八年级数学下册 第三章 图形的平移与旋转导学案(新版)北师大版
- 格式:doc
- 大小:13.50 KB
- 文档页数:4
八年级数学下册 3.1 图形的平移(一)导学案(新版)北师大版3、1图形的平移(一)班级姓名【学习目标】1、认识平移、理解平移的基本内涵;理解平移前后两个图形对应点连线平行且相等,对应线段平行且相等,对应角相等的性质。
2、通过探究式的学习,养成归纳总结与猜想的数学能力,逆向思维能力。
【学习重点】探究平移变换的基本要素,画简单图形的平移图【学习难点】决定平移的两个主要因素【复习引入】1、全等三角形的对应边______,对应____相等。
【课堂探究】阅读教材:P65P67 做一做的问题,并填空:(1)图中线段AE,BF,CG,DH间有怎样的关系?(2)图中每对对应线段之间有怎样的关系?(3)图中有哪些相等的角?归纳:(1)平移前后的两个图形、一样。
(2)经过平移,对应点所连线段____________;对应线段______________;对应角________。
2、如图,经过平移,△ABC的顶点A移到了点D、(1)指出平移的方向和平移的距离;(2)画出平移后的三角形3、上题还有其他的作法吗?你能归纳平移作图的基本方法?4、确定一个图形平移后的位置,需要哪些条件?确定一个图形平移后的位置,除需要原来的位置外,还需要的条件是______________、关键:确定一些关键点平移后的位置。
【课堂练习】1、△ABC经过平移得到△A′B′C′,若∠A=40,∠B=60,则∠C′=______,若AB=4cm,则A′B′=_________、2、如右图所示,△ABC沿直角边BC所在直线向右平移到△DEF,则下列结论中,错误的是()A、BE=ECB、BC=EFC、AC=DFD、△ABC≌△DEF3、将图中的小船向左移动四格,再向上移动一格:选做题1、如图所示,∠DEF是∠ABC经过平移得到的,∠ABC=13O,求∠DEF和∠COE的度数。
O【课堂小结】1、平移的定义:在平面内,将一个图形沿着移动的距离,这样的图形运动叫平移。
北师大版本八年级数学下第三章图形的平移与旋转章末复习教案课标要求【知识与技能】1.平移的基本涵义及其性质;2.旋转的基本涵义及其性质;3.能按要求作出简单平面图形平移后或旋转后的图形;4.图形之间的变换关系;5.运用轴对称、平移和旋转的组合进行图案设计.【过程与方法】通过回顾进一步理解平移、旋转的基本性质,并能准确作出简单平面图形平移、旋转后的图形.【情感态度】通过回顾与思考,进一步发展学生的空间观念,培养其操作技能,增强审美意识.【教学重点】理解平移、旋转与中心对称的概念和性质.掌握坐标系中平移、对称的坐标特征【教学难点】灵活运用平移、旋转与中心对称的概念和性质解决相关图形问题教学过程一.知识结构【教学说明】引导学生回顾本章知识点,使学生系统地了解本章知识及它们之间的关系.二.释疑解惑,加深理解1.平移平移的概念:在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做图形的平移.平移的性质:平移不改变图形的形状和大小;图形经过平移,连接各组对应点所得的线段互相平行且相等.2.旋转旋转的概念:把一个图形绕一个定点转动一定的角度,这样的图形运动叫做旋转,这个定点叫做旋转中心,旋转的角度叫做旋转角.旋转的性质:旋转前、后的图形全等;对应点到旋转中心的距离相等;每一对对应点与旋转中心的连线所成的角彼此相等.3.轴对称如果一个图形沿一条直线折叠后,直线两旁的部分能够重合,那么这个图形叫做轴对称图形.4.中心对称与中心对称图形中心对称与中心对称图形的联系与区别:区别: 中心对称指两个全等图形的相互位置关系,中心对称图形指一个图形本身成中心对称.联系: 如果将中心对称图形的两个图形看成一个整体,则它们是中心对称图形.如果将中心对称图形对称的部分看成两个图形,则它们成中心对称.二.通过四个考点知识的训练,巩固所学知识。
学生在教师的引导下分析问题,解决问题。
考点一:平移1. 下列运动属于平移的是( )A.急刹车时汽车在地面上的滑动B.投篮时的篮球运动C.冷水加热过程中小气泡上升成为大气泡D.随风飘动的树叶在空中的运动2. 将点A(1,-1)向上平移2个单位后,再向左平移3个单位,得到点B,则点B的坐标为( )A.(-2,1) B.(-2,-1) C.(2,1) D.(2,-1)3. 如图,点A,B的坐标分别为(1,2),(4,0),将△AOB沿x轴向右平移,得到△CDE,已知DB=1,则点C的坐标为________.4. 如图,将△ABC向左平移4个单位,再向下平移2个单位得到△A′B′C′.(1)画出△A′B′C′的图形;(2)若点P(a,b)是△ABC内部一点,则平移后△A′B′C′内的对应点P′的坐标为(a-4,b-2);(3)求△ABC的面积.考点二:旋转5. 将△AOB绕点O旋转180°得到△DOE,则下列作图正确的是( )6. 如图,BA=BC,∠ABC=70°,将△BDC绕点B逆时针旋转至△BEA 处,点E,A分别是点D,C旋转后的对应点,连接DE,则∠BED为( ) A.55°B.60°C.65°D.70°7. 如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(-3,5),B(-2,1),C(-1,3).(1)若△ABC关于x轴对称的图形是△A1B1C1,直接写出点A1,B1,C1的坐标;(2)将△ABC绕着点O按顺时针方向旋转90°得到△A2B2C2,画出△A2B2C2,并写出A2的坐标.考点三:中心对称9. 下列图形中是中心对称图形的是( )10. 如图,△ABC与△A′B′C′关于点O成中心对称,∠ABC=45°,∠B′C′A′=80°,∠BAC=_______°.考点四:图案设计11. 如图的四个图形中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有( )A .1个 B .2个 C .3个 D .4个12.如图3,两个相同的正方形纸片ABCD 和EFGH ,边长为m ,将纸片EFGH 的一个顶点E ,放在纸片ABCD 对角线的交点O 处,那么正方形纸片EFGH 绕点O 无论怎样旋转,两个正方形纸片重叠部分的面积等于______.1【教学说明】应用平移、旋转,中心对称,团案设计解决实际问题,增强了学生应用数学的意识,让学生总结学习到的思想方法,培养学生的综合能力. 五.师生互动,课堂小结图形的中心对称、平移、旋转是几何中的重要概念,应用中心对称、平移、旋转解题也是一种极为重要的数学思想方法,适当地应用中心对称、平移、旋转等方法,将那些分散、远离的条件从图形的某一部分转移到适当的新的位置上,E ()O H GFDCBA 图E ()OHGFD C BA图2图3NM E ()O HGFDC B A集中、汇集已知条件和求证结论,发现、拓展解题思路,构造基础三角形,进行计算与证明.课后作业布置作业:教材“复习题”中第2、5、7、9题.教学反思本节突出平移与旋转概念加深理解和性质应用探究活动的教学.首先分析图形的变换、平面直角坐标系中的平移旋转方面帮助学生把握概念的本质特征,以培养学生观察、分析的能力,再引导学生运用性质解决数学问题和实际问题,由浅入深,培养学生应用数学知识分析、解决问题的能力.。
课题平移与坐标变化【学习目标】1.探究横向(或纵向)平移一次,其坐标变化的规律,认识图形变换与坐标之间的内在联系.2.探究平移中既有横向又有纵向时坐标的变化特点.【学习重点】平移时点的坐标变化规律.【学习难点】利用点的平移坐标变化规律进行作图.行为提示:点燃激情,引发学生思考本节课学什么.行为提示:认真阅读课本,独立完成“自学互研”中的题目,并在练习中发现规律,从猜测到探索到理解知识.情景导入生成问题旧知回顾:1.什么叫平移?在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.平移不改变图形的形状和大小.2.平移的性质有哪些?答:(1)平移前后的两个图形形状、大小一样;(2)经过平移,对应点所连线段平行;对应线段平行且相等;对应角相等.知识链接:关于x轴对称的两点,横坐标相同,纵坐标相反.关于y轴对称的两点,纵坐标相同,横坐标相反.方法指导:熟练掌握平移的规律是解题的关键,上下平移,横坐标不变,纵坐标上加下减;左右平移,纵坐标不变,横坐标右加左减.学习笔记:行为提示:教师结合各组反馈的疑难问题分配展示任务,各组在展示过程中,老师引导其他组进行补充,纠错,最后进行总结评分.学习笔记:检测可当堂完成.自学互研生成能力知识模块沿x 轴(或y轴)方向平移的坐标变化【自主探究】阅读教材P68-69的内容,回答下列问题:在平面直角坐标系中,把一个图形沿x轴(或y轴)方向平移,其坐标变化的规律是什么?答:在平面直角坐标系内,把一个图形沿x轴向右(或向左)平移k(k>0)个单位长度,就是把原图形对应点的横坐标分别加k(或减k),纵坐标保持不变;把一个图形沿y轴向上(或向下)平移k(k>0)个单位长度,就把原图形对应点的纵坐标分别加k(或减k),横坐标保持不变.范例1:(大连中考)在平面直角坐标系中,将点P(3,2)向右平移2个单位长度,所得的点的坐标是(D) A.(1,2)B.(3,0)C.(3,4)D.(5,2)仿例1:如图,在平面直角坐标系中,将点M(2,1)向下平移2个单位长度得到点N,则点N的坐标为(A)A.(2,-1) B.(2,3)C.(0,1) D.(4,1)仿例2:在平面直角坐标系中,将点(4,6)先向左平移6个单位长度,再将得到的点的坐标关于x轴对称,得到的点位于(C)A.x轴上B.y轴上C.第三象限D.第四象限仿例3:点P(1,-2)到点P′(1,3)是向上平移了5个单位长度.仿例4:将点M(-1,-5)向右平移3个单位长度得到点N,则点N所处的象限是第四象限.归纳:平移中点的变化规律是:横坐标向右移加,左移减;纵坐标上移加,下移减.范例2:(湘潭中考)如图,在边长为1的小正方形网格中,△AOB的顶点均在格点上.(1)B点关于y轴的对称点的坐标为(-3,2);(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,A1的坐标为(-2,3).仿例:如图,△AOC是一个直角三角形,C(0,3),A(-2,0),把△AOC沿AC边平移,使A点平移到C点,△AOC变换为△CED,则点D,点E的坐标分别为(2,6),(2,3).按照这个规律再平移△CED,使C点平移到D 点,D点平移到G点,得到△DFG,则点G、点F的坐标分别是(4,9),(4,6).归纳:根据平移前后两个对应点的坐标变化情况,找出平移的方向和单位长度.一个图形依次沿x轴方向,y 轴方向平移后所得图形,可以看作是由原来的图形经过一次平移得到.交流展示生成新知【交流预展】1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的结论展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.【展示提升】知识模块沿x轴(或y轴)方向平移的坐标变化检测反馈达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________。
