九年级三角函数的应用
- 格式:docx
- 大小:3.09 MB
- 文档页数:8
三角函数在初中数学中的应用在初中数学学习中,三角函数是比较重要的内容。
在初中阶段,学生主要学习正弦函数、余弦函数和正切函数。
这三个函数在生活中的应用非常广泛,几乎涉及到生活的各个方面。
三角函数在初中数学中的应用,主要分为以下几个方面。
一、图形的模拟三角函数可以用来模拟一些具有规律性的图形,例如:正弦函数可以模拟海浪般的波形,余弦函数可以模拟钟摆的运动,正切函数可以模拟图形的变化趋势。
在初中阶段,学生可以通过计算出每个函数在不同角度下的值,来绘制出完整的图形。
通过这种方式,可以让学生更好地理解三角函数的定义、性质和应用。
二、三角函数在几何中的应用三角函数在初中数学中的应用,最重要的一个方面是在几何学中的应用。
初中阶段学生主要学习平面几何、立体几何和三角形几何。
而正弦函数、余弦函数和正切函数都可以用来计算三角形的各种参数。
例如:学生可以利用正弦定理来计算三角形的角度或者利用余弦定理来计算三角形的边长。
而计算三角形的高度、面积等参数,可以使用三角函数中的正切函数进行计算。
三、三角函数在物理中的应用三角函数在初中数学中的应用,还可以用在物理学中。
在物理学中,三角函数尤其是正弦函数和余弦函数,常常被用来描述周期性的现象。
例如:学生可以利用正弦函数和余弦函数来模拟电磁波的传播、声波的振动以及光的折射等现象。
而在物理学中,正切函数通常用于计算速度、加速度和力等物理量的变化趋势。
四、三角函数在工程领域中的应用三角函数在初中数学中的应用还可以用在工程领域中。
例如在建筑、制造、电子工程、汽车制造等领域,都需要用到三角函数。
例如:在建筑领域中,工人需要计算出房屋的倾斜角度和高度,以此来安装楼梯、门框和捆绑钢管等工作。
而在制造领域中,设计师需要计算出各个部件之间的角度和长度,以此来制作出精确的机械。
五、三角函数在数学竞赛中的应用三角函数在初中数学中的应用,最后一个方面是在数学竞赛中的应用。
学生只有深入理解了三角函数的定义、性质和应用,才能在数学竞赛中取得好成绩。
初中数学三角函数的定义与应用三角函数是初中数学中的一个重要概念,它是数学中用于研究三角形和周期性现象的函数。
三角函数有正弦、余弦和正切三种常见形式,它们在数学和实际生活中都有广泛的应用。
本文将介绍三角函数的定义和其在初中数学中的应用。
一、正弦函数的定义与应用正弦函数是三角函数中最基本的一种,通常用sin表示。
它的定义是:在直角三角形中,对于任意一个锐角α,正弦函数的值等于对边与斜边的比值,即sinα = 对边/斜边。
正弦函数在初中数学中的应用非常广泛,例如在解决直角三角形的问题中,我们可以利用正弦函数来求解未知边长或角度。
二、余弦函数的定义与应用余弦函数是另一种常见的三角函数,通常用cos表示。
它的定义是:在直角三角形中,对于任意一个锐角α,余弦函数的值等于邻边与斜边的比值,即cosα = 邻边/斜边。
与正弦函数类似,余弦函数也在解决直角三角形的问题中起到了重要作用。
三、正切函数的定义与应用正切函数是三角函数中的第三种形式,通常用tan表示。
它的定义是:在直角三角形中,对于任意一个锐角α,正切函数的值等于对边与邻边的比值,即tanα = 对边/邻边。
正切函数的应用也非常广泛,特别是在解决梯度问题、角度关系问题等方面具有重要意义。
四、三角函数的周期性三角函数具有周期性的特点,即在一定范围内呈现出重复的规律性。
正弦函数、余弦函数和正切函数的周期均为2π(弧度制下)或360°(角度制下)。
因此,我们可以利用周期性特点来简化计算,并在解决周期性问题时加以应用。
