分数加减混合运算(例2、例3)
- 格式:ppt
- 大小:1.53 MB
- 文档页数:13
[分数加减混合运算题]分数的加减混合运算分数的加减混合运算篇1:分数加减混合运算分数的加减混合运算篇2:分数加减混合运算练习题填空。
1、19前面一个数是,后面一个数是______。
2、一个数,个位是6,十位是3,这个数写,读______。
3、和18相邻的两个数是和______。
4、12在13的前面;10在9的后面______。
5、21里面有______个十和个一。
6、15的十位是______,表示______个;个位是5,表示5个。
7、由9个一和1个十合起来的数写作,读作______。
8、最小的两位数是,最大的一位数______是,它们的差是______,和是______。
应用题1、修一条路,第一天修了全长的2/5,第二天修了全长的2/7,第三天要把剩下的全修完。
第三天修了全长的几分之几?2、一个果园要种桃树、苹果树和梨树,其中种的桃树和梨树占总面积的13/16,苹果树和梨树占总面积的5/8。
梨树的面积占总面积的几分之几?3、小李身高8/5米,小张比小李高1/20米,小王又比小张高1/50米,小王和小张的身高各是多少米?4、有三根跳绳,第一根比第二根短1/6米,第三根比第二根短3/8米。
问第三根和第一根跳绳哪个长?长多少米?5、一批树苗,五年级第一天栽了全班的2/5 ,第二天比第一天多栽了总数的1/12。
剩下多少没有栽?6、三个小沙包,第一个重7/12千克,比第二个重1/15千克,比第三个轻1/5千克,三个沙包共重多少千克?7、一根电缆剪去 2/6米,再接上3/4米后,长是2米。
问这根电线原来有多少米?8、有两根同样长的绳子,第一根剪去5/24米,第二根剪去3/8米,余下的绳子长5/12米。
那么第一根绳子余下多少米?分数的加减混合运算篇3:分数加减混合运算课件分数加减混合运算课件范例1教学目标1.使学生知道的运算顺序,和整数加减混合运算的运算顺序相同.2.使学生知道也可以一次通分,再计算.教学重点能运用运算顺序正确进行计算.教学难点使学生掌握什么时候一次通分好,什么时候分步通分好.教学步骤一、铺垫孕伏.1.口算.2.计算下面各题.二、探究新知.新课导入:这节课,我们学习新的内容分数加、减混合运算.(板书课题:)(一)教学例1(没有括号的算式计算方法)教师提问:回忆一下整数加减混合运算的运算顺序是怎样的?学生回答:整数加减混合运算顺序是从左往右依次计算.遇到有括号的,应该先算括号里面的.教师谈话:请同学们打开书136页读一下第一段的文字.这一段告诉我们什么内容?学生回答:这段文字告诉我们:的运算顺序与整数的相同;为了简便,几个分数可以一次通分,然后按照运算顺序依次进行计算.1.出示例1:计算2.观察算式:这是一个加减混合运算的等式;三个分数是异分母的分数,计算时应当从左往右计算;分母不同,计算时应先通分.3.学生独立解答.第一种算法:第二种算法:思考:这两种算法有什么不同?哪一种简便?教师强调:三个分数是异分母分数,先一次通分比较简便.4.总结没括号算式的计算方法.5.反馈练习:(二)教学例2(有括号的算式的计算方法)1.出示例2 计算教师提问:请同学们观察一下这个算式与例1有什么不同?(有了小括号)这道题的运算顺序是什么?(这道题的运算顺序是先算括号里面的,再算括号外面的)2.学生独立解答.思考:这道题为什么分步通分计算比较好?3.总结有括号算式的计算方法.4.反馈练习.三、全课小结.今天我们学习了什么内容?它的运算顺序是怎样的?四、随堂练习.1.填空.的运算顺序和____________相同.没有括号的顺序是:______________;有括号的的运算顺序是先算____________,后算______________.2.计算.3.计算.五、布置作业.1.从里减去,所得的差与相加,和是多少?2.从里减去与的和,差是多少?六、板书设计的运算顺序和整数加减混合运算的运算顺序相同.分数加减混合运算课件范例2教学目标(一)认识到分数,小数加减混合运算,应针对题目的具体情况,选择合理、正确的方法进行计算。
