坑内水位监测方案
- 格式:doc
- 大小:192.00 KB
- 文档页数:18
基坑工程监控方案一、监控量测内容结合本工程特点确定如下监测内容:根据明挖基坑工程的实际情况,现场监控量测项目有:基坑内外观察、桩体位移及变形、基坑周围地表沉降、地下水位监测、土体测向变形、临近重要建筑物沉降及倾斜、地下管线沉降及位移等。
围护结构施工前做好场地现状的仔细调查和记录、拍照等,设置变形观测点并测得初始数据。
二、监控量测注意事项1、在基坑围护结构施工前,要先对既有建筑物布设监控量测点,为施工中的监测、抢险及可能产生的纠纷提供必要的依据。
2、在基坑影响范围内的管线上方设置管线沉降测点时,测点沿管线走向布置。
3、各项监测工作的频率应根据施工进度确定。
结构变形过大或现场情况有变化时应加密量测,有事故征兆时则需连续监测。
4、各项目在基坑开挖前应测得初始值,且不小于3次。
5、钻孔测点遇既有管线及构筑物避开设置。
6、井体间明挖基坑施工过程中对地层和支护结构进行动态监测,为施工提供可靠的信,以达到科学指导施工,合理修改设计或及时采取施工技术措施的目的。
7、在支护结构施工及基坑开挖过程中,必须对邻近建筑物基础沉降、变形、倾斜、裂缝等进行全方位监测。
8、在支护结构施工及基坑开挖过程中,应对周围邻近道路的沉降进行监测,如发现有地面开裂、沉陷等异常情况,应立即停止施工,并采取相应措施同时通知有关人员进行研究处理。
9、在支护结构施工及基坑开挖过程中,应对周围管线进行监测,并满足各管线权属单位要求的允许值,如发现超过允许值,应立即停止施工,并通知有关单位,采用有效处理措施。
10、应加强监控量测工作的管理,确保信息反馈的准确及时。
11、基坑监测项目的监控报警值应根据检测对象的有关规范及支护结构设计要求确定。
12、对地下管线的监测点布置及监测控制值应严格按管线管理部门的要求执行。
13、基坑监测图如下,仅供参考,可根据具体需要进行调整布点间距及数量。
14、在进场施工前做好以下三个方面的准备工作:⑴.对周围原有的建筑进行仔细调查、检测和技术鉴定,并做好记录、拍照、录像等工作,为施工过程中监测抢险及可能产生的纠纷提供必要的依据。
目录一、工程概况 (1)二、编制根据 (1)三、基坑侧壁安全级别划分 (1)四、基坑支护方案 (1)五、监测目的及规定 (2)六、工程地质概要 (2)七、监测内容 (3)八、监测频率 (8)九、测试重要仪器设备........................... 错误!未定义书签。
十、监测工作管理、保证监测质量的措施........... 错误!未定义书签。
十一、监测人员配备............................. 错误!未定义书签。
十二、监测资料的提交........................... 错误!未定义书签。
一、工程概况:本项目为CENTER工程, 本子项为通风中心;工程号为HB1001, 子项号为VX。
建设地点: 四川省乐山市夹江县南岸乡。
通风中心长58.60m, 宽33.10m, 建筑高度(室外地坪至女儿墙)为22.900m, 消防高度(室外地坪至屋面面层)为22.200m, 地上二层, 局部三层。
占地面积1956.19㎡, 建筑面积4298.00㎡。
建筑构造形式:钢筋混凝土框架——抗震墙构造, 本建筑设计使用年限为50年, 抗震Ⅰ类建筑。
二、编制根据:1.《建筑基坑工程变形技术规范》(GB50497-)2.《都市测量规范》(CJJ/T8-)3.《精密水准测量规范》(GB/T15314-940)4.《工程测量规范》(GB 50026-)5.《建筑边坡工程技术规范》(GB50330-)6.《建筑基坑支护技术技术规程》(JGJ120-)7、基坑支护工程施工方案设计三、基坑侧壁安全级别划分:基坑 1-2交A-B, 1-2交E-F, 开挖的基坑深度较大概为8m, 放坡系数80°, 近似垂直开挖, 如破坏后果较严重, 因此侧壁安全级别定为一级, 侧壁重要性系数1.1。