第三章图形的平移与旋转3.3 中心对称一、教材分析本章位于北师大版八年级下第三章,是继小学已经学过了平移和旋转基础之上进行深入学习。
具有呈上启下的作用。
本章先通过观察具体的平移、旋转现象,分析、归纳并概括出平移、旋转的整体规律和基本性质,然后再平移和旋转的设计、欣赏、简单应用中,进一步深化对图形三种基本变化的理解和认识。
也对后面学习平行四边形等特殊的四边形起了铺垫的作用。
本节内容是继《图形旋转》后的一节内容,在本章中起了非常重要的作用,前面的几节内容研究一般图形的旋转,本节是研究两个图形通过特殊的旋转而产生的特殊位置关系,体现了从一般到特殊的思想。
而研究这种特殊的位置关系为我们几何图形的分析提供了更多的手段,比如平行四边、正偶数边形正是二、学情分析学生的知识技能基础:在七年级(下)和本章前面几节课中,已学习了轴对称、平移、旋转等概念,学生已充分理解了各种变换的基本性质,具备了分析、设计图案的基本技能。
学生活动经验基础:在相关知识的学习过程中,学生已经初步积累了一定的图形变换的数学活动经验,本节课旨在让学生在进行观察、分析、欣赏等操作性活动中,丰富学生对图形变换的认识,并使他们正确理解和把握平移、旋转等内容,进一步深化对图形的三种基本变换的理解和认识。
三、教学目标(一)知识与技能:1.了解中心对称、中心对称图形的概念,探索它的基本性质;2.会进行简单的中心对称作图;3.认识并欣赏现实生活中的中心对称;(二)过程与方法:经历有关中心对称的观察、操作、欣赏、归纳、验证、设计的过程,进一步积累数学活动经验,增强学生的动手实践能力,发展空间观念。
(三)情感、态度与价值观:通过图形间的变化关系,使学生认识到一切事物的变化可以通过一系列的基本变化组合得到,体会事物从量变到质变的过程。
四、教学重点中心对称、中心对称图形的概念;作出一个图形关于一点的对称图形;五、教学难点两个图形成中心对称与中心对称图形的区别和联系;六、重难点突破:问题串设置逐层推进,达到目标核心。
A 'CBA平移的认识【学习目标】:1.通过具体实例认识平移,并能理解平移的含义、理解平移前后两个图形对应点连线平行且相等的性质;2.经历观察、分析、操作、欣赏以及抽象、概括的过程;经历探索图形平移性质的过程及与他人合作交流的过程,进一步发展空间观念,增强审美意识; 【学习重点】 :图形平移的特征【学习难点】 :认识、探究图形平移的特征 【自主探究】(一)预习自我检测(阅读课本,把不懂的问题记录下来,课堂上我们共同讨论!) 观察课本图5.4-1 它们有什么共同的特点?能否根据其中的一部分绘制出整个图案? (1)把一个图形( )沿某一方向移动,会得到一个新的图形,新图形与原图形的( )和( )完全相同.新图形中的每一点,都是由原图形中的某一个点移动后得到的,这两个点是( ). (3)连接各组对应点的线段( )且( ).图形的这种变换,叫做( ),简称( ) (二)我的疑难问题: 二、 【合作探究】如图,平移三角形ABC,使点A 移动到点A ′.画出平移后的三角形A ′B ′C ′. 三、 【归纳总结】 【达标测试】1.图形经过平移后,_______图形的位置,________图形的形状,________图形的大小.(填“改变”或“不改变”)2.在平移过程中,平移后的图形与原来的图形________和_________都相同,•因此对应线段和对应角都________.3.如图所示,平移△ABC 可得到△DEF,如果∠A=50°,∠C=60°,那么∠E=•____,∠EDF=_______,∠F=______,∠DOB=_______4.如图所示,△FDE 经过怎样的平移可得到△ABC.( )A.沿射线EC 的方向移动DB 长;B.沿射线EC 的方向移动CD 长C.沿射线BD 的方向移动BD 长;D.沿射线BD 的方向移动DC 长O FECB ADFE D CBAD CBACA5.如图2所示,下列四组图形中,•有一组中的两个图形经过平移其中一个能得到另一个,这组图形是( )ABCD6.如图所示,△DEF 经过平移可以得到△ABC,那么∠C 的对应角和ED 的对应边分别是( )A.∠F,ACB.∠BOD,BA;C.∠F,BAD.∠BOD,AC 7.如图所示,右边的两个图形中,经过平移能得到左边的图形的是( )DCBA8.在平移过程中,对应线段( )A.互相平行且相等;B.互相垂直且相等C.互相平行(或在同一条直线上)且相等 9.如图所示,请将图中的“蘑菇”向左平移6个格,再向下平移2个格.(第9题) (第10题) (第11题)10.如图所示,将△ABC 平移,可以得到△DEF,点B 的对应点为点E,请画出点AOFECB AD的对应点D.点C的对应点F的位置.11.如图所示,画出平行四边形ABCD向上平移1厘米后的图形.12.如图,△ABC平移后得到了△A'B'C',其中点C的对应点是点C',已经标明,请你将点B'、点A'在图中标出来,并画出△A'B'C';若AB边上的中点为M,请你再标出点M的对应点M'.五、【我的感悟】:这节课我的最大收获是:我不能解决的问题是:______________________________________________ _____________________________【课后反思】:用坐标表示平移学习目标:1.会求已知点左.右或上.下平移后所得像的坐标。
3 中心对称1.了解中心对称、中心对称图形的概念.2.掌握中心对称图形的性质.重点理解中心对称、中心对称图形的有关概念和性质.难点中心对称与轴对称、中心对称图形与轴对称图形的区别.一、情境导入观察发现:下图中,左侧的图形经过怎样的运动变化就可以和右侧图重合?二、探究新知1.中心对称的概念在平面内,一个图形绕某个点旋转180°,能与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做它的对称中心.强调:“两个图形关于一个点对称”可以简称为“两个图形成中心对称”.2.成中心对称的两个图形的性质如图,把△ABC绕点O旋转180°得到△A′B′C′,分别连接对称点AA′,BB′,CC′.点O在线段AA′上吗?如果在,在什么位置?△ABC与△A′B′C′有什么关系?归纳中心对称的性质:(1)成中心对称的两个图形中,对应点所连线段经过对称中心,且被对称中心平分.(2)成中心对称的两个图形是全等形.3.中心对称图形的概念(1)观察下图,这些图形有什么共同特征?总结:把一个图形绕某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心.想一想:一个图形满足哪些条件时才是中心对称图形?师生共同分析得出以下三条:①在同一平面内;②一个图形绕一点旋转180°;③旋转前后的图形互相重合.(2)你所学过的平面图形中,哪些图形是中心对称图形?对称中心又在哪里?(3)中心对称和中心对称图形有什么区别和联系?区别:中心对称指两个全等图形的相互位置关系,中心对称图形指一个图形本身成中心对称.联系:如果将成中心对称的两个图形看成一个整体,则它们是中心对称图形.如果将中心对称图形对称的部分看成两个图形,则它们成中心对称.(4)轴对称图形和中心对称图形有什么区别?轴对称图形中心对称图形至少有一条对称轴——直线只有一个对称中心——点沿对称轴翻折180°绕对称中心旋转180°翻折后对称轴两侧旋转前、后的图形互相重合的图形互相重合例如图,点O是线段AE的中点,以点O为对称中心,画出与五边形ABCDE成中心对称的图形.解:连接BO并延长至B′使得OB′=OB;连接CO并延长至C′使得OC′=OC;连接DO并延长至D′,使得OD′=OD;顺次连接A,D′,C′,B′,E.图形AD′C′B′E就是以点O 为对称中心、与五边形ABCDE成中心对称图形.四、练习巩固1.我国主要银行的商标设计基本上都融入了中国古代钱币的图案.下列我国四大银行的标志,是中心对称图形的有________.(填序号)①②③④2.在26个英文大写正体字母中,哪些字母是中心对称图形?五、课堂小结通过本节课的学习,你有什么收获?六、课外作业1.教材第83页“随堂练习”第1、2题.2.教材第84页习题3.6第1~4题.中心对称是在学习了平移与旋转后的基础上进行教学的,它实际上是旋转的一种特殊情况,特殊就在于它的旋转角固定在180°,所以这节课,我尝试运用类比方法去教,应该说这节课的教学效果与我设计的预期效果差不多.学生的配合度比较高,师生的研究学习互动的氛围比较活跃.。
3.1.1图形的平移预习案一、预习目标及范围1、认识平移、理解平移的基本内涵;2、理解平移前后两个图形对应点连线平行且相等,对应线段平行且相等,对应角相等的性质。
二、预习要点经过平移,对应点所连的线段;对应线段,对应角。
三、预习检测1、下列现象中,属于平移的是:(1)火车在笔直的铁轨上行驶(2)冷水受热过程中小气泡上升变成大气泡(3)人随电梯上升(4)钟摆的摆动(5)飞机起飞前在直线跑道上滑动2、下列那幅图可以通过(1)平移而得?探究案一、合作探究(9分钟),要求各小组组长组织成员进行合作探究、讨论。
探究:平移的基本内涵1、小明和小华每天骑自行车沿着笔直的马路来学校上学.2、在车站以及百货大楼,人们乘自动电梯上楼或下楼.3、在工厂,产品整齐地在传送带上沿着生产线从一个生产工位流向另一个生产工位.请大家思考并分组讨论一下,以上几种运动现象有什么共同点?想一想:根据上述分析,你能说明什么样的图形运动称为平移吗?在平面内,将一个沿着某个一定,这样的图形运动称作.------传送带上的电视想一想:1.在上图中传送带上的电视机的形状,大小在运动前后是否发生了改变?2. 如果电视机的屏幕向前移动了80cm,那么电视机的其他部位(如电视机的左上角)向什么方向移动?移动了多少距离?-----手扶电梯上的人想一想:1、手扶电梯上的人的形状、大小在运动前后是否发生了改变?2、如果人的脚斜向上移动了10米,那人的身子向什么方向移动?移动了多少距离?找一找上面两个例子的共同点。