五、三角函数的图像与性质正弦函数、余弦函数和正切函数都具有特定的图像形态和性质。
例如,正弦函数的图像呈现出上下波动的曲线,余弦函数的图像则是波浪形的曲线,而正切函数的图像则是以原点为对称中心的S形曲线。
对于初中生来说,理解这些图像形态及其性质对于学习和应用三角函数非常有帮助。
六、三角函数的应用举例在实际生活中,三角函数有许多应用。
例如,利用三角函数可以解决测量高楼大厦的高度问题,通过测量垂直角和距离,可以利用三角函数计算出高楼大厦的实际高度。
北师大版九年级数学下册:1.5《三角函数的应用》教案一. 教材分析北师大版九年级数学下册第1.5节《三角函数的应用》主要介绍了正弦、余弦函数在实际问题中的应用。
通过本节课的学习,使学生了解三角函数在实际生活中的重要性,培养学生运用数学知识解决实际问题的能力。
二. 学情分析九年级的学生已经学习了三角函数的基本知识,对正弦、余弦函数有一定的了解。
但学生在应用三角函数解决实际问题方面还比较薄弱,需要通过本节课的学习,提高学生运用三角函数解决实际问题的能力。
三. 教学目标1.使学生掌握正弦、余弦函数在实际问题中的应用。
2.培养学生运用数学知识解决实际问题的能力。
3.提高学生对三角函数的兴趣,培养学生的创新意识。
四. 教学重难点1.重点:正弦、余弦函数在实际问题中的应用。
2.难点:如何运用三角函数解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生主动探究三角函数在实际问题中的应用。
2.利用案例分析法,分析实际问题中三角函数的运用。
3.采用小组合作讨论法,培养学生的团队协作能力。
六. 教学准备1.准备相关的实际问题案例。
2.准备三角函数的图像和公式。
3.准备投影仪和教学课件。
七. 教学过程1.导入(5分钟)利用投影仪展示一些实际问题,如测量高度、角度等,引导学生思考如何利用三角函数解决这些问题。
2.呈现(10分钟)呈现三角函数的图像和公式,让学生了解三角函数的基本性质。
同时,结合实际问题案例,讲解如何运用三角函数解决实际问题。
3.操练(10分钟)让学生分组讨论,每组选取一个实际问题,运用三角函数进行解决。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)选取几组实际问题,让学生独立解决。
教师及时给予反馈,巩固学生对三角函数应用的掌握。
5.拓展(10分钟)引导学生思考如何将三角函数应用于其他领域,如工程、物理等。
让学生举例说明,培养学生的创新意识。
6.小结(5分钟)总结本节课所学内容,强调三角函数在实际问题中的应用。
初三数学三角函数的应用与证明三角函数是初中数学中重要的知识点之一,它不仅可以用来描述几何形状和角度的关系,还可以应用于实际问题的解决。
本文将介绍三角函数的应用以及一些常见的三角函数证明。
一、三角函数的应用1. 直角三角形的求解在解决直角三角形问题时,三角函数是必不可少的工具。
以求解一般直角三角形的斜边长度为例,我们可以利用正弦函数来解决。
假设直角三角形的一个锐角为θ,斜边长度为c,对边长为a,邻边长为b,则可以得到以下关系式:sinθ = a/c通过这个关系式,我们可以根据给定的两边长度,求解出未知边的长度。
2. 角度的测量在现实生活中,我们经常需要测量角度,例如测量物体的倾斜角度、测量两条线的夹角等等。
此时,三角函数可以帮助我们快速准确地计算角度。
常用的角度测量函数包括正弦函数、余弦函数和正切函数。
例如,在测量物体倾斜的角度时,我们可以通过测量物体底部到地面的垂直高度和物体与水平面的夹角来计算出实际的倾斜角度。