基坑其她位置地势相对开阔, 无相邻建筑级别评估为二级, 侧壁重要性系数1.0。
四、基坑支护方案:放坡体系:根据设计图纸的规定, 本工程的基坑放坡为80°, 近似垂直开挖, 基坑壁失稳对周边有一定危害, 采用垂直开挖形成基坑, 开挖前必须先对其设立支挡, 保证既有周边的安全, 根据场地周边环境、场地工程地质条件及水文地质状况。
基坑工程监测方案及成果分析摘要:基坑监测对于监测基坑围护体系和周边环境、进行信息化施工和验证设计参数具有重大意义。
本文以某商务区基坑监测为例,合理布设监测方案,分析监测数据的变化规律和成因。
通过对施工过程中可能的安全隐患加以监测和预警,能有效提高施工质量和进度。
关键词:基坑;监测方案;数据分析;0 前言在城市基建过程中,地下管线、道路设施及建构筑物常紧邻基坑作业区,为保障居民生活环境、地下管线安全,必须严格监测基坑变形情况。
在软土地区深基坑支护工程中,基坑受到水土压力和地面载重的共同作用,容易发生较大形变甚至事故。
如何发现这些工程地质问题,是基坑监测的重点。
深基坑监测技术在许多工程都得到了良好地应用,并取得了非常好的指导效果和经济效益。
随着深、超深基坑不断地出现,基坑深度和规模都将给基坑支撑技术带来越来越大的挑战,基于这个原因,基坑监测技术将得到越来越大的应用。
1 工程概况1.1 工程简介上海某商务区地下室埋深B1区为 16.4m,B2-B4区为16.5m,桩基础采用钻孔灌注桩。
基坑总开挖面积10576m2,基坑支护采用地下连续墙+三轴搅拌桩止水帷幕,基坑由地连墙分隔成B1-B4 四区分区施工。
基坑围护支撑:B1和B4区采用三道混凝土支撑,B2和B3区采用一道混凝土支撑+三道钢支撑。
被动区加固采用三轴水泥土搅拌桩,坑底加固为三重管高压旋喷桩。
如图1(1)地质条件复杂。
根据本次勘察资料,场地地基土在勘察深度范围内均为第四系松散沉积物,主要由饱和粘性土、粉性土和砂土组成,同时场地地下水有浅层的浅水层和深部的承压含水层,浅层水位变化受降雨影响比较大,本场地⑦层承压水会对基底产生突涌的危险性(2)场地施工条件复杂。
本工程深基坑附近紧邻交通枢纽配套地下空间、交通道路,同时地下管线非常密集,配水管、污水管、光纤线错综复杂。
最近的配水管线离围护结构外边线距离只有4.9m。
地下连续墙支撑基坑工程的主要特征是地层结构复杂、周边环境复杂、邻近公共设施对地基变形要求大等。
6基坑监测施工方案基坑监测在施工过程中是非常重要的一项工作,可以帮助监测基坑周围的土体变形情况,保障基坑施工的安全和稳定。
为了确保基坑监测的有效性和准确性,需要制定详细的监测施工方案。
一、监测设备的选择1.需要选择高质量的基坑监测设备,如倾斜仪、位移仪、桩身位移仪等,以确保监测数据的准确性和实时性。
2.在选择设备时,需要考虑设备的灵敏度、稳定性和耐用性,以保证设备在基坑施工过程中能够持续稳定运行。
3.可以选择具有实时数据传输功能的监测设备,方便监测人员及时获取监测数据并进行分析。
二、监测方案的编制1.制定详细的监测方案,包括监测人员的职责分工、监测设备的布设位置、监测频率、监测数据的处理方式等内容。
2.在制定监测方案时,需要充分考虑基坑周围环境的影响因素,如地下水位、土体性质、周边建筑物等,以确保监测数据的准确性和可靠性。
3.需要定期对监测方案进行评估和调整,根据实际情况及时调整监测方案,以保证监测工作的顺利进行。
三、监测过程的操作1.在监测过程中,需要确保监测设备的准确性和稳定性,及时维护设备,保证设备正常运行。
2.监测人员需要按照监测方案进行操作,确保监测数据的准确性和一致性。
3.如发现监测数据异常,需要及时进行分析处理,并进行必要的调整和修正。
