缩合型液体硅橡胶的使用方法
- 格式:doc
- 大小:14.01 KB
- 文档页数:2
一、硅橡胶(沪鸽)的使用方法1.上二楼冰箱旁边取出硅橡胶拿至诊室;2.先将二印放置(DMG 1:1)硅胶枪上,将头安好放至医生旁边;3.(1)一步法①选择合适的托盘放至椅旁②摘掉手套洗手③根据托盘的大小按照比例1:1取出基质1(白色)和基质2(紫色)放一起揉捏至均匀④将调好的基质放置托盘上,在相应部位挤出细部少量,交于医生。
(2)两步法①选择合适的托盘放至椅旁②摘掉手套洗手③根据托盘的大小按照比例1:1取出基质1(白色)和基质2(紫色)放一起揉捏至均匀④将调好的基质放置托盘上,交于医生⑤将硅橡胶雕刻刀和细部放至治疗椅上4.医生取出印模后确认无误将托盘清水冲洗干净放至前台5.将二印的头取下扔掉,从枪上取下二印放好归位6.待看完患者将硅橡胶放到二楼冰箱旁。
二、临时牙的制作方法1. DMG临时冠材料①确认患者需做临时牙的牙位,取出相应的托盘,调合印模材,放置托盘内,待取出印模浸泡在清水中②待医生备完牙后将之前取的模型递于医生,③将临时冠材料从冰箱旁取来,并将临时冠材料安放在(DMG 1:10)的枪上,头安好放在椅旁。
④医生用完后将用完的头卸下扔掉,将物品归位。
2. 自凝树脂临时牙材料①先取下模型,将备好牙上的石膏瘤去除,再涂上分离剂②在小杯子里放入适当的自凝粉,滴入牙脱水③待自凝成为面团期时放在取好的模型上④然后将多余的自凝材料刮去,精细休整⑤待自凝凝固后取下,进行调磨三拔牙1. 选择麻药①国产麻药(5ml注射器、肾上腺素、利多卡因)②进口麻药(必兰注射器、必兰麻、一次性针头)2. 引导患者进诊室协助躺下,准备基本治疗台,给患者系上铺巾,告知其漱口的位置3. 待患者同意方案后,准备麻药(国产或进口,根据情况而定),递给医生碘伏棉球,再给麻药(针柄末端朝向医生),并取下针帽4. 调整灯光,安抚患者;注射完毕后嘱患者漱口,将痰盂移向患者,漱口后递上纸巾或帮助擦拭5. 根据医生的要求选择相应的挺子、拔牙钳、挖勺(手术刀,缝合针线,高速手机依情况)6. 拔完牙后递于纱布压迫止血,用棉球清理患者口角处血液7. 告知患者注意事项8. 待患者出去诊室将治疗台清理,用消毒水将痰盂冲洗干净,牙椅归位。
硅橡胶的使用方法
硅橡胶是一种以硅为主要原料制成的弹性材料,具有优异的耐热性、耐腐蚀性和耐老化性,被广泛应用于各个领域。
以下是硅橡胶的一些常见使用方法:
1.密封件:硅橡胶具有优异的耐高温和耐腐蚀性,广泛用于制造密封件,如橡胶垫圈、密封圈、O型圈等。
它可以在高温环境下保持密封性能,并能耐受各种化学物质的侵蚀。
2.电子电器行业:硅橡胶在电子电器行业中被广泛使用,例如制作电缆、电线的绝缘材料、电子元器件的包封材料和电子密封胶。
3.医疗器械:硅橡胶具有耐高温和化学稳定性,不会引起过敏反应,并且易于清洁和消毒,因此在医疗器械上得到广泛应用,例如制作手术器械、导管、人工器官等。
4.食品加工业:硅橡胶材料符合食品卫生标准,可以直接接触食品。
常用于制作食品槽、密封圈、模具等。
5.建筑工程:硅橡胶具有良好的耐候性和耐老化性,广泛应用于建筑工程中的密封、防水、隔音等方面。
6.汽车制造业:硅橡胶在汽车制造业中被广泛应用,如制作汽车密封条、管路连
接件、悬挂系统等。
总之,硅橡胶由于其出色的性能和多样的应用领域,成为了具有广泛用途的材料之一。
DCBP硫化剂2,4-二氯过氧化苯甲酰(硫化剂DCBP) [英]2,4-DICHLOROBENZOYL PEROXIDE双二四-[双(2, 4-二氯苯甲酰)过氧化物DCBP]产品简介»是硅橡胶的良好的硫化剂,也可用于EPDM、热塑性弹性体的硫化。
安全的处理温度为75℃,硫化温度为90℃,推荐用量1.1-2.3%。
英文名称:Di(2,4-dichlorobenzoyl)peroxide分子量:380.0理论活性氧含量:4.21%CAS No.:133-14-2Einecs:205-094-9技术标准外观:白色煳状物含量:≥50.0±1.0%水份:1.5%max半衰期(氯苯溶液中测得):0.1小时:80℃1小时:65℃10小时:47℃推荐的贮存温度:TS:30℃热稳定性数据:自加速分解温度(SADT):60℃危急温度(Tem):55℃主要分解产物:CO2、1,3-二氯苯、2,4-二氯苯、微量的双2,4-二氯苯等包装:DCBP的标准包装是净重20公斤的纤维纸筒,内塑料袋包装。
也可按用户的要求的规格包装。
DCBP为D类固体有机过氧化物,货物分类:5.2,联合国编号:3106,二类危险货物包装。
安全注意事项:(1)远离火种、明火和热源。
(2)避免接触还原剂(如胺类)、酸、碱和重金属化合物(如促进剂、金属皂等)(3)请参照本产品的安全数据表(MSDS)。
贮存条件:保持包装密闭并处于良好通风状态下,最大贮存温度为30℃,避免和还原剂如胺类、酸、碱、重金属化合物(促进剂及金属皂),严禁在库房内分装及取用。
贮存稳定性:按厂家提示的条件进行保存,产品在三个月内可保证出厂技术标准。
灭火:小的火灾需用干粉或二氧化碳灭火器灭火,同时用大量水喷洒,防止再燃。
大火需在安全距离之外用大量水喷射DTBP(引发剂A)(TPA)化学名过氧化二叔丁基CAS-No 110-05-4C8H18O2=146.22•安全数据闪点………………开口18℃、闭口12℃自加速分解温度(SADT) ………………80℃报警温度(Tem) …………………………75℃联合国编号(UN-No) (3107)中国危险化学品编号(CN-No) (52026)•理化特性状态………………………………………液态比重()………………………………~0.8折光指数()…………………………~1.39熔点 (40)沸点………………………………………111℃理论活性氧含量…………………………10.94%•主要质量指标外观…………………………浅黄色透明液体含量…………………………Min.98.5%色度…………………………Max.60黑曾Fe…………………………Max.0.0003%二叔丁基过氧化物(DTBP)98%MIN化学名:过氧化二叔丁基Cas NO. 110-05-4结构式:用途:DTBP为挥发性、微黄色透明液体,是一种二烷基有机过氧化物。
液体硅橡胶检测标准引言液体硅橡胶是一种重要的高分子材料,具有优异的耐热性、耐寒性和化学稳定性,广泛应用于电子、医疗、建筑等领域。
为了确保液体硅橡胶产品的质量和安全性,制定一套科学合理的检测标准是至关重要的。
一、外观检测1.检查液体硅橡胶的外观是否均匀,无任何明显的沉淀物或颗粒。
2.观察液体硅橡胶的颜色是否符合要求,应与标准样品一致。
二、物理性能测试1.粘度测定:采用旋转粘度计,在指定温度下测定液体硅橡胶的粘度,并与标准数值进行比较。
2.密度测定:使用密度计测定液体硅橡胶的密度,确保其符合规定的范围。
3.固含量测定:通过加热液体硅橡胶样品,蒸发其内部溶剂或水分,然后测定固体残留物的质量,并与标准数值进行比较。
三、化学成分分析1.硅含量测定:采用火花光谱等仪器,测定液体硅橡胶中硅元素的含量。
2.氢气含量测定:通过红外光谱法,测定液体硅橡胶中氢气的含量。
3.其他有机成分测定:使用气相色谱-质谱联用仪器,分析液体硅橡胶中的其他有机成分,例如添加剂、催化剂等。
四、热性能测试1.热失重测定:将液体硅橡胶样品在高温下加热,测定其热失重曲线,以评估其热稳定性。
2.火焰延迟时间测试:将液体硅橡胶置于明火中检测其火焰延迟时间,以确定其耐燃性能。
五、机械性能测试1.拉伸强度和断裂伸长率测定:采用万能试验机,在规定的测试条件下测定液体硅橡胶的拉伸强度和断裂伸长率。
2.压缩变形率测定:使用压缩试验机,测定液体硅橡胶在规定压力下的变形率。
六、电气性能测试1.介电强度测定:采用高压电晕击穿仪,测定液体硅橡胶的介电强度。
2.体积电阻率测定:通过电阻箱等设备,测定液体硅橡胶的体积电阻率。
结论以上所述为液体硅橡胶的检测标准,包括外观检测、物理性能测试、化学成分分析、热性能测试、机械性能测试和电气性能测试。
通过按照这些标准进行检测,可以确保液体硅橡胶产品的质量和性能符合要求,并为相关领域的应用提供可靠支持。
DCBP硫化剂2,4-二氯过氧化苯甲酰(硫化剂DCBP) [英]2,4-DICHLOROBENZOYL PEROXIDE双二四-[双(2, 4-二氯苯甲酰)过氧化物DCBP]产品简介»是硅橡胶的良好的硫化剂,也可用于EPDM、热塑性弹性体的硫化。
