一、电力系统负荷特性的分类电力系统中的负荷特性可以从多个角度进行分类。
按照用电性质,可分为工业负荷、商业负荷、居民负荷等。
工业负荷通常具有较大的功率需求,且其用电规律与生产流程密切相关;商业负荷的用电特点则往往与营业时间相对应,具有一定的周期性;居民负荷则较为分散,受生活习惯和季节等因素影响较大。
从时间特性来看,负荷又可分为日负荷、周负荷和年负荷。
日负荷呈现出明显的峰谷变化,白天用电量大,夜晚用电量相对较小;周负荷在工作日和周末之间可能存在差异;年负荷则会因季节变化而不同,夏季和冬季往往是用电高峰。
此外,负荷还可以根据其对电压和频率的敏感性进行分类。
一些负荷对电压的变化较为敏感,如电子设备;而有些负荷则对频率的波动较为关注,如电动机等。
二、电力系统负荷特性的影响因素(一)气候因素气候条件对负荷特性有着显著的影响。
在炎热的夏季,空调负荷会大幅增加,导致用电量飙升;寒冷的冬季,采暖负荷则成为用电的重要组成部分。
此外,降雨、大风等天气也可能影响某些特定行业的用电情况。
(二)季节因素不同季节的用电需求存在明显差异。
除了前面提到的夏季和冬季的空调与采暖负荷,春季和秋季的农业生产、旅游等活动也会对负荷产生影响。
(三)节假日因素在节假日期间,如春节、国庆等,工厂、企业的放假会使工业负荷减少,但居民的娱乐、旅游等活动会增加商业和居民负荷。
(四)经济发展因素随着经济的增长,工业生产规模扩大,商业活动日益繁荣,用电量也会相应增加。
同时,经济结构的调整也会导致负荷特性的变化,例如从以重工业为主向以高新技术产业为主的转变,会使负荷的类型和特点发生变化。
(五)能源政策因素政府出台的能源政策,如鼓励新能源的开发和利用、推行峰谷电价等,会影响用户的用电行为,进而改变负荷特性。
负荷模型对电网安全稳定计算分析的影响评估【摘要】以实际电网(广州电网)为例,通过定量仿真计算评估负荷模型对电网安全稳定计算的影响,分析其对系统安全稳定的影响机理,为逐步建立更加接近真实情况的负荷模型提供依据。
大量仿真计算分析表明:负荷模型对短路电流、电压稳定、暂态稳定、动态稳定均有较大影响。
随着负荷的快速增长,网络结构更加密集,系统短路电流超标、受端电网电压失稳等问题日益突出。
因此,应进一步深入研究负荷模型对电力系统安全稳定的影响,不断完善负荷参数实测和建模工作,并尽快制定统一的计算标准,促进电网经济性与安全性协调发展。
【关键词】负荷模型短路电流电压稳定暂态稳定动态稳定本文以实际电网(广州电网)为例,通过定量仿真计算分析负荷模型对短路电流、电压稳定、暂态稳定、动态稳定等的影响,分析其对系统安全稳定的影响机理,为逐步建立更加接近真实情况的负荷模型提供依据。
1 电力系统安全稳定计算的负荷模型在电力系统安全稳定计算中,国内电网调度部门在电力系统安全稳定计算中采用的负荷模型一般分为以下情况:①东北、华中、川渝电网采用感应电动机+恒阻抗模型,电动机比例40%~65%之间;②华东、山东、福建、南方电网采用不考虑负荷频率特性的静态负荷模型。
2 负荷模型对电力系统安全稳定计算分析影响2.1 负荷模型对短路电流影响近年来,随着电网规模和电网密集程度增大,短路电流超标问题已成为影响电网安全稳定运行的主要问题之一。
短路电流很大程度上直接影响了电网规划、设计、调度运行的相关决策;若短路电流计算结果过于保守,则经济性较差;若偏冒进,则安全稳定运行存在隐患[5];因此,短路仿真计算的准确性非常重要。
2.2 负荷模型对暂态电压稳定影响电压稳定是电力系统在额定运行条件下和遭受扰动之后系统中所有母线都持续地保持可接受的电压的能力[6]。
电压稳定的实用判据:暂态和动态过程中系统中枢点母线电压下降持续低于0.75 p.u.的时间不超过1秒,且动态过程平息后220kV 及以上电压等级中枢点母线电压不低于0.9p.u.。