平移运动中,变化的是运动主体(图形)的位置,有什么是保持不变的吗?特征:例1、如图,四边形ABCD沿某方向平移后成为四边形EFGH,思考:(1)找出图中对应线点、对应线段、对应角?(2)在上图中,对应点连接的线段AE,BF,CG,DH有怎样的位置、数量关系?(3)每对对应线段之间有怎样的位置、数量关系?(4)图中有哪些相等的线段、相等的角?对应点:对应线段:对应角:例2、如图,∠DEF是∠ABC经过平移得到的,∠ABC=33˚,求∠DEF的度数.二、小组展示(7分钟)每小组口头或利用投影仪展示, 一个小组展示时,其他组要积极思考,勇于挑错,谁挑出错误或提出有价值的疑问,给谁的小组加分(或奖星)交流内容展示小组(随机)点评小组(随机)____________ 第______组第______组____________ 第______组第______组三、归纳总结经过平移,对应点所连的线段平行且相等;对应线段平行且相等,对应角相等。
八年级数学下册第三章图形的平移与旋转3.1.3 图形的平移导学案(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学下册第三章图形的平移与旋转3.1.3 图形的平移导学案(新版)北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学下册第三章图形的平移与旋转3.1.3 图形的平移导学案(新版)北师大版的全部内容。
3.1。
3图形的平移导学案学习目标1。
理解沿两个坐标轴方向平移后的图形与原图形对应点的坐标之间的关系.2。
能画平移图形和写出对应点的坐标.一。
自学释疑根据线上提交的自学检测,生生.师生交流讨论,纠正共性问题。
.二。
合作探究探究点一问题1:图的“鱼”F是将坐标为(0,0),(5,4),(3,0),(5,1),(5,—1),(3,0),(4,-2),(0,0)的点用线段依次连接而成的.将这条“鱼"F向下平移2个单位长度,再向右平移三个单位长度,得到“鱼”F′.(1)在如图所示的直角坐标系中,画出“鱼”F′的图形。
(2)能否将“鱼"F′看成是“鱼”F一次平移得到的?如果能请指出平移的方向和平移的距离,并与同伴交流。
(3)在“鱼”F′和“鱼"F中,对应点的坐标之间有什么关系?探究点二问题1:如果将图中的“鱼F”的每个顶点横坐标分别加2,纵坐标不变,得到“鱼G”,“鱼G”的每个顶点纵坐标分别加3,横坐标不变,得到“鱼H”,“鱼H"与原来的“鱼F”相比,有什么变化?能否将“鱼H”看成“鱼F”一次平移得到的?问题2:如果将图中的“鱼F”的每个顶点横坐标分别加2,纵坐标加3,得到的“鱼H”与原来的“鱼F”有什么变化?探究点三问题:在平面直角坐标系中,一个图形依次沿x轴方向、y轴方向平移后的图形与原来的图形相比,有什么位置变化?它们对应点的坐标有什么关系?探究点四问题:如图所示四边形ABCD各顶点的坐标为A(﹣3,5)、B(﹣4,3)、C(﹣1,1)、D(﹣1,4),将四边形ABCD先向上平移3个单位长度,再向右平移4个单位长度,得到四边形A′B′C′D′。
课题 简单的图案设计【学习目标】1.利用旋转、轴对称或平移进行简单的图案设计.2.认识和欣赏平移、旋转在现实生活中的应用,并灵活运用平移与旋转组合的方式进行一些图案设计.【学习重点】利用旋转、轴对称或平移进行图案设计.【学习难点】会用旋转、轴对称或平移分析图案.行为提示:点燃激情,引发学生思考本节课学什么.行为提示:教会学生看书,独学时对于书中的问题一定要认真探究,书写答案,教会学生落实重点.情景导入 生成问题旧知回顾1.我们学过哪几种图形变换?答:轴对称变换、平移、旋转.2.奥迪汽车车标是由圆形经过平移得到的,风神汽车车标是通过旋转得到的,大众汽车车标是通过轴对称得到的.自学互研 生成能力知识模块一 利用平移、轴对称或旋转分析图案【自主探究】阅读教材P 85的内容,回答下列问题:范例1:对下图的变化顺序描述正确的是( B )A .轴对称、旋转、平移B .轴对称、平移、旋转C .平移、轴对称、旋转D .旋转、轴对称、平移学习笔记:方法指导:仔细观察图案,分析构成的基本图形,再分析图形变换的过程和方式.是通过平移、轴对称、旋转中的一种变换还是其中的几种变换的组合.行为提示:找出自己不明白的问题,先对学,再群学,对照答案,提出疑惑,小组内解决不了的问题,写在小黑板上,在小组展示的时候解决.学习笔记:检测可当堂完成.仿例1:如图,将等腰三角板a向右翻滚,依次得到b、c、d,下列说法中,不正确的是(B)A.a到b是旋转B.a到c是平移C.a到d是平移D.b到c是旋转仿例2:如图,可以通过平移变换但不能通过旋转变换得到的图案有①④;可以通过旋转变换但不能通过平移变换得到的图案有③;既可通过平移变换,又可通过旋转变换得到的图案有②.变例:数学课上,老师让同学们观察如图所示的图形,问:它绕着圆心O旋转多少度后和它自身重合?甲同学说:45°;乙同学说:60°;丙同学说:90°;丁同学说:135°,以上四位同学的回答中,错误的是(B) A.甲B.乙C.丙D.丁归纳:对于轴对称、平移、旋转这几种图形变换一般从定义区分,并观察图形、仔细分辨.知识模块二利用平移、旋转、轴对称等方式设计图案范例2:用四块如图①所示的正方形瓷砖拼成一个新的正方形,使拼成的图案是一个轴对称图形.请你在图②、图③、图④中各画一种拼法.(要求三种拼法各不相同,且其中至少有一个既是轴对称图形,又是中心对称图形)图略仿例:如图所示的四个图形中,既可以通过翻折变换,又可以通过旋转变换得到的图形是(C)A B C D归纳:从某个简单图形出发,通过对其进行平移、旋转或轴对称后的图形进行巧妙的组合,就可以得到一些非常美丽的图案.交流展示生成新知【交流预展】1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的结论展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.【展示提升】知识模块一利用平移、轴对称或旋转分析图案知识模块二利用平移、旋转、轴对称等方式设计图案检测反馈达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________。
北师大版初二数学下册第三章图形的平移与旋转3教学目标:【知识与技能】1.了解中心对称、中心对称图形的概念,探究它的差不多性质;2.能综合运用变换解决有关问题。
【过程与方法】通过观看、操作,观赏等过程,使学生更深刻地明白得轴对称、旋转及组合等几何变换的规律和特点,并体会图形之间的变换关系,增强动手能力,进展空间观念。
【情感态度】运用讨论交流等方式,让学生自己探究出图形变化的过程,进展学生的图形分析能力、化归意识,感受中心对称的旋转之美。
【教学重点】正确明白得中心对称图形的定义和性质,中心对称图形及中心对称的区别与联系。
【教学难点】判定一个图形是否为中心对称图形,中心对称图形与成中心对称的区别与联系。
学生分析:本节课教学对象是八年级学生,思维活跃,爱好广泛,善于摸索,对多媒体(电子白板)教学环境比较熟悉,但学习层次不够整齐,抽象思维并不是专门强,他们明白得旋转变化是比较困难的,因此在教学过程中通过观赏动画,动手操作,让学生自主探究,分组讨论,引导他们由浅入深,步步推进,从广度,高度,深度上开拓学生思维,进行教学设计时,力争从教学内容,教学形式中表达趣味性,贴近生活,激发学生的好奇心。
教学方法设计:中心对称图形的旋转是学生学习的难点,为让学生对此有个感性认识,教学时利用电子白板的演示一些动画,把动态的问题直观的表现出来,让学生通过观看、摸索、小组合作交流,发觉中心对称图形的定义和性质。
其中,小组合作形式为要紧教学组织形式,通过小组合作学习,培养学生团结合作的能力。
教学媒体:电子白板教学过程:一.创设情境展现"生活中的对称之美"(轴对称图案),以上图片差不多上我们学过的什么对称图形?二.引入新课轴对称图形让我们感受到了对称之美,是因为轴对称图形具有什么特点呢?(沿着某条直线折叠后,两旁部分能够完全重合。
)接下来让我们一起来观赏一组车标图案,这些图案美吗?它们是轴对称图形吗?我们来看看这些图形有什么共同特点。
八年级数学下册 3.1 图形的平移导学案(新版)北师大版3、1 图形的平移[学习课题]第1课时生活中的平移[学习目标]1、通过具体实例认识平移,理解平移的基本内涵,2、理解平移前后两个图形对应点连线平行且相等、对应线段和对应角分别相等的性质。
[学习重点]探索图形平移的主要特征和基本性质。
[学习难点]从生活中的平移现象中概括出平移的特征。
【候课朗读】读教材67页的内容一、解读教材;1、生活中的平移(1)你能发现传送带上的电视机、手扶电梯上的人在平移前后()没有改变,()发生了改变。
(2)在传送带上,如果电视机的某一按键向前移动了80cm,那么电视机的其它部位(如屏幕左上角的图标)向()方向移动。
移动了()距离(3)如果把移动前后的同一台电视机屏幕分别记为四边形ABCD和四边形DEFH(书上第58页的图3-2),那么四边形ABCD与四边形DEFH的形状、大小是否相同()2、归纳平移定义:在平面内,将一个图形沿某个()移动一定的(),这样的图形运动称为平移。
平移不改变图形的()和()。
但改变了物体的位置,平移物体对应点的连线平行且相等。
即时练习(1)如果小狗向左移动了50米,那么拖着的箱子向()方向移动。
移动了()距离。
(2)如果小狗向右跑了80cm,那么箱子向移动了 F EBAC1、∵平移不改变图形的大小和形状∴△ABE≌△DCF∴∠BAE=∠DCF∴ AB = CD2、像AC BD这样的连线就叫做对应点的连线。
3、请说出对应点的连线AC BD EF 之间的关系?3、平移的性质;如图所示,△ABE沿射线XY的方向平移一定距离后成为△CDF。
回答问题:D 即时练习(1)在上图中找出对应边对应角,线段AE = ()BE=(),AB=(),∠ABE=( ) ∠BAE=( )∠AEB=( )(2)图中每对对应线段之间有怎样的位置关系?AB()CD BE()DF AC()BD()EF (3)图中有哪些相等的角?请找出来写在括号内()图中哪两个三角形全等?请找出来写在括号内()经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角()。