安全的处理温度为75℃,硫化温度为90℃,推荐用量1.1-2.3%。
英文名称:Di(2,4-dichlorobenzoyl)peroxide分子量:380.0理论活性氧含量:4.21%CAS No.:133-14-2Einecs:205-094-9技术标准外观:白色煳状物含量:≥50.0±1.0%水份:1.5%max半衰期(氯苯溶液中测得):0.1小时:80℃1小时:65℃10小时:47℃推荐的贮存温度:TS:30℃热稳定性数据:自加速分解温度(SADT):60℃危急温度(Tem):55℃主要分解产物:CO2、1,3-二氯苯、2,4-二氯苯、微量的双2,4-二氯苯等包装:DCBP的标准包装是净重20公斤的纤维纸筒,内塑料袋包装。
也可按用户的要求的规格包装。
DCBP为D类固体有机过氧化物,货物分类:5.2,联合国编号:3106,二类危险货物包装。
安全注意事项:(1)远离火种、明火和热源。
(2)避免接触还原剂(如胺类)、酸、碱和重金属化合物(如促进剂、金属皂等)(3)请参照本产品的安全数据表(MSDS)。
贮存条件:保持包装密闭并处于良好通风状态下,最大贮存温度为30℃,避免和还原剂如胺类、酸、碱、重金属化合物(促进剂及金属皂),严禁在库房内分装及取用。
贮存稳定性:按厂家提示的条件进行保存,产品在三个月内可保证出厂技术标准。
灭火:小的火灾需用干粉或二氧化碳灭火器灭火,同时用大量水喷洒,防止再燃。
大火需在安全距离之外用大量水喷射DTBP(引发剂A)(TPA )化学名过氧化二叔丁基 CAS-No 110-05-4C 8H 18O 2=146.22• 安全数据闪点..................开口18℃、闭口12℃ 自加速分解温度(SADT) ..................80℃ 报警温度(Tem) ..............................75℃ 联合国编号(UN-No ) .....................3107 中国危险化学品编号(CN-No ) (52026)• 理化特性状态………………………………………液态 比重()………………………………~0.8折光指数()…………………………~1.39熔点………………………………………-40℃ 沸点………………………………………111℃ 理论活性氧含量…………………………10.94%• 主要质量指标外观…………………………浅黄色透明液体 含量…………………………Min.98.5% 色度…………………………Max.60黑曾 Fe…………………………Max.0.0003%二叔丁基过氧化物(DTBP)98%MIN化学名:过氧化二叔丁基Cas NO. 110-05-4结构式:用途:DTBP为挥发性、微黄色透明液体,是一种二烷基有机过氧化物。
RTV的定义RTV的字面定义是室温化,但RTV有机硅产品包括室温和加热固化两种类型。
缩合固化的机理是什么缩合型固化有机硅产品接触大气湿气固化,因为固化过程由表及里,所以完全固化需要较长时间。
固化时间取决于反应机理和材料粘度。
通常,在25摄氏度,50%相对湿度的情况下,需要24到48小时才能完全固化,而包括电气性能的完整物性的取得则需要7天。
缩合固化型产品的使用厚度有无限制对单组份缩合固化产品而言,固化深度不超过6毫米。
对双组份缩合固化产品而言,固化深度则不超过25毫米。
什么方法可以加速单组份有机硅的固化速度缩合固化有机硅的速度取决于环境湿度,硅胶厚度以及温度。
增加环境相对湿度和使用厚度可以有效地缩短固化时间。
而适当地升高温度(不超过50摄氏度)也可以稍许减少固化时间,但效果不如增加湿度和减少厚度来得直接。
什么是加成固化型的反应机理加成固化型有机硅分为单双组分,通常需加热固化。
虽然也可以在室温条件下固化,高温可以极大加速固化。
单组分有机硅产品一般在配方中加入抑制剂,只有温度高到可以使抑制剂失活,固化反应才开始进行。
什么是表干时间表干时间是指缩合固化型产品由湿状态到表面结皮的时间(外表皮不粘手为宜)什么是混合比例混合比例通常用于多组份的配胶中各组分的用量。
对于双组分有机硅产品,混合比例在我们的产品说明书表示为各组分的重量比。
什么是适用期或工作期指双组分产品在混合后仍能满足工艺操作性的时间怎么有效去处有机硅固化前:用刮刀去除未固化胶体,然后用异丙醇将残胶去除。
固化后:可用机械方式如刮刀等去除尽可能多的部分,然后用溶剂(矿物油、甲苯、二甲苯、丙酮)将其浸泡至溶涨,则可容易去除。
有机硅产品可以稀释吗通常有机硅可以用芳香族的溶剂如甲苯或二甲苯稀释。
请确保在使用溶剂是严格按遵守容器标签上和材料安全数据页上的注意事项。
使用时始终应具备相应的通风条件。
由于添加溶剂所造成的收缩和固化时间延长,建议加入非反应性硅油作为稀释或使用低粘度的产品。
液态硅橡胶工艺
液态硅橡胶工艺是一种生产硅橡胶制品的工艺方法。
液态硅橡胶是一种可流动的、具有高温耐性、耐化学品和电绝缘性能的硅橡胶物料。
其工艺流程包括以下几个主要步骤:
1. 准备工作:准备硅橡胶液体原料、硬化剂和辅助材料,并进行称量和混合。
2. 模具制备:根据所需产品的形状和尺寸,制作相应的模具。
3. 真空处理:将硅橡胶液体注入模具中,然后将模具放置在真空室中进行真空处理。
真空处理有助于去除气泡和空气,保证产品的质量。
4. 硬化处理:将经过真空处理的模具放入烘箱中,进行硬化处理。
硅橡胶在高温条件下,在硬化剂的作用下发生交联反应,形成固态橡胶制品。
5. 脱模和后处理:待硅橡胶制品完全硬化后,从模具中脱模,并进行必要的后处理,如修整、清洁、打磨等。
液态硅橡胶工艺具有以下优点:适用于各种复杂形状的制品制造;制品表面光滑,尺寸精度高;能够实现快速生产和大批量生产;可以通过调整配方和加工工艺,定制橡胶制品具有不同的性能和用途。
液态硅橡胶工艺广泛应用于电子、医疗、食品加工、汽车、建
筑等行业,制造各种密封件、垫片、绝缘件、密封圈等硅橡胶制品。
LORD® IMB TM Liquid Silicone Rubber Primers Application GuideLORD® In-Mold Bonding (IMB™) liquid silicone rubber (LSR) primers are non-tacky polymer-based coatings that when applied to a substrate provide a structural bond to a rigidor elastomeric polymer, which is formed under heat and pressure. LORD IMB 3000 series primers are designedfor bonding platinum-cured silicone rubber to a variety of thermoplastic and metal substrates during the injection molding process.Although a premium primer is the basis of a quality bond, it’s only the beginning; proper application is essential for maximum results. Whether you’re dipping or spraying, you’ll learn how to maximize efficiency and optimize results. This guide also shows how to troubleshoot commonbond problems. We hope this resource will become an indispensable part of your operation and a convenient,one-source solution to many of your bonding questions. Substrate Surface Preparation:One of the most important factors influencing adhesionin