高中数学-三余弦定理(最小角定理)与三正弦定理复习过程
- 格式:docx
- 大小:98.98 KB
- 文档页数:3
高三数学总复习 正弦定理和余弦定理教案教学目标:1、掌握正弦定理和余弦定理的推导,并能用它们解三角形.2、利用正、余弦定理求三角形中的边、角及其面积问题是高考考查的热点.3、常与三角恒等变换相结合,综合考查三角形中的边与角、三角形形状的判断等.教学重点:①能充分应用三角形的性质及有关的三角函数公式证明三角形的边角关系式. ②能合理地选用正弦定理余弦定理结合三角形的性质解斜三角形.③能解决与三角形有关的实际问题.教学难点:①根据已知条件判定解的情形,并正确求解.②将实际问题转化为解斜三角形.教学过程一、基础回顾1、正余弦定理正弦定理:a sinA =b sinB =c sinC=2R(其中R 为△ABC 外接圆的半径). 余弦定理a 2=b 2+c 2-2bccosA ,b 2=a 2+c 2-2accosB ;c 2=a 2+b 2-2abcosC2、变形式①a =2RsinA ,b =2RsinB ,c =2RsinC ;(其中R 是△ABC 外接圆半径)②a ∶b ∶c =sinA :sinB :sinB③cosA =b 2+c 2-a 22bc ,cosB =a 2+c 2-b 22ac ,cosC =a 2+b 2-c 22ab. 3、三角形中的常见结论(1) A +B +C =π.(2) 在三角形中大边对大角,大角对大边:A>B a>b sinA>sinB.(3) 任意两边之和大于第三边,任意两边之差小于第三边.(4) △ABC 的面积公式① S =12a ·h(h 表示a 边上的高); ② S =12absinC =12acsinB =12bcsinA =abc 4R; ③ S =12r(a +b +c)(r 为内切圆半径); ④ S =P (P -a )(P -b )(P -c ),其中P =12(a +b +c). 二、基础自测1、在△ABC 中,若∠A=60°,∠B =45°,BC =32,则AC =________.2、在△ABC 中,a =3,b =1,c =2,则A =________.3、在△ABC 中,a 、b 、c 分别为角A 、B 、C 所对的边,若a =2bcosC ,则此三角形一定是________三角形.4、已知△ABC 的三边长分别为a 、b 、c ,且a 2+b 2-c 2=ab ,则∠C=________.5、在△ABC 中,a =32,b =23,cosC =13,则△ABC 的面积为________.三、典例分析例1 (2013·惠州模拟)△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =2a .(1)求b a; (2)若c 2=b 2+3a 2,求B . 解:(1)由正弦定理,得asin B =bsin A ,又asin Asin B +bcos 2A =2a ,∴bsin 2A +bcos 2A =2a ,即b =2a ,因此b a = 2. (2)由c 2=b 2+3a 2及余弦定理,得cos B =a 2+c 2-b 22ac =(1+3)a 2c, (*) 又由(1)知,b =2a ,∴b 2=2a 2,因此c 2=(2+3)a 2,c =2+3a =3+12 a. 代入(*)式,得cos B =22, 又0<B <π,所以B =π4. 规律方法:1.运用正弦定理和余弦定理求解三角形时,要分清条件和目标.若已知两边与夹角,则用余弦定理;若已知两角和一边,则用正弦定理.2.在已知三角形两边及其中一边的对角,求该三角形的其它边角的问题时,首先必须判断是否有解,如果有解,是一解还是两解,注意“大边对大角”在判定中的应用.例2、(2013·合肥模拟)已知△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,向量m =(4,-1),n =(cos 2A 2,cos 2A),且m ·n =72. (1)求角A 的大小; (2)若b +c =2a =23,试判断△ABC 的形状.解:(1)∵m =(4,-1),n =(cos 2A2,cos 2A ), ∴m ·n =4cos 2A 2-cos 2A =4·1+cos A 2-(2cos 2A -1)=-2cos 2A +2cos A +3. 又∵m ·n =72, ∴-2cos 2A +2cos A +3=72,解得cos A =12. ∵0<A <π,∴A =π3.(2)在△ABC 中,a 2=b 2+c 2-2bc cos A ,且a =3,∴(3)2=b 2+c 2-2bc ·12=b 2+c 2-bc . ① 又∵b +c =23,∴b =23-c ,代入①式整理得c 2-23c +3=0,解得c =3,∴b =3, 于是a =b =c =3,即△ABC 为等边三角形.规律方法:判定三角形的形状,应围绕三角形的边角关系进行转化.无论使用哪种方法,不要随意约掉公因式;要移项提取公因式,否则会有漏掉一种形状的可能.例3、(2012·课标全国卷)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,acos C +3asin C -b -c =0.(1)求A ;(2)若a =2,△ABC 的面积为3,求b ,c.解:(1)由a cos C +3a sin C -b -c =0及正弦定理得sin A cos C +3sin A sin C -sin B -sin C =0.因为B =π-A -C ,则sin B =sin A cos C +cos A sin C . 所以3sin A sin C -cos A sin C -sin C =0.由于sin C ≠0,所以sin(A -π6)=12. 又0<A <π,故A =π3. (2)△ABC 的面积S =12bc sin A =3,故bc =4. ① 又a 2=b 2+c 2-2bc cos A ,故b 2+c 2=8.② 由①②联立,得b =c =2.四、练习 变式练习1:(2012·浙江高考)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且bsin A =3acos B.(1)求角B 的大小;(2)若b =3,sin C =2sin A ,求a ,c 的值.变式练习2:在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2asin A =(2b +c)sin B +(2c +b)sin C.(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状五、作业布置六、板书设计1、正余弦定理2、变形式3、三角形中常用结论典例分析七、教学反思。
第6讲正弦定理和余弦定理[学生用书P87]1.正弦定理和余弦定理定理正弦定理余弦定理内容asin A=bsin B=csin C=2R(R为△ABC外接圆半径)a2=b2+c2-2bc cos_A;b2=c2+a2-2ca cos_B;c2=a2+b2-2ab cos_C变形形式a=2R sin_A,b=2R sin_B,c=2R sin_C;sin A=a2R,sin B=b2R,sin C=c2R;a∶b∶c=sin_A∶sin_B∶sin_C;a+b+csin A+sin B+sin C=asin Acos A=b2+c2-a22bc;cos B=c2+a2-b22ca;cos C=a2+b2-c22ab2.三角形解的判断A为锐角A为钝角或直角图形关系式a=b sin A b sin A<a<b a≥b a>b 解的个数一解两解一解一解3.三角形中常用的面积公式(1)S=12ah(h表示边a上的高).(2)S=12bc sin A=12ac sin_B=12ab sinC.(3)S=12r(a+b+c)(r为三角形的内切圆半径).常用结论1.三角形中的三角函数关系(1)sin(A+B)=sin C;(2)cos(A+B)=-cos C;(3)sin A+B2=cos C2;(4)cos A+B2=sin C2.2.三角形中的射影定理在△ABC中,a=b cos C+c cos B;b=a cos C+c cos A;c=b cos A+a cos B.3.在△ABC中,两边之和大于第三边,两边之差小于第三边,A>B⇔a>b ⇔sin A>sin B⇔cos A<cos B.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)三角形中三边之比等于相应的三个内角之比.( ) (2)在△ABC 中,若sin A >sin B ,则A >B .( )(3)在△ABC 的六个元素中,已知任意三个元素可求其他元素.( ) (4)当b 2+c 2-a 2>0时,△ABC 为锐角三角形;当b 2+c 2-a 2=0时,△ABC 为直角三角形;当b 2+c 2-a 2<0时,△ABC 为钝角三角形.( )答案:(1)× (2)√ (3)× (4)× 二、易错纠偏常见误区|K(1)利用正弦定理求角时解的个数弄错; (2)在△ABC 中角与角的正弦关系弄错; (3)判断三角形形状时弄错.1.在△ABC 中,已知b =40,c =20,C =60°,则此三角形的解的情况是( ) A .有一解 B .有两解 C .无解D .有解但解的个数不确定解析:选C.由正弦定理得b sin B =csin C ,所以sin B =b sin Cc =40×3220=3>1.所以角B 不存在,即满足条件的三角形不存在.2.在△ABC 中,若sin A =sin B ,则A ,B 的关系为________;若sin A >sin B ,则A ,B 的关系为________.解析:sin A =sin B ⇔a =b ⇔A =B ; sin A >sin B ⇔a >b ⇔A >B . 答案:A =B A >B3.在△ABC 中,a cos A =b cos B ,则这个三角形的形状为________. 解析:由正弦定理,得sin A cos A =sin B cos B , 即sin 2A =sin 2B ,所以2A =2B 或2A =π-2B ,即A =B 或A +B =π2,所以这个三角形为等腰三角形或直角三角形. 答案:等腰三角形或直角三角形[学生用书P88]利用正、余弦定理求解三角形(多维探究) 角度一 求角或三角函数值(1)(2020·高考全国卷Ⅲ)在△ABC 中,cos C =23,AC =4,BC =3,则tan B =( )A.5 B .2 5 C .4 5D .8 5(2)(2021·福州市适应性考试)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若cos A (sin C -cos C )=cos B ,a =2,c =2,则角C 的大小为________.【解析】 (1)方法一:在△ABC 中,cos C =23,则sin C =53>22,所以C ∈⎝ ⎛⎭⎪⎫π4,π2.由余弦定理知AB 2=AC 2+BC 2-2AC ·BC ·cos C =16+9-2×4×3×23=9,所以AB =3.由正弦定理AC sin B =AB sin C ,得sin B =459,易知B ∈⎝ ⎛⎭⎪⎫0,π2,所以cos B =19,tan B =sin Bcos B =4 5.故选C.方法二:在△ABC 中,cos C =23,AC =4,BC =3,所以由余弦定理知AB 2=AC 2+BC 2-2AC ·BC ·cos C =16+9-2×4×3×23=9,所以AB =3,所以△ABC 是等腰三角形.过点B 作BD ⊥AC 于点D ,则BD =BC 2-CD 2=32-⎝ ⎛⎭⎪⎫422=5,tan B2=25=255,所以tan B=2tanB21-tan2B2=4 5.故选C.(2)因为cos A(sin C-cos C)=cos B,所以cos A(sin C-cos C)=-cos(A+C),所以cos A sin C=sin A sin C,所以sin C(cos A-sin A)=0,因为C∈(0,π),所以sin C≠0,cos A=sin A,则tan A=1,又A∈(0,π)所以A=π4,又asin A=csin C,即2 sin π4=2sin C,所以sin C=12,因为c<a,所以0<C<π4,故C=π6.【答案】(1)C(2)π6角度二求边长或周长在△ABC中,内角A,B,C的对边a,b,c成公差为2的等差数列,C=120°.(1)求边长a;(2)(一题多解)求AB边上的高CD的长.【解】(1)由题意得b=a+2,c=a+4,由余弦定理cos C=a2+b2-c22ab得cos 120°=a2+(a+2)2-(a+4)22a(a+2),即a2-a-6=0,所以a=3或a=-2(舍去),所以a=3.(2)方法一:由(1)知a=3,b=5,c=7,由三角形的面积公式得12ab sin ∠ACB=12c×CD,所以CD=ab sin ∠ACBc=3×5×327=15314,即AB边上的高CD=15314.方法二:由(1)知a=3,b=5,c=7,由正弦定理得3sin A =7sin ∠ACB=7sin 120°,即sin A =3314,在Rt △ACD 中,CD =AC sin A =5×3314=15314,即AB 边上的高CD =15314.(1)正弦定理、余弦定理的作用是在已知三角形部分元素的情况下求解其余元素,基本思想是方程思想,即根据正弦定理、余弦定理列出关于未知元素的方程,通过解方程求得未知元素.(2)正弦定理、余弦定理的另一个作用是实现三角形边角关系的互化,解题时可以把已知条件化为角的三角函数关系,也可以把已知条件化为三角形边的关系.(3)涉及最值问题时,常利用基本不等式或表示为三角形的某一内角的三角函数形式求解.1.(2021·广东省七校联考)若△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知2b sin 2A =3a sin B ,且c =2b ,则ab 等于( )A.32 B . 2 C.43D. 3解析:选B.由2b sin 2A =3a sin B ,及正弦定理可得4sin B ·sin A cos A =3sin A sin B ,由于sin A ≠0,sin B ≠0,所以cos A =34,又c =2b ,所以a 2=b 2+c 2-2bc cos A =b 2+4b 2-2b ×2b ×34=2b 2,所以ab =2,故选B.2.(2019·高考全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,设(sin B -sin C )2=sin 2A -sin B sinC.(1)求A;(2)若2a+b=2c,求sinC.解:(1)由已知得sin2B+sin2C-sin2A=sin B sin C,故由正弦定理得b2+c2-a2=bc.由余弦定理得cos A=b2+c2-a22bc=12.因为0°<A<180°,所以A=60°.(2)由(1)知B=120°-C,由题设及正弦定理得2sin A+sin(120°-C)=2sinC,即62+32cos C+12sin C=2sin C,可得cos(C+60°)=-22.由于0°<C<120°,所以sin(C+60°)=22,故sin C=sin(C+60°-60°)=sin(C+60°)cos 60°-cos(C+60°)sin 60°=6+2 4.判断三角形的形状(典例迁移)(2020·重庆六校联考)在△ABC中,cos2B2=a+c2c(a,b,c分别为角A,B,C的对边),则△ABC的形状为()A.直角三角形B.等边三角形C.等腰三角形D.等腰三角形或直角三角形【解析】已知等式变形得cos B+1=ac+1,即cos B=ac①.由余弦定理得cos B=a2+c2-b22ac,代入①得a2+c2-b22ac=ac,整理得b2+a2=c2,即C为直角,则△ABC为直角三角形.【答案】 A【迁移探究1】(变条件)将“cos2B2=a+c2c”改为“c-a cos B=(2a-b)cosA”,试判断△ABC的形状.解:因为c-a cos B=(2a-b)cos A,C=π-(A+B),所以由正弦定理得sin C-sin A cos B=2sin A cos A-sin B cos A,所以sin A cos B+cos A sin B-sin A cos B=2sin A cos A-sin B cos A,所以cos A(sin B-sin A)=0,所以cos A=0或sin B=sin A,所以A=π2或B=A或B=π-A(舍去),所以△ABC为等腰三角形或直角三角形.【迁移探究2】(变条件)将“cos2B2=a+c2c”改为“sin Asin B=ac,(b+c+a)(b+c-a)=3bc”,试判断△ABC的形状.解:因为sin Asin B=ac,所以ab=ac,所以b=c.又(b+c+a)(b+c-a)=3bc,所以b2+c2-a2=bc,所以cos A=b2+c2-a22bc=bc2bc=12.因为A∈(0,π),所以A=π3,所以△ABC是等边三角形.(1)判定三角形形状的2种常用途径(2)判定三角形形状的3个注意点①“角化边”后要注意用因式分解、配方等方法得出边的相应关系; ②“边化角”后要注意用三角恒等变换公式、三角形内角和定理及诱导公式推出角的关系;③还要特别注意“等腰直角三角形”与“等腰三角形或直角三角形”的区别.在△ABC 中,已知2a cos B =c, sin A sin B ·(2-cos C )=sin 2C2+12,则△ABC 为( )A .等边三角形B .等腰直角三角形C .锐角非等边三角形D .钝角三角形解析:选B.将已知等式2a cos B =c 利用正弦定理化简得2sin A cos B =sin C , 因为sin C =sin ()A +B =sin A cos B +cos A sin B , 所以2sin A cos B =sin A cos B +cos A sin B , 即sin A cos B -cos A sin B =sin(A -B )=0, 因为A 与B 都为△ABC 的内角, 所以A -B =0,即A =B .因为sin A sin B (2-cos C )=sin 2C 2+12,所以sin A sin B (2-cos C )=12(1-cos C )+12=1-12cos C , 所以-12⎣⎡⎦⎤cos ()A +B -cos (A -B )(2-cosC )=1-12cos C ,所以-12(-cos C-1)(2-cos C)=1-12cos C,即(cos C+1)(2-cos C)=2-cos C,整理得cos2C-2cos C=0,即cos C(cos C-2)=0,所以cos C=0或cos C =2(舍去),所以C=90°,则△ABC为等腰直角三角形,故选B.与三角形面积有关的问题(多维探究)角度一计算三角形的面积(一题多解)(2021·昆明市三诊一模)△ABC的三个内角A,B,C所对的边分别为a,b,c,若B=120°,sin C=217,c=2,则△ABC的面积等于() A.32B.2 3C.34 D. 3【解析】方法一:由正弦定理bsin B=csin C,得b=c sin Bsin C=2×32217=7.由余弦定理b2=a2+c2-2ac cos B,得7=a2+4+2a,解得a=1或a=-3(舍去),所以S△ABC=12ac sin B=12×1×2×32=32,故选A.方法二:由正弦定理bsin B=csin C,得b=c sin Bsin C=2×32217=7.因为sin C=217,0°<C<60°,所以cos C=277,所以sin A=sin(B+C)=sin B cos C+cos B sin C=32×277-12×217=2114,所以S△ABC=12bc sin A=12×7×2×2114=32,故选A.【答案】 A求三角形面积的方法(1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积;(2)若已知三角形的三边,可先求其中一个角的余弦值,再求其正弦值,代入公式求面积,总之,结合图形恰当选择面积公式是解题的关键.