3. 三角函数的图像与性质三角函数的图像可以直观地展示它们的周期性和变化规律。
熟练掌握三角函数的图像可以帮助我们更好地理解与应用。
例如,正弦函数的图像是一个周期为2π 的波形,振幅为 1,可以描述物体在振动过程中的变化规律。
余弦函数的图像与正弦函数相似,但相位不同,可以描述物体在周期性变化中的偏移情况。
正切函数的图像是由一系列无穷多的正弦函数组成,可以表示一条无限接近于水平的直线。
二、三角函数的证明1. π/4 的正弦值的证明我们可以通过简单的几何构造证明π/4 的正弦值为√2 / 2。
首先,画一个边长为 1 的正方形,然后将其对角线延伸至边界上的点,形成一个以正方形边长为斜边的直角三角形。
根据勾股定理,设直角边为 x,则斜边为√(x^2 + x^2) = √2x。
根据三角函数的定义,正弦函数为对边与斜边的比值,即sin(π/4) = x / √2x = 1 / √2。
由于√2 / 2 = 1 / √2,因此得证sin(π/4) = √2 / 2。
九年级三角函数的应用实例三角函数是数学中的一个重要分支,广泛应用于各个领域。
在九年级的学习中,我们已经初步接触了正弦、余弦和正切等常用三角函数,并学习了如何在直角三角形中求解角度和边长的问题。
接下来,让我们通过一些实际应用的例子,进一步理解并掌握三角函数的应用。
1. 建筑工程中的角度测量角度测量在建筑工程中起着至关重要的作用。
例如,当我们希望确定两栋高楼之间的夹角时,可以利用三角函数来进行测量。
首先,我们需要准备一个测角仪器,如经纬仪或者全站仪。
然后,我们选择一个参考点A,站在该点上,使用仪器测量参考点A与第一座楼顶的夹角α,以及参考点A与第二座楼顶的夹角β。
通过测量结果,我们可以利用正切函数的性质来计算出两栋楼之间的夹角θ,即θ = β - α。
2. 航海中的航向计算航海中,航向计算是非常重要的。
其中,真航向(True Heading)是指船舶相对于真北方向的夹角,偏航角(Deviation Angle)是指船舶磁罗盘的指示与真航向之间的夹角,而磁航向(Magnetic Heading)则是指船舶相对于磁北方向的夹角。
为了计算这些夹角,我们可以使用余弦函数。
假设我们测得磁北的方向角为α,偏航角为β,那么真航向可以通过如下公式计算得出:θ = α + β。
3. 电子游戏中的角度运动在电子游戏设计中,我们经常需要控制角色的运动。
例如,我们希望让角色向特定方向移动,但只知道该方向与水平方向之间的夹角。
这时,我们可以利用正弦和余弦函数来分解分别计算角色在水平方向和竖直方向上的位移。
假设角色需要向右移动,我们可以设定水平方向上的速度为v,那么角色在水平方向上的位移即为x = v * cosθ,而在竖直方向上的位移为y = v * sinθ。
通过以上的实例,我们可以看到三角函数在各个领域中的广泛应用。
熟练掌握三角函数的性质和应用方法,不仅可以帮助我们解决实际问题,还可以启发我们在数学思维和逻辑推理方面的能力。
三角函数的实际应用三角函数是数学中重要的概念之一,它们不仅仅是理论上的概念,在日常生活中也有着广泛的实际应用。
三角函数的实际应用涉及到多个领域,包括物理、工程、天文学以及计算机图形等。
本文将介绍三角函数在这些领域中的一些实际应用案例,并探讨其重要性和影响。
一、物理应用1. 弹簧振动弹簧振动是物理学中常见的现象,它是由于弹性体受到外力作用而发生的周期性振动。
三角函数可以用来描述弹簧振动的运动规律。
根据胡克定律,弹簧振动的恢复力与其伸长长度成正比。