the bonding process is surface preparation. To ensure optimum bond performance and long-term environmental resistance, substrates must be free of organic and inorganic contaminants. Organic materials include grease, dirt and oils which can be removed by solvent or alkaline cleaning. Common inorganic contaminants are rust, scale and oxide layers. These can be cleaned by either mechanical or chemical processes, or a combination of both. Types of Surface Preparation:There are several ways to prepare substrates for primer application; however, the methods can be broadly divided into mechanical and chemical. Regardless of which method you choose, the essentials of good surface preparations include:• Removal of all surface contaminants and decomposition products.• Prevention of recontamination.• Careful handling through all processing steps. Mechanical preparation involves physically removing surface contamination and increasing surface area and substrate profile. This method includes:• Blasting – Abrasive particles (sand, grit or metal oxides) are projected against the surface with a stream of air. Blasting is especially effective for removing inorganic contamination and other corrosion compounds found on metal. Thecharacter or quality of the treatment is affected by duration of the blast; shape and size of the blasting media; particle velocity; and the hardness, porosity and other substrate properties.Chemical processes, on the other hand, utilize organic and inorganic chemicals to dissolve, suspend or eliminate soils and surface contaminants. Preparation methods include: • Alkaline cleaning• Acid passivationSelecting a Preparation Method: To determine which preparation method best suits your needs, consider:• Economy – In large volumes, chemical treatments are generally less expensive than mechanical methods.• Versatility – Mechanical preparation methods may be applicable to numerous metals, while chemical treatments may be metal-specific.• Adaptability to Existing Equipment – Existing facilities may favor either mechanical or chemical processing.• Adhesion Requirements – Adhesion requirements vary from product to product, and bond quality is affected by the particular application. Therefore, surface preparation will vary accordingly.• Environmental Resistance – Chemical conversion often provides enhanced environmental resistance compared to mechanical methods.• Government Regulations – Waste disposal regulations may prohibit the use of chemical treatments in certain areas.Maintaining Surface Conditions: Maintaining optimum surface cleanliness is essential until primer application is complete. To accomplish this:• Apply the primer immediately after the surface is prepared. • Avoid exposure to dust, moisture, chemical fumes, mold release agents and other possible contaminants.• Keep solvents and cleaning solutions free from contamination, and replace when necessary.• Ensure grits and abrasives remain clean and free of contaminants.• Check the purity of rinse water and “drying” air frequently, ensuring minimal contamination.The water break test can be used to check for oil and grease removal. If a surface can support an unbroken filmof deionized water for 60 seconds or more, it is considered essentially free from grease or oil.Surface Preparation for Various Substrates:Although the general principles are the same for preparing all substrates, some materials require special attention. Outlined below are guidelines for surface preparation of specific substrates.Stainless Steel (Mechanical Preparation)Preparing stainless steel with mechanical methods includes: 1. Blasting with sand or aluminum oxide. Steel grit shouldnot be used because it leaves ferrous deposits that can cause galvanic corrosion.2. One-hour layover maximum between blasting andprimer application.Stainless Steel (Chemical Preparation)Chemical treatment for the passivation of stainless steel involves the following:• Alkaline Wash1. Hot water rinse (70°C)2. Wash in sodium tripolyphosphate solution3. Hot water rinse (70°C)4. Hot air dry• Acid PassivationWashing step that uses mild acid solution such as citric or oxalic acidImmersion times, solution concentrations and operating temperatures may be adjusted to suit conditions and alloys. PlasticsLSR can be bonded to many rigid plastics. To prepare plastic surfaces:1. Solvent wipe. Hydrophobic solvents such as n-heptaneand Isopar TM can remove waxes and mold release.Alcohol such as ethanol or isopropanol can removepolar contaminants.2. Surface oxidation by plasma, flame, or corona treatment. Preparing the Primer:Temperature – Temperature affects the viscosity of LORD IMB primers. Recommended storage temperature is 21- 27°C (70-80°F) in original, unopened container. Cold storage is not recommended.Dilution – Regardless of dilution amounts, it is important in all cases that the appropriate diluent be added to the primer while stirring. Mixing guidelines are listed in the respective technical data sheets for each LORD IMB product. Applying the Primer:LORD IMB primers may be applied by brush or spray methods. General recommendation for dry film thickness is 2.0 to 5.0 micron (0.05 to 0.2 mil).Hand Brushing – LORD IMB solvent-based primers are suitable for hand brushing straight from the container. When using this method, wear the proper personal protective equipment, and work in a clean environment. Also make sure there are no dirty or greasy objects within reach.Spray Application – Spray application of primers is particularly applicable when coating one side or certain areas of a part. When spraying, however, it is important that the primer reach the substrate wet. If drying occurs before reaching the metal, adhesion will be poor.Hand-held guns may be used for small runs, while conveyorized or automated units are effective for large production operations. And for small, intricate parts, an air brush may be used. Regardless of size, properly adjusted equipment ensures delivery of uniform films – without sags and tears.During hand-spray operations, parts are often assembledon racks that incorporate masks wherever needed. If the application requires overall coating, parts can be rotated in front of the spray gun.Precision Spra y / Jetting – This technique follows the same principles as typical spray techniques outlined above but utilizes very precise application equipment to apply primer to small areas with minimal overspray. LORD IMB primers are compatible with this process.Drying Processes:All LORD IMB LSR primers can be dried at room temperature (21°C/ 70°F) in 30 minutes or less. During the drying process, no reaction is taking place – only solvent is evaporating. Thus, methods to speed up solvent evaporation are effective, such as increasing air flow or using hot air. Heating to 65°C (149°F) in a convection oven for 5 minutes is usually sufficient. Avoid drying temperatures of greater than 65°C (149°F). Avoid IR-based heating because this creates a high level of heat directly at the primer surface, potentially destroying the bonding ability.Handling