垂直轴风力发电原理介绍演示文稿
- 格式:ppt
- 大小:1.89 MB
- 文档页数:30
阻力型垂直轴风力发电机概述早在1300多年前,中国就已经出现一种古老的垂直轴风车,它利用风力来灌溉,如下图所示,它是由8个风帆组成的风轮。
而在1000年前,波斯也建造了垂直轴的风车来带动他们磨谷的石磨。
水平轴风力发电机最早出现在欧洲,要比垂直轴风力发电机晚很多年,所以垂直轴风力发电机可以称为所有风力发电机的先驱。
而垂直轴风力发电机根据驱动力的不同又可以分为升力型和阻力型垂直轴风力发电机,本文主要介绍阻力型垂直轴风力发电机。
1.阻力型风力发电机的工作原理阻力型垂直轴风力发电机风轮的转轴周围,有一对或者若干个凹凸曲面的叶片,当它们处于不同方位时,相对于它的来风方向所受的推力F是不同的。
风力作用于上述物体上的空气动力差别也很大。
作用力F可表示为:F=1/2?ρ?S·V??C其中ρ——空气密度,一般取1.25(kg/m?)S——风轮迎风面积V——来流风速C——空气动力系数以半球为例,当风吹到半球凹面一侧,c值为1.33,当风吹到半球凸面一侧时,c值为0.34。
对于柱面,当风吹向凹面和凸面时,系数c分别为2.3和1.2。
由于组成风轮的叶片不对称性和空气阻力的差异,风对风轮的作用就形成了绕转轴的驱动力偶,整个风轮随即转动。
阻力型风力发电机的种类及其性能1.杯式风速计是最简单的阻力型风力发电机。
fond风轮这是受到离心式风扇和水力机械中的banki涡轮启示而设计成的一种阻力推进型垂直轴风力发电机,它的名称是根据它的发明者——法国的lafond的名字而得名的。
这种叶片形状的凹面及凸面在受到风力作用后,空气阻力系数差别很大,加上叶片在风里运转时,先使气流吹向一侧,然后运动着的叶片又使气流流向另一侧,这样就产生了一个附加驱动力矩,故这种风轮有较大的启动力矩,它在风速2.5M/s时就能正常起动运转,但是效率较低,能量输出大概是同样迎风面积的水平轴风力发电机的一半。
3.savonius(萨沃尼斯)式风轮(简称“s”轮)这种风力发电机是在1924年由芬兰工程师savonius发明的,并于1929年获得专利。
垂直轴风力发电机增加概述及概述图片垂直轴风力发电机在风向改变的时候无需对风,在这点上相对于水平轴风力发电机是一大优势,它不仅使结构设计简化,而且也减少了风轮对风时的陀螺力。
目录垂直轴风力发电机的分类垂直轴风力发电机发展风力发电设备行业的发展新型垂直轴风力发电机(H型)一、技术原理二、功率特性三、结构附:现有垂直轴风力发电电源比较:垂直轴风力发电机的特点现状垂直轴风力发电机的分类垂直轴风力发电机发展风力发电设备行业的发展新型垂直轴风力发电机(H型)一、技术原理二、功率特性三、结构附:现有垂直轴风力发电电源比较:垂直轴风力发电机的特点现状展开编辑本段垂直轴风力发电机的分类尽管风力发电机多种多样,但归纳起来可分为两类:①水平轴风力发电机,风轮的旋转轴与风向平行;②垂直轴风力发电机,风轮的旋转轴垂直于地面或者气流方向。
利用阻力旋转的垂直轴风力发电机有几种类型,其中有利用平板和被子做成的风轮,这是一种纯阻力装置;S型风车,具有部分升力,但主要还是阻力装置。
这些装置有较大的启动力矩,但尖速比低,在风轮尺寸、重量和成本一定的情况下,提供的功率输出低。
达里厄式风轮是法国G.J.M达里厄于19世纪30年代发明的。
在20世纪70年代,加拿大国家科学研究院对此进行了大量的研究,现在是水平轴风力发电机的主要竞争者。
达里厄式风轮是一种升力装置,弯曲叶片的剖面是翼型,它的启动力矩低,但尖速比可以很高,对于给定的风轮重量和成本,有较高的功率输出。
现在有多种达里厄式风力发电机,如Φ型,Δ型,Y型和H型等。