初中八年级数学下册第三章图形的平移与旋转教案1 图形的平移一、教学目标1.知识与技能(1)认识平移、理解平移的基本内涵;(2)理解平移前后两个图形对应点连线平行(或在一条直线上)且相等,对应线段平行(或在一条直线上)且相等,对应角相等的性质;(3)经历对图形进行观察、分析、欣赏和动手操作、画图等过程,掌握有关画图的操作技能,学会平移作图,掌握作图的技巧.2.过程与方法(1)经历观察、分析、操作、欣赏以及抽象概括等过程;(2)经历探索图形平移的性质的过程,以及与他人合作交流的过程,进一步发展空间观念,增强审美意识.3.情感态度及价值观(1)引导学生观察生活中的图形运动变化现象,自己加以数学上的分析,进而形成正确的数学观,进一步丰富学生的数学活动经验和体验.(2)通过自己动手设计图案,把所学知识加以实践应用,体会数学的实用价值.通过同学间的合作交流,培养学生的协作能力与学习的自主性.二、教学重点、难点重点:(1)探究平移变换的基本要素,画简单图形的平移图;(2)平移图形的规律,作图的顺序.难点:(1)决定平移的两个主要因素;(2)平行线的作法及对应点的连接.三、教具准备课件.四、教学过程(一)师生活动[师]展示与平移有关的图片,借助实物演示平移,用几何画板演示两个图形的平移.[生]学生分组讨论,如何将所看到的现象用简洁的语言叙述.[师]分析平移定义,探讨“沿某一方向”的意义,其实质是沿直线运动.[生]讨论“沿某一方向”的意义.[师]展示图片,让学生讨论图中的运动各在哪种情况下是平移,图中还有哪些图形可以通过平移得到.[生]分组讨论:(1)能否通过平移得到?(2)能平移得到的其基本图形是什么?有哪些方法?(二)探究新知例1 如图1-1,将△ABE沿射线XY方向平移一定距离后得到△CDF.找出图中平行且相等的线段和全等的三角形.图1-1引导学生从“对应点所连线段”“对应线段”两个方面找平行且相等的线段.例2 如图1-2,将∠ABC沿射线XY平移至∠A/B/C/,且BC与A/B/交点为D,图中有哪些相等的角?图1-2学生分组讨论解题思路,独立解答.提出问题:(课件演示)经过平移,线段AB的端点移到了点D,你能作出线段AB平移后的图形吗?图1-3[师]引导学生归纳总结作图的方法.(如图1-3)[生]讨论并交流对多边形特征的认识.例3 如图1-4,经过平移,△ABC的顶点A移到了点D,请作出平移后的三角形.图1-4分析:因为A 与D 是对应点,而平移的对应点的连线段平行且相等所以平移方向——射线AD ,平移距离——线段AD 的长.作法:①分别过点B 、C 沿AD 方向作线段BE 、CF ,使它们与AD 平行且相等.②顺次连接D 、E 、F .则△DEF 即为所求.(如图1-5)图1-5例4 如图1-6,已知在Rt△ABC 中,∠C=90°,BC=4,AC=4,现将△ABC 沿CB 方向平移到△A’B’C’的位置.图1-6(1)若平移距离为3,求△ABC 与△A’B’C’的重叠部分的面积;(2)若平移距离为x (40≤≤x ),求△ABC 与△A’B’C’的重叠部分的面积y ,并写出y与x 的关系式.解:(1)由题意CC’=3,BB’=3,所以BC’=1,又由题意易得重叠部分是一个等腰直角三角形,所以其面积为211121=⨯⨯; (2)2)4(21x y -= 说明:这里应用了平移的定义及对应线段平行的性质.(三)延伸应用1.运用所过的轴对称及图形的平移知识设计一幅图案,或画出生活中所见到的图案.2.如图1-7,有两个村庄A 和B 被一条河隔开,现要架一座桥(桥与河岸垂直),请你设计一种方案,使由A到B的路程最短.图1-7(四)课堂小结谈谈你这节课有什么收获.(五)教学反思2图形的旋转一、教学目标(1)经历对生活中旋转现象的观察分析过程,引导学生用数学的眼光看待生活中的有关问题;(2)通过具体实例认识旋转,知道旋转的性质;(3)经历对具有旋转现象的图形的观察,操作,画图等过程,掌握好作图的基本技能. 二、教学重点、难点重点:通过具体实例认识旋转的性质.难点:探索旋转的性质,并能应用性质掌握作图技能.三、教具准备课件.四、教学过程(一)情境创设展示一些图片创设情境,让学生说说这些旋转现象有什么共同特征,还能不能再举出一些类似的例子?从学生熟悉的生活现象入手,帮助学生通过具体实例认识旋转,理解旋转的基本涵义,同时引导学生用数学的观点看待生活中的有关问题,发展学生的数学观.(二)探索活动(多媒体出示)活动一:将△ABC绕着点C旋转,记旋转后的三角形为△DEC.(如图2-1)问题1:你能说说BC旋转到了什么位置吗?AC旋转到了什么位置?问题2:点A与哪个点对应?点B与哪个点对应呢?问题3:旋转前与旋转后的两个三角形,什么发生了改变?又有哪些没有改变?学生小组内交流、讨论,教师巡视、指导.C BECO图2-1 图2-2(多媒体出示)活动二:将△ABC绕着点O旋转,记旋转后有的三角形为△DEF.(如图2-2)问题1:你知道点A旋转到了哪个点的位置吗?点B呢?点C呢?问题2:旋转前与旋转后的两个三角形,什么发生了改变?又有哪些没有改变?问题3:根据这两个活动,你知道什么叫做旋转吗?问题4:观察边AC的旋转痕迹,你能求出边AC旋转了多少度吗?BC呢?A点旋转到D点,转了多少度?B点转到E点,又转了多少度?问题5:如果继续旋转,你发现了什么?教师多媒体演示旋转,让学生仔细观察.师生共同探究.问题1:观察点C的旋转痕迹,你能测量出C点旋转了多少度吗?点A旋转了多度?点B 呢?问题2:如果取AC的中点M,那么点M会旋转到什么位置?你能画出来吗?那点M旋转了多少度?再继续旋转,你发现了什么?问题3:观察点C的旋转痕迹,你能说说点C是如何运动的吗?根据这个运动特点,你能说说点C与对应点F有什么关系吗?点A与点D,点B与点E是否也具有这种关系?讨论:你能说说旋转前与旋转后的两个之间有哪些会改变?又有哪些无论你怎么旋转,也不会改变?(三)新授通过以上探究活动,得出定义:在平面内,将一个图形绕着一个定点旋转一定的角度,这样的图形运动就叫做图形的旋转.这个定点就叫旋转中心,旋转的角度就叫旋转角.图形的旋转不改变图形大小与形状.性质:旋转前,旋转后的两个图形全等.对应点到旋转中心的距离相等.每一对对应点与旋转中心的连线所成的角彼此相等.思考:已知图形的旋转,如何测量出旋转角呢?(四)巩固练习1.如图2-3,正方形A′B′C′D′是由正方形ABCD按顺时针方向旋转一定的角度得到的.请指出图中的哪一点是旋转中心?测量旋转的角度.( A′ )D′C′图2-32.(1)如图2-4,画出将△ABC绕点A按逆时针方向旋转90°后的对应三角形.CAB图2-4(2)如果点D是AC的中点,那么经过上述旋转后,点D旋转到什么位置?请在所画图中将点D的对应点D′表示出来.3.如图2-5,在正方形ABCD中,E是BC上一点,将△AB E旋转后得到△A DF.FDBG图2-5(1)旋转中心是哪一点?旋转了多少度?说说你是怎么测量的.(2)如果G点是AB上的一点,点G应旋转到什么时候位置?请在图中将点G的对应点G′表示出来.(五)操作训练已知A点与点O,画出点A绕着点O旋转30°后的点A′.拓展一:已知线段AB与点O,画出将线段AB绕着点O按逆时针方向旋转80°后得到的图形.拓展二:已知△ABC和点O,画出将△ABC绕着点O按逆时针方向旋转80°后得到的图形. 拓展三:若改成多边形呢?你能总结出旋转作图的方法吗?4.思考:如图2-6,△ABC绕着点O旋转后,点A到达点D的位置,你能画出旋转后的三角形吗?D图2-6(六)课堂小结通过本节课的学习,你知道什么是旋转了吗?你认为旋转有哪些性质?,你能作出符合某一条件旋转后的图形吗?3 中心对称一、教学目标1.知识与技能(1)通过具体实例认识两个图形关于某一点或中心对称的本质:就是一个图形绕一点旋转180°而成;(2)掌握成中心对称的两个图形的性质,以及利用两种不同方式来作出中心对称的图形.2.过程与方法利用中心对称的特征作出某一图形成中心对称的图形,确定对称中心的位置.3.情感态度及价值观经历对日常生活中与中心对称有关的图形进行观察、分析、欣赏、动手操作、画图等过程,发展审美能力,增强对图形的欣赏意识.二、教学重点、难点重点:中心对称的性质及初步应用.难点:中心对称与旋转之间的关系.三、教具准备课件.四、教学过程(一)创设情境,导入新课导语一:在前一节中我们学习了图形的旋转,那么旋转后的图形有哪些性质?(旋转前后图形全等,对应点到旋转中心的距离相等,旋转角均相等.)导语二:观察图3-1中三个图形旋转的角度,发现哪个图形与其他两个不同?(1)(2)(3)图3-1(二)合作交流,解读探究1.解读信息,引出课题:教师指出在生活中有许许多多的图形都具有以上特征,在各个领域中都有广泛的应用.它都能给人以一种美的享受.本节我们就来研究这些图形的形成——中心对称.探究:如图3-2,旋转三角板,画关于点O对称的两个三角形;第一步,画出△ABC;第二步,以三角板的一个顶点O为中心,把三角板旋转180°,画出△A'B'C';第三步,移开三角板.这样画出的△ABC与△A'B'C',关于点O对称.分别连接对应点AA'、BB'、CC'.点O在线段AA'上吗?如果在,在什么位置?△ABC与△A'B'C'有什么关系?图3-2我们可以发现:(1)点O是线段AA’的中点;(2)△ABC≌△A'B'C'.上述发现的证明如下.(1)点A'是由点A绕点O旋转180°后得到的,即线段OA绕点O旋转180°得到线段OA',所以点O在线段A A'上,且OA=O A',即点O是线段AA'的中点.(2)在△AOB与△A'OB'中,OA=OA',OB=OB',∠AOB=∠A'OB',∴△AOB≌△A'OB'.∴AB=A'B'.同理BC=B'C',AC=A'C'.∴△ABC≌△A'B'C'.2.[探索]图3-3中△A'B'C'与△ABC关于点O是成中心对称的,你能从图中找到那些等量关系?(多媒体出示图形)图3-3师生共同探索.结论:(1)关于中心对称的两个图形中,对称点所连线段都经过对称中心,而且被对称中心所平分.(2)关于中心对称的两个图形是全等图形.议一议:中心对称与轴对称有什么区别?又有什么联系?3.画已知图形关于已知点的中心对称图形.试一试:点与点对称的作法.已知点A和点O,试作出点A关于点O的对称点.