Coated Parts:Both clean and coated parts should be kept free of contamination. Because fingerprints can adversely affect adhesion, gloves are highly recommended. Thin, white, cotton gloves are satisfactory, as they show soil easily, are economical enough to be discarded when necessary, and are thin and porous enough to be comfortable.Coated Parts Layover Stability: Mold as soon as possible, but store all coated parts properly to ensure maximum layover. Typically, this entails sealing primer-treated substrates in a clean plastic containerand storing the package in a cardboard box. These precautions ensure parts are protected from airborne contaminates. Refer to the applicable technical data sheet for recommended layover durations.Molding Considerations:One of the most important steps in the manufacturing process is molding. During this phase, the primer-coated substrate and elastomer are placed in the mold cavity, and under proper conditions of time, temperature and pressure the bonded assembly is formed.Controlling each step in the molding process is critical to bond success. Major variations in any step will cause bond failures. Minor alterations, though not detrimental individually, can collectively result in poor or marginal adhesion and above-average scrap rates.Considerations include:• Primer Dry Film Thickness (DFT) – One of the most important factors in environmental performance. Low and high DFT films can result in poor performance. Refer to the applicable technical data sheet for recommended DFT.• Molding Pressure – Optimum adhesion requires adequate pressure and intimate contact of elastomer and primer during vulcanization and cure. Molds that are either too tight or are too loose will hinder bond quality.• Temperature – Dramatic temperature variations from cavity to cavity may cause bond failure, lack of cure, or overcure conditions. Mold temperature should be checked periodically, particularly within the individual cavities. Tempilsticks®, or selective melting-point wax pencils, are excellent for spot-checking mold cavities. Thermocouples can also be used, but they must be calibrated regularly. • Mold Design – When designing the mold, provisions should be made to facilitate substrate loading as well as removal of the cured part.Post Treatment:Following part bonding, post-bake may be required to achieve maximum bonding performance. A typical post-bake condition for silicone parts is 150°C to 200°C (302°F to 392°F) for 2 to 4 hours. Troubleshooting:ASTM International provides a set of detailed symptom descriptions for bond failures. These descriptions allow complete and accurate problem assessment as well as quick solutions. (In this document, the terms “elastomer” and “primer” should be interpreted as “rubber” and “cement”, respectively.)Three basic ASTM designations are:• RC – failure at the rubber-cement interface.• CM – failure at the cover cement-metal interface; or at the primer-metal interface.• R – failure in the rubber.Rubber-Cement (RC) FailuresSeparation between rubber and cement is usually characterized by a hard, glossy surface on the metal with little or no visible rubber.The following list includes common causes of RC failures, as well as potential solutions:• Substrate not hot enough upon LSR injection.– Preheat the substrate inside of the mold by using aninjection delay or preheat the substrate in a batch oven to minimize cycle time.– Increase mold temperature.• Silicone rubber contains low concentration of functional groups.– Increase amount of B component in two-part primers.