角度二已知三角形的面积解三角形(2021·深圳市统一测试)已知△ABC的内角A,B,C的对边分别为a,b,c,△ABC的面积为S,a2+b2-c2=2S.(1)求cos C;(2)(一题多解)若a cos B+b sin A=c,a=5,求b.【解】(1)因为S=12ab sin C,a2+b2-c2=2S,所以a2+b2-c2=ab sin C,在△ABC中,由余弦定理得cos C=a2+b2-c22ab=ab sin C2ab=sin C2,所以sin C=2cos C,又sin2C+cos2C=1,所以5cos2C=1,cos C=±55,又C∈(0,π),所以sin C>0,所以cos C>0,所以cos C=55.(2)方法一:在△ABC中,由正弦定理得sin A cos B+sin B sin A=sin C,因为sin C=sin[π-(A+B)]=sin(A+B)=sin A cos B+cos A sin B,所以sin A cos B+sin B sin A=sin A cos B+cos A sin B,即sin B sin A=cos A sinB,又A,B∈(0,π),所以sin B≠0,sin A=cos A,得A=π4.因为sin B=sin[π-(A+C)]=sin(A+C),所以sin B=sin A cos C+cos A sin C=22×55+22×255=31010.在△ABC 中,由正弦定理得b =a sin Bsin A =5×3101022=3.方法二:因为a cos B +b sin A =c , a cos B +b cos A =c ,所以a cos B +b sin A =a cos B +b cos A , 即sin A =cos A ,又A ∈(0,π),所以A =π4.在△ABC 中,由正弦定理得c =a sin Csin A =5×25522=2 2.因为b =c cos A +a cos C , 所以b =22×22+5×55=3. 方法三:求A 同方法一或方法二.在△ABC 中,由正弦定理得c =a sin Csin A =5×25522=22,由余弦定理c 2=a 2+b 2-2ab cos C ,得b 2-2b -3=0,解得b =-1(舍去)或b =3.所以b =3.(或由余弦定理a 2=b 2+c 2-2bc cos A ,得b 2-4b +3=0,解得b =1或b =3.因为当b =1时,a 2+b 2-c 2=-2<0,不满足cos C >0或a 2+b 2-c 2=-2≠2S ,所以应舍去,故b =3)已知三角形面积求边、角的方法(1)若求角,就寻求这个角的两边的关系,利用面积公式列方程求解; (2)若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解. [注意] 正弦定理、余弦定理与三角函数性质的综合应用中,要注意三角函数公式的工具性作用.1.在△ABC 中,cos B =14,b =2,sin C =2sin A ,则△ABC 的面积等于( )A.14 B .12C.32D.154解析:选D.在△ABC 中,cos B =14,b =2,sin C =2sin A ,由正弦定理得c=2a ;由余弦定理得b 2=a 2+c 2-2ac ·cos B =a 2+4a 2-2a ·2a ·14=4a 2=4,解得a=1,可得c =2,所以△ABC 的面积为S =12ac sin B =12×1×2×1-⎝ ⎛⎭⎪⎫142=154.故选D.2.(2020·成都市诊断性检测)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c 且b 2+c 2-a 2=423bc .(1)求sin A 的值;(2)若△ABC 的面积为2,且2sin B =3sin C ,求△ABC 的周长. 解:(1)因为b 2+c 2-a 2=2bc cos A ,所以2bc cos A =423bc ,所以cos A =223,所以在△ABC 中,sin A =1-cos 2A =13.(2)因为△ABC 的面积为2,所以12bc sin A =16bc =2, 所以bc =6 2.因为2sin B =3sin C ,所以由正弦定理得 2 b =3c ,所以b =32,c =2,所以a 2=b 2+c 2-2bc cos A =6,所以a = 6. 所以△ABC 的周长为2+32+ 6.[学生用书P91]高考新声音3 解三角形中的结构不良型开放性问题(2020·新高考卷Ⅰ)在①ac =3,②c sin A =3,③c =3b 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在△ABC ,它的内角A ,B ,C 的对边分别为a ,b ,c ,且sin A =3sin B ,C =π6,________________?【解题思路】 结合已知条件,根据正弦定理及余弦定理可得a = 3 b ,b =c ,选择①ac =3,可由a = 3 b ,b =c ,求得a ,b ,c 的值,得到结论;选择②c sin A =3,可由b =c 得到A ,B ,进而求得a ,b ,c 的值,得到结论;选择③c = 3 b ,与b =c 矛盾,得到结论.【解】 方案一:选条件①.由C =π6和余弦定理得a 2+b 2-c 22ab =32. 由sin A =3sin B 及正弦定理得a =3b . 于是3b 2+b 2-c 223b 2=32,由此可得b =c . 由①ac =3,解得a =3,b =c =1.因此,选条件①时问题中的三角形存在,此时c =1. 方案二:选条件②.由C=π6和余弦定理得a2+b2-c22ab=32.由sin A=3sin B及正弦定理得a=3b.于是3b2+b2-c223b2=32,由此可得b=c,B=C=π6,A=2π3.由②c sin A=3,所以c=b=23,a=6.因此,选条件②时问题中的三角形存在,此时c=2 3.方案三:选条件③.由C=π6和余弦定理得a2+b2-c22ab=32.由sin A=3sin B及正弦定理得a=3b.于是3b2+b2-c223b2=32,由此可得b=c.由③c=3b,与b=c矛盾.因此,选条件③时问题中的三角形不存在.本题以解三角形为背景命制,给定了若干条件(在这些条件下三角形并不能随之确定),在此基础上让学生在另外给出的几个条件中自主选择,在所选条件下,若问题中的三角形存在,求解三角形;若问题中的三角形不存在,说明理由.(2020·高考北京卷)在△ABC中,a+b=11,再从条件①、条件②这两个条件中选择一个作为已知,求;(1)a的值;(2)sin C和△ABC的面积.条件①:c=7,cos A=-1 7;条件②:cos A=18,cos B=916.解:选①(1)由余弦定理a 2=b 2+c 2-2bc cos A ,b =11-a ,c =7, 得a 2=(11-a )2+49-2(11-a )×7×⎝ ⎛⎭⎪⎫-17,所以a =8.(2)因为cos A =-17,A ∈(0,π),所以sin A =437. 由正弦定理a sin A =c sin C ,得sin C =c sin A a =7×4378=32,由(1)知b =11-a =3,所以S △ABC =12ab sin C =12×8×3×32=6 3.选②(1)因为cos A =18,所以A ∈⎝ ⎛⎭⎪⎫0,π2,sin A =378.因为cos B =916,所以B ∈⎝ ⎛⎭⎪⎫0,π2,sin B =5716.由正弦定理a sin A =bsin B , 得a 378=11-a 5716,所以a =6.(2)sin C =sin(π-A -B )=sin(A +B )=sin A cos B +cos A sin B =74. 因为a +b =11,a =6, 所以b =5.所以S △ABC =12ab sin C =12×6×5×74=1574.[学生用书P301(单独成册)][A 级 基础练]1.(2020·六校联盟第二次联考)在△ABC 中,AB =3,AC =1,B =30°,则A =( )A .60°B .30°或90°C .60°或120°D .90°解析:选B.由正弦定理AC sin B =ABsin C 得1sin 30°=3sin C ,所以sin C =32,因为AB >AC ,所以C =60°或120°,当C =60°,B =30°时,A =90°;当C =120°,B =30°时,A =30°.2.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定解析:选B.因为b cos C +c cos B =a sin A ,所以由正弦定理得sin B cos C +sin C cos B =sin 2A ,所以sin(B +C )=sin 2A .又sin(B +C )=sin A 且sin A ≠0,所以sin A =1,所以A =π2,所以△ABC 为直角三角形,故选B.3.(2021·长沙市四校模拟考试)设△ABC 的内角A ,B ,C 的对边分别是a ,b ,c .已知2b -a cos C =0,sin A =3sin(A +C ),则bca 2=( )A.74 B .149C.23D.69解析:选D.因为2b -a cos C =0,所以由余弦定理得2b -a ×a 2+b 2-c 22ab =0,整理得3b 2+c 2=a 2 ①.因为sin A =3sin(A +C )=3sin B ,所以由正弦定理可得a =3b ②,由①②可得c =6b ,则bc a 2=b ×6b 9b 2=69.故选D.4.在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c .若角A ,B ,C 依次成等差数列,且a =1,b =3,则S △ABC =( )A. 2 B . 3 C.32D .2解析:选C.因为A ,B ,C 依次成等差数列,所以B =60°,所以由余弦定理得b 2=a 2+c 2-2ac cos B ,得c =2或c =-1(舍去),所以由正弦定理得S △ABC =12ac sin B =32,故选C.5.在△ABC 中,已知a ,b ,c 分别为角A ,B ,C 的对边且∠A =60°,若S △ABC =332且2sin B =3sin C ,则△ABC 的周长等于( )A .5+7B .12C .10+7D .5+27解析:选A.在△ABC 中,∠A =60°.因为2sin B =3sin C ,故由正弦定理可得2b =3c ,再由S △ABC =332=12bc ·sin A ,可得bc =6,所以b =3,c =2.由余弦定理可得a 2=b 2+c 2-2bc cos A =7,所以a =7,故△ABC 的周长为a +b +c =5+7,故选A.6.(2020·福州市适应性考试)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若a cos B +b cos A =2ac ,则a =________.解析:由题设及正弦定理得sin A cos B +sin B cos A =2a sin C ,所以sin(A +B )=2a sinC .又A +B +C =π,所以sin C =2a sin C ,又sin C ≠0,所以a =12. 答案:127.(2020·湖北八校第一次联考)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且sin B -sin A (sin C +cos C )=0,a =2,c =2,则角C =________.解析:因为A+C=π-B,所以sin B=sin(A+C)=sin A·cos C+cos A sin C,因为sin B-sin A(sin C+cos C)=0,所以cos A sin C-sin A sin C=0,因为C∈(0,π),所以sin C>0,所以cos A=sin A,又A∈(0,π),所以A=π4,由正弦定理得a sin π4=csin C,又a=2,c=2,所以sin C=12,因为a>c,所以C=π6.答案:π68.(2020·福州市质量检测)已知钝角三角形ABC的内角A,B,C的对边分别为a,b,c,且c=7,b=1,若△ABC的面积为62,则a的长为________.解析:因为△ABC的面积S=12bc sin A,所以62=12×1×7sin A,所以sin A=67,所以cos A=±77,当cos A=77时,由a2=b2+c2-2bc cos A得a=6,此时△ABC为直角三角形(舍去);当cos A=-77时,由a2=b2+c2-2bc cos A得a=10,经检验,a=10符合题意.综上,a=10.答案:109.(2020·高考全国卷Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c.已知B=150°.(1)若a=3c,b=27,求△ABC的面积;(2)若sin A+3sin C=22,求C.解:(1)由题设及余弦定理得28=3c2+c2-2×3c2×cos 150°.解得c=-2(舍去),c=2,从而a=2 3.△ABC的面积为12×23×2×sin 150°= 3.(2)在△ABC 中,A =180°-B -C =30°-C ,所以 sin A +3sin C =sin(30°-C )+3sin C =sin(30°+C ). 故sin(30°+C )=22.而0°<C <30°,所以30°+C =45°,故C =15°.10.(2020·高考全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos 2⎝ ⎛⎭⎪⎫π2+A +cos A =54.(1)求A ;(2)若b -c =33a ,证明:△ABC 是直角三角形.解:(1)由已知得sin 2A +cos A =54,即cos 2A -cos A +14=0. 所以⎝ ⎛⎭⎪⎫cos A -122=0, cos A =12.由于0<A <π,故A =π3.(2)证明:由正弦定理及已知条件可得sin B -sin C =33sin A . 由(1)知B +C =2π3,所以sin B -sin ⎝ ⎛⎭⎪⎫2π3-B =33sin π3.即12sin B -32cos B =12,sin ⎝⎛⎭⎪⎫B -π3=12.由于0<B <2π3,故B =π2.从而△ABC 是直角三角形.[B 级 综合练]11.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,△ABC 的面积为43,且2b cos A +a =2c ,a +c =8,则其周长为( )A .10B .12C .8+ 3D .8+2 3解析:选B.因为△ABC 的面积为43,所以12ac sin B =4 3.因为2b cos A +a=2c ,所以由正弦定理得2sin B cos A +sin A =2sin C ,又A +B +C =π,所以2sin B cos A +sin A =2sin A cos B +2cos A sin B ,所以sin A =2cos B ·sin A ,因为sin A ≠0,所以cos B =12,因为0<B <π,所以B =π3,所以ac =16,又a +c =8,所以a =c =4,所以△ABC 为正三角形,所以△ABC 的周长为3×4=12.故选B.12.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a cos B -c -b 2=0,a 2=72bc ,b >c ,则b c =________.解析:由a cos B -c -b 2=0及正弦定理可得sin A cos B -sin C -sin B 2=0.因为sin C =sin(A +B )=sin A cos B +cos A sin B ,所以-sin B 2-cos A sin B =0,所以cosA =-12,即A =2π3.由余弦定理得a 2=72bc =b 2+c 2+bc ,即2b 2-5bc +2c 2=0,又b >c ,所以b c =2.答案:213.(2020·深圳市统一测试)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若(a +b )(sin A -sin B )=(a -c )sin C ,b =2,则△ABC 的外接圆面积为________.解析:利用正弦定理将已知等式转化为(a +b )(a -b )=(a -c )c ,即a 2+c 2-b 2=ac ,所以由余弦定理得cos B =a 2+c 2-b 22ac =12,所以B =60°.设△ABC 的外接圆半径为R ,则由正弦定理知,2R =b sin B =43,所以△ABC 的外接圆面积S =πR 2=4π3. 答案:4π314.(2020·广州市调研检测)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知c sin ⎝⎛⎭⎪⎫A +π3-a sin C =0. (1)求角A 的值;(2)若△ABC 的面积为3,周长为6,求a 的值.解:(1)因为c sin ⎝⎛⎭⎪⎫A +π3-a sin C =0,所以由正弦定理得sin C ⎝ ⎛⎭⎪⎫12sin A +32cos A -sin A ·sin C =0. 因为sin C >0, 所以32cos A -12sin A =0,即tan A =3,因为A ∈(0,π),所以A =π3.(2)因为△ABC 的面积为3,所以12bc sin A =3,得bc =4.由余弦定理a 2=b 2+c 2-2bc cos A ,得a 2=b 2+c 2-bc =(b +c )2-3bc =(b +c )2-12,因为△ABC 的周长为6,即a +b +c =6,所以a 2=(6-a )2-12,所以a =2.[C 级 提升练]15.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,3b sin A =a ·(2-cosB ).(1)求角B 的大小;(2)D 为边AB 上一点,且满足CD =2,AC =4,锐角△ACD 的面积为15,求BC 的长.解:(1)由正弦定理得3sin B sin A =sin A (2-cos B ),因为A ∈(0,π),则sin A >0,所以3sin B =2-cos B ,所以2sin ⎝⎛⎭⎪⎫B +π6=2, 所以sin ⎝⎛⎭⎪⎫B +π6=1, 因为B ∈(0,π),所以B +π6=π2,解得B =π3.(2)由题意,可得S △ACD =12CD ·CA sin ∠ACD =12×2×4sin ∠ACD =15,解得sin ∠ACD =154. 又因为△ACD 为锐角三角形, 所以cos ∠ACD =1-sin 2∠ACD =14, 在△ACD 中,由余弦定理得AD 2=CA 2+CD 2-2CA ·CD ·cos ∠ACD =42+22-2×2×4×14=16,所以AD =4,在△ACD 中,由正弦定理得CD sin A =AD sin ∠ACD, 则sin A =CD AD ·sin ∠ACD =158,在△ABC 中,由正弦定理得BC sin A =AC sin B ,所以BC =AC sin A sin B= 5.。
三余弦定理和三正弦定理
1.三余弦定理(又叫最小角定理)
(1)设点A为平面α上一点,过A点的斜线在平面α上的射影为,为平面α上的随意直线,则∠,∠,∠三角的余弦关系为:
∠∠×∠
即斜线与平面内一条直线夹角θ的余弦值=斜线与平面所成角
θ的余弦值⨯射影与
1
平面内直线夹角的余弦值。
(2)定理证明:
(3)说明:这三个角中,角θ是最大的,其余弦值最小,等于另外两个角的余弦值之积。
斜线与平面所成角
θ是斜线与平面内全部直线所成的角中最小的角。
1
2.设二面角M--N的度数为α,在平面M上有一条射线,它和棱所成角为β,和平面N所成的角为γ,则γα·β(如图).