四、监测数据的处理与分析1.监测数据需要及时传输和存储,确保数据安全和完整性。
2.监测数据的处理需要采用专业的数据处理软件,进行数据分析和比较,得出监测结果。
3.需要定期对监测数据进行分析报告,及时汇总监测结果并向相关部门汇报。
五、监测结果的应用1.监测结果可以为基坑施工提供参考和指导,及时发现基坑变形情况,采取相应的措施保障基坑施工的安全和稳定。
2.监测结果也可以为基坑周边建筑物提供参考,及时发现地基沉降情况,采取相应的补救措施。
3.监测结果可以为基坑施工的后续工程提供参考和指导,保证后续工程的顺利进行。
六、监测工作的总结与改进1.在监测工作结束后,需要对监测工作进行总结和评估,总结经验教训,发现问题并提出改进意见。
一、工程概况二、监测目的与技术要求在基坑桩基施工期间,须周期性对周边环境进行观测,及时发现隐患,并根据监测成果相应地及时调整施工速率及采取相应的措施,确保道路、市政管线及建(构)筑物的正常使用。
在基坑开挖过程中,由于地质条件、荷载条件、材料性质、施工条件和外界其它因素的复杂影响,很难单纯从理论上预测工程中可能遇到的问题,而且,理论预测值还不能全面而准确地反映工程的各种变化。
所以,在理论指导下有计划地进行现场工程监测十分必要。
特别是对于类似本工程复杂的、规模较大的工程,就必须在施工组织设计中制定和实施周密的监测计划。
本工程监测的目的主要有:(1)通过将监测数据与预测值作比较,判断上一步施工工艺和施工参数是否符合或达到预期要求,同时实现对下一步的施工工艺和施工进度控制;(2)通过监测及时发现围护施工过程中的环境变形发展趋势,及时反馈信息,达到有效控制施工对建(构)筑物、道路、管线影响的目的;(3)将现场监测结果反馈设计单位,使设计能根据现场工况发展,进一步优化方案,达到优质安全、经济合理、施工快捷的目的;(4)通过跟踪监测,保障基坑始终处于安全运行的状态。
三、设计基本原则1、系统性原则(1) 所设计的监测项目有机结合,并形成有效四维空间,测试的数据相互能进行校核;(2) 运用、发挥系统功效对基坑进行全方位、立体监测,确保所测数据的准确、及时;(3) 在施工工程中进行连续监测,确保数据的连续性;(4) 利用系统功效减少监测点布设,节约成本。
2、可靠性原则(1) 设计中采用的监测手段是已基本成熟的方法;(2) 监测中使用的监测仪器、元件均通过计量标定且在有效期内;(3) 在设计中对布设的测点进行保护设计。
3、与结构设计相结合原则(1) 对结构设计中使用的关键参数进行监测,达到进一步优化设计的目的;(2) 对结构设计中,在专家审查会上有争议的方法、原理所涉及的受力部位及受力内容进行监测,作为反演分析的依据;(3) 依据设计计算情况,确定围护结构及支撑系统的报警值;(4) 依据业主、设计单位提出的具体要求进行针对性布点。
工地监水方案1. 简介工地水土保持是建设项目中非常重要的环节,其中监测工地的水体状况和水质是保护环境的关键之一。
为了有效监控工地水体的状况,提前发现并预防潜在的环境问题,需要制定一套工地监水方案。
本文将介绍工地监水方案的设计原则、监测内容、监测方法和数据分析等内容,帮助工程施工方有效管理水体状况,减少环境污染和生态破坏。
2. 设计原则制定工地监水方案时需要遵循以下原则:•合法性:方案必须符合法律法规和相关环境保护标准,确保工地施工过程中的水体监测活动是合法合规的。
•有效性:方案应当确保监测活动的结果能够准确反映工地水体的状况,及时发现问题并采取相应的措施。
•科学性:方案应基于科学的理论和方法进行设计,确保监测数据的可信度和可比性。
•可操作性:方案应具有实施的可行性,监测方法简便易行,便于操作和管理。
•经济性:方案的设计应尽可能合理,确保监测成本的控制在合理范围内。
3. 监测内容工地监测方案应涵盖以下内容:3.1 水体监测•监测重点包括施工期和运营期水体的水质和水量。
