当前位置:文档之家› 简易数字万用表的设计

简易数字万用表的设计

简易数字万用表的设计
简易数字万用表的设计

2013年江西省大学生电子设计简易数字万用表

(C 题)

2013年5月28日

目录

摘要 0

一.设计任务 (1)

二.系统方案 (2)

三.理论分析与计算 (3)

3.1器件的选择与比较 (3)

3.2 测量电路的设计和分析 (3)

3.2.1 模数(A/D)转换与数字显示电路 (3)

3.2.2 多量程数字电压表原理 (3)

3.2.3 多量程数字电流表原理 (4)

3.2.4 电阻的测量原理 (5)

3.2.5 电容测量原理 (6)

四.电路设计与程序设计 (7)

4.1 直流电压测量电路 (7)

4.2 直流电流测量电路 (7)

4.3 电阻测量电路 (8)

4.4 测电容电路 (8)

4.5 最小系统电路 (9)

五.测试方案 (10)

5.1 硬件调试 (10)

1.测试仪器 (10)

2.测试方法 (10)

5.2 软件调试 (10)

5.3 硬件软件联合调试 (10)

模块程序设计法的主要优点是: (10)

5.4测试流程 (11)

5.4.1 整体测试流程 (11)

5.4.2电压测试流程 (11)

5.4.3 电阻测量流程 (11)

5.4.4 电流测试流程 (12)

参考文献 (13)

摘要

本次设计用单片机芯片STC12C5A60S2设计一个数字万用表,能够测量直流电压值、直流电流、直流电阻以及电容和电感,四位数码显示。此系统由分流电阻、分压电阻、基准电阻、555振荡电路、51单片机最小系统、显示部分、AD转换和控制部分组成。为使系统更加稳定,使系统整体硬件更简单,本电路使用了STC12C5A60S2自带的AD,它单片机系统设计采用STC12C5A60S2单片机作为主控芯片,配以RC上电复位电路和11.0592MHZ 震荡电路,显示用四位数码管。程序每执行周期耗时缩到最短,这样保证了系统的实时性。

关键字:数字万用表;单片机;AD转换

一.设计任务

1.设计并制作一台支持直流电压、直流电流、电阻测量的数字万用表。

2. 测量范围:直流电压0.1V-100V;直流电流10mA-500mA;电阻100Ω-1MΩ。

3.使用按键或者拨码开关进行测量类型选择,并用数码管显示器显示测量数值,发光二极管指示测量类型与单位。

4. 测量精度:±5%。

二.系统方案

选用STC12C5A60S2单片机来制作数字万用表。

STC12C5A60S2/AD/PWM系列单片机是宏晶科技生产的单时钟/机器周期(1T)的单片机,是高速/低功耗/超强抗干扰的新一代8051单片机,指令代码完全兼容传统8051,但速度快8-12倍。内部集成MAX810专用复位电路,2路PWM,8路高速10位A/D转换(250K/S),针对电机控制,强干扰场合。

1.增强型8051 CPU,1T,单时钟/机器周期,指令代码完全兼容传统8051

2.工作电压:STC12C5A60S2系列工作电压:5.5V-

3.3V(5V单片机)STC12LE5A60S2系列工作电压:3.6V- 2.2V(3V单片机)

3.通用I/O口(36/40/44个),复位后为:准双向口/弱上拉(普通8051传统I/O口)可设置成四种模式:准双向口/弱上拉,推挽/强上拉,仅为输入/高阻,开漏每个I/O口驱动能力均可达到20mA,但整个芯片最大不要超过55mA。

4.共4个16位定时器两个与传统8051兼容的定时器/计数器,16位定时器T0和T1,没有定时器2,但有独立波特率发生器做串行通讯的波特率发生器再加上2路PCA模块可再实现2个16位定时器。

5.2个时钟输出口,可由T0的溢出在P3.4/T0输出时钟,可由T1的溢出在P3.5/T1输出时钟。

6.外部中断I/O口7路,传统的下降沿中断或低电平触发中断,并新增支持上升沿中断的PCA模块,Power Down模式可由外部中断唤醒,INT0/P3.2, INT1/P3.3, T0/P3.4, T1/P3.5, RxD/P3.0,CCP0/P1.3(也可通过寄存器设置到P4.2 ), CCP1/P1.4 (也可通过寄存器设置到P4.3)。

7.A/D转换, 10位精度ADC,共8路,转换速度可达250K/S(每秒钟25万次)18.通用全双工异步串行口(UART),由于STC12系列是高速的8051,可再用定时器或PCA软件实现多串口。

三.理论分析与计算

3.1器件的选择与比较

方案1.选用A T89S52和ADC0809芯片,通过ADC0809转换芯片来对电压的采集。

方案2.选用STC12C5A60S2单片机,它有自带的AD,操作起来硬件电路更方便。

通过分析选择方案2.