这些风轮可以设计成单叶片,双叶片,三叶片或者多叶片。
其他形式的垂直轴风力发电机有马格努斯效应风轮,他由自旋的圆柱体组成,当它在气流中工作时,产生的移动力是由于马格努斯效应引起的,其大小与风速成正比。
有的垂直轴风轮使用管道或者漩涡发生器塔,通过套管或者扩压器使水平气流变成垂直气流,以增加速度,偶写还利用太阳能或者燃烧某种燃料,是水平气流变成垂直方向的气流。
阻力型垂直轴风力发电机概述早在1300多年前,中国就已经出现一种古老的垂直轴风车,它利用风力来灌溉,如下图所示,它是由8个风帆组成的风轮。
而在1000年前,波斯也建造了垂直轴的风车来带动他们磨谷的石磨。
水平轴风力发电机最早出现在欧洲,要比垂直轴风力发电机晚很多年,所以垂直轴风力发电机可以称为所有风力发电机的先驱。
而垂直轴风力发电机根据驱动力的不同又可以分为升力型和阻力型垂直轴风力发电机,本文主要介绍阻力型垂直轴风力发电机。
1.阻力型风力发电机的工作原理阻力型垂直轴风力发电机风轮的转轴周围,有一对或者若干个凹凸曲面的叶片,当它们处于不同方位时,相对于它的来风方向所受的推力F是不同的。
风力作用于上述物体上的空气动力差别也很大。
作用力F可表示为:F=1/2?ρ?S·V??C其中ρ——空气密度,一般取1.25(kg/m?)S——风轮迎风面积V——来流风速C——空气动力系数以半球为例,当风吹到半球凹面一侧,c值为1.33,当风吹到半球凸面一侧时,c值为0.34。
对于柱面,当风吹向凹面和凸面时,系数c分别为2.3和1.2。
由于组成风轮的叶片不对称性和空气阻力的差异,风对风轮的作用就形成了绕转轴的驱动力偶,整个风轮随即转动。
阻力型风力发电机的种类及其性能1.杯式风速计是最简单的阻力型风力发电机。
fond风轮这是受到离心式风扇和水力机械中的banki涡轮启示而设计成的一种阻力推进型垂直轴风力发电机,它的名称是根据它的发明者——法国的lafond的名字而得名的。
这种叶片形状的凹面及凸面在受到风力作用后,空气阻力系数差别很大,加上叶片在风里运转时,先使气流吹向一侧,然后运动着的叶片又使气流流向另一侧,这样就产生了一个附加驱动力矩,故这种风轮有较大的启动力矩,它在风速2.5M/s时就能正常起动运转,但是效率较低,能量输出大概是同样迎风面积的水平轴风力发电机的一半。
3.savonius(萨沃尼斯)式风轮(简称“s”轮)这种风力发电机是在1924年由芬兰工程师savonius发明的,并于1929年获得专利。
垂直轴风力发电机在风向改变的时候无需对风,在这点上相对于水平轴风力发电机是一大优势,它不仅使结构设计简化,而且也减少了风轮对风时的陀螺力。
垂直轴风力发电机(vertical axis wind turbine VAWT)从分类来说,主要分为阻力型和升力型。
阻力型垂直轴风力发电机主要是利用空气流过叶片产生的阻力作为驱动力的,而升力型则是利用空气流过叶片产生的升力作为驱动力的。
由于叶片在旋转过程中,随着转速的增加阻力急剧减小,而升力反而会增大,所以升力型的垂直轴风力发电机的效率要比阻力型的高很多。
1.阻力型风力发电机的工作原理阻力型垂直轴风力发电机风轮的转轴周围,有一对或者若干个凹凸曲面的叶片,当它们处于不同方位时,相对于它的来风方向所受的推力F是不同的。
风力作用于上述物体上的空气动力差别也很大。
作用力F可表示为:F=1/2?ρ?S·V??C其中ρ——空气密度,一般取1.25(kg/m?)S——风轮迎风面积V——来流风速C——空气动力系数以半球为例,当风吹到半球凹面一侧,c值为1.33,当风吹到半球凸面一侧时,c值为0.34。
对于柱面,当风吹向凹面和凸面时,系数c分别为2.3和1.2。