生1:利用中心对称的定义,把OA绕点O旋转180°便可得到.师:要确定对称点A'的位置,关键是点A'满足的性质,然后利用它的性质来确定.生2:延长AO到A',使OA'=OA,则点A'就是所要作的点.师:为什么?生:利用中心对称的性质.思考:比较以上两种方法,你打算今后在作图中使用哪种方法?(第二种简洁,易于作图)做一做:如图3-4,已知线段AB和点O,画线段A'B',使它与线段AB关于点O成中心对称.图3-4构思:关键是作出A,B两点关于点O的对称点A',B'.实践:(1)连接AO,并延长AO到A',使得A'O=OA;(2)连接BO,并延长BO到B',使得B'O=OB;(3)连接A'B'.则线段A'B'就是线段AB关于点O的对称线段.想一想:回顾以上作图过程,总结作中心对称的图形的一般步骤是什么?(1)确定“代表性的点”;(2)作出每个代表性的点的对称点;(3)顺次连接.做一做:如图3-5,选择点O为对称中心,画出与△ABC关于点O对称的△A'B'C'.图3-5解:如图3-6,作出点A,点B,点C关于点O的对称点A',B',C',依次连接A'B',B'C',C'A',就可以得到与△ABC关于点O对称的△A'B'C'.图3-6练习:如图3-7,已知四边形ABCD和点O,画四边形A'B'C'D',使它与已知四边形关于这一点对称.图3-7(三)应用迁移,巩固提高1.如图3-8,已知△ABC与△A'B'C'中心对称,求出它们的对称中心O.图3-8(四)课堂小结1.中心对称,中心对称图形的概念.2.成中心对称的图形的性质.(五)教学反思4简单的图案设计一、教学目标1.知识与技能(1)了解图案最常见的构图方式:轴对称、平移、旋转……理解简单图案设计的意图;(2)认识和欣赏平移、旋转在现实生活中的应用,能够灵活运用轴对称、平移、旋转的组合,设计出简单的图案.2.过程与方法经历对生活中的典型图案进行观察、分析、欣赏等过程,进一步发展空间观念、增强审美意识.3.情感态度及价值观(1)经历对生活中的典型图案进行观察、分析、欣赏等过程,进一步发展空间观念、增强审美意识;(2)通过学生之间的交流、讨论、培养学生的合作精神.二、教学重点、难点重点:灵活运用平移、旋转与轴对称的组合进行简单的图案设计.难点:灵活运用平移、旋转与轴对称的组合进行简单的图案设计.三、教具准备课件.四、教学过程(一)复习旧知,引入新课活动内容:复习全等变换中所学的图案设计方法.提问:1.我们已经具备了简单图案设计的基本知识与技能:用最基本的几何元素——点、线设计与制作图案;用最简单的几何图形——三角形、矩形设计、制作图案;割补、无缝隙拼接.2.图4-1的图案是怎样设计出来的?(1)(2)(3)图4-1活动目的:在学生熟悉的问题中,复习简单图案设计的基本知识与技能;创设问题情境,激发兴趣,调动学生的学习积极性,让学生充分感知轴对称、平移、旋转变换实际上就是所学过的全等变换,培养学生善于观察、善于总结、乐于探索研究的学习品质.(二)探索新知各小组充分讨论教材所示图案的形成过程.在生活中,我们经常见到一些美丽的图案:你能用平移、旋转或轴对称分析如图4-2中各个图案的形成过程吗?你是怎样分析的?与同伴交流.(1)(2)(4)(5)(6)图4-2对教材给出的六个图案通过观察、分析进行议论交流,让学生初步了解图案的设计中常常运用图形变换的思想方法,为学生自己设计图案指明方向.其中图(1)(2)(3)(4)(5)(6)都可以看作是由“基本图案”通过旋转适合角度形成(可以让学生自己说说每个旋转的角度和旋转的次数及旋转中心的位置),另外图(2)(3)(5)也可以看作是由“基本图案”通过轴对称变换形成(可以让学生指出对轴对称及对称轴的条数),图(2)还可以看作是由“基本图案”通过平移形成.通过对漂亮图案的欣赏、分析,使学生逐步领略图案设计的奇妙,逐步掌握一些简单的图案设计技能.通过学生的讨论交流,让学生自己探索出图形变化的过程,为后面分析较复杂图案所运用的几何变换的规律和特征奠定了基础.在教学中,只要学生分析的合情合理即可. (三)合作交流,解决问题1.欣赏图4-3中的图案,分析这个图案形成的过程,仿照图中的某个标志设计一个图案,与同伴交流,并简述你的设计意图.图4-3例 1 欣赏图4-4 的图案,并分析这个图案形的过程.提问:(1)基本图案是什么?有几个?(2)分析同色“爬虫”、异色“爬虫”之间的关系.图4-4教师引导学生发现:这个图案是由三个“基本图案”组成的,它们分别是三种不同颜色的“爬虫”(绿、白、黑),形状、大小完全相同.在图中,同色的“爬虫”之间是平移关系,所有同色的“爬虫”可以通过其中一只经过平移而得到;相邻的不同色的“爬虫”之间可以通过旋转而得到,其中,旋转角度为120°,旋转中心为“爬虫”头上、腿上或脚趾上一点.(四)练习与提高1.图4-5是由12个全等三角形组成的,利用平移、轴对称或旋转分析这个图案的形成过程.图4-5这个图形可以按照以下步骤形成的.(1)以一个三角形的一条边为对称轴作与它对称的图形.(2)将得到的这组图形以一条边的中点为旋转中心旋转180 °.(3)分别以图4-6这两组图形为平移的“基本图案”,各平移两次,即可得到最终的图形.图4-62.欣赏:(五)课堂小结鼓励学生结合本节课的学习,谈自己的收获与感想(学生畅所欲言,教师给予鼓励).(六)教学反思。
第三章图形的平移与旋转(二)学习目标:1.经历对生活中的典型图案进行观察、分析、欣赏等过程,进一步发展空间观念、增强审美意识. 2.通过学生之间的交流、讨论、培养学生的合作精神.3.经历构建本章知识的络图,培养梳理知识的能力,核心知识的理解是关键.(三)重点、难点:理解平移、旋转与中心对称的概念和性质.掌握坐标系中平移、对称的坐标特征.灵活运用平移、旋转与中心对称的概念和性质解决相关图形问题.(三)教学过程一、导入新课(约5分钟)本单元我们主要学习了什么知识呢?请同学们回顾思考一下.二、自学目标(约1分钟)1.回顾本单元主要知识点.2.形成较为清晰的知识网络.三、1.自学指导(约1分钟)让学生看第三单元自己总结.2.自主学习(约5分钟)学生按要求进行自学,教师要注意学生的学习动向,对于疑难问题及时进行提示,注意发现学生所存在的问题,以便在导学中有的放矢,重点解决。
3.教师导学(约5分钟)1.看目录——找联系——形成网2. 轴对称、平移、旋转的区别及联系:3.中心对称与轴对称的联系与区别4.图形的平移与坐标变化之间的关系(1)设(x,y)是原图形上的一点,经过平移后,这个点与其对应点的坐标之间有如下关系:(2)设(x,y)是原图形上的一点,当它沿x轴方向平移a个单位长度(a>0)、沿y轴方向平移b个单位长度(b>0)后,这个点与其对应点的坐标之间有如下关系:五.训练检测(约10分钟)(五)教学反思八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,已知12∠=∠,添加一个条件,使得ABC ADC ∆≅∆,下列条件添加错误的是( )A .B D ∠=∠B .BC DC = C .AB AD = D .34∠=∠【答案】B 【分析】根据三角形全等的判定定理添加条件即可.【详解】若添加B D ∠=∠,则可根据“AAS”判定两三角形全等;若添加BC DC =,则有两组对应边相等,但相等的角不是夹角,不能判定两三角形全等; 若添加AB AD =,则可根据“SAS”判定两三角形全等;若添加34∠=∠,则可根据“ASA”判定两三角形全等;故选:B【点睛】本题考查的是判定两个三角形全等的条件,需要注意的是,当两边对应相等,但相等的角不是夹角时,是不能判定两个三角形全等的.2.如图,∠AOB =10°,点P 是∠AOB 内的定点,且OP =1.若点M 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是( )A .12B .9C .6D .1【答案】D 【分析】根据题意,作点P 关于OA 、OB 的对称点E 、D ,连接DE ,与OA 相交于点M ,与OB 相交于点N ,则此时△PMN 周长的最小值是线段DE 的长度,连接OD 、OE ,由∠AOB =10°,得到∠DOE=60°,由垂直平分线的性质,得到OD=OE=OP=1,则△ODE 是等边三角形,即可得到DE 的长度.【详解】解:如图:作点P 关于OA 、OB 的对称点E 、D ,连接DE ,与OA 相交于点M ,与OB 相交于点N ,则此时△PMN 周长的最小值是线段DE 的长度,连接OD 、OE ,由垂直平分线的性质,得DN=PN,MP=ME,OD=OE=OP=1,∴△PMN周长的最小值是:PN+PM+MN=DN+MN+ME=DE,由垂直平分线的性质,得∠DON=∠PON,∠POM=∠EOM,∴∠DOE=∠DOP+∠EOP=2(∠PON+∠POM)=2∠MON=60°,∴△ODE是等边三角形,∴DE=OD=OE=1,∴△PMN周长的最小值是:PN+PM+MN=DE=1;故选:D.【点睛】本题考查了等边三角形的判定,垂直平分线的性质,轴对称的性质,以及最短路径问题,解题的关键是正确作出辅助线,确定点M、N的位置,使得△PMN周长的最小.3.如果等腰三角形两边长为3cm和7cm,那么它的周长是().A.13cm B.17cm C.13cm或17cm D.16cm【答案】B【分析】分两种情况:①底为3cm,腰为7cm时,②底为7cm,腰为3cm时;还要应用三角形的三边关系验证能否组成三角形.【详解】分两种情况:①底为3cm,腰为7cm时,+>,∵377=++=(cm);∴等腰三角形的周长37717②底为7cm,腰为3cm时,+<,∵337∴不能构成三角形;综上,等腰三角形的周长为17cm;故选:B.【点睛】本题考查了等腰三角形的性质、三角形的三边关系定理;解此类题注意分情况讨论,还要看是否符合三角形的三边关系.4.500米口径球面射电望远镜,简称FAST ,是世界上最大的单口径球面射电望远镜,被誉为“中国天眼”.2018年4月18日,FAST 望远镜首次发现的毫秒脉冲星得到国际认证,新发现的脉冲星自转周期为0.00519秒,是至今发现的射电流量最弱的高能毫秒脉冲星之一.将0.00519用科学记数法表示应为( )A .5.19×10-2B .5.19×10-3C .5.19×10-4D .51.9×10-3 【答案】B【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00519=5.19×10-1. 故选:B .