•对于水质监测,应包括监测水体中的悬浮物、氨氮、总磷、总氮、重金属等污染物的浓度。
•对于水量监测,应包括监测地表水和地下水的水位变化以及流量大小。
3.2 施工工艺监测•监测重点包括施工工艺过程中的水量消耗情况和污水排放情况。
•监测污水的排放浓度和排放量,监测施工工艺中的液体废弃物和固体废弃物的产生情况和处理方式。
4. 监测方法工地监测方案中的监测方法应具体可行,并确保监测数据的准确性和可靠性。
常用的监测方法包括但不限于以下几种:4.1 野外取样与实验室分析•取样点要具有代表性,涵盖不同工程区域、工艺流程和水体类型。
•根据监测内容,选择合适的采样器具和采样方法进行取样。
•取样后,将水样送至实验室进行分析,以获取水质指标的浓度数据。
4.2 在线监测设备•在关键位置安装相应的在线监测设备,通过自动采集仪器仪表获取水体监测的数据。
•在线监测设备包括水质传感器、流量计、水位计等。
基坑监测方案基坑监测方案。
一、基坑安全自查的项目1、支护结构监测2341保证每2在支护结构内埋设带导槽PVC塑料管,以跟踪支护结构位移。
选择在可能产生较大变形的部位,共布设9孔(C1~C9),深度同桩墙深。
为保证成孔率,另布置3个备用孔(C10~C12),共计12孔。
PVC塑料管外径70mm,所有测斜管埋设中,测斜管的导槽必须垂直于基坑边。
先行埋设的测斜管用细铁丝按导槽方向固定在钢筋笼上。
埋设于检查孔的测斜管需用干燥黄砂密实测斜管与钢管内壁间的空隙。
3、支护结构钢筋应力监测在支护结构内布设钢筋应力测点,共布设10个断面,即G1~G10,每断面在迎土、迎坑面各埋设一个钢筋应变计;根据本工程的设计方案,自支护结构钢筋笼顶端向下5m布设1只应力计,钢筋笼底端向上也按5m距离布设一只,另六只以2.5m间距均布,这样每个应力测孔共16只应力计。
这样在支护结构内共布设160只应力计,4;第三。
每55点60只应6在立柱桩中选择2根立柱布点(N1~N2),在其底部布置钢筋应力计,以测定其受力情况。
在立柱底部的钢筋笼中的下端布置一组(3只,以800对称布置)的钢筋应力计,应力计与钢筋笼绑焊,导线通过PVC软管引至地面。
每立柱布置3只,共计6只钢筋应力计。
7、坑内、外地下水位监测坑内水位的监测主要利用停止降水的降水井轮流观测。
坑外设9个测孔D1~D9;采用钻机埋设53mm的PVC管。
参见附图12-1。
8、立柱沉降监测布设L1~L10共计10个监测点,点位用一金属标志头埋设于立柱顶部。
9、基坑周围原有建筑物及道路管线的沉降监测101根据设计要求,为保证基坑开挖、基坑周边构筑物、结构施工安全,基坑施工应与现场实时监测相结合,根据现场所得的信息进行分析,及时反馈并通知有关人员,以便及时调整设计、改进施工方法,达到动态设计与信息化施工的目的。
基坑开挖期间土方每开挖一步进行一次观测,每道支撑施工前后各进行一次观测,其他时段每3~5天测一次。
基坑支护工程监测方案及费用预算河南纵横勘测设计有限公司二○一七年二月十四日基坑支护工程监测方案及费用预算㈠、工程概况本工程位于睢阳区,设计勘测地下水位于-12m,基坑暂时未采用降水,支护体系采用放坡与土钉墙支护体系,基坑开挖深度米,监测范围应为深度的3倍米。
工程地质⑴地层描述第⑴层:粉土夹粉质粘土粉土,褐黄色,湿,中密,含云母及铁质浸染,摇振反应中等,无光泽反应,干强度低,韧性低;粉质粘土,棕褐色,可塑,分布在该层中下部。
地表夹砖渣和建筑垃圾。
本层层厚均厚;层底标高均高。
第⑵层:粉土夹粉质粘土粉土,褐黄色,湿,中密-密实,定性为密实,含云母及铁质浸染,摇振反应中等,无光泽反应,干强度低,韧性低;粉质粘土,棕褐色,可塑,摇振反应无,切面稍光滑,干强度中等,韧性中等,分布在该层上部和下部。
本层层厚均厚;层底标高均高。
第⑶层:粉土褐黄色,湿,中密-密实,定性为中密,含云母及铁猛质,摇振反应中等,无光泽反应,干强度低,韧性低。