电力系统静态稳定引言电力系统是现代社会中不可或缺的基础设施之一。
为了保证电力系统的正常运行,静态稳定是一个关键的问题。
静态稳定性是指电力系统在受到各种扰动时,能够快速地恢复到稳定工作状态的能力。
本文将介绍电力系统静态稳定的概念、影响因素以及常见的静态稳定性分析方法。
电力系统静态稳定概述电力系统静态稳定是指电力系统在受到外界扰动后,能够在短时间内恢复到稳定状态的能力。
扰动可能包括负荷变化、发电机出力变化、电网故障等。
静态稳定性主要涉及电力系统的电压稳定与功率稳定。
影响因素电力系统的静态稳定性受到多个因素的影响。
以下是一些主要因素:1. 发电机参数发电机参数直接影响了电力系统的稳定性。
发电机的励磁电抗、同步电抗和传输电抗等参数决定了发电机在故障或负荷变化时的响应速度和稳定性。
2. 输电线路参数输电线路的电阻和电抗对电力系统的静态稳定性也起到重要作用。
输电线路的电阻和电抗会导致线路电压和功率的损耗,进而影响系统的稳定性。
3. 负荷特性电力系统中各个负荷的特性也对系统的稳定性产生影响。
负荷的动态响应特性决定了系统在负荷突变时的稳定性。
4. 自动稳定控制装置自动稳定控制装置是控制电力系统稳定性的关键设备。
对自动稳定控制装置的设计和调试对静态稳定性的保障至关重要。
静态稳定性分析方法为了评估电力系统的静态稳定性,常常采用以下几种分析方法:1. 感应校正法感应校正法是一种基于牛顿-拉夫逊法的静态稳定性分析方法。
此方法适用于小扰动范围内的电力系统分析,通过对系统的状态变量进行微小偏移来计算系统的稳定性。
2. 指数法指数法是一种大范围扰动下的静态稳定性分析方法。
该方法通过定义系统稳定性指数,对系统进行评估。
稳定性指数越大,系统的稳定性越强。
3. Lyapunov能量函数法Lyapunov能量函数法是一种基于能量函数的静态稳定性分析方法。
通过构造系统的能量函数并对其求导,可以判断系统是否具有稳定的平衡点。
4. 直接分析法直接分析法是一种利用功率流和潮流计算来评估系统静态稳定性的方法。
电力系统的电压稳定性分析与控制策略电力系统的电压稳定性是保障电网正常运行的重要指标之一。
在电力系统中,电压稳定性问题可能导致电压波动、电压偏低或电压偏高等问题,进而影响电网的供电质量和稳定性。
因此,对电力系统的电压稳定性进行分析与控制是电网运行和管理的关键任务之一。
首先,对于电力系统的电压稳定性分析,需要考虑电压暂态稳定性和电压静态稳定性两个方面。
在电压暂态稳定性分析中,重点考虑电力系统在发生故障或突发负荷变化时的电压稳定性。
一般采用过渡电压稳定器(Transient Voltage Stability, TVS)来进行分析。
通过建立电力系统的动态模型,采用数值计算方法对系统进行仿真分析,以评估电压稳定性。
在分析过程中,需要考虑系统的阻尼特性、发电机转速、负荷响应等因素,并通过故障分析和故障恢复策略,提高电力系统的电压暂态稳定性。
在电压静态稳定性分析中,主要考虑电力系统在平衡工况下的电压稳定性。
通过潮流计算和电压控制分析,确定系统中各个节点的电压水平,并评估系统的稳定性。
对于电压不稳定的节点,可以通过调整发电机的励磁电压、变压器的调压器和无功补偿控制等手段来提高电压稳定性。
此外,也可以通过优化电力系统的运行方式,如合理调整负荷配置、改善网架结构等方式来提高电压稳定性。
对于电力系统的电压稳定性控制策略,需要综合考虑系统的各种因素和设备的特点。
一方面,可以通过安装电压稳定器来提高系统的电压稳定性。
电压稳定器可以通过调整无功功率的输入输出来控制节点电压,从而维持节点电压在合理范围内。
在系统发生故障时,电压稳定器可以迅速响应,提供有效的电压补偿控制,保证系统的电压稳定性。