3.2 测量电路的设计和分析

3.2.1 模数(A/D)转换与数字显示电路

常见的物理量都是幅值(大小)连续变化的所谓模拟量(模拟信号)。指针式仪表可以直接对模拟电压、电流进行显示。而对数字式仪表,需要把模拟电信号(通常是电压信号)转换成数字信号,再进行显示和处理(如存储、传输、打印、运算等)。数字信号与模拟信号不同,其幅值(大小)是不连续的。这种情况被称为是“量化的”。若最小量化单位(量化台阶)为?,则数字信号的大小一定是?的整数倍,该整数可以用二进制数码表示。但为了能直观地读出信号大小的数值,需经过数码变换(译码)后由数码管显示出来。

例如,设?=0.1mV,我们把被测电压U与?比较,看U是?的多少倍,并把结果四舍五入取为整数N (二进制)。一般情况下,N≥1000即可满足测量精度要求(量化误差≤1/1000=0.1%)。最常见的数字表头的最大示数为1999,被称为三位半(1 32 )数字表。对上述情况,我们把小数点定在最末位之前,显示出来的就是以mV为单位的被测电压U的大小。如:U是 ? (0.1mV)的1234倍,即N=1234,显示结果为123.4(mV)。这样的数字表头,再加上电压极性判别显示电路,就可以测量显示-199.9~199.9mV的电压,显示精度为0.1mV。由上可见,数字测量仪表的核心是模数(A/D)转换、译码显示电路。A/D转换一般又可分为量化、编码两个步骤。

3.2.2 多量程数字电压表原理

在基准数字电压表头前面加一级分压电路(分压器),可以扩展直流电压测量的量程。如图3.1所示,0U为电压表头的量程(如200mV),r为其内阻(如10M),1r、2r为分压电阻,10U为扩展后的量程。

图3.1 电压测量原理图

由于r>>r2,所以分压比为:

扩展后的量程为:

3.2.3 多量程数字电流表原理

测量电流的原理是:根据欧姆定律,用合适的取样电阻把待测电流转换为相应的电压,再进行测量。如图3.2,由于r》R,取样电阻R上的电压降为:

即被测的电流为:

图 3.2 电流测量原理图

若数字表头的电压量程为Uo,欲使电流档量程为Io,则该档的取样电阻(也称分流电阻)为:

如Uo=200mV,则Io=200mA档的分流电阻为1R。

3.2.4 电阻的测量原理

方案一: R/U转换测量法

数字万用表中的电阻档采用的是比例测量法,给电路提供一个基准电压,流过标准电阻Ro和被测电阻Rx的电流基本相等(数字表头的输入阻抗很高,其取用的电流可忽略不计)。所以A/D转换器的参考电压Uref和输入电压Uin有如下关系:

即:

因此,我们只要选取不同的标准电阻并适当地对小数点进行定位,就能得到不同的电阻测量档。

方案二:R/f转换测量法

把电阻R转换成频率信号f,转换的原理分别是RC振荡电路和555电路,单片机根据所选通道,向模拟开关送两路地址信号,取得振荡频率,作为单片机的时钟源,通过计数则可以计算出被测频率,再通过该频率,通过公式计算出各个电阻参数。然后根据所测频率来判断是否转换量程,或者是把数据处理后,把电阻的值送到显示部分显示出相应的参数值,利用编程实现量程自动转换

公式为:T=0.693*R*C 。

方案三:基于恒流源法的转换测量法

该方法是给待测电阻提供一个恒定电流,利用单片机的A/D采集其两端的电压来确定其电阻值,方式为R=U/I。

3.2.5 电容测量原理

把电容C转换成频率信号f,转换的原理分别是RC振荡电路和555电路,单片机根据所选通道,向模拟开关送两路地址信号,取得振荡频率,作为单片机的时钟源,通过计数则可以计算出被测频率,再通过该频率,通过公式计算出各个电阻参数。然后根据所测频率来判断是否转换量程,或者是把数据处理后,把电阻的值送到显示部分显示出相应的参数值,利用编程实现量程自动转换公式为:T=0.693*R*C

相关主题
文本预览
相关文档 最新文档