【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.5.已知点)1y ,()24,y 都在一次函数32y x =-+的图像上,则12,y y 的大小关系是( )A .12y y >B .12y y =C .12y y <D .不能确定 【答案】A【分析】先根据一次函数的解析式判断出函数的增减性,再根据两点横坐标的大小即可得出结论.【详解】∵一次函数32y x =-+中,k=-3<0,∴y 随x 的增大而减小,4,∴y 1>y 1.故选:A .【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.6.下列计算正确的是( )A =B .1=C .2=D 2÷=【答案】D【分析】分别利用二次根式加减乘除运算法则化简求出答案即可+不是同类项,不能合并,故本选项错误;【详解】解:A、23B、23-不是同类项,不能合并,故本选项错误;⨯=,故本选项错误;C、2323D、8242÷==;故本选项正确;故选:D【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.7.下列图形中,是轴对称图形的个数是()A.1个B.2个C.3个D.4个【答案】C【解析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.【详解】解:第一个不是轴对称图形;第二个是轴对称图形;第三个是轴对称图形;第四个是轴对称图形;故是轴对称图形的个数是3个.故选C.【点睛】此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.8.在平面直角坐标系中,若点P(m+3,-2m)到两坐标轴的距离相等,则m的值为()A.-1 B.3 C.-1或3 D.-1或5【答案】C【分析】根据到坐标轴的距离相等,分横坐标与纵坐标相等和互为相反数两种情况讨论解答.【详解】解:∵点P(m+3,-2m)到两坐标轴的距离相等∴m+3+(-2m)=0或m+3=-2m解得m=3或m=-1故选:C【点睛】本题考查了点的坐标,难点在于要分两种情况讨论,熟记各象限内点的坐标特征是解题的关键. 9.在4y ,4y ,6x y +,2x y+,xπ中分式的个数有()A .1个B .2个C .3个D .4个【答案】B【解析】判断一个式子是否是分式,关键要看分母中是否含有未知数,然后对分式的个数进行判断.【详解】解:分式有4y ,6x y +,共2个,故选:B .【点睛】本题主要考查分式的概念,分式与整式的区别主要在于:分母中是否含有未知数.10.如图,点D 、E 在△ABC 的边BC 上,△ABD ≌△ACE ,下列结论不一定成立的是( )A .AC CD =B .BE CD =C .ADE AED ∠=∠ D .BAE CAD ∠=∠【答案】A【分析】根据全等三角形的对应边相等、对应角相等逐一判断即可.【详解】∵△ABD ≌△ACE ,∴BD=CE ,∴BE=CD ,故B 成立,不符合题意;∠ADB=∠AEC ,∴∠ADE=∠AED ,故C 成立,不符合题意;∠BAD=∠CAE ,∴∠BAE=∠CAD ,故D 成立,不符合题意;AC 不一定等于CD ,故A 不成立,符合题意.故选:A .【点睛】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.二、填空题11.若分式方程11x -=122x -无解,则增根是_________ 【答案】1x =【分析】根据分式方程的解以及增根的定义进行求解即可.【详解】解:∵分式方程11212x x =--无解 ∴分式方程有增根∴()210x -=∴增根是1x =.故答案是:1x =【点睛】本题考查了分式方程的解、增根定义,明确什么情况下分式方程无解以及什么是分式方程的增根是解题的关键.12.如图,△ABC ≌△ADE ,∠EAC =35°,则∠BAD =_____°.【答案】35【解析】由全等三角形的性质知:对应角∠CAB=∠EAD 相等,求出∠CAB=∠EAD ,待入求出即可. 解:∵△ABC≌△ADE,∴∠CAB=∠EAD ,∵∠EAC=∠CAB-∠EAB ,∠BAD=∠EAD-∠EAB ,∴∠BAD=∠EAC ,∴∠BAD=∠EAC=35°.故答案为:35.13.如图,△ABC 的三边AB ,BC ,CA 的长分别为14,12,8,其三条角平分线的交点为O ,则::ABO BCO CAO SS S =_____.【答案】7:6:4;【分析】利用角平分线的性质,可得知△BCO ,△ACO 和△ABO 中BC ,AC 和AB 边上的高相等,根据三角形的面积比即为底的比,由此得知结果.【详解】如图,过O 作OD ⊥AB 交AB 于D ,过O 作OE ⊥AC 交AC 于E ,过O 作OF ⊥BC 交BC 于F ,因为点O 为三条角平分线的交点,所以OD=OE=OF ,所以:::1412876::::4:ABO BCO CAO S S S AB BC AC ===.故答案为:7:6:4.【点睛】考查角平分线的性质,学生熟练掌握角平分线到角两边的距离相等这一性质是本题解题关键,利用性质找到面积比等于底的比,从而解题.14.点A (31a -,16a -)在y 轴上,则点A 的坐标为______.【答案】(0,-1)【解析】已知点A (3a-1,1-6a )在y 轴上,可得3a-1=0,解得13a =,所以3a-1=0,1-6a=-1,即A 的坐标为(0,-1).15.若分式11x x +-有意义,x 的取值范围是_________. 【答案】1x ≠【解析】根据分式的分母不等于0时,分式有意义,列出不等式即可得出答案. 解:因为分式11x x +-有意义, 所以10x -≠,解得, 1.x ≠故答案为1x ≠.16.定义[]x 表示不大于x 的最大整数、{}[]x x x =-,例如[]22=,[]2.83-=-,[]2.82=,{}20=,{}2.80.8=,{}2.80.2-=,则满足{}[]2x x =的非零实数x 值为_______.【答案】1.5【分析】设x=n+a ,其中n 为整数,0≤a <1,则[x]=n ,{x}=x-[x]=a ,由此可得出2a=n ,进而得出a=12n ,结合a 的取值范围即可得出n 的取值范围,结合n 为整数即可得出n 的值,将n 的值代入a=12n 中可求出a 的值,再根据x=n+a 即可得出结论.【详解】设x n a =+,其中n 为整数,01a ≤<,则[]x n =,{}[]x x x a =-=, 原方程化为:2a n =, 12a n ∴=. 01a ≤<,即1012n ≤<, 02n ∴≤<, n 为整数,0n ∴=、1.当0n =时,1002a =⨯=,此时0x =, x 为非零实数,0x ∴=舍去;当1n =时,110.52a =⨯=此时 1.5x =. 故答案为:1.1.【点睛】本题考查了新定义运算,以及解一元一次不等式,读懂题意熟练掌握新定义是解题的关键. 17.如图,在ABC ∆中,90ACB ∠=︒,4AC = ,2BC = ,点D 在AB 上,将ACD ∆ 沿CD 折叠,点A 落在点1A 处,1A C 与AB 相交于点E ,若1//AD BC ,则1A D 的长是__________.【答案】2【分析】利用平行线的性质及折叠的性质得到1190A A DB ∠+∠=,即AB ⊥CE ,再根据勾股定理求出AB =,再利用面积法求出CE.【详解】∵1//AD BC ,∴1A DB B ∠=∠,由折叠得: 1A A ∠=∠,∵90ACB ∠=︒,∴90A B ∠+∠=,∴1190A A DB ∠+∠=,∴AB ⊥CE ,∵90ACB ∠=︒,4AC =,BC =,∴AB =, ∵1122AB CE AC BC ⋅⋅=⋅⋅,∴11422⨯=⨯∴CE=43, ∴148433A E =-=, ∵1cosA cosA =,183A D=,∴1A D =,故答案为:.【点睛】此题考查平行线的性质,折叠的性质,勾股定理,利用面积法求三角形的高线,题中求出AB ⊥CE 是解题的关键.三、解答题18.如图,网格中小正方形的边长为1,A (0,4).(1) 在图中标出点P ,使点P 到点A ,B ,C ,D 的距离都相等;(2) 连接PO ,PD ,OD ,此时OPD △是___________三角形;(3) 四边形ABCD 的面积是___________.【答案】(1)见解析;(2)作图见解析;等腰直角;(3)4.【分析】(1)线段AB 、线段BC 、线段CD 的垂直平分线的交点即为所求;(2)根据勾股定理求出PO 、PD 、OD 的长,然后利用勾股定理逆定理进行判断;(3)用四边形ABCD 所在的等腰直角三角形的面积减去一个小等腰直角三角形的面积即可.【详解】解:(1)如图所示,点P 即为所求;(2)OPD △如图所示,22215PO =+=,22215PD,223110OD ,∴PO=PD ,PO 2+PD 2=OD 2,∴OPD △是等腰直角三角形;(3)四边形ABCD 的面积=113311=422. 【点睛】 本题主要考查了线段垂直平分线的性质、勾股定理及其逆定理的应用等知识,根据线段垂直平分线的性质找出点P 的位置是解题的关键.19.先化简,再求值:2a 244a a -+,其中a 3小刚的解法如下:2a 244a a -+=2a 2(2)a -=2a -(a -2)=2a -a +2=a +2,当a 3时,2a 244a a -+32小刚的解法对吗?若不对,请改正.【答案】不对,改正见解析.【解析】解:不对.22(2)a a-- =22a a -- .当a =3时,a -2=3-2<0,∴原式=2a +a -2=3a -2=33-220.已知:如图,在等边三角形ABC 的AC 边上取中点D ,BC 的延长线上取一点E ,使CE=CD .求证:BD=DE .【答案】证明见解析【分析】欲证BD=DE ,只需证∠DBE=∠E ,根据等边三角形的性质及角的等量关系可证明∠DBE=∠E=30°.【详解】∵△ABC 为等边三角形,BD 是AC 边的中线,∴BD ⊥AC ,BD 平分∠ABC ,∠DBE=12∠ABC=30°.∵CD=CE ,∴∠CDE=∠E .∵∠ACB=60°,且∠ACB 为△CDE 的外角,∴∠CDE+∠E=60°.∴∠CDE=∠E=30°,∴∠DBE=∠DEB=30°,∴BD=DE .【点睛】考点:1.