– If using single-component primer (LORD IMB 3050, forexample), mix with side B catalyst (LORD IMB 3040B, for example). Details are provided in the respective technical data sheets.• Color concentrate contains incompatible components.– Reduce or change color concentrate.• Primer is sweeping, or being removed by flowing silicone.– Reduce filling speed.– Change gate location.• Silicone is not compatible with primer.– Change to a different grade of silicone.Cement-Metal and Primer-Metal (CM) FailuresA clean separation between the primer and metal or other substrate indicates that no adhesion has occurred.The following list includes common causes of CM failure as well as potential solutions:• Substrate is not clean.– Clean substrate; often, oil, dirt, dust or othercontaminants inhibit bonding.• Primer is not sufficiently dried.– Reduce dry film thickness (apply thinner).– Increase drying time and/or temperature.• Substrate is not compatible with primer.– Mechanically roughen the substrate with abrasive.– Chemically activate the substrate with plasma, flame, or corona treatment.– Change to a different substrate.Parker LORDEngineered Materials Group 111 LORD DriveCary, NC 27511-7923USAphone +1 877 ASK LORD (275 5673)Values stated in this document represent typical values as not all tests are run on each lot of material produced. For formalized product specifications for specific product end uses, contact the Customer Support Center.Information provided herein is based upon tests believed to be reliable. In as much as Parker LORD has no control over the manner in which others may use this information, it does not guarantee the results to be obtained. In addition, Parker LORD does not guarantee the performance of the product or the results obtained from the use of the product or this information where the product has been repackaged by any third party, including but not limited to any product end-user. Nor does the company make any express or implied warranty of merchantability or fitness for a particular purpose concerning the effects or results of such use.WARNING — USER RESPONSIBILITY . FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.This document and other information from Parker-Hannifin Corporation, its subsidiaries and authorized distributors provide product or system options for further investigation by users having technical expertise.The user, through its own analysis and testing, is solely responsible for making the final selection of the system and components and assuring that all performance, endurance, maintenance, safety and warning requirements of the application are met. The user must analyze all aspects of the application, follow applicable industry standards, and follow the information concerning the product in the current product catalog and in any other materials provided from Parker or its subsidiaries or authorized distributors.To the extent that Parker or its subsidiaries or authorized distributors provide component or system options based upon data or specifications provided by the user, the user is responsible for determining that such data and specifications are suitable and sufficient for all applications and reasonably foreseeable uses of the components or systems.