这个关系可以用正弦函数表示,即 F = k*sin(ωt),其中 F 表示恢复力,k 表示弹性系数,ω 表示角频率,t 表示时间。
通过三角函数的表达,我们可以计算出弹簧振动的周期、频率等重要参数,进而研究和分析弹簧振动的性质,为相关实验和工程设计提供依据。
2. 交流电路在电学中,交流电路是一种重要的电路类型。
三角函数可以用来描述交流电路中电压和电流的变化情况。
正弦函数被广泛应用于交流电路的分析和计算中。
例如,正弦波电压在时间上的变化可以用 V(t) = Vm * sin(ωt) 表示,其中 V(t) 表示时间 t 时的电压值,Vm 表示电压的最大值,ω 表示角频率。
通过使用三角函数,我们可以计算交流电路中的功率、相位差等重要参数,从而更好地理解和设计电路。
二、工程应用1. 建筑设计在建筑设计中,三角函数被广泛地应用于计算和测量。
例如,三角函数可以用来计算建筑物的高度、倾斜度以及角度等信息。
在进行建筑物定位和测量时,使用三角函数可以通过测量某个点与两个已知点之间的距离和角度,推导出该点的准确位置和方向。
这对建筑师和工程师来说是非常重要的,它们可以基于这些计算结果进行建筑物的合理布局和设计。
2. 机械运动机械运动是工程学中的一个重要领域,三角函数在机械运动中具有广泛的应用。
例如,在机械设计中,三角函数可以描述旋转运动的速度和加速度,帮助工程师分析和计算各种机械零件的运动特性。
三角函数的万能公式应用大全1.求解三角函数的值:sin30° = sin(90° - 60°) = sin90°cos60° - cos90°sin60° = cos60° = 0.5同样地,可以使用万能公式求解其他角度的三角函数值。
2.简化复杂的三角函数表达式:有时候,我们需要简化一些复杂的三角函数表达式,以便更方便地进行运算。
万能公式常常被用于化简这些表达式。
例如,对于表达式 sinx + cosx,可以使用万能公式将其化简为:sinx + cosx = sqrt(2) * sin(x + 45°)这样的化简可以使得表达式更加简洁,并且易于计算。
3.证明三角恒等式:三角恒等式是指在三角函数中成立的等式。
我们可以使用万能公式来证明这些恒等式。
例如,我们要证明 tanx + cotx = secx * cscx。
可以使用万能公式将式子的左边化简为:tanx + cotx = (sinx/cosx) + (cosx/sinx) = (sin^2x +cos^2x)/(sinxcosx) = 1/(sinxcosx) = cscxsecx通过使用万能公式,我们得到了三角恒等式的证明。
4.解三角方程:在解三角方程的过程中,有时候需要将方程中的三角函数转化为其他形式。
万能公式提供了这样的转化的方法。
例如,对于方程 sinx = cosx,可以使用万能公式将其转化为:sinx = cosxsinx = sin(90° - x)根据单位圆上的正弦函数的性质,可以得到x=45°以上是三角函数万能公式的一些常见应用。
通过灵活运用这些公式,我们可以更加便捷地解决三角函数的相关问题,并深入理解其性质和关系。
解直角三角形一定义:叫解直角三角形一解法分类:1已知一边和一个锐角解直角三角形;2已知两边解直角三角形.1如图,四边形ABCD中,∠A=600,AB⊥BC, AD⊥DC,AB=200,CD=100,求AD的长; ADB C2如图,四边形ABCD中,∠D=1200,BA⊥DA, AC⊥DC,AB=503,CD=303,求AD的长;CDB A二解直角三角形的应用:关键是把实际问题转化为数学问题来解决例1. 