(1)定理证明:
假如将三余弦定理和联合起来运用,用于解答立体几何综合题,你会发觉出乎意料地简洁,甚至不用作任何协助线!
例1. (1994全国)如图,已知A1B1C1-是正三棱柱,D是中点,若
1⊥
1
,求面
1
与
面
1
所成的二面角度数。
例2.(1986上海)已知△的两直角边2,3.点P为斜边上一点,现沿将此直角三角形折成直二面角A--B(如下图),当7时,求二面角P--B的大小。
例3.已知菱形的边长为1,∠60°,现沿对角线将此菱形折成直二面角 (如下图)。
( 1)求异面直线与所成的角;( 2)求二面角的大小。
例4.(2012四川)如图,半径为的半球的底面圆在平面内,过点作平面的垂线交半球面于点,过圆的直径作与平面成角的平面并与半球面相交,所得交线上到平面的距离最大的点为,该交线上的一点满意,则、两点间的球面距离为。
第七节 正弦定理和余弦定理一、基础知识 1.正弦定理a sin A =b sin B =c sin C=2R (R 为△ABC 外接圆的半径).正弦定理的常见变形(1)a =2R sin A ,b =2R sin B ,c =2R sin C ; (2)sin A =a 2R ,sin B =b 2R ,sin C =c 2R; (3)a ∶b ∶c =sin A ∶sin B ∶sin C ; (4)a +b +c sin A +sin B +sin C =a sin A. 2.余弦定理a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C . 3.三角形的面积公式(1)S △ABC =12ah a (h a 为边a 上的高);(2)S △ABC =12ab sin C =12bc sin A =12ac sin B ;(3)S =12r (a +b +c )(r 为三角形的内切圆半径).二、常用结论汇总——规律多一点 1.三角形内角和定理在△ABC 中,A +B +C =π;变形:A +B 2=π2-C2.2.三角形中的三角函数关系(1)sin(A +B )=sin C ;(2)cos(A +B )=-cos C ; (3)sin A +B 2=cos C 2;(4)cos A +B 2=sin C2.3.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B . 4.用余弦定理判断三角形的形状在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,当b 2+c 2-a 2>0时,可知A 为锐角;当b 2+c 2-a 2=0时,可知A 为直角;当b 2+c 2-a 2<0时,可知A 为钝角.第一课时 正弦定理和余弦定理(一) 考点一 利用正、余弦定理解三角形考法(一) 正弦定理解三角形[典例] (1)(2019·江西重点中学联考)在△ABC 中,a =3,b =2,A =30°,则cos B =________.(2)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b =________.[解析] (1)由正弦定理可得sin B =b sin A a =2×sin 30°3=13,∵a =3>b =2,∴B <A ,即B为锐角,∴cos B =1-sin 2B =223. (2)∵sin B =12且B ∈(0,π),∴B =π6或B =5π6,又∵C =π6,∴B =π6,A =π-B -C =2π3.又a =3,由正弦定理得a sin A =bsin B ,即3sin 2π3=b sinπ6,解得b =1. [答案] (1)223 (2)1考法(二) 余弦定理解三角形[典例] (1)(2019·山西五校联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b cos A +a cos B =c 2,a =b =2,则△ABC 的周长为( )A .7.5B .7C .6D .5(2)(2018·泰安二模)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且c -b2c -a=sin Asin B +sin C,则角B =________.[解析](1)∵b cos A +a cos B =c 2,∴由余弦定理可得b ·b 2+c 2-a 22bc +a ·a 2+c 2-b 22ac=c 2,整理可得2c 2=2c 3,解得c =1,则△ABC 的周长为a +b +c =2+2+1=5.(2)由正弦定理可得c -b 2c -a =sin A sin B +sin C =ab +c, ∴c 2-b 2=2ac -a 2,∴c 2+a 2-b 2=2ac ,∴cos B =a 2+c 2-b 22ac =22,∵0<B <π,∴B =π4.[答案] (1)D (2)π4[题组训练]1.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b 2=ac ,c =2a ,则cos C =( ) A.24B .-24C.34D .-34解析:选B 由题意得,b 2=ac =2a 2,即b =2a ,∴cos C =a 2+b 2-c 22ab =a 2+2a 2-4a 22a ×2a=-24.2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin B +sin A (sin C -cos C )=0,a =2,c =2,则C =( )A.π12 B.π6C.π4D.π3解析:选B 因为sin B +sin A (sin C -cos C )=0, 所以sin(A +C )+sin A sin C -sin A cos C =0,所以sin A cos C +cos A sin C +sin A sin C -sin A cos C =0,整理得sin C (sin A +cos A )=0.因为sin C ≠0,所以sin A +cos A =0,所以t a n A =-1, 因为A ∈(0,π),所以A =3π4,由正弦定理得sin C =c ·sin Aa =2×222=12, 又0<C <π4,所以C =π6.3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知sin 2B +sin 2C =sin 2A +sin B sin C .(1)求角A 的大小;(2)若cos B =13,a =3,求c 的值.解:(1)由正弦定理可得b 2+c 2=a 2+bc ,由余弦定理得cos A =b 2+c 2-a 22bc =12,因为A ∈(0,π),所以A =π3.(2)由(1)可知sin A =32, 因为cos B =13,B 为△ABC 的内角,所以sin B =223,故sin C =sin(A +B )=sin A cos B +cos A sin B =32×13+12×223=3+226. 由正弦定理a sin A =c sin C 得c =a sin C sin A=3×3+2232×6=1+263.考点二 判定三角形的形状[典例] (1)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin A sin B =ac ,(b +c +a )(b +c -a )=3bc ,则△ABC 的形状为( )A .直角三角形B .等腰非等边三角形C .等边三角形D .钝角三角形[解析] (1)法一:因为b cos C +c cos B =a sin A , 由正弦定理知sin B cos C +sin C cos B =sin A sin A , 得sin(B +C )=sin A sin A .又sin(B +C )=sin A ,得sin A =1, 即A =π2,因此△ABC 是直角三角形.法二:因为b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac =2a 22a =a ,所以a sin A =a ,即sin A =1,故A =π2,因此△ABC 是直角三角形.(2)因为sin A sin B =a c ,所以a b =ac,所以b =c .又(b +c +a )(b +c -a )=3bc ,所以b 2+c 2-a 2=bc , 所以cos A =b 2+c 2-a 22bc =bc 2bc =12.因为A ∈(0,π),所以A =π3,所以△ABC 是等边三角形.[答案] (1)B (2)C[变透练清] 1.变条件若本例(1)条件改为“a sin A +b sin B <c sin C ”,那么△ABC 的形状为________.解析:根据正弦定理可得a 2+b 2<c 2,由余弦定理得cos C =a 2+b 2-c 22ab <0,故C 是钝角,所以△ABC 是钝角三角形. 答案:钝角三角形 2.变条件若本例(1)条件改为“c -a cos B =(2a -b )cos A ”,那么△ABC 的形状为________.解析:因为c -a cos B =(2a -b )cos A , C =π-(A +B ),所以由正弦定理得sin C -sin A cos B =2sin A cos A -sin B ·cos A , 所以sin A cos B +cos A sin B -sin A cos B =2sin A cos A -sin B cos A , 所以cos A (sin B -sin A )=0, 所以cos A =0或sin B =sin A , 所以A =π2或B =A 或B =π-A (舍去),所以△ABC 为等腰或直角三角形. 答案:等腰或直角三角形 3.变条件若本例(2)条件改为“cos A cos B =ba=2”,那么△ABC 的形状为________.解析:因为cos A cos B =b a ,由正弦定理得cos A cos B =sin B sin A ,所以sin 2A =sin 2B .由ba =2,可知a ≠b ,所以A ≠B .又因为A ,B ∈(0,π),所以2A =π-2B ,即A +B =π2,所以C =π2,于是△ABC是直角三角形.答案:直角三角形[课时跟踪检测]A 级1.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若sin A a =cos Bb ,则B 的大小为( )A .30°B .45°C .60°D .90°解析:选B 由正弦定理知,sin A sin A =cos Bsin B ,∴sin B =cos B ,∴B =45°.2.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知b =40,c =20,C =60°,则此三角形的解的情况是( )A .有一解B .有两解C .无解D .有解但解的个数不确定解析:选C 由正弦定理得b sin B =c sin C, ∴sin B =b sin Cc =40×3220=3>1.∴角B 不存在,即满足条件的三角形不存在.3.(2018·重庆六校联考)在△ABC 中,cos B =ac (a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A .直角三角形B .等边三角形C .等腰三角形D .等腰三角形或直角三角形解析:选A 因为cos B =ac ,由余弦定理得a 2+c 2-b 22ac =a c ,整理得b 2+a 2=c 2,即C 为直角,则△ABC 为直角三角形.4.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边.若b sin A =3c sin B ,a =3, cos B =23,则b =( )A .14B .6 C.14D.6解析:选D ∵b sin A =3c sin B ⇒ab =3bc ⇒a =3c ⇒c =1,∴b 2=a 2+c 2-2ac cos B =9+1-2×3×1×23=6,∴b = 6.5.(2019·莆田调研)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a sin B cos C+c sin B cos A =12b ,且a >b ,则B =( )A.π6B.π3C.2π3D.5π6解析:选A ∵a sin B cos C +c sin B cos A =12b ,∴根据正弦定理可得sin A sin B cos C +sin C sin B cos A =12sin B ,即sin B (sin A cos C +sin C cos A )=12sin B .∵sin B ≠0,∴sin(A +C )=12,即sin B =12.∵a >b ,∴A >B ,即B 为锐角,∴B =π6. 6.(2019·山西大同联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2(b cos A +a cos B )=c 2,b =3,3cos A =1,则a =( )A.5 B .3 C.10D .4解析:选B 由正弦定理可得2(sin B cos A +sin A cos B )=c sin C , ∵2(sin B cos A +sin A cos B )=2sin(A +B )=2sin C ,∴2sin C =c sin C ,∵sin C >0,∴c =2,由余弦定理得a 2=b 2+c 2-2bc cos A =32+22-2×3×2×13=9,∴a =3.7.在△ABC 中,AB =6,A =75°,B =45°,则AC =________. 解析:C =180°-75°-45°=60°, 由正弦定理得AB sin C =ACsin B ,即6sin 60°=AC sin 45°,解得AC =2. 答案:28.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sinB ,则c =________.解析:∵3sin A =2sin B ,∴3a =2b . 又∵a =2,∴b =3.由余弦定理可知c 2=a 2+b 2-2ab cos C , ∴c 2=22+32-2×2×3×⎝⎛⎭⎫-14=16,∴c =4. 答案:49.(2018·浙江高考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =7,b =2,A =60°,则sinB =________,c =________.解析:由正弦定理a sin A =bsin B ,得sin B =b a ·sin A =27×32=217.由余弦定理a 2=b 2+c 2-2bc cos A , 得7=4+c 2-4c ×cos 60°,即c 2-2c -3=0,解得c =3或c =-1(舍去). 答案:2173 10.在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,sin A ,sin B ,sin C 成等差数列,且a =2c ,则cos A =________.解析:因为sin A ,sin B ,sin C 成等差数列,所以2sin B =sin A +sin C .由正弦定理得a +c =2b ,又因为a =2c ,可得b =32c ,所以cos A =b 2+c 2-a 22bc=94c 2+c 2-4c 22×32c 2=-14.答案:-1411.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且A =2B . (1)求证:a =2b cos B ; (2)若b =2,c =4,求B 的值.解:(1)证明:因为A =2B ,所以由正弦定理a sin A =b sin B ,得a sin 2B =bsin B ,所以a =2b cos B .(2)由余弦定理,a 2=b 2+c 2-2bc cos A , 因为b =2,c =4,A =2B ,所以16c os 2B =4+16-16cos 2B ,所以c os 2B =34,因为A +B =2B +B <π,所以B <π3,所以cos B =32,所以B =π6.12.(2019·绵阳模拟)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.解:(1)由已知,结合正弦定理,得2a 2=(2b +c )b +(2c +b )c ,即a 2=b 2+c 2+bc . 又由余弦定理,得a 2=b 2+c 2-2bc cos A , 所以bc =-2bc cos A ,即cos A =-12.由于A 为△ABC 的内角,所以A =2π3.(2)由已知2a sin A =(2b +c )sin B +(2c +b )sin C ,结合正弦定理,得2sin 2A =(2sin B +sin C )sin B +(2sin C +sin B )sin C , 即sin 2A =sin 2B +sin 2C +sin B sin C =sin 22π3=34.又由sin B +sin C =1,得sin 2B +sin 2C +2sin B sin C =1,所以sin B sin C =14,结合sin B +sin C =1,解得sin B =sin C =12.因为B +C =π-A =π3,所以B =C =π6,所以△ABC 是等腰三角形.B 级1.(2019·郑州质量预测)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若2c os 2A +B2-cos 2C =1,4sin B =3sin A ,a -b =1,则c 的值为( )A.13B.7C.37D .6解析:选A 由2c os 2A +B2-cos 2C =1,得1+c os(A +B )-(2c os 2C -1)=2-2c os 2C -cos C =1,即2c os 2C +cos C -1=0,解得cos C =12或cos C =-1(舍去).由4sin B =3sin A及正弦定理,得4b =3a ,结合a -b =1,得a =4,b =3.