分数的运算混合应用【分数的运算混合应用】分数是数学中常见的一种数表示形式,分数可用于实际生活和数学问题中的运算和应用。
本文将介绍分数的四则运算和混合运算,并结合实际应用场景进行说明。
一、分数的四则运算1. 加法运算对于两个分数,如a/b和c/d,其中a、b、c、d为整数且b、d不为0,它们的和为(ad+bc)/(bd)。
举例:1/3 + 2/5 = (1*5 + 2*3)/(3*5) = 11/152. 减法运算对于两个分数,如a/b和c/d,其中a、b、c、d为整数且b、d不为0,它们的差为(ad-bc)/(bd)。
举例:3/4 - 1/2 = (3*2 - 1*4)/(4*2) = 2/8 = 1/43. 乘法运算对于两个分数,如a/b和c/d,其中a、b、c、d为整数且b、d不为0,它们的乘积为(ac)/(bd)。
举例:2/3 * 3/4 = (2*3)/(3*4) = 6/12 = 1/24. 除法运算对于两个分数,如a/b和c/d,其中a、b、c、d为整数且b、c不为0,它们的除法可以转换为乘法,即a/b ÷ c/d = (a/b) * (d/c),再按乘法运算进行计算。
举例:2/3 ÷ 1/4 = (2/3) * (4/1) = (2*4)/(3*1) = 8/3二、分数的混合运算分数的混合运算指的是同时进行加法、减法、乘法和除法的运算,其中涉及整数和分数的组合运算。
在混合运算中,首先按照运算优先级进行计算,并遵循先乘除后加减的原则。
举例:问题:小明做了一道数学题,他先计算了2/3 + 1/4,然后将结果乘以2,最后再减去3/5。
请计算小明最终的答案。
解答:1. 首先计算2/3 + 1/4 = (2*4 + 1*3)/(3*4) = 11/122. 再将11/12乘以2 = (11/12) * 2 = 22/123. 最后减去3/5 = (22/12) - (3/5)= (22*5 - 3*12)/(12*5)= (110 - 36)/60= 74/60因此,小明最终的答案为74/60。
小学数学练习题分数加减混合运算小学数学练习题:分数加减混合运算在小学数学学习中,分数加减混合运算是一种常见的题型,要求学生掌握分数的加减运算方法,并能够灵活运用到各种实际问题中。
本文将通过一些典型的小学数学练习题,来帮助学生巩固和提高分数加减混合运算的能力。
1. 示例题一:小明用了1/3小时做作业,又用了1/4小时看电视。
他一共用了多长时间?解析:这道题中,需要将1/3小时和1/4小时合并计算出总时间。
我们可以先找到这两个分数的公共分母,然后再进行相加运算。
1/3小时和1/4小时的公共分母为12,分别转化为12分之几,即4/12小时和3/12小时。
将这两个分数相加得到7/12小时,即小明一共用了7/12小时。
2. 示例题二:小红从家里到学校,走了1/2小时的路程,然后又骑了1/3小时的自行车。
如果她一共用了5/6小时,那么她骑自行车的时间是多长?解析:题中已知小红一共用了5/6小时,其中走路用了1/2小时,我们需要求出骑车的时间。
由于总时间已知,我们可以用总时间减去已知的走路时间,即5/6小时减去1/2小时。
通过分数减法计算,5/6小时减去1/2小时得到一个分数结果,我们将其化简即可得出答案。
转化为同分母计算,得到10/12小时减去6/12小时,等于4/12小时,即小红骑自行车的时间为4/12小时。
3. 示例题三:小明家的电视每小时消耗1/5度电,他看了3/5小时电视,一共消耗了多少度电?解析:这道题中,我们需要计算小明看了3/5小时电视后消耗的总电量。
我们可以利用乘法将分数相乘,即将1/5度电乘以3/5小时。
通过分数的乘法运算,得到结果为3/25度电,即小明在看3/5小时电视后消耗了3/25度电。
通过以上三个示例题,我们可以看到分数加减混合运算并不复杂,只需要掌握一些基本的运算规则和技巧即可。
在实际做题过程中,我们可以适当化简分数,转化为相同的分母进行计算,从而简化计算过程。