一个小孩荡秋千,秋千的链子的长度为2米,当秋千两边摆动时,摆角恰好为60度,且两边的摆动角度相同,求它摆至最高位置时与其摆至最低位置时的高度之差;结果精确到0.01米,参考数据:2≈1.414,3≈1.732,5≈2.236例2:如图,水库大坝的截面是梯形ABCD,坝顶AD=6m,坡长CD=82m,坡底BC=30m,∠ADC=135°1求∠ABC的大小;2如果坝长100m,那么建筑这个大坝要多少土石料参考数据:tan280≈0.5,sin300=0.5,cos600=0.5A DB C例3:如图,小明用一块有一个锐角为30的直角三角板测量树高,已知小明离树的距离为4米,DE为1.7米,那么这棵树大约有多高精确到0.1米例4.某中学九年级学生在学习“直角三角形的边角关系”一章时,开展测量物体高度的实践活动,他们要测量学校一幢教学楼的高度.如图,他们先在点C测得教学楼AB的顶点A的仰角为30°,然后向教学楼前进60米到达点D,又测得点A的仰角为45°;请你根据这些数据,求出这幢教学楼的高度.计算过程和结果均不取近似值练习:1.如图所示,小华同学在距离某建筑物6米的点A 处测得广告牌B 点、C 点的仰角分别为52°和35°,则广告牌的高度BC 为多少米精确到0.1米.sin35°≈0.6,cos35°≈0.8,tan35°≈0.7; sin52°≈0.8,cos52°≈0.6,tan52°≈1.32.在学习实践科学发展观的活动中,某单位在如图8所示的办公楼迎街的墙面上垂挂一长为30米的宣传条幅AE ,张明同学站在离办公楼的地面C 处测得条幅顶端A 的仰角为50°,测得条幅底端E 的仰角为30°. 问张明同学是在离该单位办公楼水平距离多远的地方进行测量 精确到整数米参考数据:sin50°≈0.77,cos50°≈0.64, tan50°≈ 1.20, sin30°=0.50,cos30°≈0.87,tan30°≈0.584.如图所示,小明在家里楼顶上的点A 处,测量建在与小明家楼房同一水平线上相邻的电梯楼的高,在点A 处看电梯楼顶部点B 处的仰角为60°,在点A 处看这栋电梯楼底部点C 处的俯角为45°,两栋楼之间的距离为30m ,则电梯楼的高BC 为多少米.参考数据:2≈1.414,3≈1.7325.如图,在小山的西侧A 处有一热气球,以30米/分钟的速度沿着与垂直方向所成夹角为30°的方向升空,40分钟后到达C 处,这时热气球上的人发现,在A 处的正东方向有一处着火点B,十分钟后,在D 处测得着火点B 的俯角为15°,求热气球升空点A 与着火点B 的距离;结果保留根号 参考数据:42615sin -=︒,42615cos +=︒,3215tan -=︒;6.汶川地震后,抢险队派一架直升飞机去A 、B 两个村庄抢险,飞机在距地面450米上空的P 点,测得A 村的俯角为30︒,B 村的俯角为60︒.如图7.求A 、B 两个村庄间的距离.结果精确到米,参考数据2≈1.414,3≈1.732ABCD6米52° 35°QP 45060︒30︒AB C D7.如图,小明同学在东西方向的环海路A 处,测得海中灯塔P 在北偏东60°方向上,在A 处东500米的B 处,测得海中灯塔P 在北偏东30°方向上,则灯塔P 到环海路的距离PC 为多少米用根号表示.例5:我市准备在相距2千米的A 、B 两工厂间修一条笔直的公路,但在B 地北偏东60°方向、A 地北偏西45°方向的C 处,有一个半径为0.6千米的住宅小区见下图,问修筑公路时,这个小区是否有居民需要搬迁 参考数据:2≈ 1.414,3≈1.732练习:1.