由余弦定理,知c 2=a 2+b 2-2ab cos C =42+32-2×4×3×12=13,所以c =13.2.(2019·长春模拟)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且c =3,2sin A a =t a n Cc,若sin(A -B )+sin C =2sin 2B ,则a +b =________. 解析:∵2sin A a =t a n C c =sin C c cos C ,且由正弦定理可得a =2R sin A ,c =2R sin C (R 为△ABC的外接圆的半径),∴cos C =12.∵C ∈(0,π),∴C =π3.∵sin(A -B )+sin C =2sin 2B ,sin C =sin(A +B ),∴2sin A cos B =4sin B cos B .当cos B =0时,B =π2,则A =π6,∵c =3, ∴a =1,b =2,则a +b =3.当cos B ≠0时,sin A =2sin B ,即a =2b .∵cos C =a 2+b 2-c 22ab =12,∴b 2=1,即b =1,∴a =2,则a +b =3.综上,a +b =3.答案:33.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2a cos C -c =2b . (1)求角A 的大小;(2)若c =2,角B 的平分线BD =3,求a .解:(1)2a cos C -c =2b ⇒2sin A cos C -sin C =2sin B ⇒2sin A cos C -sin C =2sin(A +C )=2sin A cos C +2cos A sin C ,∴-sin C =2cos A sin C , ∵sin C ≠0,∴cos A =-12,又A ∈(0,π),∴A =2π3.(2)在△ABD 中,由正弦定理得,AB sin ∠ADB =BDsin A ,∴sin ∠ADB =AB sin A BD =22.又∠ADB ∈(0,π),A =2π3,∴∠ADB =π4,∴∠ABC =π6,∠ACB =π6,b =c =2,由余弦定理,得a 2=c 2+b 2-2c ·b ·cos A =(2)2+(2)2-2×2×2c os 2π3=6,∴a = 6.第二课时 正弦定理和余弦定理(二) 考点一 有关三角形面积的计算[典例] (1)(2019·广州调研)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知b =7,c =4,cos B =34,则△ABC 的面积等于( )A .37 B.372C .9D.92(2)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若△ABC 的面积为34(a 2+c 2-b 2),则B =________.[解析] (1)法一:由余弦定理b 2=a 2+c 2-2ac cos B ,代入数据,得a =3,又cos B =34,B ∈(0,π),所以sin B =74,所以S △ABC =12ac sin B =372. 法二:由cos B =34,B ∈(0,π),得sin B =74,由正弦定理b sin B =csin C 及b =7,c =4,可得sin C =1,所以C =π2,所以sin A =cos B =34,所以S △ABC =12bc sin A =372.(2)由余弦定理得cos B =a 2+c 2-b 22ac ,∴a 2+c 2-b 2=2ac cos B . 又∵S =34(a 2+c 2-b 2),∴12ac sin B =34×2ac cos B , ∴t a n B =3,∵B ∈()0,π,∴B =π3.[答案] (1)B (2)π3[变透练清] 1.变条件本例(1)的条件变为:若c =4,sin C =2sin A ,sin B =154,则S △ABC =________. 解析:因为sin C =2sin A ,所以c =2a ,所以a =2,所以S △ABC =12ac sin B =12×2×4×154=15.答案:15 2.变结论本例(2)的条件不变,则C 为钝角时,ca的取值范围是________.解析:∵B =π3且C 为钝角,∴C =2π3-A >π2,∴0<A <π6 .由正弦定理得ca =sin ⎝⎛⎭⎫2π3-A sin A=32cos A +12sin A sin A =12+32·1t a n A.∵0<t a n A <33,∴1t a n A>3, ∴c a >12+32×3=2,即ca >2. 答案:(2,+∞)3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,(2b -a )cos C =c cos A . (1)求角C 的大小;(2)若c =3,△ABC 的面积S =433,求△ABC 的周长.解:(1)由已知及正弦定理得(2sin B -sin A )cos C =sin C cos A , 即2sin B cos C =sin A cos C +sin C cos A =sin(A +C )=sin B , ∵B ∈(0,π),∴sin B >0,∴cos C =12,∵C ∈(0,π),∴C =π3.(2)由(1)知,C =π3,故S =12ab sin C =12ab sin π3=433,解得ab =163.由余弦定理可得c 2=a 2+b 2-2ab cos C =a 2+b 2-ab =(a +b )2-3ab , 又c =3,∴(a +b )2=c 2+3ab =32+3×163=25,得a +b =5.∴△ABC 的周长为a +b +c =5+3=8.[解题技法]1.求三角形面积的方法(1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积.(2)若已知三角形的三边,可先求其一个角的余弦值,再求其正弦值,代入公式求面积.总之,结合图形恰当选择面积公式是解题的关键.2.已知三角形面积求边、角的方法(1)若求角,就寻求夹这个角的两边的关系,利用面积公式列方程求解. (2)若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解. 考点二 平面图形中的计算问题[典例] (2018·广东佛山质检)如图,在平面四边形ABCD 中,∠ABC =3π4,AB ⊥AD ,AB =1. (1)若AC =5,求△ABC 的面积; (2)若∠ADC =π6,CD =4,求sin ∠CAD .[解] (1)在△ABC 中,由余弦定理得,AC 2=AB 2+BC 2-2AB ·BC ·c os ∠ABC , 即5=1+BC 2+2BC ,解得BC =2,所以△ABC 的面积S △ABC =12AB ·BC ·sin ∠ABC =12×1×2×22=12.(2)设∠CAD =θ,在△ACD 中,由正弦定理得AC sin ∠ADC =CDsin ∠CAD ,即AC sin π6=4sin θ, ① 在△ABC 中,∠BAC =π2-θ,∠BCA =π-3π4-⎝⎛⎭⎫π2-θ=θ-π4, 由正弦定理得AC sin ∠ABC =ABsin ∠BCA ,即AC sin 3π4=1sin ⎝⎛⎭⎫θ-π4,② ①②两式相除,得sin 3π4sin π6=4sin ⎝⎛⎭⎫θ-π4sin θ,即4⎝⎛⎭⎫22sin θ-22cos θ=2sin θ,整理得sin θ=2cos θ. 又因为sin 2θ+c os 2θ=1,所以sin θ=255,即sin ∠CAD =255.[解题技法]与平面图形有关的解三角形问题的关键及思路求解平面图形中的计算问题,关键是梳理条件和所求问题的类型,然后将数据化归到三角形中,利用正弦定理或余弦定理建立已知和所求的关系.具体解题思路如下:(1)把所提供的平面图形拆分成若干个三角形,然后在各个三角形内利用正弦、余弦定理求解;(2)寻找各个三角形之间的联系,交叉使用公共条件,求出结果.[提醒] 做题过程中,要用到平面几何中的一些知识点,如相似三角形的边角关系、平行四边形的一些性质,要把这些性质与正弦、余弦定理有机结合,才能顺利解决问题.[题组训练]1.如图,在△ABC 中,D 是边AC 上的点,且AB =AD,2AB =3BD ,BC =2BD ,则sin C 的值为________.解析:设AB =a ,∵AB =AD,2AB =3BD ,BC =2BD ,∴AD =a ,BD =2a 3,BC =4a 3. 在△ABD 中,c os ∠ADB =a 2+4a 23-a22a ×2a 3=33,∴sin ∠ADB =63,∴sin ∠BDC =63. 在△BDC 中,BD sin C =BCsin ∠BDC, ∴sin C =BD ·sin ∠BDC BC =66.答案:662.如图,在平面四边形ABCD 中,DA ⊥AB ,DE =1,EC =7,EA =2,∠ADC =2π3,且∠CBE ,∠BEC ,∠BCE 成等差数列.(1)求sin ∠CED ; (2)求BE 的长. 解:设∠CED =α.因为∠CBE ,∠BEC ,∠BCE 成等差数列, 所以2∠BEC =∠CBE +∠BCE ,又∠CBE +∠BEC +∠BCE =π,所以∠BEC =π3.(1)在△CDE 中,由余弦定理得EC 2=CD 2+DE 2-2CD ·DE ·c os ∠EDC , 即7=CD 2+1+CD ,即CD 2+CD -6=0, 解得CD =2(CD =-3舍去). 在△CDE 中,由正弦定理得EC sin ∠EDC =CDsin α,于是sin α=CD ·sin 2π3EC =2×327=217,即sin ∠CED =217.(2)由题设知0<α<π3,由(1)知cos α=1-sin 2α=1-2149=277,又∠AEB =π-∠BEC -α=2π3-α,所以c os ∠AEB =c os ⎝⎛⎭⎫2π3-α=c os 2π3cos α+sin 2π3sin α=-12×277+32×217=714. 在Rt △EAB 中,c os ∠AEB =EA BE =2BE =714,所以BE =47.考点三 三角形中的最值、范围问题[典例] (1)在△ABC 中,内角A ,B ,C 对应的边分别为a ,b ,c ,A ≠π2,sin C +sin(B -A )=2sin 2A ,则角A 的取值范围为( )A.⎝⎛⎦⎤0,π6 B.⎝⎛⎦⎤0,π4 C.⎣⎡⎦⎤π6,π4D.⎣⎡⎦⎤π6,π3(2)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且cos 2A +cos 2B =2cos 2C ,则cos C 的最小值为( )A.32B.22C.12D .-12[解析] (1)在△ABC 中,C =π-(A +B ),所以sin(A +B )+sin(B -A )=2sin 2A ,即2sin B cos A =22sin A cos A ,因为A ≠π2,所以cos A ≠0,所以sin B =2sin A ,由正弦定理得,b=2a ,所以A 为锐角.又因为sin B =2sin A ∈(0,1],所以sin A ∈⎝⎛⎦⎤0,22,所以A ∈⎝⎛⎦⎤0,π4. (2)因为cos 2A +cos 2B =2cos 2C ,所以1-2sin 2A +1-2sin 2B =2-4sin 2C ,得a 2+b 2=2c 2,cos C =a 2+b 2-c 22ab =a 2+b 24ab ≥2ab 4ab =12,当且仅当a =b 时等号成立,故选C. [答案] (1)B (2)C[解题技法]1.三角形中的最值、范围问题的解题策略解与三角形中边角有关的量的取值范围时,主要是利用已知条件和有关定理,将所求的量用三角形的某个内角或某条边表示出来,结合三角形边角取值范围等求解即可.2.求解三角形中的最值、范围问题的注意点(1)涉及求范围的问题,一定要搞清已知变量的范围,利用已知的范围进行求解, 已知边的范围求角的范围时可以利用余弦定理进行转化.(2)注意题目中的隐含条件,如A +B +C =π,0<A <π,b -c <a <b +c ,三角形中大边对大角等.[题组训练]1.在钝角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,B 为钝角,若a cos A = b sin A ,则sin A +sin C 的最大值为( )A.2B.98C .1D.78解析:选B ∵a cos A =b sin A ,由正弦定理可得,sin A cos A =sin B sin A ,∵sin A ≠0,∴cos A =sin B ,又B 为钝角,∴B =A +π2,sin A +sin C =sin A +sin(A +B )=sin A +cos 2A =sin A +1-2sin 2A =-2⎝⎛⎭⎫sin A -142+98,∴sin A +sin C 的最大值为98. 2.(2018·哈尔滨三中二模)在△ABC 中,已知c =2,若sin 2A +sin 2B -sin A sin B =sin 2C ,则a +b 的取值范围为________.解析:∵sin 2A +sin 2B -sin A sin B =sin 2C ,∴a 2+b 2-ab =c 2,∴cos C =a 2+b 2-c 22ab =12,又∵C ∈(0,π),∴C =π3.由正弦定理可得a sin A =b sin B =2sin π3=433,∴a =433sin A ,b =433sin B .又∵B =2π3-A ,∴a +b =433sin A +433sin B =433sin A +433sin ⎝⎛⎭⎫2π3-A =4sin ⎝⎛⎭⎫A +π6.又∵A ∈⎝⎛⎭⎫0,2π3,∴A +π6∈⎝⎛⎭⎫π6,5π6,∴sin ⎝⎛⎭⎫A +π6∈⎝⎛⎦⎤12,1,∴a +b ∈(2,4]. 答案:(2,4]3.已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且cos B b +cos C c =sin A 3sin C .(1)求b 的值;(2)若cos B +3sin B =2,求△ABC 面积的最大值.解:(1)由题意及正、余弦定理得a 2+c 2-b 22abc +a 2+b 2-c 22abc =3a 3c ,整理得2a 22abc =3a3c ,所以b = 3.(2)由题意得cos B +3sin B =2sin ⎝⎛⎭⎫B +π6=2, 所以sin ⎝⎛⎭⎫B +π6=1, 因为B ∈(0,π),所以B +π6=π2,所以B =π3.由余弦定理得b 2=a 2+c 2-2ac cos B , 所以3=a 2+c 2-ac ≥2ac -ac =ac , 即ac ≤3,当且仅当a =c =3时等号成立. 所以△ABC 的面积S △ABC =12ac sin B =34ac ≤334,当且仅当a =c =3时等号成立.故△ABC 面积的最大值为334.考点四 解三角形与三角函数的综合应用考法(一) 正、余弦定理与三角恒等变换[典例] (2018·天津高考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知 b sin A =ac os ⎝⎛⎭⎫B -π6. (1)求角B 的大小;(2)设a =2,c =3,求b 和sin(2A -B )的值. [解] (1)在△ABC 中,由正弦定理a sin A =b sin B ,可得b sin A =a sin B .又因为b sin A =ac os ⎝⎛⎭⎫B -π6, 所以a sin B =ac os ⎝⎛⎭⎫B -π6, 即sin B =32cos B +12sin B , 所以t a n B = 3.因为B ∈(0,π),所以B =π3.(2)在△ABC 中,由余弦定理及a =2,c =3,B =π3,得b 2=a 2+c 2-2ac cos B =7,故b =7. 由b sin A =ac os ⎝⎛⎭⎫B -π6,可得sin A =37. 因为a <c ,所以cos A =27. 所以sin 2A =2sin A cos A =437,cos 2A =2c os 2A -1=17.所以sin(2A -B )=sin 2A cos B -cos 2A sin B =437×12-17×32=3314. 考法(二) 正、余弦定理与三角函数的性质[典例] (2018·辽宁五校联考)已知函数f (x )=c os 2x +3sin(π-x )c os(π+x )-12.(1)求函数f (x )在[0,π]上的单调递减区间;(2)在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知f (A )=-1,a =2,b sin C =a sin A ,求△ABC 的面积.[解] (1)f (x )=c os 2x -3sin x cos x -12=1+cos 2x 2-32sin 2x -12=-sin ⎝⎛⎭⎫2x -π6, 令2k π-π2≤2x -π6≤2k π+π2,k ∈Z ,得k π-π6≤x ≤k π+π3,k ∈Z ,又∵x ∈[0,π],∴函数f (x )在[0,π]上的单调递减区间为⎣⎡⎦⎤0,π3和⎣⎡⎦⎤5π6,π. (2)由(1)知f (x )=-sin ⎝⎛⎭⎫2x -π6, ∴f (A )=-sin ⎝⎛⎭⎫2A -π6=-1, ∵△ABC 为锐角三角形,∴0<A <π2,∴-π6<2A -π6<5π6,∴2A -π6=π2,即A =π3.又∵b sin C =a sin A ,∴bc =a 2=4, ∴S △ABC =12bc sin A = 3.[对点训练]在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,(2a -c )cos B -b cos C =0. (1)求角B 的大小;(2)设函数f (x )=2sin x cos x cos B -32cos 2x ,求函数f (x )的最大值及当f (x )取得最大值时x 的值.