另一方面,还可以通过有效管理和优化电力系统运行来提高电压稳定性。
例如,合理调整发电机和负载之间的功率平衡,选择合适的变压器调压器参数,及时补偿功率等方式都可以改善电力系统的电压稳定性。
此外,还可以采用智能调度和优化算法,通过在线监测和预测电力系统的电压变化趋势,提前进行调整和干预,从而保证电力系统的电压稳定性。
负荷特性对电力系统电压稳定性影响的研究发布时间:2023-02-16T09:19:23.564Z 来源:《新型城镇化》2022年24期作者:高文杰姜林村[导读] 对电力网络电压稳定性的研究,人们先后经历了从不太重视电压稳定性问题对电力系统产生的影响到开始着手对电压稳定性进行静态机理的探讨,最后再到对电压稳定性开展全方位的动态机理探讨三个不同的阶段。
国网大同供电公司山西大同 037000摘要:目前随着经济建设的不断推进及电力网络的不断扩展,电压稳定性问题被人们提升到了前所未有的关注高度。
人们对影响电压稳定性的诸多因素进行研究分析后,普遍都认为负荷特性是影响电压稳定性的关键因素,并且负荷特性对电压稳定性造成的影响通常通过负荷的失稳特性及功率恢复特性来表现。
本文利用SIMULINK仿真平台搭建的三机九节点电力网络来研究了不同负荷模型在电力系统遭受不同扰动时对电压稳定性的影响,并在特定的扰动情况下研究了感应电动机负载增大、电压失稳时加入改善措施之后对电压稳定性的影响。
通过对每种情况下的仿真波形进行对比分析后得出结论:负荷模型不同及负荷大小不同都会对电力系统的电压稳定性产生不同程度的影响;电力系统中的感应电动机负荷对系统的电压稳定性影响最大,且离遭受扰动的点越近,母线的电压稳定性越差;并联电容器是改善电压稳定性切实可行的措施。
关键词:负荷特性;电力系统;电压稳定性;影响研究前言对电力网络电压稳定性的研究,人们先后经历了从不太重视电压稳定性问题对电力系统产生的影响到开始着手对电压稳定性进行静态机理的探讨,最后再到对电压稳定性开展全方位的动态机理探讨三个不同的阶段。
综合负荷的负荷特性是由负荷模型的类型及参数共同决定的,因此负荷模型的类型选择及参数设置会对电力网络电压稳定性分析的最终结论产生很大的影响。
然而,负荷建模工作受电力网络综合负荷的相关特性影响较大,因此不管采取哪种方法来对实际的电力网络开展建模工作,最终得到的负荷模型都难以做到毫无偏差的对电力网络中的综合负荷特性加以表现。
电力系统稳定性分析与控制在当今社会,电力如同血液一般在现代工业和生活的脉络中流淌,支撑着无数的机器运转、信息传递以及人们日常生活的方方面面。
而电力系统的稳定性,则是确保这一关键能源供应持续、可靠和优质的基石。
理解和掌控电力系统的稳定性,对于保障电力的正常供应、避免停电事故以及推动社会经济的持续发展,都具有至关重要的意义。
电力系统的稳定性可以从多个角度进行分析。
首先是功角稳定性,这涉及到发电机之间的相对角度变化。
当电力系统受到扰动,比如负荷突然增加或线路故障时,如果发电机之间的功角不能保持相对稳定,就可能导致系统失去同步,引发大规模停电。
另一个重要方面是电压稳定性,它关注的是系统中各节点的电压能否维持在允许的范围内。
电压不稳定可能导致设备损坏、电能质量下降以及用户用电受到影响。
频率稳定性也是不容忽视的一点。
电力系统的频率需要保持在一个相对恒定的数值,例如在我国,标准频率是 50 赫兹。
当发电和用电之间出现不平衡时,频率就会发生变化。
如果频率偏差过大且持续时间较长,将对电力设备的正常运行造成严重威胁,甚至可能导致系统崩溃。
影响电力系统稳定性的因素众多且复杂。
其中,电力系统的结构和参数起着基础性的作用。
电网的拓扑结构、线路的电阻和电抗、变压器的容量等,都直接影响着系统的稳定性。
负荷特性也是一个关键因素。