由于组成风轮的叶片不对称性和空气阻力的差异,风对风轮的作用就形成了绕转轴的驱动力偶,整个风轮随即转动。
2.升力型垂直轴风力发电机原理在下面图中列举了从0度到315度八个位置的叶片,风从左边进入,浅蓝色的矢量v是风速、绿色的矢量u是叶片圆周运动的线速度反向(即无风时叶片感受到的气流速度)、蓝色的矢量w是叶片感受到的合成气流速度(即相对风速)、紫色的矢量L是叶片受到的升力。
我们分析一下叶片在这八个角度的受力情况,在90度与270度的位置,相对风速不产生升力,在其它六个位置上叶片受到的升力均能在运动方向产生转矩力,这也是达里厄风力机能在风力下旋转的道理。
实际上情况要复杂得多,前面分析图是理想状态,是在理想的叶尖速比与没有叶片的阻力时的状态。
垂直风力机原理
垂直风力机是一种利用风能发电的装置,其原理是通过将风能转化为机械能,再进一步转化为电能。
垂直风力机的主要组成部分是垂直轴和叶片。
垂直轴通常是一个直立的柱状结构,可以固定在地面或者建筑物上。
叶片则安装在垂直轴上,可以通过风力的作用转动。
当风吹过垂直风力机的叶片时,风的动能会转化为叶片上的动能。
叶片的设计通常采用气动原理,使得风能尽可能地转化为机械能。
叶片的形状和角度可以影响转动效率和性能。
当叶片转动时,垂直轴也会随之转动。
垂直轴上通常安装有一个发电机,通过转动产生电能。
发电机可以是直接驱动式,也可以是间接驱动式。
垂直风力机的优点是可以在任何风向下进行发电,不需要面向风向。
同时,由于垂直轴和叶片的结构相对简单,维护和安装也相对容易。
另外,垂直风力机的外形紧凑,适合在城市和建筑物周围使用。
然而,垂直风力机的转动效率通常比水平风力机低,因此在同样的风能条件下,垂直风力机产生的电能较少。
此外,由于叶片在整个转动过程中都受到风力的作用,垂直风力机的结构相对于水平风力机来说更容易受到风力的损坏。
总的来说,垂直风力机利用垂直轴和叶片的结构将风能转化为机械能,再通过发电机转化为电能。
它具有一些优点,但也存在一些限制。
随着技术的进步,垂直风力机的效率和可靠性有望得到提升。
垂直轴风力机原理与设计
垂直轴风力机是一种可用于发电的新型清洁能源装置,它利用垂直导轴升力原理把通
过风力机叶片发生的空气动能变为机械能,再通过轴承和变速箱及其他传动元件转化为电
能进行发电。
具体来说,垂直轴风力机的叶片与传统水平轴风力机有着很大的不同,它们
具有极大的升力,可以利用一半、一半以上的空气动能变成机械能。
此外,垂直轴风力机机构结构通常较小,易于安装,出现在城市屋顶、室外公园等公
共场所。
同时,它很少受到风速的影响,在低风速下也能提供最大的可靠性和可靠性,因此,它可以更好地抗风。
此外,垂直轴风力机噪声低,可以在周边的景观中安装,不会影
响环境。
垂直轴风力机的设计主要针对发电效率,使叶片方向更大地利用风力,减少抗风能力。
叶片为翼型,其中有半圆翼型、半椭圆翼型、三角翼型等。
叶片布局也会超前,用于减少
发电机械能的损失,并调整叶片横断面积,充分利用风力发电。
同时,垂直轴风力机还配
备有控制桨,可以使叶片旋转速度保持稳定,确保其发电效率最大化,并使其运行更加平
稳和安全。
垂直轴风力机的设计需要考虑到可靠性和安全性,一般要采取结构强度和防护措施来
抵抗风荷载传入的振动,有效提高叶片质量比以保证发电安全性,并确保发电机组质量符
合安全质量要求。
另外,还可以将附件和逆转系统配以发电系统,减少故障的发生,使发
电效率更高。
总结来说,垂直轴风力机是一种很好的清洁能源发电装置,能提供可靠性高、环境友
好的电力服务。
为此,重要的是要采用得当的叶片设计,以及充分考虑可靠性和安全性,
以便最大化利用风能发电。