解:(1)因为(2a -c )cos B -b cos C =0, 所以2a cos B -c cos B -b cos C =0, 由正弦定理得2sin A cos B -sin C cos B -cos C sin B =0, 即2sin A cos B -sin(C +B )=0,又因为C +B =π-A ,所以sin(C +B )=sin A . 所以sin A (2cos B -1)=0.在△ABC 中,sin A ≠0,所以cos B =12,又因为B ∈(0,π),所以B =π3.(2)因为B =π3,所以f (x )=12sin 2x -32cos 2x =sin ⎝⎛⎭⎫2x -π3, 令2x -π3=2k π+π2(k ∈Z),得x =k π+5π12(k ∈Z),即当x =k π+5π12(k ∈Z)时,f (x )取得最大值1.[课时跟踪检测]A 级1.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,cos 2A =sin A ,bc =2,则 △ABC 的面积为( )A.12 B.14C .1D .2解析:选A 由cos 2A =sin A ,得1-2sin 2A =sin A ,解得sin A =12(负值舍去),由bc =2,可得△ABC 的面积S =12bc sin A =12×2×12=12.2.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若(2a +c )cos B +b cos C =0,则角B 的大小为( )A.π6 B.π3C.2π3D.5π6解析:选C 由已知条件和正弦定理,得(2sin A +sin C )cos B +sin B cos C =0.化简,得2sin A cos B +sin A =0.因为角A 为三角形的内角,所以sin A ≠0,所以cos B =-12,所以B =2π3. 3.在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin A =223,a =3,S △ABC =22,则b 的值为( )A .6B .3C .2D .2或3解析:选D 因为S △ABC =12bc sin A =22,所以bc =6,又因为sin A =223,A ∈⎝⎛⎭⎫0,π2, 所以cos A =13,因为a =3,所以由余弦定理得9=b 2+c 2-2bc cos A =b 2+c 2-4,b 2+c 2=13,可得b =2或b =3. 4.(2018·昆明检测)在△ABC 中,已知AB =2,AC =5,t a n ∠BAC =-3,则BC 边上的高等于( )A .1 B.2 C.3D .2解析:选A 法一:因为t a n ∠BAC =-3,所以sin ∠BAC =310,c os ∠BAC =-110.由余弦定理,得BC 2=AC 2+AB 2-2AC ·ABc os ∠BAC =5+2-2×5×2×⎝⎛⎭⎫-110=9,所以BC =3,所以S △ABC =12AB ·AC sin ∠BAC =12×2×5×310=32,所以BC 边上的高h =2S △ABCBC =2×323=1.法二:在△ABC 中,因为t a n ∠BAC =-3<0,所以∠BAC 为钝角,因此BC 边上的高小于2,结合选项可知选A.5.(2018·重庆九校联考)已知a ,b ,c 分别是△ABC 的内角A ,B ,C 的对边,且a sin B =3b cos A ,当b +c =4时,△ABC 面积的最大值为( )A.33B.32C.3D .23解析:选C 由a sin B =3b cos A ,得sin A sin B =3sin B cos A ,∴t a n A =3,∵0<A <π,∴A =π3,故S △ABC =12bc sin A =34bc ≤34⎝⎛⎭⎫b +c 22=3(当且仅当b =c =2时取等号),故选C.6.(2019·安徽名校联盟联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若bc =1,b +2c cos A =0,则当角B 取得最大值时,△ABC 的周长为( )A .2+3B .2+2C .3D .3+2解析:选A 由b +2c cos A =0,得b +2c ·b 2+c 2-a 22bc =0,整理得2b 2=a 2-c 2.由余弦定理,得cos B =a 2+c 2-b 22ac =a 2+3c 24ac ≥23ac 4ac =32,当且仅当a =3c 时等号成立,此时角B 取得最大值,将a =3c 代入2b 2=a 2-c 2可得b =c .又因为bc =1,所以b =c =1,a =3,故△ABC 的周长为2+ 3.7.在△ABC 中,B =120°,AC =7,AB =5,则△ABC 的面积为________. 解析:由余弦定理知72=52+BC 2-2×5×BC ×cos 120°, 即49=25+BC 2+5BC ,解得BC =3(负值舍去). 故S △ABC =12AB ·BC sin B =12×5×3×32=1534.答案:15348.(2019·长春质量检测)在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,若 12b cos A =sin B ,且a =23,b +c =6,则△ABC 的面积为________.解析:由题意可知cos A 2=sin B b =sin Aa ,因为a =23,所以t a n A =3,因为0<A <π,所以A =π3,由余弦定理得12=b 2+c 2-bc =(b +c )2-3bc ,又因为b +c =6,所以bc =8,从而△ABC 的面积为12bc sin A =12×8×sin π3=2 3.答案:239.已知在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠BAC =π2,点D 在边BC上,AD =1,且BD =2DC ,∠BAD =2∠DAC ,则sin Bsin C=________.解析:由∠BAC =π2及∠BAD =2∠DAC ,可得∠BAD =π3,∠DAC =π6.由BD =2DC ,令DC =x ,则BD =2x .因为AD =1,在△ADC 中,由正弦定理得1sin C =x sin π6,所以sin C =12x,在△ABD 中,sin B =sin π32x =34x ,所以sin B sin C =34x 12x=32.答案:3210.(2018·河南新乡二模)如图所示,在△ABC 中,C =π3,BC =4,点D 在边AC 上,AD =DB ,DE ⊥AB ,E 为垂足,若DE =22,则cos A =________.解析:∵AD =DB ,∴∠A =∠ABD ,∠BDC =2∠A .设AD =DB =x , ∴在△BCD 中,BC sin ∠BDC =DB sin C,可得4sin 2A =xsin π3. ①在△AED 中,DE sin A =AD sin ∠AED ,可得22sin A =x1. ② 联立①②可得42sin A cos A =22sin A 32,解得cos A =64.答案:6411.(2019·南宁摸底联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知 c (1+cos B )=b (2-cos C ).(1)求证:2b =a +c ;(2)若B =π3,△ABC 的面积为43,求b .解:(1)证明:∵c (1+cos B )=b (2-cos C ),∴由正弦定理可得sin C +sin C cos B =2sin B -sin B cos C , 即sin C cos B +sin B cos C +sin C =sin(B +C )+sin C =2sin B , ∴sin A +sin C =2sin B ,∴a +c =2b .(2)∵B =π3,∴△ABC 的面积S =12ac sin B =34ac =43,∴ac =16.由余弦定理可得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac =(a +c )2-3ac . ∵a +c =2b ,∴b 2=4b 2-3×16,解得b =4. 12.在△ABC 中,AC =6,cos B =45,C =π4.(1)求AB 的长; (2)求c os ⎝⎛⎭⎫A -π6的值. 解:(1)因为cos B =45,0<B <π,所以sin B =35.由正弦定理得AC sin B =AB sin C ,所以AB =AC ·sin Csin B =6×2235=5 2.(2)在△ABC 中,因为A +B +C =π,所以A =π-(B +C ), 又因为cos B =45,sin B =35,所以cos A =-c os(B +C )=-c os ⎝⎛⎭⎫B +π4=-cos Bc os π4+sin B sin π4=-45×22+35×22=-210.因为0<A <π,所以sin A =1-c os 2A =7210. 因此,c os ⎝⎛⎭⎫A -π6=cos Ac os π6+sin A sin π6=-210×32+7210×12=72-620. B 级1.在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若B =2A ,则2ba的取值范围是( )A .(2,2)B .(2,6)C .(2,3)D .(6,4)解析:选B ∵B =2A ,∴sin B =sin 2A =2sin A cos A ,∴ba =2cos A .又C =π-3A ,C为锐角,∴0<π-3A <π2⇒π6<A <π3,又B =2A ,B 为锐角,∴0<2A <π2⇒0<A <π4,∴π6<A <π4,22<cosA <32,∴2<b a <3,∴2<2ba< 6. 2.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +bc os 2A =2a ,则角A 的取值范围是________.解析:由已知及正弦定理得sin 2A sin B +sin Bc os 2A =2sin A ,即sin B (sin 2A +c os 2A )=2sin A ,∴sin B =2sin A ,∴b =2a ,由余弦定理得cos A =b 2+c 2-a 22bc =4a 2+c 2-a 24ac =3a 2+c 24ac ≥23ac 4ac =32,当且仅当c =3a 时取等号.∵A 为三角形的内角,且y =cos x 在(0,π)上是减函数,∴0<A ≤π6,则角A 的取值范围是⎝⎛⎦⎤0,π6. 答案:⎝⎛⎦⎤0,π6 3.(2018·昆明质检)如图,在平面四边形ABCD 中,AB ⊥BC ,AB =2,BD =5,∠BCD =2∠ABD ,△ABD 的面积为2.(1)求AD 的长; (2)求△CBD 的面积.解:(1)由已知S △ABD =12AB ·BD ·sin ∠ABD =12×2×5×sin ∠ABD =2,可得sin ∠ABD =255,又∠BCD =2∠ABD ,所以∠ABD ∈⎝⎛⎭⎫0,π2,所以c os ∠ABD =55. 在△ABD 中,由余弦定理AD 2=AB 2+BD 2-2·AB ·BD ·c os ∠ABD ,可得AD 2=5,所以AD = 5.(2)由AB ⊥BC ,得∠ABD +∠CBD =π2,所以sin ∠CBD =c os ∠ABD =55. 又∠BCD =2∠ABD ,所以sin ∠BCD =2sin ∠ABD ·c os ∠ABD =45,∠BDC =π-∠CBD -∠BCD =π-⎝⎛⎭⎫π2-∠ABD -2∠ABD =π2-∠ABD =∠CBD , 所以△CBD 为等腰三角形,即CB =CD .在△CBD 中,由正弦定理BD sin ∠BCD =CDsin ∠CBD ,得CD =BD ·sin ∠CBDsin ∠BCD=5×5545=54, 所以S △CBD =12CB ·CD ·sin ∠BCD =12×54×54×45=58.。
正弦定理、余弦定理知识点总结及证明方法1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.2.能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.主要考查有关定理的应用、三角包等变换的能力、运算能力及转化的数学思想.解三角形常常作为解题工具用丁立体几何中的计算或证明,或与三角函数联系在一起求距离、高度以及角度等问题,且多以应用题的形式出现.1.正弦定理(1)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即.其中R是三角形外接圆的半径.(2)正弦定理的其他形式:① a = 2RsinA , b =, csinO;③ a : b : c= _______________________________2.余弦定理(1)余弦定理:三角形中任何一边的平■方等——王彦文宵铜峡一中丁其他两边的平■方的和减去这两边与它们的火角的余弦的积的两倍.即a2=, b2=,c?=.若令C= 90°, WJ c2=,即为勾股定理.(2)余弦定理的变形:cosA =, cosB=, cosC^.若C为锐角,则cosC>0,即a2 + b2 ; 若C为钝角,贝U cosC<0,即a2+ b2.故由a2+ b2与c2值的大小比较,可以判断C为锐角、钝角或直角.(3)正、余弦定理的一个重要作用是实现边角,余弦定理亦可以写成sin2A= sin2B+ sin2C—2sinBsinCcosA,类似地,sin2B= ________________ ; sin2C= _________ _S 意式中隐含条件A+ B+ C= TT .3.解斜三角形的类型(1)已知三角形的任意两个角与一边,用理.只有一解.(2)已知三角形的任意两边与其中一边的对角,用定理,可能有L如在△ ABC中,已知a, b和A时,解的情况如表:②sin A=2R' sinB=A为锐角A为钝角或直角图形关系式a= bsinA bsinA<a< b a为a>b解的个数①②③④(3)已知三边,用理.有解时,只有一解.(4)已知两边及火角,用理, 必有一解.4.三角形中的常用公式或变式⑴三角形面积公式& =:其中R, r分别为三角形外接圆、内切圆半径.(2)A+ B+ C=兀,WJ A=,A5 = , 从而sinA = tanAtanBtanC (3)a+ c sinA+ sinCcosA = , tanA =<(3)互化sin2C+ sin2A—2sinCsinAcosB sin2A+sin2B— 2sinAsinBcosC3. (1)正弦(2)正弦一解、两解或无解①一解②二解③一解④一解⑶余弦⑷余弦1 1 1 abc 14. (1)2absinC 2bcsinA 2acsinB 4R 2 (a+ b+ c)r在△ ABC中,A>B 是sinA>sinB 的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解:因为在同一三角形中,角大则边大,边大则正弦大,反之也成立,故是充要条件.故选C.兀B+ C (2)代(B+ Q 2— Fsin(B+ C) — cos(B+ C)2 (1)b* 1 2+ c2— 2bccosA c2 + a2— 2cacosB a2 + b2—2abcosC a2 + b2b2+ c2—a2c2+ a2—b2a2+ b2—c2(2)2bc2ca2ab—tan(B+ C) co岩si号«C tan 2在△ ABC中,已知b= 6, c= 10, B= 30°,则解此三角形的结果有()A.无解B. 一解C.两解D. 一解或两解解:由正弦定理知sinC=半=5, 乂由b 6c>b>csinB知,C有两解.也可依已知条件,画出△ ABC,由图知有两解.故选 C.(2012陕西)在^ABC中,角A, B, C所对的边…一…Tt i—一,分力U为a, b, c.右a= 2, B= c= 2寸3,贝U b =.解:由余弦定理知b2= a2 + c2—2accoSB=22 + (2^3)2— 2X 2X^/3X c%= 4, b= 2.故填2.(2013陕西)®AABC的内角A, B, C所对的边分别为a, b, c,若bcosC+ ccosB= asinA,则^ABC 的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定解:由已知和正弦定理可得sinBcosC+ sinCcosB= sinA sinA,即sin(B+ Q= sinAsinA, 亦即sinA= sinAsinA.因为0<A<TT,所以sinA= 1, 所以A=2.所以三角形为直角三角形.故选B.在^ABC中,角A, B, C所对的边分别为a, b, c,若 a =寸2, b=2, sinB+ cosB=寸2,则角 A解:sinB+ cosB= ^2,,•寸2sin B+4 =寸2,即sin B+4 = 1._____ __ _兀兀_兀乂.. B€ (0,冗)... B+; = ;, B=~.4 2 4a b asinBsinA= b根据正弦正理、皿=sinB,可侍12'. a<b, . . Av B... A=g.故填&类型一正弦定理的应用△ ABC的内角A, B, C的对边分别为a, b, c,已知A— C= 90 , a+ c=寸2b,求C.解:由a+ c=寸2b及正弦定理可得sinA+sinO 2sinB乂由丁A— C= 90 , B= 180 — (A+C),故cosC + sinC = sinA + sinC=戒sin(A + Q =戒sin(90 + 2Q =匝sin2(45 + Q.,•哀sin(45 + C) = 2 戒sin(45 + C)cos(45 + C),* 一1即cos(45 + C) = 2.乂 .。