不同类型的负荷,如工业负荷、居民负荷、商业负荷等,它们的用电规律和需求特性各不相同。
例如,工业负荷通常较为稳定且量大,而居民负荷则具有较强的随机性和波动性。
当负荷突然发生大幅度变化时,电力系统需要迅速做出调整来维持稳定。
电力设备的故障也是常见的影响因素。
例如输电线路短路、变压器故障、发电机故障等,这些突发事件会导致电力系统的功率分布瞬间失衡,给系统的稳定性带来巨大冲击。
此外,自然灾害如地震、台风、洪水等,可能会破坏电力设施,导致线路中断、杆塔倒塌等,从而严重影响电力系统的稳定性。
为了确保电力系统的稳定运行,我们采取了一系列的控制措施。
电力系统中的电压稳定性分析与控制电力系统是现代社会中至关重要的基础设施之一,在为人们提供稳定、可靠的电能供应的同时,也面临着一系列的挑战和问题。
其中之一便是电力系统中的电压稳定性。
本文将对电力系统中的电压稳定性进行详细分析,并探讨相应的控制策略。
一、电压稳定性的概念和影响因素电压稳定性是指电力系统中电压的稳定性能,即电压的波动范围是否在合理的范围内。
电压的过高或过低都会对电力设备和用户设备造成严重影响,甚至导致系统的崩溃。
因此,电压稳定性的分析和控制是电力系统运行中十分重要的一环。
电压稳定性主要受到以下几个因素的影响:1. 负荷变化:电力系统的负荷是不断变化的,负荷增加会导致电压降低,而负荷减少会导致电压升高。
2. 发电机励磁器控制:发电机励磁器的输出电压直接影响电力系统的电压稳定性。
发电机的励磁控制必须根据系统负荷的变化进行及时调整。
3. 电力系统的线路和变压器特性:电力系统中的线路和变压器的电阻、电抗、电容等特性都会对电压的稳定性产生影响。
4. 系统的电压下降:当电压下降到一定程度时,可能会引发电力系统中的电压失稳,甚至引起系统的崩溃。
二、电压稳定性的分析方法为了分析电压稳定性,需要进行以下几个方面的研究:1. 静态分析:即在负荷不变的情况下,分析电力系统中的电压是否在合理的范围内。
这一步骤主要依靠对电力系统中各个设备的参数进行计算和模拟,计算电力系统中各个节点的电压。
2. 动态分析:即在负荷变化的情况下,分析电力系统中的电压是否能够保持在合理的范围内。
这一步骤主要依靠对电力系统中各个设备的响应能力和动态特性进行研究,模拟负荷变化时的电压变化情况。
3. 稳定性评估:通过对电力系统进行稳定性评估,可以评估系统的稳定性指标、稳定边界等,从而确定系统的稳定性水平。
常用的评估方法包括潮流稳定性分析、暂态稳定性分析和电压稳定性分析等。
三、电压稳定性的控制策略为了保证电力系统中的电压稳定,可以采取以下一些控制策略:1. 励磁调节器的控制:对发电机励磁调节器进行优化控制,根据系统负荷的变化及时调整发电机的输出电压,以维持电压稳定。
母线负荷预测技术及负荷特性对电网影响的研究1. 引言1.1 研究背景现如今随着社会的不断发展,电力系统的负荷预测技术变得愈加重要。
母线负荷预测技术作为电网运行和规划中的重要环节,对于提高电网可靠性、降低运行成本具有重要意义。
在过去的几十年里,随着经济的快速增长和电气化程度的提高,电力需求呈现出快速增长的趋势。
电力系统的负荷预测一直是电力系统运行和规划的基础,能够为电力系统运营部门提供重要的参考依据。
由于电力系统的复杂性和不确定性,母线负荷预测技术依然面临诸多挑战。
负荷特性和负荷波动对电网的影响需要深入研究和分析,只有通过对负荷特性的深入了解,才能更好地优化电网运行和规划。
研究母线负荷预测技术及负荷特性对电网影响是当前电力系统研究的一个重要课题,对于推动电力系统的发展和智能化具有重要意义。
1.2 研究意义母线负荷预测技术及负荷特性对电网影响的研究具有重要的研究意义。
随着电力系统的规模不断扩大和电力需求的增加,合理准确地预测母线负荷对于电网运行具有至关重要的作用。