本层层厚均厚;层底标高均高。
第⑷层:粉土夹粉质粘土粉土,褐黄色,湿,中密-密实,定性为密实,含云母及铁猛质,摇振反应中等,无光泽反应,干强度低,韧性低;粉质粘土分布该层下部,棕褐色,可塑。
本层层厚均厚;层底标高均高。
第⑸层:粉质粘土夹薄层粉土粉质粘土,灰褐色,可塑-硬塑,定性为硬塑,摇振反应无,切面光滑,干强度高,韧性高。
该层上部和下部夹粉土,褐黄色,中密。
本层层厚均厚;层底标高均高。
第⑹层:粉土夹粉质粘土粉土,褐黄色,湿,密实,含云母及铁质浸染,摇振反应中等,无光泽反应,干强度低,韧性低;粉质粘土分布在该层中部,棕褐色,可塑。
本层层厚均厚;层底标高均高。
⑵土层主要力学性质指标及地下水情况(平均厚度见剖面图)层号土名γ(kN/m3^ ) c(kPa) φ(度) 厚度1 粉土夹薄层粘土2 粉土夹粉质粘土3 粉质粘土夹薄层粉土4 粉土夹粉质粘土5 粉质粘土夹薄层粉土6 粉土夹粉质粘土场地地下水类型为潜水,据地勘报告,地下水位在自然地面下,基坑开挖不需进行降水。
基坑监测方案范文一、背景与目的基坑工程是城市建设中不可或缺的一环,然而基坑工程中存在着一定的风险,如土层不稳、地下水位变化等,这些因素都可能导致基坑工程的安全隐患。
因此,为了确保基坑工程的施工安全,需要制定一套完善的基坑监测方案,及时发现并处理潜在的风险。
二、监测内容和方法1.土层稳定性监测:采用地面测斜仪对基坑周边土层的变形进行监测,以及使用倾斜计对基坑周边建筑物的倾斜情况进行监测。
如果发现土层发生变形或建筑物倾斜超出了允许范围,需要及时采取措施加固土层或修复建筑物。
2.地下水位监测:通过在基坑内安装水位计观测地下水位的变化,监测地下水位是否超过了设计要求的安全范围。
如若超出,需要采取相应的排水措施,控制地下水的涌入。
3.基坑周边环境监测:包括监测附近地表的沉降情况、环境噪声、震动等因素对基坑工程的影响。
通过这些监测指标的评估,能够及时发现异常情况并提出合理的解决方案。
4.施工过程监测:对基坑的开挖、土方填筑、支护结构施工等各个环节进行实时监测,以便及时调整施工方案、减少风险发生的可能性。
三、监测设备和技术1.地面测斜仪:地面测斜仪是一种通过测量地面上各个点的变形量来判断土层稳定性的仪器。
它能够实时监测土层的变形情况,并通过数据分析给出预警。
2.倾斜计:倾斜计能够测量基坑周边建筑物的倾斜情况,以及墙体的变形情况。
通过倾斜计的监测,能够及时发现墙体的变形情况,并采取相应的修复措施。
3.水位计:水位计是监测地下水位变化的主要设备,通过实时测量地下水位的高低来判断基坑周边的地下水变化情况。
4.环境监测仪器:包括沉降监测仪、噪声监测仪、震动监测仪等,用于监测基坑周边环境的变化情况。
四、监测频率与执行机构1.土层稳定性监测:根据施工进度和土层情况的变化,每周进行一次监测,并由相关专业机构或工程监理单位负责数据的采集、分析和处理。
2.地下水位监测:根据地下水位变化的情况,每日或每周进行一次监测,并由相关专业机构或工程监理单位负责数据的采集、分析和处理。
--xxx项目坑内水位信息化监测方案xxx公司xxx块项目坑内水位信息化监测方案审定:xxx审核:xxx方案编制:xxxxxx公司目录一、工程概况 (1)二、监测目的与技术要求 (2)三、设计基本原则 (2)四、设计依据 (3)五、监测项目内容 (4)六、测试方法原理 (4)七、监测工作布置 (5)八、施工进度计划 (6)九、测试主要仪器设备 (8)十、质量目标和保证措施 (9)十一、安全文明施工、环境保护、职业健康安全目标和保证措施.. 12十二、应急预案 (14)十三、附图 (15)一、工程概况§1.1 工程简况1)工程名称:xxx项目2)建设单位:3)项目地点:4)岩土勘察:§1.2 结构、基坑概况1)基地由两个地块组成,其中A地块基地总面积101367.5 平方米,B 地块基地面积5001.7 平方米。