总结起来,小学数学练习题中的分数加减混合运算是一个提高学生计算能力和逻辑思维能力的重要环节。
分数的加减混合运算在数学中,分数的加减混合运算是一种常见而重要的计算方法。
通过对分数的加减运算,可以对数值进行比较、计算和判断。
本文将介绍分数的加减混合运算,并通过一些例子来帮助读者理解和掌握这一概念。
一、分数的加法运算分数的加法运算是指将两个或多个分数相加,得到它们的和。
在进行分数的加法运算时,我们需要有相同的分母,然后将分子相加即可。
例如,计算1/4 + 2/4:由于两个分数的分母都是4,因此我们可以直接将分子相加。
1+2=3,所以1/4 + 2/4等于3/4。
再比如,计算3/8 + 5/8 + 1/8:由于三个分数的分母都是8,因此我们可以直接将分子相加。
3+5+1=9,所以3/8 + 5/8 + 1/8等于9/8,但是9/8是一个假分数,我们通常将其化简为1又1/8。
二、分数的减法运算分数的减法运算是指将一个分数减去另一个分数,得到它们的差。
在进行分数的减法运算时,我们同样需要有相同的分母,然后将分子相减即可。
例如,计算3/5 - 1/5:由于两个分数的分母都是5,因此我们可以直接将分子相减。
3-1=2,所以3/5 - 1/5等于2/5。
再比如,计算2/3 - 1/4:由于两个分数的分母不同,我们需要先找到一个相同的公倍数,然后将分子进行相应的调整后再进行计算。
3和4的最小公倍数是12,因此我们将2/3调整为8/12,将1/4调整为3/12,然后进行减法运算。
8-3=5,所以2/3 - 1/4等于5/12。
三、分数的加减混合运算分数的加减混合运算是指在一个表达式中同时存在加法和减法运算。
在进行分数的加减混合运算时,我们需要先进行括号内的运算,然后将括号外的项与括号内的结果进行运算。
例如,计算1/2 + 3/4 - 1/8:首先,我们需要先计算括号内的加法运算。
3/4和1/8的最小公倍数是8,因此我们将3/4调整为6/8,将1/8保持不变,然后进行加法运算。
6/8+1/8=7/8。
接下来,将1/2和7/8进行减法运算。
分数的混合运算在数学中,混合运算是指同时运用多种运算符号进行计算的过程。
分数的混合运算则是指在计算过程中涉及到分数的加减乘除等不同运算规则的综合应用。
本文将通过多个实例,深入探讨分数的混合运算。
一、分数的加减运算分数的加减运算是指对两个或多个分数进行相加或相减。
1. 例子一:求解分数相加已知1/4 + 1/6,我们可以通过以下步骤进行计算:首先,我们需要找到两个分数的最小公倍数,即4和6的最小公倍数为12。
然后,我们将两个分数的分母改为最小公倍数,得到1/12和2/12。
最后,我们将两个分数的分子相加,得到3/12,即1/4 + 1/6 = 3/12。
2. 例子二:求解分数相减已知3/8 - 1/6,我们可以按照以下步骤进行计算:首先,我们需要找到两个分数的最小公倍数,即8和6的最小公倍数为24。
然后,我们将两个分数的分母改为最小公倍数,得到9/24和4/24。
最后,我们将两个分数的分子相减,得到5/24,即3/8 - 1/6 = 5/24。
二、分数的乘除运算分数的乘除运算是指对两个或多个分数进行相乘或相除。
1. 例子三:求解分数相乘已知2/5 × 3/4,我们可以按照以下步骤进行计算:直接将两个分数的分子相乘,并将两个分数的分母相乘,得到6/20。
然后,我们可以对6/20进行约分,得到3/10,即2/5 × 3/4 = 3/10。
2. 例子四:求解分数相除已知2/3 ÷ 1/4,我们可以按照以下步骤进行计算:由于除法是乘法的倒数,我们可以将除法转化为乘法,并将除数取倒数。
即,2/3 ÷ 1/4 = 2/3 × 4/1 = 8/3。
最后,我们可以对8/3进行约分,得到2 2/3,即2/3 ÷ 1/4 = 2 2/3。
三、混合运算实例下面通过一个混合运算的实例,综合运用分数的加减乘除运算。
例子五:求解复杂运算已知(1/2 + 3/4) × (2/5 ÷ 1/3 - 4/3),我们可以按照以下步骤进行计算:首先,计算括号内的加减运算:1/2 + 3/4 = 2/4 + 3/4 = 5/4。