【新教材】6.4.3 余弦定理、正弦定理教学设计(人教A版)第3课时余弦定理、正弦定理应用举例三角形中的几何计算问题主要包括长度、角、面积等,常用的方法就是构造三角形,把所求的问题转化到三角形中,然后选择正弦定理、余弦定理加以解决,有的问题与三角函数联系比较密切,要熟练运用有关三角函数公式.课程目标1、能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量相关术语;2、激发学生学习数学的兴趣,并体会数学的应用价值;同时培养学生运用图形、数学符号表达题意和应用转化思想解决数学问题的能力.数学学科素养1.数学抽象:方位角、方向角等概念;2.逻辑推理:分清已知条件与所求,逐步求解问题的答案;3.数学运算:解三角形;4.数学建模:数形结合,从实际问题中抽象出一个或几个三角形,然后通过解这些三角形,得到所求的量,从而得到实际问题的解.重点:由实际问题中抽象出一个或几个三角形,然后逐个解决三角形,得到实际问题的解;难点:根据题意建立数学模型,画出示意图.教学方法:以学生为主体,小组为单位,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
一、情景导入在古代,天文学家没有先进的仪器就已经估算出了两者的距离,是什么神奇的方法探索到这个奥秘的呢?我们知道,对于未知的距离、高度等,存在着许多可供选择的测量方案,但是没有足够的空间,不能用全等三角形的方法来测量,所以,有些方法会有局限性。
于是上面介绍的问题是用以前的方法所不能解决的。
那么运用正弦定理、余弦定理能否解决这些问题?又怎么解决?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本48-51页,思考并完成以下问题1、方向角和方位角各是什么样的角?2、怎样测量物体的高度?3、怎样测量物体所在的角度?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究1、实际测量中的有关名称、术语方向角从指定方向线到 目标方向线 的水平角(指定方向线是指正北或正南或正东或正西,方向角小于90°)方 位角 从正北的方向线按 顺 时针到目标方向线所转过的水平角四、典例分析、举一反三题型一 测量高度问题例1 济南泉城广场上的泉标是隶书“泉”字,其造型流畅别致,成了济南的标志和象征.李明同学想测量泉标的高度,于是他在广场的A 点测得泉标顶端的仰角为60°,他又沿着泉标底部方向前进15.2 m ,到达B 点,测得泉标顶部仰角为80°.你能帮李明同学求出泉标的高度吗?(精确到1 m)【答案】泉城广场上泉标的高约为38 m.【解析】如图所示,点C ,D 分别为泉标的底部和顶端.仰角在同一铅垂平面内,视线在水平线 上 方时与水平线的夹角俯角在同一铅垂平面内,视线在水平线下方时与水平线的夹角依题意,∠BAD =60°,∠CBD =80°,AB =15.2 m ,则∠ABD =100°,故∠ADB =180°-(60°+100°)=20°.在△ABD 中,根据正弦定理,BD sin 60°=AB sin ∠ADB . ∴BD =AB ·sin 60°sin 20°=15.2·sin 60°sin 20°≈38.5(m). 在Rt △BCD 中,CD =BD sin 80°=38.5·sin 80°≈38(m),即泉城广场上泉标的高约为38 m.解题技巧(测量高度技巧)(1)在测量高度时,要理解仰角、俯角的概念,仰角和俯角都是在同一铅垂面内,视线与水平线的夹角;(2)准确理解题意,分清已知条件与所求,画出示意图;(3)运用正、余弦定理,有序地解相关的三角形,逐步求解问题的答案,注意方程思想的运用. 跟踪训练一1、乙两楼相距200 m ,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高分别是多少?【答案】甲楼高为200 3 m ,乙楼高为40033m. 【解析】如图所示,AD 为乙楼高,BC 为甲楼高.在△ABC 中,BC =200×tan 60°=2003,AC =200÷sin 30°=400,由题意可知∠ACD =∠DAC =30°,∴△ACD 为等腰三角形.由余弦定理得AC 2=AD 2+CD 2-2AD ·CD ·cos 120°,4002=AD 2+AD 2-2AD 2×⎝⎛⎭⎫-12=3AD 2,AD 2=40023,AD =40033.故甲楼高为200 3 m ,乙楼高为40033m. 题型二 测量角度问题例2 如图所示,A ,B 是海面上位于东西方向相距5(3+3) n mile 的两个观测点.现位于A 点北偏东45°方向、B 点北偏西60°方向的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距20 3 n mile 的C 点的救援船立即前往营救,其航行速度为30 n mile/h ,则该救援船到达D 点需要多长时间?【答案】 救援船到达D 点需要的时间为1 h. 【解析】由题意,知AB =5(3+3)n mile ,∠DBA =90°-60°=30°,∠DAB =90°-45°=45°,∴∠ADB =180°-(45°+30°)=105°.在△DAB 中,由正弦定理得BD sin ∠DAB =AB sin ∠ADB ,即BD =AB sin ∠DAB sin ∠ADB =3)sin 45sin105=5(33)sin 4545cos 60cos 45sin 60++=10 3 n mile. 又∠DBC =∠DBA +∠ABC =60°,BC =20 3 n mile ,∴在△DBC 中,由余弦定理,得CD =BD 2+BC 2-2BD ·BC cos ∠DBC =300+1 200-2×103×203×12=30 n mile , 则救援船到达D 点需要的时间为3030=1 h. 解题技巧: (测量角度技巧)测量角度问题的关键是根据题意和图形及有关概念,确定所求的角在哪个三角形中,该三角形中已知哪些量,需要求哪些量.通常是根据题意,从实际问题中抽象出一个或几个三角形,然后通过解这些三角形,得到所求的量,从而得到实际问题的解.跟踪训练二1、在海岸A 处,发现北偏东45°方向,距离A 处(3-1)n mile 的B 处有一艘走私船,在A 处北偏西75°的方向,距离A 2 n mile 的C 处的缉私船奉命以10 3 n mile 的速度追截走私船.此时,走私船正以10 n mile/h 的速度从B 处向北偏东30°方向逃窜,问缉私船沿什么方向能最快追上走私船?【答案】缉私船沿北偏东60°方向能最快追上走私船.【解析】 设缉私船用t h 在D 处追上走私船,画出示意图,则有CD =103t ,BD =10t ,在△ABC 中,∵AB =3-1,AC =2,∠BAC =120°,∴由余弦定理,得BC 2=AB 2+AC 2-2AB ·AC ·cos ∠BAC =(3-1)2+22-2·(3-1)·2·cos 120°=6,∴BC =6,且sin ∠ABC =AC BC ·sin ∠BAC =26·32=22, ∴∠ABC =45°,∴BC 与正北方向成90°角.∴∠CBD =90°+30°=120°,在△BCD 中,由正弦定理,得sin ∠BCD =BD ·sin ∠CBD CD =10t sin 120°103t=12, ∴∠BCD =30°.即缉私船沿北偏东60°方向能最快追上走私船.题型三 测量距离问题例3 如图所示,要测量一水塘两侧A ,B 两点间的距离,其方法先选定适当的位置C ,用经纬仪测出角α,再分别测出AC ,BC 的长b ,a 则可求出A ,B 两点间的距离.若测得CA =400 m ,CB =600 m ,∠ACB =60°,试计算AB 的长.【答案】A ,B 两点间的距离为2007 m.【解析】在△ABC 中,由余弦定理得AB 2=AC 2+BC 2-2AC ·BC cos ∠ACB ,∴AB 2=4002+6002-2×400×600cos 60°=280 000.∴AB =2007 (m).即A ,B 两点间的距离为2007 m.例4 如图所示,A ,B 两点在一条河的两岸,测量者在A 的同侧,且B 点不可到达,要测出A ,B 的距离,其方法在A 所在的岸边选定一点C ,可以测出A ,C 的距离m ,再借助仪器,测出∠ACB =α,∠CAB =β,在△ABC 中,运用正弦定理就可以求出AB .若测出AC =60 m ,∠BAC =75°,∠BCA =45°,则A ,B 两点间的距离为________ m.【答案】20 6 .【解析】∠ABC =180°-75°-45°=60°,所以由正弦定理得,AB sin C =AC sin B, ∴AB =AC ·sin C sin B =60×sin 45°sin 60°=206(m). 即A ,B 两点间的距离为20 6 m.解题技巧(测量距离技巧)当A ,B 两点之间的距离不能直接测量时,求AB 的距离分为以下三类:(1)两点间不可通又不可视(如图①):可取某点C ,使得A ,B 与C 之间的距离可直接测量,测出AC =b ,BC =a 以及∠ACB =γ,利用余弦定理得:AB =a 2+b 2-2ab cos γ.(2)两点间可视但不可到达(如图②):可选取与B 同侧的点C ,测出BC =a 以及∠ABC 和∠ACB ,先使用内角和定理求出∠BAC ,再利用正弦定理求出AB .(3)两点都不可到达(如图③):在河边测量对岸两个建筑物之间的距离,可先在一侧选取两点C ,D ,测出CD =m ,∠ACB ,∠BCD ,∠ADC ,∠ADB ,再在△BCD 中求出BC ,在△ADC 中求出AC ,最后在△ABC 中,由余弦定理求出AB .跟踪训练三1.如图,A ,B 两点在河的同侧,且A ,B 两点均不可到达,测出A ,B 的距离,测量者可以在河岸边选定两点C ,D ,测得CD =a ,同时在C ,D 两点分别测得∠BCA =α,∠ACD =β,∠CDB =γ,∠BDA =δ.在△ADC 和△BDC 中,由正弦定理分别计算出AC 和BC ,再在△ABC 中,应用余弦定理计算出AB .若测得CD =32km ,∠ADB =∠CDB =30°,∠ACD =60°,∠ACB =45°,求A ,B 两点间的距离.【答案】A ,B 两点间的距离为64km. 【解析】∵∠ADC =∠ADB +∠CDB =60°,∠ACD =60°,∴∠DAC =60°,∴AC =DC =32.在△BCD 中,∠DBC =45°, 由正弦定理,得BC =DC sin ∠DBC·sin ∠BDC =32sin 45°·sin 30°=64. 在△ABC 中,由余弦定理,得AB 2=AC 2+BC 2-2AC ·BC cos 45°=34+38-2×32×64×22=38. ∴AB =64(km).∴A ,B 两点间的距离为64 km.五、课堂小结让学生总结本节课所学主要知识及解题技巧六、板书设计七、作业课本51页练习,52页习题6.4中剩余题.对于平面图形的计算问题,首先要把所求的量转化到三角形中,然后选用正弦定理、余弦定理解决.构造三角形时,要注意使构造三角形含有尽量多个已知量,这样可以简化运算.学生在这里的数量关系比较模糊,需要强化,三角形相关知识点需要简单回顾。
6.4.3正弦定理导学案编写:廖云波 初审:孙锐 终审:孙锐 廖云波【学习目标】1.了解正弦定理的推导过程,掌握正弦定理及其基本应用2.能用正弦定理解三角形,并能判断三角形的形状3.能利用正、余弦定理解决综合问题【自主学习】知识点1 正弦定理的呈现形式1.a sin A =b sin B =c sin C=2R (其中R 是△ABC 外接圆的半径); 2.a =b sin A sin B =c sin A sin C=2R sin A ; 3.sin A =a 2R ,sin B =b 2R ,sin C =c 2R. 知识点2 正弦定理的常见变形1.sin A ∶sin B ∶sin C =a ∶b ∶c ;2.a sin A =b sin B =c sin C =a +b +c sin A +sin B +sin C =2R ; 3.a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;4.sin A =a 2R ,sin B =b 2R ,sin C =c 2R. 知识点3 利用正弦定理判断三角形的解的个数已知三角形的两角和任意一边,求另两边和另一角,此时有唯一解,三角形被唯一确定.已知两边和其中一边的对角,求其他的边和角,此时可能出现一解、两解或无解的情况,三角形不能被唯一确定.具体做法如下:由正弦定理得sin B =b sin A a, ①若b sin A a>1,则满足条件的三角形个数为0,即无解. ②若b sin A a=1,则满足条件的三角形个数为1,即一解. ③若b sin A a <1,则满足条件的三角形个数为1或2.【合作探究】探究一 已知两角和任意一边解三角形【例1】在△ABC 中,已知B =30°,C =105°,b =4,解三角形.[分析] 由三角形的内角和定理可求A 的度数.根据正弦定理可求a ,c .[解] 因为B =30°,C =105°,所以A =180°-(B +C )=180°-(30°+105°)=45°.由正弦定理,得a sin45°=4sin30°=c sin105°, 解得a =4sin45°sin30°=42,c =4sin105°sin30°=2(6+2).归纳总结:【练习1】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b = .【答案】2113解析:在△ABC 中,由cos A =45,cos C =513, 可得sin A =35,sin C =1213, sin B =sin(A +C )=sin A cos C +cos A sin C =6365, 又a =1,由正弦定理得b =a sin B sin A =2113.探究二 已知两边及一边的对角解三角形【例2】下列三角形是否有解?有解的作出解答.(1)a =7,b =8,A =105°;(2)b =10,c =56,C =60°;(3)a =23,b =6,A =30°.[分析] 利用三角形中大边对大角定理以及结合有解无解的图形来考虑.[解] (1)a =7,b =8,a <b ,A =105°>90°,本题无解.(2)b =10,c =56,b <c ,C =60°<90°,本题有一解.△sin B =b sin C c =10·sin60°56=22, △B =45°,A =180°-(B +C )=75°.△a =b sin A sin B =10×sin75°sin45°=10×6+2422=5(3+1). (3)a =23,b =6,a <b ,A =30°<90°,又△b sin A =6sin30°=3,△a >b sin A ,△本题有两解. 由正弦定理得:sin B =b sin A a =6sin30°23=32,△B =60°或120°, 当B =60°时,C =90°,c =a sin C sin A =23sin90°sin30°=43; 当B =120°时,C =30°,c =a sin C sin A =23sin30°sin30°=2 3. △B =60°,C =90°,c =43或B =120°,C =30°,c =2 3.归纳总结:【练习2】在三角形ABC 中,根据下列条件解三角形,其中有两个解的是 。
二级结论专题9立体几何二级结论1:三余弦定理与三正弦定理【结论阐述】三余弦定理(又称最小角定理):如图①,AB 是平面的一条斜线,BC 是平面内的一条直线,OA ⊥平面π于O ,OC BC ⊥于C ,则cos =cos cos ABC OBC OBA ∠∠⋅∠,即斜线与平面内一条直线夹角γ的余弦值等于斜线与平面所成角α的余弦值乘以射影与平面内直线夹角β的余弦值:cos =cos cos γα⋅β;说明:为方便记忆,我们约定γ为线线角,α为线面角,β为射影角,则由三余弦定理可得线面角是最小的线线角,即平面的斜线和它在平面内的射影所成的角,是这条斜线和这个平面内任一条直线所成角中的最小者.三正弦定理(又称最大角定理):如图②,设二面角--AB θδ的平面角为α,AC ⊂平面θ,CO ⊥平面δ,OB AB ⊥,设=,=CAB CAO ∠β∠γ,则sin =sin sin γα⋅β.说明:为方便记忆,我们约定α为二面角,β为线棱角,γ为线面角,则由三正弦定理可得二面角是最大的线面角,即对于一个锐二面角,在其中一个半平面内的任一条直线与另一个半平面所成的线面角的最大值等于该二面角的平面角.【应用场景】空间三类角,即两条异面直线所成角、直线与平面所成角、二面角是立体几何的核心内容,也是高考重点考查的内容之一,几乎在每一份数学高考试卷中都会涉及.建立空间直角坐标系,通过空间向量的坐标运算,是求解空间三类角问题的常用方法.但此法存在两个缺陷:一是若图形不规则或不容易建立坐标系,则该法常常行不通;二是运算量较大.运用“最小(大)角”定理和“三余(正)弦”定理,不仅关联了线线角、线面角和二面角,而且利用它解决立体几何中的三类角问题,不需要建立坐标系,运算量也很小.【典例指引1】(2022年高考浙江卷8)1.如图,已知正三棱柱1111,ABC A B C AC AA -=,E ,F 分别是棱11,BC A C 上的点.记EF 与1AA 所成的角为α,EF 与平面ABC 所成的角为β,二面角F BC A --的平面角为γ,则()A .αβγ≤≤B .βαγ≤≤C .βγα≤≤D .αγβ≤≤【典例指引2】(2019年高考浙江卷8)2.设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P AC B --的平面角为γ,则A .,βγαγ<<B .,βαβγ<<C .,βαγα<<D .,αβγβ<<【针对训练】(2018年高考浙江8)3.已知四棱锥S ABCD -的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为1θ,SE 与平面ABCD 所成的角为2θ,二面角S AB C --的平面角为3θ,则A .123θθθ≤≤B .321θθθ≤≤C .132θθθ≤≤D .231θθθ≤≤(2022·浙江·高三开学考试)4.在正方体1111ABCD A B C D -中,M 是棱11A D 上的点且1112A M MD =,N 是棱CD 上的点,记MN 与BC 所成的角为α,MN 与底面ABCD 所成的角为β,二面角M CD A --的平面角为γ,则()A .