等边三角形的性质;2.三角形内角和定理;3.等腰三角形的判定与性质.21.先化简,再求值2224124422a a a a a a ⎛⎫--÷ ⎪-+--⎝⎭,其中a 满足2320a a +﹣=.【答案】232+a a,1 【分析】先将原式进行化简,再23=2a a +代入即可.【详解】解:222412442-2a a a a a a ⎛⎫--÷ ⎪-+-⎝⎭()()()()22221222a a a a a a ⎡⎤+--=+•⎢⎥--⎢⎥⎣⎦()221222a a a a a -+⎛⎫=+• ⎪--⎝⎭()2322a a a a -+=•-()32a a += 232a a += 2320a a +-=,232a a ∴+=,∴原式212== 【点睛】本题考查的是代数式,熟练掌握代数式的化简是解题的关键.22.如图,在四边形ABED 中,90B E ∠=∠=︒,点C 是BE 边上一点,AC CD ⊥,CB DE =.(1)求证:ABC CED △≌△.(2)若5AB =,2CB =,求AD 的长.【答案】(1)见解析;(258【分析】(1)根据“∠B=90°,AC ⊥CD”得出∠2=∠BAC ,即可得出答案;(2)由(1)可得AC=CD ,并根据勾股定理求出AC 的值,再次利用勾股定理求出AD 的值,即可得出答案.【详解】(1)证明:∵90B E ∠=∠=︒,∴190BAC ∠+∠=︒.∵AC CD ⊥,∴1290∠+∠=︒,∴2BAC ∠=∠.在ABC 和CED 中,2,,,BAC B E CB DE ∠=∠⎧⎪∠=∠⎨⎪=⎩()ABC CED AAS △≌△.(2)解:∵ABC CED △≌△,∴5AB CE ==,AC CD =.∵2BC =,∴在Rt ABC △中,225229AC =+=,∵29CD =,∴在Rt ACD △中,2258AD AC CD =+=.【点睛】 本题考查的是全等三角形和勾股定理,解题关键是利用两个直角得出2BAC ∠=∠.23.某区在实施居民用水额定管理前,对居民生活用水情况进行了调查,下表是通过简单随机抽样获得的50个家庭去年月平均用水量(单位:吨),并将调查数据进行如下整理:4.7 2.1 3.1 2.35.2 2.8 7.3 4.3 4.86.74.55.16.5 8.9 2.2 4.5 3.2 3.2 4.5 3.53.5 3.5 3.64.9 3.7 3.85.6 5.5 5.96.25.7 3.9 4.0 4.0 7.0 3.7 9.5 4.26.4 3.54.5 4.5 4.65.4 5.66.6 5.8 4.5 6.27.5频数分布表分组划记 频数 2.0<x≤3.5正正 11 3.5<x≤5.019 5.0<x≤6.56.5<x≤8.08.0<x≤9.52合计50(1)把上面频数分布表和频数分布直方图补充完整;(2)从直方图中你能得到什么信息?(写出两条即可);(3)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费,若要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定为多少?为什么?【答案】详见解析【分析】(1)根据题中给出的50个数据,从中分别找出5.0<x≤6.5与6.5<x≤8.0的个数,进行划记,得到对应的频数,进而完成频数分布表和频数分布直方图.(2)本题答案不唯一.例如:从直方图可以看出:①居民月平均用水量大部分在2.0至6.5之间;②居民月平均用水量在3.5<x≤5.0范围内的最多,有19户.(3)由于50×60%=30,所以为了鼓励节约用水,要使60%的家庭收费不受影响,即要使30户的家庭收费不受影响,而11+19=30,故家庭月均用水量应该定为5吨.【详解】解:(1)频数分布表如下:分组划记频数2.0<x≤3.5正正113.5<x≤5.0195.0<x≤6.5136.5<x≤8.0 58.0<x≤9.5 2合计50频数分布直方图如下:(2)从直方图可以看出:①居民月平均用水量大部分在2.0至6.5之间;②居民月平均用水量在3.5<x≤5.0范围内的最多,有19户.(3)要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定为5吨,因为月平均用水量不超过5吨的有30户,30÷50=60%.24.A,B两地相距80km,甲、乙两人骑车同时分别从A,B两地相向而行,假设他们都保持匀速行驶,则他们各自到A地的距离s(km)都是骑车时间t(h)的一次函数,如图所示.(1)求乙的s乙与t之间的解析式;(2)经过多长时间甲乙两人相距10km?【答案】(1)s乙=﹣20t+80;(2)t=2或187.【分析】(1)s乙与t之间的解析式为:y=kt+80,将点(1,60)代入上式并解得:k=−20,即可求解;(2)由题意得:s 甲−s 乙=±10,即可求解.【详解】解:(1)s 乙与t 之间的解析式为:y=kt+80,将点(1,60)代入上式并解得:k=﹣20,故s 乙与t 之间的解析式为:y=﹣20t+80;(2)同理s 甲与t 之间的解析式为:y=15t ,由题意得:s 甲﹣s 乙=±10,即﹣20t+80﹣15t=±10,解得:t=2或187. 【点睛】此题为一次函数的应用,渗透了函数与方程的思想,重点是求乙的k 值.25.我县正准备实施的某项工程接到甲、乙两个工程队的投标书,甲、乙工程队施工一天的工程费用分别为2万元和1.5万元,县招投标中心根据甲、乙两工程队的投标书测算,应有三种施工方案: 方案一:甲队单独做这项工程刚好如期完成;方案二:乙队单独做这项工程,要比规定日期多5天;方案三:若甲、乙两队合做4天后,余下的工程由乙队单独做,也正好如期完成.根据以上方案提供的信息,在确保工期不耽误的情况下,你认为哪种方案最节省工程费用,通过计算说明理由.【答案】方案三最节省工程费用,理由见解析.【分析】设工程如期完成需x 天,则甲工程队单独完成需x 天,乙工程队单独完成需()5+x 天,依题意可列方程,可求x 的值,然后分别算出三种方案的价格进行比较即可.【详解】设工程如期完成需x 天,则甲工程队单独完成需x 天,乙工程队单独完成需()5+x 天,依题意可列方程 415x x x +=+或1144()155x x x x -++=++ 解得:20x经检验20x 是方程的根∴工程如期完成需20天,甲工程队单独完成需20天,乙工程队单独完成需25天,在工期不耽误的情况下,可选择方案一或方案三若选择方案一,需工程款22040⨯=万元若选择方案三,需工程款24 1.52038⨯+⨯=万元故选择方案(3).【点睛】本题主要考查分式方程的应用,熟练掌握分式方程的应用是解题的关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列命题中,是假命题的是( )A .三角形的外角大于任一内角B .能被2整除的数,末尾数字必是偶数C .两直线平行,同旁内角互补D .相反数等于它本身的数是0【答案】A【解析】分析:利用三角形的外角的性质、偶数的性质、平行线的性质及相反数的定义分别判断后即可确定正确的选项.详解:A .三角形的外角大于任何一个不相邻的内角,故错误,是假命题;B .能被2整除的数,末位数字必是偶数,故正确,是真命题;C .两直线平行,同旁内角互补,正确,是真命题;D .相反数等于它本身的数是0,正确,是真命题.故选A .点睛:本题考查了命题与定理的知识,解题的关键是能够了解三角形的外角的性质、偶数的性质、平行线的性质及相反数的定义,属于基础题,难度不大.2.如图,△ABC 中,AB=AC ,BC=5,15ABC S ∆=,AD BC ⊥于D ,EF 垂直平分AB ,交AC 于F ,在EF 上确定一点P 使PB PD +最小,则这个最小值为( )A .3B .4C .5D .6【答案】D 【分析】根据三角形的面积公式得到AD=6,由EF 垂直平分AB ,得到点A ,B 关于执行EF 对称,于是得到AD 的长度=PB+PD 的最小值,即可得到结论.【详解】∴AD=6,∵EF 垂直平分AB ,∴点A ,B 关于直线EF 对称,∴AD的长度=PB+PD的最小值,即PB+PD的最小值为6,故答案选D.【点睛】本题考查的知识点是线段垂直平分线的性质及等腰三角形的性质以及轴对称-最短路线问题,解题的关键是熟练的掌握线段垂直平分线的性质及等腰三角形的性质以及轴对称-最短路线问题.3.为祝福祖国70周年华诞,兴义市中等职业学校全体师生开展了以“我和我的祖国、牢记初心和使命”为主题的演讲比骞,为奖励获奖学生,学校购买了一些钢笔和毛笔,钢笔单价是毛笔单价的1.5倍,购买钢笔用了1200元,购买毛笔用了1500元,购买的钢笔数比毛笔少35支,钢笔、毛笔的单价分别是多少元?如果设毛笔的单价为x元/支,那么下面所列方程正确的是()A.12001500351.5x x-=B.15001200351.5x x-=C.15001200351.5x x=-D.12001500351.5x x-=【答案】B【分析】根据题意可得:1500元购买的毛笔数量-1200元购买的钢笔数量=20支,根据等量关系列出方程,再解即可.【详解】解:设毛笔单价x元/支,由题意得:15001200351.5x x-=,故选:B.【点睛】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,列出方程.4.点P(3,﹣2)关于x轴的对称点P′的坐标是( )A.(﹣3,2) B.(3,﹣2) C.(﹣3,﹣2) D.(3,2)【答案】D【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.【详解】解:点P(3,﹣2)关于x轴的对称点P′的坐标是(3,2).故选D.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.5.在直角坐标系中,点P(3,1)关于x轴对称点的坐标是()A.(3,1) B.(3,﹣1) C.(﹣3,1) D.(﹣3,﹣1)【答案】B【分析】根据题意可设平面直角坐标系中任意一点P,其坐标为(x,y),则点P关于x轴的对称点的坐标P′是(x,-y).【详解】解:点P(3,1)关于x轴对称点的坐标是(3,﹣1).故选:B.【点睛】本题考查了平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系,是需要识记的内容.