3)本工程场地绝对标高为+4.40m,根据建筑图纸和招标文件提供的底板厚度,基坑底标高及基坑挖深如下:注:B地块电梯井和集水井深坑落深1.50,A地块落深坑资料不详§1.3 基坑周边环境1)东侧:东侧南段基坑开挖面距离红线2.2m,北段距离红线约8m,红线外为绿化带,基坑开挖面距离道路约22m,2)南侧:A 地块基坑开挖面距离红线2.2m,红线外为已建道路,该道路目前尚未通车;B地块基坑开挖面距离红线2.4~3.8m,该侧围墙内有架空高压线,红线外为空地。
根据我司现场踏勘,道路下有雨水和污水,距离基坑开挖面约12m 和17m,其它管线资料建设单位尚不能提供,待后期进一步资料明确后,我司进行复核深化。
3)西侧:A地块基坑开挖面距离红线2.2~8.8m,红线外为空地;B 地块基坑开挖面距离红线2.5~5.5m,红线外为已建道路,该道路目前尚未通车。
根据我司现场踏勘,该道路下有污水和雨水,距离基坑开挖面约12m 和17m,其它管线资料建设单位尚不能提供,待后期进一步资料明确后,我司进行复核深化。
4)北侧:A 地块基坑开挖面距离红线5.9m,红线外为规划道路,东北角尚有部分未拆除的农民房,基坑开挖面距离农民房最小距离为10.5m;B 地块基坑开挖面距离红线2.4~6.1m,红线外为空地。
二、监测目的与技术要求利用坑内水位监测系统定期测量坑内水位埋深,掌握各水位观测孔的水位随时间变化的量值和变化速率。
从而达到以下目的:(1)监测坑内降水施工的实际效果;(2)为地库的抗浮要求提供有效的设计依据。
三、设计基本原则1、系统性原则(1)所设计的监测项目有机结合,并形成有效四维空间,测试的数据相互能进行校核;(2)运用、发挥系统功效对基坑进行全方位、立体监测,确保所测数据的准确、及时;(3)在施工工程中进行连续监测,确保数据的连续性;(4)利用系统功效减少监测点布设,节约成本。
2、可靠性原则(1)设计中采用的监测手段是已基本成熟的方法;(2)监测中使用的监测仪器、元件均通过计量标定且在有效期内;(3)在设计中对布设的测点进行保护设计。
3、与结构设计相结合原则(1)对结构设计中使用的关键参数进行监测,达到进一步优化设计的目的;(2)依据设计计算情况,确定围护结构及支撑系统的报警值;(3)依据业主、设计单位提出的具体要求进行针对性布点。
4、关键部位优先、兼顾全面的原则(1)对围护体及支撑系统中相当敏感的区域加密测点数和项目,进行重点监测;(2)对勘察工程中发现地质变化起伏较大的位置,施工过程中有异常的部位进行重点监测;(3)除关键部位优先布设测点外,在系统性的基础上均匀布设监测点。
5、与施工相结合原则(1)结合施工实际确定测试方法、监测元件的种类、监测点的保护措施;(2)结合施工实际调整监测点的布设位置,尽量减少对施工质量的影响;(3)结合施工实际确定测试频率。
6、经济合理原则(1)监测方法的选择,在安全、可靠的前提下结合工程经验尽可能采用直观、简单、有效的方法;(2)监测元件的选择,在确保可靠的基础上择优选择国产及进口之仪器设备;(3)监测点的数量,在确保全面、安全的前提下,合理利用监测点之间联系,减少测点数量,提高工作效率,降低成本。
四、设计依据1、《建筑地基基础设计规范》(GB50007-2002)2、《工程测量规范》(GB50026-2007)3、《建筑变形测量规范》(JGJ 8-2007)4、《地基基础设计规范》(DGJ08-11-2010)5、《基坑工程技术规范》(DG/TJ08-61-2018)6、《上海市岩土工程勘察规范》DGJ08-37-20027、《基坑工程施工监测规程》(DG/TJ08-2001-2016)8、《国家一、二等水准测量规范》(GB/T 12897-2006)9、《建筑基坑工程监测技术规范》(GB50497-2009)10、本工程相关围护设计说明及图纸(电子版)。