αβγ≥≥B .αγβ≥≥C .γαβ≥≥D .γβα≥≥(2022·北京大兴·高一期末)5.如图,在正方体1111ABCD A B C D -中,M 是棱AB 的中点.令直线1D M 与1AA 所成的角为1θ,直线1D M 与平面1111D C B A 所成的角为2θ,二面角1D AM C --的平面角为3θ,则()A .123θθθ>=B .132θθθ>>C .123θθθ=<D .132θθθ<<(2022·河南新乡·高二期末)6.已知直线l 是平面θ的斜线,且与平面θ交于点M ,l 在平面θ上的射影为m ,在平面θ内过点M 作一条直线n ,直线n 和直线m 不重合,直线l 与平面θ所成的角为α,直线m 与直线n 所成的角为β,直线l 与直线n 所成的角为γ,则()A .cos cos cos αβγ=⋅B .cos cos cos βαγ=⋅C .cos cos cos γαβ=⋅D .以上说法都不对(2022·山西省长治市第二中学校高一期末)7.在空间,若60,AOB BOC COA ∠=∠=∠=︒直线OA 与平面OBC 所成角为θ,则cos θ=()A .13B .12C .2D .38.如图所示,在侧棱垂直于底面的三棱柱111ABC A B C -中,P 是棱BC 上的动点,记直线1A P 与平面ABC 所成的角为1θ,与直线BC 所成的角为2θ,则1θ,2θ的大小关系是A .12θθ=B .12θθ>C .12θθ<D .不能确定(2022·江西省万载中学高二期中)9.已知点A 、B 分别在二面角l αβ--的两个面α、β上,AC ⊥l ,BD ⊥l ,C 、D 为垂足,AC BD CD ==,若AB 与l 成60º角,则二面角l αβ--为()A .30ºB .45ºC .60ºD .120º10.已知二面角AB αβ--是直二面角,P 为棱AB 上一点,PQ 、PR 分别在平面α、β内,且45QPB RPB ∠=∠=︒,则QPR ∠为()A .45°B .60°C .120°D .150°11.ABC 的AB 边在平面α内,C 在平面α外,AC 和BC 分别在与平面α成30 和45 的角,且平面ABC 与平面α成60 的二面角,那么sin ACB ∠的值为()A .1B .13C .3D .1或13(2022·上海市七宝中学高二开学考试)12.正方体中1111ABCD A B C D -,过1D 作直线l ,若直线l 与平面ABCD 中的直线所成角的最小值为6π,且直线l 与直线1BC 所成角为π4,则满足条件的直线l 的条数为_________.(2022·河南省上蔡第一高级中学高三月考)13.在四面体SABC 中,SA ⊥平面,,ABC AB AC SB SC BC ⊥===若直线l 与SA 所成的角为6π,则直线l 与平面SBC 所成角的取值范围是__________.(2022·浙江宁波·高二期末)14.已知三棱锥-P ABC 的棱长均为1,BC ⊂平面,E α为PB 中点,l α⊥.记l 和直线AE 所成角为θ,则该三棱锥绕BC 旋转的过程中,sin θ的最小值是___________.15.三角形ABC 的一条边AB 在平面α内,π=2A ∠,=AB a ,AC ,若AC 与平面α所成角为π4,则直线BC 与平面α所成角的正弦值为___________.二级结论2:多面体的外接球和内切球【结论阐述】类型一球的内切问题(等体积法)例如:如图①,在四棱锥P ABCD -中,内切球为球O ,求球半径.方法如下:------=++++P ABCD O ABCD O PBC O PCD O PAD O PABV V V V V V即:-11111=++++33333P ABCD ABCD PBC PCD PAD PAB V S r S r S r S r S r ⋅⋅⋅⋅⋅,可求出.类型二球的外接问题1.公式法正方体或长方体的外接球的球心为其体对角线的中点2.补形法(补长方体或正方体)①墙角模型(三条线两个垂直)题设:三条棱两两垂直②对棱相等模型(补形为长方体)题设:三棱锥(即四面体)中,已知三组对棱分别相等,求外接球半径(AB=CD ,AD=BC ,AC=BD )3.单面定球心法(定+算)步骤:①定一个面外接圆圆心:选中一个面如图:在三棱锥-P ABC 中,选中底面ABC ∆,确定其外接圆圆心1O (正三角形外心就是中心,直角三角形外心在斜边中点上,普通三角形用正弦定理定外心2=sin a r A);②过外心1O 做(找)底面ABC ∆的垂线,如图中1PO ⊥面ABC ,则球心一定在直线(注意不一定在线段1PO 上)1PO 上;③计算求半径R :在直线1PO 上任取一点O 如图:则==OP OA R ,利用公式22211=+OA O A OO 可计算出球半径R .4.双面定球心法(两次单面定球心)如图:在三棱锥-P ABC 中:①选定底面ABC ∆,定ABC ∆外接圆圆心1O ;②选定面PAB ∆,定PAB ∆外接圆圆心2O ;③分别过1O 做面ABC 的垂线,和2O 做面PAB 的垂线,两垂线交点即为外接球球心O .【应用场景】多面体外接球问题是立体几何中的重难点内容之一,在高考中频繁出现.解决此类问题的关键是确定球心的位置,运用常见模型可以很方便的确定球心的位置从而准确求解.【典例指引1】(2022·山西吕梁·一模)16.在《九章算术·商功》中,将四个面都为直角三角形的四面体称为鳖臑,如图在鳖臑ABCD 中,AB ⊥平面BCD ,1AB BC CD ===,BC CD ⊥,则鳖臑ABCD 内切球的表面积为()A .3πB .(3π-C .12πD .(3π+【典例指引2】17.已知三棱锥-P ABC ,在底面ABC 中,30A =,1BC =,PA ⊥面ABC ,PA =则此三棱锥的外接球的表面积为()A .163πB .C .323πD .16π【针对训练】(2022·湖北黄冈·高一期末)18.若圆锥的内切球(球面与圆锥的侧面以及底面都相切)的半径为1,当该圆锥体积是球体积两倍时,该圆锥的高为()A .2B .4CD .(2022·青海·海南藏族自治州高级中学高三开学考试)19.如图正四棱柱1111ABCD A B C D -中,底面面积为36,11A BC V 的面积为棱锥111B A B C -的外接球的表面积为()A .68πB .C .172πD .(2022·全国·高三专题练习)20.已知四面体-P ABC 中,PA ⊥平面ABC ,2PA AB ==,BC =,且3tan2ABC ∠=,则四面体-P ABC 的外接球的表面积为()A .15πB .17πC .18πD .20π(2022·江苏·金陵中学高一期末)21.前一段时间,高一年级的同学们参加了几何模型的制作比赛,大家的作品在展览中获得了一致好评.其中一位同学的作品是在球当中放置了一个圆锥,于是就产生了这样一个有趣的问题:已知圆锥的顶点和底面圆周都在球O 面上,若圆锥的侧面展开图的圆心角为23π,面积为3π,则球O 的表面积等于()A .818πB .812πC .1218πD .1212π(2022·云南·弥勒市一中高二阶段练习)22.设直三棱柱111ABC A B C -的所有顶点都在一个球面上,且球的体积是3,1AB AC AA ==,120BAC ∠=︒,则此直三棱柱的高是()A .1B .2C .D .4(2022·重庆·西南大学附中高一期末)23.已知正方形ABCD 中,2AB =,E 是CD 边的中点,现以AE 为折痕将ADE V 折起,当三棱锥D ABE -的体积最大时,该三棱锥外接球的表面积为()A .525π48B .5π4C .25π4D .25π(2022·广西·柳铁一中高三阶段练习)24.在三棱锥A BCD -中,3AB AD BC ===,5CD =,4BD =,AC =锥外接球的表面积为()A .63π10B .64π5C .128π5D .126π5(2022·江西省南丰县第二中学高一学业考试)25.已知四棱锥S ABCD -,SA ⊥平面ABCD ,AB BC ⊥,BCD DAB π∠+∠=,2SA =,BC =S BC A --的大小为3π.若四面体S ACD -的四个顶点都在同一球面上,则该球的体积为()A .3B .C .10πD .323π二、填空题(2022·河南焦作·一模)26.已知三棱锥-P ABC 的每条侧棱与它所对的底面边长相等,且ABC 是底边长为2的等腰三角形,则该三棱锥的外接球的表面积为___________.(2022·河南驻马店·高三期末)27.在三棱锥-P ABC 中,底面是以AB 为斜边的等腰直角三角形,4AB =,PA PB PC ===-P ABC 外接球的表面积为______.(2022·全国·模拟预测)28.已知A 、B 、C 、D 为空间不共面的四个点,且2BC BD AB ===A BCD -体积最大时,其外接球的表面积为______.(2022·安徽马鞍山·一模)29.三棱锥-P ABC 中,PAC △是边长为2AB BC ==,平面PAC ⊥平面ABC ,则该三棱锥的外接球的体积为______30.在三棱锥P -ABC 中,PA ,PB ,PC 两两垂直,1PA =,2PB =,3PC =,则该三棱锥的外接球的表面积为()A .494πB .56πC .3D .14π(2022·湖北荆州·高一期中)31.如图,在一个底面边长为2的正四棱锥P ABCD -中,大球1O 内切于该四棱锥,小球2O 与大球1O 及四棱锥的四个侧面相切,则小球2O 的表面积为______.答案第1页,共23页参考答案:1.A【分析】先用几何法表示出αβγ,,,再根据边长关系即可比较大小.【详解】如图所示,过点F 作FP AC ⊥于P ,过P 作PM BC ⊥于M ,连接PE,则EFP α=∠,FEP β=∠,FMP γ=∠,tan 1PE PE FP AB α==≤,tan 1FP AB PE PE β==≥,tan tan FP FPPM PEγβ=≥=,所以αβγ≤≤,故选:A .2.B【解析】本题以三棱锥为载体,综合考查异面直线所成的角、直线与平面所成的角、二面角的概念,以及各种角的计算.解答的基本方法是通过明确各种角,应用三角函数知识求解,而后比较大小.而充分利用图形特征,则可事倍功半.【详解】方法1:如图G 为AC 中点,V 在底面ABC 的投影为O ,则P 在底面投影D 在线段AO 上,过D 作DE 垂直AE ,易得//PE VG ,过P 作//PF AC 交VG 于F ,过D 作//DH AC ,交BG 于H ,则,,BPF PBD PED α=∠β=∠γ=∠,则cos cos PF EG DH BDPB PB PB PBα===<=β,即αβ>,tan tan PD PDED BDγ=>=β,即y >β,综上所述,答案为B.方法2:由最小角定理βα<,记V AB C --的平面角为γ'(显然γ'=γ)由最大角定理β<γ'=γ,故选B.方法3:(特殊位置)取V ABC -为正四面体,P 为VA 中点,易得cos sin sin α=α=β=γ= B.【点睛】常规解法下易出现的错误有,不能正确作图得出各种角.未能想到利用“特殊位置法”,寻求简便解法.3.D【分析】分别作出线线角、线面角以及二面角,再构造直角三角形,根据边的大小关系确定角的大小关系.【详解】设O 为正方形ABCD 的中心,M 为AB 中点,过E 作BC 的平行线EF ,交CD 于F ,过O 作ON 垂直EF 于N ,连接SO 、SN 、OM ,则SO 垂直于底面ABCD ,OM 垂直于AB ,因此123,,,SEN SEO SMO θθθ∠=∠=∠=从而123tan ,tan ,tan ,SN SN SO SO EN OM EO OMθθθ====因为SN SO EO OM ≥≥,,所以132tan tan tan ,θθθ≥≥即132θθθ≥≥,选D.【点睛】线线角找平行,线面角找垂直,面面角找垂面.4.B【分析】作MH AD ⊥于H ,过N 作//NE BC 交AB 于E ,过M 作MF NE ⊥于F ,可得MNF α=∠,MDA γ=∠,MNH β∠=,在正方体中求得它们的正切值比较大小后可得结论.【详解】作MH AD ⊥于H ,则1//MH AA ,1A M AH =,从而1HD MD =,而1AA ⊥平面ABCD ,因此有MH ⊥平面ABCD ,过N 作//NE BC 交AB 于E ,过M 作MF NE ⊥于F ,则MNF α=∠,tan MF MNF FN∠=,由正方体性质易知MDA ∠为二面角M CD A --的平面角,即MDA γ=∠,1113tan 223AA MH MDA DH A D ∠===,NF ⊂平面ABCD ,则MH NF ⊥,同理MH HN ⊥,MF MH M = ,,MF MH ⊂平面MFH ,所以NF ⊥平面MFH ,又HF ⊂平面MFH ,所以FN HF ⊥,所以HDNF 是矩形,FN DH =,由MH ⊥平面ABCD 知MNH β∠=,tan MH MNH HN∠=,由MF MH ≥,HN HD ≥得MF MH MH FN HD NH ≥≥,即tan tan tan αγβ≥≥,,,αβγ均为锐角,所以αγβ≥≥,N 与D 重合时,三角相等.故选:B .5.B【分析】取11A B 的中点N ,再根据几何关系,结合线线角线面角与二面角的定义,分析123,,θθθ的正切值大小结合正切的单调性判断即可【详解】取11A B 的中点N ,连接如图.易得1//AA MN ,故直线1D M 与1AA 所成的角11D MN θ=∠.又直线1D D ⊥平面1111D C B A ,故1D M 与平面1111D C B A 所成的角21MD N θ=∠.又AB ⊥平面11AA D D ,故二面角1D AM C --的平面角3145D AD θ=∠=o .因为1111tan 1D N D A MN MNθ=>=,3tan 1θ=,21tan 1MN D N θ=<,故132tan tan tan θθθ>>,又123,,θθθ均为锐角,故132θθθ>>故选:B6.C【分析】过直线l 上一点A (与M 不重合)作平面θ的垂线交平面θ于O ,过点O 在平面θ内作直线n 的垂线交直线n 于点N ,连接ON ,求出cos α、cos β、cos γ的表达式,由此可得出合适的选项.【详解】如图,过直线l 上一点A (与M 不重合)作平面θ的垂线交平面θ于O ,过点O 在平面θ内作直线n 的垂线交直线n 于点N ,连接ON ,由线面角的定义可得AMO α=∠,则cos MO AMα=,因为AO ⊥平面θ,MN ⊂平面θ,AO MN ∴⊥,ON MN ⊥ ,AO ON O = ,MN ∴⊥平面AON ,AN ⊂ 平面AON ,AN MN ∴⊥,所以,cos cos MN OMN OM β=∠=,cos cos MN AMN AMγ=∠=,因此,cos cos cos γαβ=.故选:C.7.D 【分析】根据线面角定义,结合线面垂直的判定定理进行求解即可.【详解】如图,过点A 作AH ⊥平面BOC 于H ,连接OH ,则AOH ∠为直线OA 与平面OBC 所成的角θ,分别作HE OB ⊥,交OB 于点E ,HF OC ⊥,交OC 于点F ,连接AE 、AF ,因为OB ⊂平面BOC ,所以AH OB ⊥,因为,,AH HE H AH HE =⊂ 平面AEH ,所以OB ⊥平面AEH ,而AE ⊂平面AEH ,所以AE OB ⊥,同理AF OC ⊥,因为60AOB AOC ∠=∠=︒,OEA OFA ∠=∠,OA OA =,所以OEA △≌OFA ,所以AE AF =,OE OF =,所以EH FH =,则OH 为BOC ∠的角平分线,由60BOC ∠=︒,可得30FOH ∠=︒,令HF a =,则2OH a =,OF =,即OE OF ==,在直角三角形AOE 中,因为60AOB ∠=︒,所以cos 60AO ==︒,于是在直角三角形AOH 中,cosOH AOH OA ∠==即cos 3θ=.故选:D8.C【详解】分析:首先要明确有关最小角定理,之后对其中的角加以归类,从而得到两角的关系,即可得结果.详解:根据线面角是该直线与对应平面内的任意直线所成角中最小的角,所以有12θθ<,故选C.点睛:该题考查的是有关角的大小的比较问题,在思考的过程中,需要明确角的意义,从而结合最小角定理,得到结果.9.D【分析】由题意画出图形,作出直线AB 与l 所成角及二面角l αβ--的平面角,设AC BD CD a ===,由已知直线AB 与l 所成角大小,即可求解二面角l αβ--的大小.【详解】解:如图,在β内,过B 作//BE DC ,且BE DC =,连接,CE AE ,由BD l ⊥,则四边形DCEB 为矩形,可得CE l ⊥,CE BD CD ==,AC l ⊥ ,得ACE ∠为二面角l αβ--的平面角,且l ⊥平面ACE即BE ⊥平面ACE ,则BE AE⊥设AC BD CD a ===,则CE BE a ==,又直线AB 与l 所成角为60º,60ABE ∴∠=︒,得AE ,∴在ACE △中,2221cos 22AC CE AE ACE AC CE +-∠=-⋅.120∴∠=︒ACE 故二面角l αβ--的大小为120︒.故选:D .10.B【解析】在正方体中构造符合条件的图形,由正方体的性质即可求解.【详解】以正方体为模型,构造满足条件的几何图形如下图所示,连接QR ,由正方体的性质可得PQR 为等边三角形,故60QPR ∠=︒,故选:B.【点睛】本题主要考查了直二面角,正方体的性质,属于中档题.11.D【分析】从C 向平面α作垂线CD ,作CE AB ⊥,证得DE AB ⊥,分ABC ∠为锐角和钝角,由线面角及二面角结合勾股定理及余弦定理求解即可.【详解】从C 向平面α作垂线CD ,连接,AD BD ,作CE AB ⊥,连接DE ,AB α⊂,则CD AB ⊥,,,CD CE C CD CE ⋂=⊂平面CDE ,则AB ⊥平面CDE ,又DE ⊂平面CDE ,则DE AB ⊥,如图所示:设,45,,30,22CD h CBD BC CAD AC CD h =∠=︒=∠=︒==,CED ∠是二面角的平面角,60,CED CE ∠=︒=,由勾股定理,AE BE ==,当ABC ∠为锐角,CE 在ABC 内,AB AE BE =+=,))()2222,h =+ 即222AB BC AC =+,90,sin 1ACB ACB ∴∠=︒∠=;当ABC ∠为钝角,CE 在ABC 之外,3AB AE BE h =-=,根据余弦定理,2222cos ,AB AC BC AC BC ACB =+-∠())222222cos3h h h ACB ⎛⎫=+-⨯⨯∠ ⎪ ⎪⎝⎭cos 3ACB ⇒∠=,1sin 3ACB ∠,综上:sin ACB ∠的值为1或13.