某月松花江哈尔滨段水位不断下降,一条船在松花江某水段自西向东沿直线航行,在A 处测得航标C 在北偏东60°方向上,前进100m 到达B 处,又测得航标C 在北偏东45°方向,如图,以航标C 为圆心,120m 长为半径的圆形区域内有浅滩,如果这条船继续前进,是否有被浅滩阻碍的危险★2.在东西方向的海岸线l 上有一长为1km 的码头MN 如图,在码头西端M 的正西19.5 km 处有一观察站A .某时刻测得一艘匀速直线航行的轮船位于A 的北偏西30°,且与A 相距40km 的B 处;经过1小时20分钟,又测得该轮船位于A 的北偏东60°,且与A 相距83km 的C 处.1求该轮船航行的速度保留精确结果;2如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN 靠岸请说明理由.例6:如图,某货船以20海里/时的速度将一批货物由A 处运往正西方向的B 处,经16小时到达,到达后必须立即卸货;此时接气象部门通知,一台风正以40海里/时的速度由A 向北偏西60°的方向移动,距台风中心200海里的圆形范围内包括边界均会被影响;问:1B 处是否会受到影响 说明理由;2为避免台风影响,该船应在多少小时内卸完货 北 3求这次台风影响B 市的时间供选用数据2≈1.4,3≈1.7PA B C30°60°北N M 东北BCA l西B A练习1.某校的教室A 位于工地O 的正西方向、,且 OA=200米,一部拖拉机从O 点出发,以每秒6米的速度沿北偏西53°方向行驶,设拖拉机的噪声污染半径为130米,试问教室A 是否在拖拉机噪声污染范围内 若不在,请说明理由;若在,求出教室A 受污染的时间有几秒 已知:sin53°≈0.80,sin37°≈0.60,tan37°≈0.75★3. 如图,在某气象站M 附近海面有一台风,据监测,当前台风中心位于气象站M 的东偏南方向100千米的海面P 处,并以20千米/小时的速度向西偏北45°方向移动,台风侵袭的范围为圆形区域,当前半径为20千米,并以10千米/小时的速度不断增大,已知cos θ=102,问: 1台风中心几小时移到气象站M 正南N 处,此时气象站M 是否受台风侵袭 2几小时后该气象站开始受台风的侵袭例7如图,有一段斜坡BC 长为10米,坡角12CBD ︒∠=,为方便残疾人的轮椅车通行,现准备把坡角降为5°. 1求坡高CD ;2求斜坡新起点A 与原起点B 的距离精确到0.1米.参考数据:sin5°≈0.09 ,cos5°≈1.0 , tan5°≈0.09 , sin12°≈0.2 ,cos12°≈0.98 ,tan12°≈0.2练习:1.如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB 长为4米.1求新传送带AC 的长度;2如果需要在货物着地点C 的左侧留出2米的通道,试判断距离B 点4米的货物MNQP 是否需要挪走,并说明理由.说明:⑴⑵的计算结果精确到0.1米参考数据:2≈1.41,3≈1.73,5≈2.24,6≈2.452.我市某乡镇学校教学楼后面靠近一座山坡,坡面上是一块平地,如图所示.BC AD ∥,斜坡40AB =米,坡角60BAD ∠=,为防夏季因瀑雨引发山体滑坡,保障安全,学校决定对山坡进行改造.经地质人员勘测,当坡角不超过45时,可确保山体不滑坡,改造时保持坡脚A 不动,从坡顶B 沿BC 削进到E 处,问BE 至少是多少米结果保留根号DB AC512。
九年级三角函数的应用 Last updated at 10:00 am on 25th December 2020
解直角三角形
(一)定义:叫解直角三角形
(一)解法分类:(1)已知一边和一个锐角解直角三角形;
(2)已知两边解直角三角形.