通过对母线负荷进行预测,可以帮助电力系统运营商合理安排电力供给,优化电网运行,确保电网的安全稳定运行。
负荷特性对电网影响的研究可以帮助我们更好地了解电网运行中的关键因素,为电力系统的规划和管理提供有效的参考依据。
深入研究母线负荷预测技术和负荷特性对电网影响的规律性,可以为提高电网的供电能力、降低用电成本等方面提供重要支持。
研究母线负荷预测技术及负荷特性对电网影响具有重要意义,对于提高电力系统的运行效率和稳定性具有重要的推动作用。
1.3 研究目的研究目的的确定对于研究的规划和实施具有关键意义。
本研究的目的主要包括以下几个方面:通过深入研究母线负荷预测技术和负荷特性对电网影响的关系,探讨如何提高电网运行的效率和可靠性。
母线负荷预测技术的应用能够帮助电网运营商合理规划电力供应,优化调度方案,从而有效降低运行成本,提高供电质量。
分析负荷特性对电网影响的机制和规律,揭示不同负荷特性在电网运行中的重要性和影响程度。
负荷特性对电压稳定性影响分析
摘要:负荷特性是影响电压稳定性的最直接因素。
本文基于负荷特性和电压稳定的定义,论述了电压失稳的机理,从动态负荷特性和静态负荷特性两个方面对负荷特性对电压稳定性的影响进行分析,并提出提升电压稳定性的几点建议。
以为电压稳定性的实践保障提供借鉴。
关键词:负荷特性电压稳定性影响分析
近年来,由于经济建设速度的加快,对于电力需求的不断发展,所以也迎来了高电压,大电网和大机组的时代,而在这样的高电压情况下,依然会出现电压不稳定的事故,而且越来越多,呈现上升趋势。
引起电压不稳定的原因很多,最为主要的就是负荷特性问题,负荷特性是电压不稳定最为直接的因素,而且一定程度还会引起电压崩溃和电压失稳的情况发生,因此,分析负荷特性对电压稳定性的影响,来防止电压崩溃,就成为当前摆在电力系统面前的重要课题。
1 负荷特性和电压稳定的定义
1.1 负荷特性的定义
负荷特性的含义就是负荷率随着系统频率发生变化所产生的一定规律性,或是因为负荷端电压变化所发生的一定规律,这两种情况所引起的规律成为负荷特性。
所以一般特性有分别,首先是频率特性,其
次是电压特性,将这两者再往下区分,就可以分为动态特性和静态特性。
1.2 电压稳定的定义
电压稳定的含义主要遵循我国2001年出版的《电力系统安全稳定导则》中的定义:电力系统在受到大或小的扰动后,能够恢复或保持在系统容许电压范围内,而不发生电压崩溃的能力。
2 电压失稳机理
依据电压失稳的发生时间,可将电压稳定分成长期电压稳定和短期电压稳定两种。
其中,长期电压稳定的典型时域范围为2~3分钟,造成电压崩溃情况主要是由恒温控制负荷、发电机最大励磁限制和带负荷自动调节分接头变压器等的动态特性共同作用的。
短期电压稳定的时域在10秒分为内,造成电压崩溃情况主要是由直流输电转换器、电子控制负荷、感应电动机等具有快速调节特性的负荷成分共同作用的。
众所周知,备自投的逻辑与运行方式密切相关,因此有必要掌握变电站的运行方式,才能分析得到备自投的配置及其逻辑。
对于110kV侧,主要的运行方式为:
(1)进线1带1#、2#主变,进线2带3#主变,开关A、B、D闭合,开关C断开,低压侧b、e开关热备用
(2)由于进线1、2具有同等地位,进线1仅带主变1的情况方式1相似。
故与方式1比较,仅改动为B断开,C闭合。
(3)2#主变热备用,即B、C、c、d断开,其他开关闭合。
可以看出方式(1)、方式(2)具有相似性质,为避免重复,实际上仅需分析方式(1)方式(3)情况下各备自投的逻辑。
而BZT1/BZT2、BZT3/BZT4也具有对称的性质,故仅分析BZT1、BZT3的逻辑即可,其他可以类推。
备自投的逻辑与运行方式密切相关,进而分析得到备自投的配置及其逻辑。