故选:D .12.2【分析】作出辅助线,得到1DD 为轴的圆锥母线(母线与1DD 成60︒)是直线l 的运动轨迹,1D A 为轴的圆锥母线(母线与1D A 成45︒)是直线l 的运动轨迹,两个圆锥的交线即为满足条件的直线l 的条数.【详解】设立方体的棱长为1,过1D 作直线l ,若直线l 与平面ABCD 中的直线所成角的最小值为6π,即l 与平面ABCD 所成角为6π,1DD 为轴的圆锥母线(母线与1DD 成60︒)是直线l 的运动轨迹,连接1D A ,由题意得11D A BC ∥,直线l 与直线1BC 所成角为π4,直线l 与直线1D A 所成角为π4.此时1D A 为轴的圆锥母线(母线与1D A 成45︒)是直线l 的运动轨迹,两个圆锥相交得到两条交线.故答案为:213.,62ππ⎡⎤⎢⎣⎦【分析】设BC 的中点为D ,连接,SD AD ,根据等腰与直角三角形的性质可得ADS ∠为二面角S BC A --的平面角,3ASD π∠=,且直线l 不妨看作以SA 为轴,轴截面的顶角为3π的圆锥母线所在的直线,进而求得线面角的最大值与最小值即可.【详解】如图,设BC 的中点为D ,连接,SD AD .因为SA ⊥平面,ABC SB SC ==AB AC =,所以,AD BC BC SD ⊥⊥,所以ADS ∠为二面角S BC A --的平面角.又,AB AC BC ⊥=1AB AC AD SA ====,故3ASD π∠=.直线l 不妨看作以SA 为轴,轴截面的顶角为3π的圆锥母线所在的直线,所以直线l 与平面SBC 所成角的最小值为366πππ-=,最大值为362πππ+=,故直线l 与平面SBC 所成角的取值范围是,62ππ⎡⎤⎢⎥⎣⎦.故答案为:,62ππ⎡⎤⎢⎥⎣⎦14【分析】把l 和直线AE 所成角转化为AE 与平面α所成角,结合线面角的性质可求答案.【详解】设AE 与平面α所成角为1θ,因为l α⊥,l 和直线AE 所成角为θ,所以1sin cos θ=θ;取CD 的中点F ,连接,EF AF ,因为,E F 分别为中点,所以//EF BC ,AEF ∠或其补角是AE 与BC 所成角;在AEF △中,12AE AF EF ===,所以cos 6AEF ∠=且AEF ∠为锐角.三棱锥绕BC 旋转的过程中,由线面角的性质可知,1AEF θ≤∠,所以1cos cos 6AEF θ≥∠=,即sin θ15【分析】过点C 作CO α⊥,垂足为O ,连,OA OB ,则CBO ∠是直线BC 与平面α所成的角,CAO ∠是AC 与平面α所成的角,利用直角三角形可求出结果.【详解】解:过点C 作CO α⊥,垂足为O ,连,OA OB,则CBO ∠是直线BC 与平面α所成的角,CAO ∠是AC 与平面α所成的角,则π=4CAO ∠,∵AC ,∴==CO OA a ,在直角三角形ABC 中,π=2A ∠,=AB a,AC∴BC ,在直角三角形COB中,sin =CO CBO BC ∠∴直线BC 与平面α.16.B 【分析】根据鳖臑的性质,结合四面体内切球的性质、棱锥的体积公式、棱锥和球的表面积公式进行求解即可.【详解】解:因为四面体ABCD 四个面都为直角三角形,AB ⊥平面BCD ,BC CD ⊥,所以AB BD ⊥,AB BC ⊥,BC CD ⊥,AC CD ⊥,设四面体ABCD 内切球的球心为O ,则()13ABCD O ABC O ABD O ACD O BCD ABC ABD ACD BCD V V V V V r S S S S ----=+++=+++△△△△内,所以3ABCDV r S =内,因为四面体ABCD的表面积为1ABCD ABC ABD ACD BCD S S S S S =+++=△△△△,又因为四面体ABCD 的体积16ABCD V =,所以312V r S ==内,所以24(3S r ππ==-球,故选:B【点睛】关键点睛:利用棱锥的等积性进行求解是解题的关键.17.D【分析】利用正弦定理求出ABC 的外接圆半径为1,结合PA ⊥面ABC ,PA =接球半径,进而求出外接球的表面积.【详解】设ABC 的外接圆半径为R ,因为30A = ,1BC =,由正弦定理得:122sin sin 30BC R A ===︒,所以ABC 的外接圆半径为1,设球心O 在ABC 的投影为D ,则DA =1,因为PA ⊥面ABC ,PA =12OD PA ==2OA ==,即此三棱锥的外接球的半径为2,故外接球表面积为24π216π⨯=.故选:D 18.B【分析】先设出未知量,即圆锥半径为r ,圆锥高为h ,分析组合体轴截面图,找出h 与r 的一组关系式,再根据题意中圆锥与球体的体积关系找出另一组h 与r 的关系式即可求出答案.【详解】如下图组合体的轴截面,设圆锥半径为r ,圆锥高为h ,则CF r =,1AO h =-,AC ,由sin sin OAE CAF =∠∠得OE CFOA CA=,代入得222220h r hr h --=①,由“该圆锥体积是球体积两倍”可知23142(1)33V r h =⋅=⨯⨯ππ,即28hr =②,联立两式得4h =.故选:B19.C【分析】根据正四棱柱的性质求得棱柱的高,三棱锥111B A B C -的外接球即为正四棱柱的外接球,棱柱的对角线即为其外接球的直径,求得球半径后可得表面积.【详解】设正四棱柱1111ABCD A B C D -的高为h ,因为正方形ABCD 的面积为36,所以11116A B B C ==,在111Rt A B C △中,由勾股定理得11A C =在1Rt BCC 中,由勾股定理得22136BC h =+,11A B BC =,因为11 A BC △的面积为所以12⋅=10h =,依题意,三棱锥111B A B C -的外接球即为正四棱柱1111ABCD A B C D -的外接球,其半径为12R ==,所以三棱锥111B A B C -的外接球的表面积为24172ππ⋅=.故选:C .20.B【分析】根据题意可求得ABC 的外接圆半径,再根据勾股定理求出四面体-P ABC 的外接球的半径,即可求解.【详解】解:如图所示:在ABC 中,3tan 2ABC ∠=,又22sin cos 1ABC ABC ∠+∠= 且()0,ABC π∠∈,故解得:cos ,sin 1313ABC ABC ∠=∠=,由余弦定理得:2222cos AC AB BC AB BC ABC =+-⋅⋅∠,即222222=913AC =+-⨯⨯,故3AC =,设ABC 的外接圆半径为r ,则2sin 13ACr ABC===∠,设ABC 的外接圆圆心为1O ,四面体-P ABC 的外接球球心为O ,则222222211117124OA OO O A PA r ⎛⎫=+=+=+= ⎪⎝⎭⎝⎭,∴四面体-P ABC 的外接球的表面积为:174=174ππ⨯.故选:B.21.A【分析】设球半径为R ,圆锥的底面半径为r ,利用扇形的弧长和面积公式求得R ,即可求解.【详解】圆锥的顶点和底面圆周都在球O 面上,圆锥的侧面展开图的圆心角为23π,面积为3π,设母线为l ,则212323l ππ⨯⨯=,可得:3l =,由扇形的弧长公式可得:223r l ππ=,所以1r =,圆锥的高1OO ==,由()222r RR +=,解得:R =所以球O 的表面积等于2818144328R πππ=⨯=,故选:A 22.B【分析】先确定底面ABC 的外接圆圆心及半径,再确定球心位置,并利用球心和圆心的连线垂直于底面,得到直角三角形,利用勾股定理求解.【详解】设12AB AC AA m ===,三角形ABC 外接圆1O 的半径为r ,直三棱柱111ABC A B C -外接球O 的半径为R .因为120BAC ∠=︒,所以30ACB ∠=︒,于是24sin 30r ABm ==︒,2r m =,12O C m =.又球心O 到平面ABC 的距离等于侧棱长1AA 的一半,所以1OO m =.在1Rt OO C 中,由22211OC OO O C =+,得2224R m m =+,R =.所以球的体积34)33V π==,解得1m =.于是直三棱柱的高是122AA m ==.故选:B.23.C【分析】设棱锥D ABE -的外接球球心为O ,半径为R ,则OM ⊥平面BCEF ,因为ABE 的面积为定值,所当高最大时,三棱锥D ABE -的体积最大,过D 作DF AE ⊥于F ,设点M 为ABE 的外心,则有222222(),DF OM FM R OM EM R -+=+=通过计算可得点M 为外接球的球心,从而可求得结果【详解】解:过D 作DF AE ⊥于F ,设点M 为ABE 的外心,G 为AE 的中点,连接,MG MF ,因为正方形ABCD 中,2AB =,E 是CD 边的中点,所以1DE =,则AE BE ===,2EG =,AD DE DF AE ⋅=所以EF ===12MG EG ==,54EM =,所以2510FG EG EF =-=,所以20FM =,设棱锥D ABE -的外接球球心为O ,半径为R ,则OM ⊥平面BCEF ,设OM x =,因为ABE 的面积为定值,所当高最大时,三棱锥D ABE -的体积最大,此时平面ADE ⊥平面BCEF ,因为DF AE ⊥,平面ADE 平面BCEF AE =,所以DF ⊥平面BCEF ,所以222222(),DF OM FM R OM EM R -+=+=,所以2222()DF OM FM OM EM -+=+,所以2222DF DF OM FM EM -⋅+=,所以461252558016OM -⨯+=,解得0OM =,所以ABE 的外心为三棱锥D ABE -外接球的球心,所以54R EM ==所以三棱锥外接球的表面积为2252544164R πππ=⨯=24.D【分析】由已知条件先判定出球心的位置,然后运用正弦定理、余弦定理和勾股定理计算出球的半径,即可计算出外接球的表面积.【详解】如图,由3AB BC ==,AC =,得222AB BC AC +=,∴AB BC ⊥,由3BC =,4BD =,5CD =,得222BC BD CD +=,∴BC BD ⊥,又AB BD B = ,∴BC ⊥平面ABD ,设ABD △的外心为G ,过G 作底面的垂线GO ,使12GO BC =,则O 为三棱锥外接球的球心,在ABD △中,由3AB AD ==,4BD =,得2223341cos 2339BAD +-∠==⨯⨯,sin BAD ∠=,设ABD △的外接圆的半径为r ,则r =,32OG =,∴2223126220OB ⎛⎫=+= ⎪⎝⎭.∴三棱锥外接球的表面积为21261264π4ππ205R =⨯=.25.A【分析】先确定出三角形ACD 外接圆的圆心O ',然后过O '作垂直于平面ABCD 的垂线l ,再过SA 中点M 向l 作垂线,垂足即为球心,根据线段长度可求解出球的半径,则球的体积可求.【详解】因为AB BC ⊥,BCD DAB π∠+∠=,所以222CDA ππππ∠=--=,所以CD AD ⊥,所以ACD 外接圆的圆心为AC 的中点,记为O ',过O '作直线l 使得l ⊥平面ABCD ,取SA 中点M ,过M 作MO l ⊥垂足为O ,则OA OS OC OD ===,所以O 为四面体S ACD -外接球的球心,因为,,SA BC AB BC SA AB A ⊥⊥= ,所以BC ⊥平面SAB ,BC SB ⊥,又AB BC ⊥,所以二面角S BC A --的平面角为SBA ∠,所以3SBA π∠=,因为2SA =,所以3tan3SA AB π==,所以2AC ==,所以112AO MO AC '===,又因为112AM SM OO AS '====,所以AO ==所以四面体S ACD -外接球的体积为34=33π,故选:A.26.34π【分析】把三棱锥放入一个长方体中,转化为求长方体外接球的半径即可得解.【详解】三棱锥-P ABC 可以嵌入一个长方体内,且三棱锥的每条棱均是长方体的面对角线,如图,设PA BC ==,PB AC PC AB x ====,长方体交于一个顶点的三条棱长为a ,b ,c ,则122ABCS =⨯=△,解得5x =.由题得(222218a b PA +===,22225a c AC +==,22225b c PC +==,解之得3a =,3b =,4c =.所以该三棱锥的外接球的半径为R ==,所以该三棱锥的外接球的表面积为2244342S R πππ⎛⎫==⨯= ⎪ ⎪⎝⎭.故答案为:34π27.169π9##169π9【分析】取AB 的中点D 可得PD AB ⊥,由222PD CD PC +=得PD CD ⊥,根据线面垂直的判断定理得PD ⊥平面ABC ,得三棱锥-P ABC 外接球的球心O 在线段PD 上,由()2222R PD OD OD AD =-=+可得答案.【详解】如图,取AB 的中点D ,连接PD ,CD .由题意可得2AD BD CD ===,因为PA PB =,所以PD AB ⊥,因为PA =,所以3PD =,所以222PD CD PC +=,所以90PDC ∠= ,即PD CD ⊥.因为AB CD D = ,所以PD ⊥平面ABC ,设三棱锥-P ABC 外接球的球心为O ,由题意易得三棱锥-P ABC 外接球的球心O 在线段PD 上,如下图则三棱锥-P ABC 外接球的半径R 满足()2222R PD OD OD AD =-=+,解得56=OD ,所以513366=-=R ,216936R =;若三棱锥-P ABC 外接球的球心O 在线段PD 的延长线上,如下图,则三棱锥-P ABC 外接球的半径R 满足()2222=+=+R PD OD OD AD ,()22232+=+OD OD ,无解;所以,三棱锥-P ABC 外接球的表面积2169π4π9S R ==.故答案为:169π9.28.18π【分析】由题可得当BA 、BC 、BD 两两垂直时,三棱锥的体积最大,将三棱锥补形为一个长宽高分别为.【详解】当BA 、BC 、BD 两两垂直时,如图三棱锥A BCD -的底面BCD △的面积和高同时取得最大值,则三棱锥的体积最大,此时将三棱锥补形为一个长宽高分别为长方体的外接球即为三棱锥的外接球,球的半径r =,表面积为24π18πr =.故答案为:18π.29【分析】计算出外接球的半径,进而求得外接球的体积.【详解】等边三角形PAC 的高为πsin 33⨯==,等边三角形PAC 的外接圆半径为222sin6π=三角形ABC 的外接圆半径为22sin3π=,设12,O O 分别是等边三角形PAC 、等边三角形ABC 的中心,设O 是三棱锥-P ABC 的外接球的球心,R 是外接球的半径,则2222215R OA R ==+=⇒=,所以外接球的体积为34π3R =.故答案为:330.D 【分析】将三棱锥P -ABC 补全为长方体,长方体的外接球就是所求的外接球,长方体的对角线就是外接球直径,计算出半径后可得表面积.【详解】将三棱锥P -ABC 补全为长方体,则长方体的外接球就是所求的外接球,设球半径为R ,则()222224214R R PA PB PC ==++=,所以球的表面积为2414S R ππ==.故选:D .31.2π【分析】设O 为正方形ABCD 的中心,AB 的中点为M ,连接PM ,OM ,PO ,可画出内切球的切面图,分别求出大球和小球的半径分别为2R =和4r =,从而求出小球2O 的表面积.【详解】设O 为正方形ABCD 的中心,AB 的中点为M ,连接PM ,OM ,PO ,则1OM =,221013PM PA AM =-=-=,9122PO =-=,如图,在截面PMO 中,设N 为球1O 与平面PAB 的切点,则N 在PM 上,且1O N PM ⊥,设球1O 的半径为R ,则1O N R =,∵1sin 3OM MPO PM ∠==,∴1113NO PO =,则13PO R =,11422PO PO OO R =+==,∴22R =,设球1O 与球2O 相切于点Q ,则22PQ PO R R =-=,设球2O 的半径为r ,同理可得4PQ r =,∴224R r ==,故小球2O 的表面积242r ππ=.故答案为:2π。
三余弦定理和三正弦定理
1.三余弦定理(又叫最小角定理)
(1)设点A为平面α上一点,过A点的斜线AO在平面α上的射影为AB,AC为平面α上的任意直线,那么∠OAC,∠BAC,∠OAB三角的余弦关系为:
cos∠OAC=cos∠BAC×cos∠OAB
即斜线与平面内一条直线夹角θ的余弦值=斜线与平面所成角1θ的余弦值⨯射影与平面内直线夹角的余弦值。
(2)定理证明:
(3)说明:这三个角中,角θ是最大的,其余弦值最小,等于另外两个角的余弦值之积。
斜线θ是斜线与平面内所有直线所成的角中最小的角。
与平面所成角
1
2.设二面角M-AB-N的度数为α,在平面M上有一条射线AC,它和棱AB所成角为β,和平面N所成的角为γ,则sinγ=sinα·sinβ(如图).
(1)定理证明:
如果将三余弦定理和三正弦定理联合起来使用,用于解答立体几何综合题,你会发现出乎意料地简单,甚至不用作任何辅助线!
例1. (1994全国)如图,已知A1B1C1-ABC是正三棱柱,D是AC中点,若AB1⊥BC1,求面DBC1与面CBC1所成的二面角度数。
例2. (1986上海)已知Rt△ABC的两直角边AC=2,BC=3.点P为斜边AB上一点,现沿CP将此
直角三角形折成直二面角A-CP-B(如下图),当AB=7时,求二面角P-AC-B的大小。
例 3.已知菱形ABCD的边长为1,∠BAD=60°,现沿对角线BD将此菱形折成直二面角A-BD-C(如下图)。
( 1)求异面直线AC与BD所成的角;( 2)求二面角A-CD-B的大小。
例4.(2012四川)如图,半径为的半球的底面圆在平面内,过点作平面的垂线
交半球面于点,过圆的直径作与平面成角的平面并与半球面相交,所得交线上到平面的距离最大的点为,该交线上的一点满足,则、两点间的球面距离为_________________。