(1)如图,四边形ABCD中,∠A=600,AB⊥BC, AD⊥DC,AB=200,CD=100,求AD的长。
A
D
B C
(2)如图,四边形ABCD中,∠D=1200,BA⊥DA, AC⊥DC,AB=503,CD=303,求AD的
长。
C D
B A
(二)解直角三角形的应用:关键是把实际问题转化为数学问题来解决
例1. 一个小孩荡秋千,秋千的链子的长度为2米,当秋千两边摆动时,摆角恰好为60度,且两边的摆动角度相同,求它摆至最高位置时与其摆至最低位置时的高度之差。
(结果精确到0.01米,参考数据:2≈1.414,3≈1.732,5≈2.236)
例2:如图,水库大坝的截面是梯形ABCD,坝顶AD=6m,坡长CD=82m,坡底BC=30m,∠ADC=135°
(1)求∠ABC的大小;
(2)如果坝长100m,那么建筑这个大坝要多少土石料?
(参考数据:tan280≈0.5,sin300=0.5,cos600=0.5)
A D
B C
例3:如图,小明用一块有一个锐角为30的直角三角板测量树高,已知小明离树的距离为4米,DE为1.7米,那么这棵树大约有多高(
精确到0.1米)
例4.某中学九年级学生在学习“直角三角形的边角关系”一章时,开展测量物体高度的实践活动,他们要测量学校一幢教学楼的高度.如图,他们先在点C测得教学楼AB的顶点A的仰角为30°,然后向教学楼前进60米到达点D,又测得点A的仰角为45°。
请你根据这些数据,求出这幢教学楼的高度.(计算过程和结果均不取近似值)
练习:
1.如图所示,小华同学在距离某建筑物6米的点A 处测得广告牌B 点、C 点的仰角分别为52°和35°,则广告牌的高度BC 为多少米(精确到0.1米). (sin35°≈0.6,cos35°≈0.8,tan35°≈0.7; sin52°≈0.8,cos52°≈0.6,tan52°≈1.3)
2.在学习实践科学发展观的活动中,某单位在如图8所示的办公楼迎街的墙面上垂挂一长为30米的宣传条幅AE ,张明同学站在离办公楼的地面C 处测得条幅顶端A 的仰角为50°,测得条幅底端E 的仰角为30°. 问张明同学是在离该单位办公楼水平距离 多远的地方进行测量(精确到整数米)
(参考数据:sin50°≈0.77,cos50°≈0.64, tan50°≈1.20,
sin30°=0.50,cos30°≈0.87,tan30°≈0.58)
4.如图所示,小明在家里楼顶上的点A 处,测量建在与小明家楼房同一水平线上相邻的电梯楼的高,在点A 处看电梯楼顶部点B 处的仰角为60°,在点A 处看这栋电梯楼底部点C 处的俯角为45°,两栋楼之间的距离为30m ,则电梯楼的高BC 为多少米.(参考数据:2≈1.414,3≈1.732)
5.如图,在小山的西侧A 处有一热气球,以30米/分钟的速度沿着与垂直方向所成夹角为30°的方向升空,40分钟后到达C 处,这时热气球上的人发现,在A 处的正东方向有一处着火点B ,十分钟后,在D 处测得着火点B 的俯角为15°,求热气球升空点A 与着火点B 的距离。
(结果保留根号)
A B
C
D 65235
(参考数据:42615sin -=︒,4
2615cos +=︒,3215tan -=︒)。
6.汶川地震后,抢险队派一架直升飞机去A 、B 两个村庄抢险,飞机在距地面450米上空的P 点,测得A 村的俯角为30︒,B 村的俯角为60︒(.如图7).求A 、B 两个村庄间的距离.(结果精确到米,参考数据2≈1.414,3≈1.732) 7.如图,小明同学在东西方向的环海路A 处,测得海中灯塔P 在北偏东60°方向上,在A
处东500米的B 处,测得海中灯塔P 在北偏东30°方向上,则灯塔P 到环海路的距离PC 为多少米(用根号表示). 例5:我市准备在相距2千米的A 、B 两工厂间修一条笔直的公路,但在B 地北偏东60°方向、A 地北偏西45°方向的C 处,有一个半径为0.6千米的住宅小区(见下图),问修筑公路时,这个小区是否有居民需要搬迁( 参考数据:2≈1.414,3≈1.732)
练习:
1.某月松花江哈尔滨段水位不断下降,一条船在松花江某水段自西向东沿直线航行,在A 处测得航标C 在北偏东60°方向上,前进100m 到达B 处,又测得航标C 在北偏东45°方向,如图,以航标C 为圆心,120m 长为半径的圆形区域内有浅滩,如果这条船继续前进,是否有被浅滩阻碍的危险?