©2020 Parker Hannifin - All Rights ReservedInformation and specifications subject to change without notice and without liability therefor. Trademarks used herein are the property of their respective owners.OD AG1024 06/20 Rev.1Rubber (R) FailuresRubber failures are separated into the following categories: SR (Spotty Rubber) – Often caused by pre-bond surface contaminants, this failure appears like splattered rubber on the substrate surface.TR (Thin Rubber) – Thin rubber failures are marked by even, but very light rubber residue on the substrate surface. These imperfections usually occur with butyl or rubber stocks that are highly oil-extended. When oils migrate to the RC interface, they create a bond layer that is part primer, part oil and part rubber. This weak layer easily fails when the part is stressed.HR (Heavy Rubber) – A thick or heavy layer of rubber remaining on the substrate surface indicates an excellent bond. The stock fails because it is stressed beyond its cohesive strength. This is the ideal failure mode.SB (Stock Break) – With stock breaks, the elastomer appears as if it was folded back on itself, then broken off. The break is jagged and at a sharp angle to the substrate surface. Although there are three primary bond failures, keep in mind that rubber-cement, cement-metal/substrate and rubber failures are often found in combination.Things to Avoid:• Certain chemicals are incompatible with LORD IMB primers and can cause failure. These include amines, sulfur, latex, or chemical compounds containing nitrogen, phosphorous or tin.• Certain silicone components commonly used in other primers. Make sure to avoid cross-contamination with silane/silicone-based primers.• Silicone-based mold release is not compatible with LORD IMB primers. Use PTFE-based release agents, such as McLube TM 1711L.Safe Handling:Proper handling of LORD IMB primers is essential for safe and effective application. We recommend these procedures be followed when using any LORD IMB LSR product: • Read labels, SDS and technical data sheets before use.• Ventilate application and storage areas. • Wear proper personal protective equipment.• Clean application and processing equipment regularly. • Dispose of waste according to federal, state and local regulations.Parker LORD Applications Laboratory:As an extension of our product development efforts, Parker LORD has injection molding machines in Erie, PA. Bysimulating customers’ applications, we can provide detailed technical support and more thoroughly evaluate optimum application characteristics of new products.。
室温硫化硅橡胶(RTV)在分子链的两端(有时中间也有)各带有一个或两个官能团,在一定条件下(空气中的水分或适当的催化剂),这些官能团可发生反应,从而形成高分子量的交联结构。
按其硫化机理可分为缩合型和加成型;按其包装方式可分为双组分和单组分两种类型。
概述加成型室温胶是以具有乙烯基的线性聚硅氧烷为基础胶,以含氢硅氧烷为交联剂,在催化剂存在下于室温至中温下发生交联反应而成为弹性体。
它具有良好的耐热性、憎水性、电绝缘性,同时由于活性端基的引入,使其具有优异的物理机械性能,尤其是在抗张强度、相对伸长和撕裂强度上有了明显的提高。
它适用于多种硫化方法,如辐射硫化、过氧化物硫化及加成型硫化,广泛用于耐热、防潮、电绝缘、高强度硅橡胶制品等方面。
缩合型室温硫化硅橡胶是以硅羟基与其他活性物质之间的缩合反应为特征,于室温下即可交联成为弹性体的硅橡胶,产品分为单组份包装和双组份包装两种形式。
单组分室温硫化硅橡胶单组分室温硫化硅橡胶(简称RTV-1胶)是缩合型液体硅橡胶中主要产品之一。
通常由基础聚合物、交联剂、催化剂、填料及添加剂等配制而成。
产品包装在密封软管中,使用时挤出,接触空气后能自行硫化成弹性体,使用极为方便。
硫化胶能在(–60~+200℃)温度范围长期使用,具有优良的电气绝缘性能和化学稳定性,能耐水,耐臭氧,耐气候老化,对多种金属和非金属材料有良好的粘接性。
主要用作各种电子元器件及电气设备的涂复,包封材料起绝缘,防潮,防震作用;作为半导体器件的表面保护材料;也可作为密封填隙料及弹性粘接剂等。
电子器材东莞天诺科技TN-668RTV硅橡胶电气、电子器材用RTV硅橡胶可用于与金属直接接触作为绝缘材料,也可用于电子和通信器材、仪器仪表的浇注、密封作为绝缘、防震、防潮的密封材料。
市场上已有各种不同黏度及硫化后不同性能的品种、牌号。
使用时以硫化剂用量调节施工操作时间及硫化速度。
电性能缩合型双组分RTV硅橡胶作为绝缘、防潮、防震等灌注和填充料,与其他绝缘材料比较,觉有良好的电性能,特点是介电常数、介电损耗角正切等介电性能比其他材料都小,并且对频率和温度变化稳定,耐电晕、耐电弧。
粘接硅橡胶的热熔胶
粘接硅橡胶通常可以使用热熔胶来实现。
热熔胶是一种常用的胶粘剂,它是通过热熔胶枪将胶条加热熔化后,涂抹在需要粘接的硅橡胶表面,然后将两个硅橡胶部件按压在一起,待胶水冷却固化后就能够实现粘接。
下面是使用热熔胶粘接硅橡胶的步骤:
1. 准备工作:将需要粘接的硅橡胶表面清洁干净,确保无尘和油污。
2. 加热胶条:将热熔胶条放入热熔胶枪中,开启热熔胶枪的电源并等待胶条完全熔化。
3. 涂抹胶水:将热熔胶枪的喷嘴对准硅橡胶表面,均匀地涂抹胶水。
注意不要涂抹过多的胶水,以免影响粘接质量。
4. 粘接硅橡胶:在胶水未完全冷却固化之前,将需要粘接的硅橡胶部件按压在一起。
可以使用合适的工具或压力来辅助粘接,并确保两个部件紧密接触。