记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于横轴的对称点,横坐标不变,纵坐标变成相反数.6.下列坐标点在第四象限内的是( )A.(1,2) B.(﹣1,﹣2) C.(﹣1,2) D.(1,﹣2)【答案】D【分析】根据第四象限内的点的横坐标大于零,纵坐标小于零,可得答案.【详解】解:由第四象限内的点的横坐标大于零,纵坐标小于零,得在第四象限内的是(1,-2),故选:D.【点睛】本题考查了点的坐标,熟记各象限内点的坐标特征是解题的关键.7.下列分别是四组线段的长,若以各组线段为边,其中能组成三角形的是()A.7,8,16B.9,4,6C.3,4,7D.4,5,10【答案】B【分析】看哪个选项中两条较小的边的和大于最大的边即可.【详解】A、7+8<16,不能构成三角形,故A错误;B、4+6>9,能构成三角形,故B正确;C、3+4=7,不能构成三角形,故C错误;D、4+5<10,不能构成三角形,故D错误.故选:B.【点睛】本题考查了能够组成三角形三边的条件,其实用两条较短的线段相加,如果大于最长那条就能够组成三角形.8.已知一组数据为2,3,5,7,8,则这组数据的方差为()A.3 B.4.5 C.5.2 D.6【答案】C【分析】先求出这组数据的平均数,再根据方差公式分别进行计算即可.【详解】解:这组数据的平均数是:(1+3+5+7+8)÷5=5,则方差=15[(1﹣5)1+(3﹣5)1+(5﹣5)1+(7﹣5)1+(8﹣5)1]=5.1.故选C.【点睛】此题考查方差,掌握方差公式是解题关键.9.一辆装满货物,宽为2.4米的卡车,欲通过如图的隧道,则卡车的外形高必须低于()A.4.1米B.4.0米C.3.9米D.3.8米【答案】A【分析】根据题意欲通过如图的隧道,只要比较距厂门中线1.2米处的高度比车高即可,根据勾股定理得出CD的长,进而得出CH的长,即可得出答案.【详解】车宽2.4米,∴欲通过如图的隧道,只要比较距厂门中线1.2米处的高度与车高,在Rt OCD△中,由勾股定理可得:22222 1.2 1.6CD OC OD=-=-=(m),1.62.5 4.1CH CD DH=+=+=米,∴卡车的外形高必须低于4.1米.故选:A.【点睛】此题主要考查了垂径定理和勾股定理的应用,根据题意得出CD的长是解题关键.10.下列各数中,能化为无限不循环小数的是()A.13B.15C.17D.2π【答案】D【解析】根据无理数的概念进行选择判断.【详解】解:A.13属于无限循环小数;B.10.25= 属于有限小数; C.17 属于无限循环小数; D.2π属于无限不循环小数. 故选D .【点睛】本题考查无理数的概念,比较简单.二、填空题11.要使分式21x -有意义,则x 的取值范围是_______. 【答案】x ≠1【分析】分式有意义的条件:分母不等于零,依此列不等式解答. 【详解】∵分式21x -有意义, ∴10x -≠,解得x≠1故答案为:x≠1.【点睛】此题考查分式有意义的条件,正确掌握分式有意义的条件列不等式是解题的关键.12.分解因式:ax 2-a=______.【答案】(1)(1)a x x +-【解析】先提公因式,再套用平方差公式. 【详解】ax 2-a=a (x 2-1)=()()11a x x +- 故答案为:()()11a x x +-【点睛】掌握因式分解的一般方法:提公因式法,公式法.13.用科学记数法表示下列各数:0.000 04=_____.【答案】4×10﹣1 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000 04=4×10﹣1; 故答案为:4×10﹣1.【点睛】此题考查了用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.14.如图,将一副直角三角板,按如图所示叠放在一起,则图中∠COB=____.【答案】105°.【分析】先根据直角三角形的特殊角可知:∠ECD=45°,∠BDC=60°,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】如图,∠ECD=45°,∠BDC=60°,∴∠COB=∠ECD+∠BDC=45°+60°=105°.故答案为:105°.【点睛】此题考查三角形外角的性质,掌握三角形的一个外角等于与它不相邻的两个内角的和的性质是解题的关键.15.如图,在ABC ∆中,AB AC =,点D 、E 在BC 的延长线上,G 是AC 上一点,且CG CD =,F 是GD 上一点,且DF DE =.若100A ∠=︒,则E ∠的大小为__________度.【答案】10【解析】根据三角形外角的性质,结合已知DF DE =,得∠E=12∠CDG ,同理, CG CD =,∠CDG=12∠ACB , AB AC =,得出∠ACB=∠B ,利用三角形内角和180°,计算即得. 【详解】∵DE=DF ,CG=CD , ∴∠E=∠EFD=12∠CDG , ∠CDG=∠CGD=12∠ACB , 又∵AB=AC ,∴∠ACB=∠B=12(180°-∠A)=12(180°-100°)=40°,∴∠E=1140=10 22⨯⨯︒︒,故答案为:10°.【点睛】本题考查了等腰三角形的性质以及三角形外角的性质,解题的关键是灵活运用等腰三角形的性质和三角形外角的性质确定各角之间的关系.16.科学家发现一种病毒的直径为0.0043微米,则用科学记数法表示为__________微米.【答案】4.1×10﹣1【解析】0.0041=4.1×10﹣1.点睛:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定(包括小数点前面的0).17.如图,在平面直角坐标系中,A(3,1),B(23,0),点P为线段OB上一动点,将△AOP 沿AO翻折得到△AOC,将△ABP沿AB翻折得到△ABD,则△ACD面积的最小值为_____.【答案】3 4【分析】如详解图,作AH⊥OB于H.首先证明∠OAB=120°,再证明△CAD是顶角为120°的等腰三角形,最后根据垂线段最短解决问题即可.【详解】解:如图,作AH⊥OB于H.∵A3,1),∴OH3,AH=1,∴tan∠OAH=OHAH=3∴∠OAH=60°,。
八年级数学下册第三章图形的平移与旋转导
学案(新版)北师大版
【学习目标】
课标要求:经历构建本章知识的网络图,培养梳理知识的能力,核心知识的理解是关键。
情感、态度与价值观
1、经历对生活中的典型图案进行观察、分析、欣赏等过程,进一步发展空间观念、增强审美意识、
2、通过学生之间的交流、讨论、培养学生的合作精神、教学重点:理解平移、旋转与中心对称的概念和性质、掌握坐标系中平移、对称的坐标特征。
教学难点:灵活运用平移、旋转与中心对称的概念和性质解决相关图形问题。
目标达成:学习流程:
1、平移是否改变图形的位置、形状和大小?旋转呢?请举例说明、
2、平移、旋转各有哪些基本性质?请举例说明、
3、在平面直角坐标系中,平移后的图形与原图形对应点的坐标之间有怎样的关系?请举例说明、
4、两个成中心对称的图形有哪些特性?中心对称图形有哪些特性?
【课前展示】
线段垂直平分线的定义
【创境激趣】
知识点归纳:1)平移平移的概念:在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做图形的平移。
平移的性质:平移不改变图形的形状和大小;图形经过平移,连接各组对应点所得的线段互相平行且相等。
2)旋转旋转的概念:把一个图形绕一个定点转动一定的角度,这样的图形运动叫做旋转,这个定点叫做旋转中心,旋转的角度叫做旋转角。
旋转的性质:旋转前、后的图形全等;对应点到旋转中心的距离相等;每一对对应点与旋转中心的连线所成的角彼此相等。
(3)轴对称:如果一个图形沿一条直线折叠后,直线两旁的部分能够重合,那么这个图形叫做轴对称图形。
(4)中心对称与中心对称图形:中心对称与中心对称图形的联系与区别区别: 中心对称指两个全等图形的相互位置关系,中心对称图形指一个图形本身成中心对称、联系: 如果将中心对称图形的两个图形看成一个整体,则它们是中心对称图形、如果将中心对称图形对称的部分看成两个图形,则它们成中心对称、
(二)构建知识网络图
1、看目录找联系形成网
2、轴对称、平移、旋转的区别及联系:
3、中心对称与轴对称的联系与区别
4、图形的平移与坐标变化之间的关系(1)设(x,y)是原图形上的一点,经过平移后,这个点与其对应点的坐标之间有如下关系:平移方向平移距离对应点的坐标沿x轴方向向右平移a
个单位长度(a>0)(x+a,y)向左平移(x-a,y)沿y轴方向向上平移(x,y+a)向下平移(x,y-a)(2)设(x,y)是原图形上的一点,当它沿x轴方向平移a个单位长度(a>0)、沿y 轴方向平移b个单位长度(b>0)后,这个点与其对应点的坐标之间有如下关系:平移方向和平移距离对应点的坐标向右平移a 个单位长度,向上平移b个单位长度(x+a,y+b)向右平移a个单位长度,向下平移b个单位长度(x+a,y-b)向左平移a个单位长度,向上平移b个单位长度(x-a,y+b)向左平移a个单位长度,向下平移b个单位长度(x-a,y-b)(三)巩固练习板块1画一画(1)板块2画一画(2)板块3平移、旋转、中心对称的运用例
2、 P是正方形内一点,将△ A BP绕点B顺时针方向旋转至与△CBP′重合,若PB=3,求PP′的长。
ABCDPP′
四、总结归纳图形的轴对称、平移、旋转是几何中的重要概念,应用轴对称、平移、旋转解题也是一种极为重要的数学思想方法,适当地应用轴对称、平移、旋转等方法,将那些分散、远离的条件从图形的某一部分转移到适当的新的位置上,集中、汇集已知条件和求证结论,发现、拓展解题思路,构造基础三角形、平行四边形,进行计算与证明。
【归纳总结
】
1、线段的垂直平分线在计算、证明、作图中都有着重要作用。
在前面学习中,有一些用三角形全等的知识来解决问题,现在可用线段垂直平分线的定理及其逆定理来解会更方便些。
【板书设计】
回顾与思考1知识框图2例题
【教学反思】
在这一节中,所介绍的定理实际是在七年级曾经探索过的命题,如线段垂直平分线的性质定理,作为探索活动的自然延续和必要发展,我们作为老师要善于引导学生从问题出发,根据观察、实验的结果,先得出猜想,然后再进行证明,要求学生掌握证明的基本要求和方法,注意数学压想方法的强化和渗透、。