在分析中,首先应当指出,110kV进线侧的处理与双进线桥接方式的处理相同,这是因为对于双进线的运行方式,无论是进线备自投,还是主变备自投,其唯一可操作的方式即为将故障线路与主变先做隔离,并在隔离的基础上连接(投入)备用线路及主变,只有这样方能保证电源的有效提供——进线备自投,以及负载的有效提供——主变备自投。
而对于10kV侧,其唯一目的便是保障每段母线都有主变提供电能,而备自投的目标便是为其提供通路。
而对于均分负荷站,其特点要求其对负荷的分配不能过于随意,而是由一台主变带两段负荷,这一方面看是限制了备自投动作的方式,从另一方面看却是简化了备自投的逻辑。
3 负荷特性对电压稳定性的影响
近年来,人们对于电压稳定性的研究日渐深入,负荷对电压稳定的重要性进一步明确。
负荷功率平衡逐渐失去并恶化的过程就是电压失稳的过程,其所导致系统的崩溃就是电力系统中这种失稳的传播。
3.1 动态负荷特性的影响分析
在电压降低时,恒阻抗负荷会随之下降,利于形成稳定电压。
因此,若为恒阻抗静态负荷特性,当低于期望值时,系统的电压水平和功率将保持稳定;因负荷母线在电压降低时,会造成持续的电压下降,甚至造成电压崩溃现象的发生。
故恒功率负荷特性在降低端电压时,会增大负荷电流,导致输电线路电压的增加,端电压进一步降低;若系统负荷为纯感应点击,其运转停止的极限转矩同PV(感应点击同阻抗负荷组合时的功率极限)曲线临界点相一致。
当在PV曲线尚不运行时,会带来系统的稳定,当PV曲线下部开始运行,则感应的电机会停止运转,带来的结果就是系统吸收大量的无功功率,这样的情况会导致电压崩溃而影响到电压的稳定性,还有一类情况就是因为负荷和输电线的组合形成确定电音,那么一旦变压器开始来进行负荷供电,那么调节端将会使负荷电压提升到有可能的极限,这样会增加线路的务工损耗而导致电压形成非常的不稳定。
反之,会降低超高压电压的水平,在电压崩溃条件下,这一点可能导致电压稳定性的降低。
3.2 静态负荷特性的影响分析
静态负荷特性指的是进入稳态电压时电压同负荷功率的关系。
实际系统中,逐渐增加达到负荷极限后,如若持续增加,系统电压便会失去平衡点。
运用静态电压稳定分析法来对静态负荷进行分析,着手于静态观点来对电压崩溃机理作出解释。
反映系统运行点同极限点距离的指标有很多,其中功率极限最为直观。
存在较高负荷时,以改变负荷的方式来对功率进行控制并不稳定,即减小负荷阻抗,功率亦随之减小,而典雅是否会降低,是否会失稳则完全由负荷特性来决定。
4 提高系统电压稳定性的建议
基于负荷组成的复杂组成的复杂性,电力系统电压稳定性的提升应从以下方面着手:强化系统网架结构建设,合理选择静止公务系统、并联电容器及同步调相机,来保障无功补偿的效率。
增加快速响应无功备用的容量,来促进电压稳定性的提高;实际应用中,应用的变压器可考虑加上负荷调节分接头,低压减载无疑成为对电压稳定性问题加以解决的重要后备手段;开发功能强大的电压安全监控软件,来促进系统安全运行水平的大程度提高,防患于未然;确保负荷模型同实际情况相符,以完善的事故预案来提升系统电压的稳定性。
5 结语
负荷特性在电压稳定性问题上扮演者重要角色,借鉴上述内容,结合系统运行实际,来进一步提升电压稳定性。
以在保障电力系统良性运行的同时,促进我国电力行业的长足稳定发展。
参考文献
[1] 郭琼,姚晓宁.浅析电力系统负荷对电压稳定性的影响[J].电力系统及其自动化学报,2004,16(3):61~65.
[2] 马幼捷,龚娟,周雪松,侯明.系统负荷特性与电压稳定的关系[J].天津理工大学学报,2008,24(5):1~4.
[3] 林舜江,李欣然,刘杨华.电力系统电压稳定性及负荷对其影响研究现状[J].电力系统及其自动化学报,2008,20(1):66~74.。