5. 等待胶水固化:等待胶水冷却固化,该时间通常需要几分钟到几小时不等,具体时间取决于所使用的热熔胶和环境条件。
需要注意的是,热熔胶虽然在一定程度上可以粘接硅橡胶,但其粘接强度可能不如其他专用于粘接硅橡胶的胶水。
因此,在选择胶水时要根据具体的应用需求和硅橡胶的特性来选择合适
的胶水。
此外,在进行热熔胶粘接时,要注意避免烫伤,确保在安全的环境下操作。
液态硅胶注射成型是一种常用的制备硅胶制品的工艺方法。
下面是液态硅胶注射成型的基本工艺流程:
模具准备:准备适用于液态硅胶注射的模具。
模具可以是单腔或多腔的,根据产品的形状和数量选择适当的模具。
硅胶准备:选择合适的液态硅胶材料,并按照供应商提供的比例准确配制硅胶混合物。
根据需要,可能需要在硅胶中添加颜色剂或其他添加剂。
注射成型:将硅胶混合物注入注射机的料斗中,并通过注射机的压力和温度控制将硅胶注入模具腔内。
确保硅胶填充模具腔均匀且完全填充。
固化和硬化:将注射后的模具放置在固化室中,使硅胶在一定的时间和温度下进行固化和硬化。
根据硅胶材料的要求,可能需要进行烘烤或等待自然固化。
模具开启和产品脱模:固化完成后,打开模具,将成型硅胶产品从模具中取出。
根据需要,可能需要进行去闪光、修整和清洁等后续处理。
检验和质量控制:对成型的硅胶产品进行检验和质量控制,包括外观检查、尺寸测量、物理性能测试等。
根据质量要求,进行筛选和分类。
706硅橡胶使用方法
706硅橡胶是一种高温硅橡胶,具有良好的耐高温性能,可用
于高温密封、绝缘、电子封装、模具制造等领域。
下面是706
硅橡胶的使用方法:
1. 材料准备:准备好706硅橡胶、硅胶分离剂、硅胶粘接剂、硬化剂等。
2. 配液:根据具体工艺要求,按照一定的比例将硅橡胶和硬化剂混合均匀,可用搅拌器进行搅拌。
3. 应用表面处理:将需要涂覆硅橡胶的表面进行清洁、打磨等处理,确保表面光滑、干净。
4. 涂覆硅橡胶:将配制好的硅橡胶涂布或涂刷在需要处理的表面上,确保涂布均匀,厚度适中。
使用刮板等工具进行整平。
5. 确定固化时间:根据硅橡胶和硬化剂的配比,确定固化时间。
通常需要将涂覆的模具或工件放置在室温下静置一段时间,使其固化完全。
6. 后续处理:硅橡胶固化后,可以进行割模、修整、清洁等后续处理。
需要注意的是,使用硅橡胶前需要仔细阅读产品的使用说明书,并根据实际要求和工艺进行操作。
保持作业环境干燥整洁,避
免灰尘污染。
对于不熟悉操作的人员,建议在专业人士的指导下进行。
DCBP硫化剂2,4-二氯过氧化苯甲酰(硫化剂DCBP) [英]2,4-DICHLOROBENZOYL PEROXIDE双二四-[双(2, 4-二氯苯甲酰)过氧化物DCBP]产品简介»是硅橡胶的良好的硫化剂,也可用于EPDM、热塑性弹性体的硫化。
安全的处理温度为75℃,硫化温度为90℃,推荐用量1.1-2.3%。
英文名称:Di〔2,4-dichlorobenzoyl〕peroxide分子量:380.0理论活性氧含量:4.21%CAS No.:133-14-2Einecs:205-094-9技术标准外观:白色煳状物含量:≥50.0±1.0%水份:1.5%max半衰期〔氯苯溶液中测得〕:0.1小时:80℃1小时:65℃10小时:47℃推荐的贮存温度:TS:30℃热稳定性数据:自加速分解温度〔SADT〕:60℃危急温度〔Tem〕:55℃主要分解产物:CO2、1,3-二氯苯、2,4-二氯苯、微量的双2,4-二氯苯等包装:DCBP的标准包装是净重20公斤的纤维纸筒,内塑料袋包装。
也可按用户的要求的规格包装。
DCBP为D类固体有机过氧化物,货物分类:5.2,联合国编号:3106,二类危险货物包装。
安全注意事项:〔1〕远离火种、明火和热源。
〔2〕防止接触复原剂〔如胺类〕、酸、碱和重金属化合物〔如促进剂、金属皂等〕〔3〕请参照本产品的安全数据表〔MSDS〕。
贮存条件:保持包装密闭并处于良好通风状态下,最大贮存温度为30℃,防止和复原剂如胺类、酸、碱、重金属化合物〔促进剂及金属皂〕,严禁在库房内分装及取用。
贮存稳定性:按厂家提示的条件进行保存,产品在三个月内可保证出厂技术标准。
灭火:小的火灾需用干粉或二氧化碳灭火器灭火,同时用大量水喷洒,防止再燃。
大火需在安全距离之外用大量水喷射DTBP(引发剂A)〔TPA〕化学名过氧化二叔丁基CAS-No 110-05-4C8H18O2=146.22•安全数据闪点………………开口18℃、闭口12℃自加速分解温度(SADT) ………………80℃报警温度(Tem) …………………………75℃联合国编号(UN-No) (3107)中国危险化学品编号(CN-No) (52026)•理化特性状态………………………………………液态比重()………………………………~0.8折光指数()…………………………~1.39熔点 (40)沸点………………………………………111℃理论活性氧含量…………………………10.94%•主要质量指标外观…………………………浅黄色透明液体含量…………………………Min.98.5%色度…………………………Max.60黑曾Fe…………………………Max.0.0003%二叔丁基过氧化物〔DTBP〕98%MIN化学名:过氧化二叔丁基Cas NO. 110-05-4结构式:用途:DTBP为挥发性、微黄色透明液体,是一种二烷基有机过氧化物。
缩合型液体硅橡胶的使用方法
1、RTV-1胶用法
由于单组分室温硫化硅橡胶已将挤出聚合物、填料及交联体系等混匀并包装在一个容器中,故使用时酯需将胶料挤出,接触空气中的湿气即可硫化成弹性体。
为获得良好的应用效果,首先应根据使用的技术规范,针对被处理物的性能,零部件的形状以及经济成本等,合理选择RTV-1胶;另外,还需遵循规定操作法,对待处理的基材表面进行除油污等清洁及干燥处理,若为橡胶还需用砂纸打毛;若在基材表面上涂上底涂剂,则需风干2h后再进行施工,以提高RTV-1胶对基材的粘接强度。
大多数底涂剂是由反应活性较高的硅烷偶联剂或其他有机金属化合物的有机溶剂稀释液组成,在潮湿空气中可以水解缩合成树脂状活性层,它与基材表面起着键合与偶联作用,从而提高粘接性。
RTV-1胶料还可分散在合适的溶剂中,以便喷涂、浸渍或涂刷。
配制分散液时,须用干燥的溶剂,并避免与空气中的潮气接触。
2、RTV-2胶用法
RTV-2胶的使用方法较RTV-1胶复杂,通常需经混合、脱气、硫化等工序。
a.品种的选择与混料缩合型双组分室温硫化硅橡胶胶料,依据需要可以制成从易流动的低黏度型产品,直至不流动的触变型或腻子型产品。
因而使用时,首先应根据部件的技术要求及形状,选择合适的品种。
如对于包封部件,胶料应为可灌注型;根据施工要求和环境条件选配适宜的交联剂及催化剂,并控制适宜的用量,使产品在不同时间内硫化。
如果选择不当,调配不合理,可能前功尽弃。
按一定比列将交联剂及催化剂加入胶料内,混合可在胶料器内或原包装桶内进行;用量少的还可在干净和干燥的杯子或桶内混合,用人工或机械搅拌均可满足要求,但切勿搅入大量空气,也勿搅拌过强,导致升温加速硫化。
混合后应进行真空脱气,对于结构紧密的零部件灌注后还需进行真空除气或加压处理。
加入交联体后,交联将逐渐增稠,最后硫化成三维网络弹性体。
因此,施工前应做好待施工部件的准备工作,待胶料配好后尽快将其用完。
使用者应根据施工部件的深度和面积,实现做好估量,一面造成缺料可配料过多造成浪费。
为了延长使用期,可将混好的胶料移入冷却柜中保管。
b.硫化在23℃-30℃温度下硫化,可得到标准硫化速度,提高温度可加快硫化速度,但不宜超过65℃;硫化速度还与湿度有关,暴露在高湿度空气中可加快硫化速度。
c.稠度的调整为适应工艺要求,需对胶料增稠时,可混入一些增稠剂(如白炭黑,碳酸钙、硅藻土、石英粉及云母粉等)。
高稠度的胶料一般作为腻子使用;当需要降低胶料稠度时,可以加入相容性好或同一结构类型的低摩尔质量硅油做稀释剂;若采用喷涂工艺施工时,胶料可用有机溶剂稀释,常用溶剂油甲苯,二甲苯等,侧链上含氟代烷基的胶料需用内酮等稀释剂。
d.涂层硫化RTV-2硫化时有副产物(如甲醇、乙醇、Et2NOH、H2等产生,它们需从硫化
胶内部扩散到表面逸出。
在深层关注时,由于副产物不能及时放出,将影响内部的硫化,为解决这个问题,在工艺上采用分层灌注法,有利副产物及时离开胶层,但操作比较麻烦。
若在硅胶(,如磷酸甘油及金属盐等,则不必分层灌注。