★2.在东西方向的海岸线l 上有一长为1km 的码头MN (如图),在码头西端M 的正西19.5 km 处有一观察站A .某时刻测得一艘匀速直线航行的轮船位于Q
B C P
A 45060︒30︒P A
B C
3060
北
N
M 东北
B C
A l
A的北偏西30°,且与A相距40km的B处;经过1小时20分钟,又测得该轮船位于A的
北偏东60°,且与A相距的C处.
(1)求该轮船航行的速度(保留精确结果);
(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?
请说明理由.
例6:如图,某货船以20海里/时的速度将一批货物由A处运往正西方向的B处,经16小时到达,到达后必须立即卸货。
此时接气象部门通知,一台风正以40海里/时的速度由A向北偏西60°的方向移动,距台风中心200海里的圆形范围内(包括边界)均会被影响。
问:(1)B处是否会受到影响?说明理由。
(2)为避免台风影响,该船应在多少小时内卸完货?北
(3)求这次台风影响B市的时间
(供选用数据2≈1.4,3≈1.7)
西B A
练习
1.某校的教室A位于工地O的正西方向、,且 OA=200米,一部拖拉机从O点出发,以
每秒6米的速度沿北偏西53°方向行驶,设拖拉机的噪声污染半径为130米,试问教室A是否在拖拉机噪声污染范围内若不在,请说明理由;若在,求出教室A受污染的时间有几秒(已知:sin53°≈0.80,sin37°≈0.60,tan37°≈0.75)
★3. 如图,在某气象站M 附近海面有一台风,据监测,当前台风中心位于气象站M 的东
偏南方向100千米的海面P 处,并以20千米/小时的速度向西偏北45°方向移动,台风侵袭的范围为圆形区域,当前半径为20千米,并以10千米/小时的速度不断增大,已知cos θ= 102,问: (1)台风中心几小时移到气象站M 正南N 处,此时气象站M 是否受台风侵袭?
(2)几小时后该气象站开始受台风的侵袭?
例7如图,有一段斜坡BC 长为10米,坡角12CBD ︒∠=,为方便残疾人的轮椅车通行,现准备把坡角降为5°.
(1)求坡高CD ;(2)求斜坡新起点A 与原起点B 的距离(精确到0.1米). (参考数据:sin5°≈0.09 ,cos5°≈1.0 , tan5°≈0.09 ,
sin12°≈0.2 ,cos12°≈0.98 ,tan12°≈0.2 )
练习:1.如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB 长为4米.
(1)求新传送带AC 的长度;
(2)如果需要在货物着地点C 的左侧留出2米的通道,试判断距离B 点4米的货物
MNQP 是否需要挪走,并说明理由.(说明:⑴⑵的计
算结果精确到0.1米)
(参考数据:2≈1.41,3≈1.73,5≈2.24,6
≈2.45)
D B
A C
512
2.我市某乡镇学校教学楼后面靠近一座山坡,坡面上是一块平地,如图所示.BC AD ∥,斜坡40AB =米,坡角60BAD ∠=,为防夏季因瀑雨引发山体滑坡,保障安全,学校决定对山坡进行改造.经地质人员勘测,当坡角不超过45时,可确保山体不滑坡,改造时保持坡脚A 不动,从坡顶B 沿BC 削进到E 处,问BE 至少是多少米(结果保留根号)
C D A C D A
F G。