带分数的加减混合运算混合运算是数学中常见的一种运算方式,它包括加法和减法两种运算符号。
而带分数则是由整数部分和分数部分组成的数形式。
本文将探讨带分数的加减混合运算,并给出相关例题和解答。
在进行带分数的加减混合运算之前,我们先来了解一下带分数和混合运算的基本概念。
带分数是由一个整数部分和一个分数部分组成的数,例如2 1/2就是一个带分数。
而混合运算是指在一个数式中同时出现加法和减法的运算方式。
下面我们通过一些例题来进一步说明带分数的加减混合运算的步骤和方法。
例题一:计算 3 2/3 + 1 1/4 - 2 1/6解答:首先,我们要找出各个分数的最小公倍数,以便进行通分。
在这个例子中,2/3,1/4,和1/6的最小公倍数是12。
接下来,我们对每个分数进行通分,得到相同的分母,然后按照加法和减法的顺序计算。
具体步骤如下:3 2/3 + 1 1/4 - 2 1/6= (3×3/3) + (1×3/3) + (2×2/2) - (2×1/2)= 9/3 + 3/3 + 4/2 - 2/2= (9+3)/3 + 4/2 - 2/2= 12/3 + 4/2 - 2/2= 4 + 4/2 - 2/2= 4 + 2 - 1= 5所以,3 2/3 + 1 1/4 - 2 1/6 = 5。
通过这个例题,我们可以看出带分数的加减混合运算实际上就是将各个分数通分,然后按照加法和减法的规则进行计算。
值得注意的是,当分子大于分母时,我们需要将其转化为带分数的形式。
在进行带分数的加减混合运算时,我们还需要注意以下几点:1. 确保计算时分子大于等于0且小于分母。
如果分数不满足这个条件,需要进行化简或转化为带分数的形式。
2. 学会找到各个分数的最小公倍数,以便进行通分。
例题二:计算 5 - 2 3/4 + 1 2/8解答:首先,我们将带分数转化为假分数。
例如2 3/4可以转化为11/4,1 2/8可以转化为10/8。
分数的混合运算解决包含分数的加减乘除混合运算问题分数的混合运算是数学中常见的题型,包括了加法、减法、乘法和除法。
当这些运算涉及到分数时,就需要我们掌握一些特定的解决方法。
本文将介绍如何解决包含分数的加减乘除混合运算问题。
一、加法运算在进行分数的加法运算时,需要保证分母相同。
如果分母不同,需要求出它们的最小公倍数,然后将分子与最小公倍数进行比例运算,将两个分数化为相同分母的形式后再进行加法运算。
举个例子来说:例题1:计算1/4 + 2/5。
解:首先求出1/4与2/5的最小公倍数为20,然后将1/4与2/5化为20分母的形式:1/4 = 5/20,2/5 = 8/20。
化为相同分母后,可以直接进行分子相加:5/20 + 8/20 = 13/20。
所以1/4 + 2/5 = 13/20。
二、减法运算与加法运算类似,分数的减法也需要保证分母相同。
如果分母不同,需要求出它们的最小公倍数,然后将分子与最小公倍数进行比例运算,将两个分数化为相同分母的形式后再进行减法运算。
举个例子来说:例题2:计算3/5 - 1/3。
解:首先求出3/5与1/3的最小公倍数为15,然后将3/5与1/3化为15分母的形式:3/5 = 9/15,1/3 = 5/15。
化为相同分母后,可以直接进行分子相减:9/15 - 5/15 = 4/15。
所以3/5 - 1/3 = 4/15。
三、乘法运算在进行分数的乘法运算时,只需要将两个分数的分子相乘,分母相乘即可。
举个例子来说:例题3:计算2/3 × 4/5。
解:直接进行分子相乘,分母相乘:2/3 × 4/5 = 8/15。
所以2/3 × 4/5 = 8/15。
四、除法运算在进行分数的除法运算时,需要将除数的分子与被除数的分母相乘,除数的分母与被除数的分子相乘,然后将结果化简。
举个例子来说:例题4:计算2/3 ÷ 1/4。
解:将除数的分子与被除数的分母相乘,除数的分母与被除数的分子相乘:2/3 ÷ 1/4 = (2 × 4)/(3 × 1) = 8/3。