五、监测项目内容经常运用的时空效应规律,做好坑内水位的监测工作。
从而达到保护环境、最大限度保护相关方面利益的目的。
根据本工程的要求、周围环境、基坑本身的特点及相关工程的经验,按照安全、经济、合理的原则,测点布置主要选择在临近原设计坑内降水孔的中间位置,参照坑外水位监测点布点原则,拟设置的监测项目如下:1、坑内水位监测六、测试方法原理为保证所有监测工作的统一,提高监测数据的精度,使监测工作有效的指导整个工程施工,监测工作采用整体布设,分级布网的原则。
即首先布设统一的监测控制网,再在此基础上布设监测点(孔)。
1.垂直高程控制网测量在远离施工影响范围以布置3个以上稳固高程基准点,这些高程基准点与施工用高程控制点联测,沉降变形监测基准网以上述稳固高程基准点作为起算点,组成水准网进行联测。
基准网观测按照建筑变形测量规范二级水准测量要求执行,水准测量的主要技术参照下表:二级水准观测的限差(mm)外业观测使用苏一光DS05自动安平水准仪往返实施作业。
观测措施:本高程监测基准网使用WILD NA2+FS1自动安平水准仪及配套因瓦尺,外业观测严格按规范要求的二级精密水准测量的技术要求执行。
为确保观测精度,观测措施制定如下。
● 应在标尺分划线成像清晰和稳定的条件下进行观测。
不得在日出后或日落前约半小时、太阳中天前后、风力大于四级、气温突变时以及标尺分划线的成像跳动而难以照准时进行观测。
阴天可全天观测。
● 观测前半小时,应将仪器置于露天阴影下,使仪器与外界气温趋于一致。
设站时,应用测伞遮蔽阳光。
● 每测段往测与返测的测站数均应为偶数,否则应加入标尺零点差改正。
由往测转向返测时,两标尺应互换位置,并应重新整置仪器。
在同一测站上观测时,不得两次调焦。
转动仪器的倾斜螺旋和测微鼓时,其最后旋转方向,均应为旋进。
● 对各周期观测过程中发现的相邻观测点高差变动迹象、地质地貌异常、附近建筑基础和墙体裂缝等情况,应做好记录,并画草图。
垂直位移基准网外业测设完成后,对外业记录进行检查,严格控制各水准环闭合差,各项参数合格后方可进行内业平差计算。
内业计算采用EXCEL 进行简易平差计算,高程成果取位至0.01mm 。
2. 坑内潜水水位观测为了加强对坑内水位的动态观测和分析,对于了解和控制基坑降水深度、判定坑内水位标高,分析坑内地下水的联系程度具有十分重要的意义。
对于水位动态变化的量测,可在基坑降水前测得各水位孔孔口标高及各孔水位深度,孔口标高减水位深度即得水位标高,初始水位为连续二次测试的平均值。
每次测得水位标高与初始水位标高的差即为水位累计变化量。
采用SWJ-90电测水位计。
七、监测工作布置各监测项目的测点布设位置及密度应与桩基施工、围护施工的区域、围护结构类型、基坑开挖顺序、被保护对象的位置及特性相匹配,同时参照围护结构位置、附属结构位置及开挖分段长度等参数,进行测点布置,同时也注意了断面的布设,主要为了解水位孔剖面示意图PVC管回填泥球回填黄砂透水段变形的范围、幅度、方向,从而对基坑变形信息有一个清楚全面的认识,为围护结构体系和基坑环境安全提供全面、准确、及时的监测信息。
设计各监测项目布点情况如下:1、坑内水位观测拟在基坑内布置坑内水位观测孔20孔,编号NSW1~NSW20,孔深约6米,见附图。
具体位置可能会视地库底板后浇带分布情况适当调整。
用Φ89钻头成孔,钻进尽可能采用清水钻进,埋设直径为Ф53的专用水位监测PVC管,PVC管外使用特殊土工布进行无缝包扎,下管后用中砂密实,孔顶附近再填充泥球,以防止地面水的渗入。
埋设完成后,立即用清水洗孔,以保证水管与管外水土体系的畅通。
八、施工进度计划本监测工程将贯穿开挖及地下室结构工程、地下室结构出±0.000回填施工的整个过程。
在整个监测工程中,我司将加强与围护、土方开挖及地下室结构施工单位和其它业主授权人士等的协调配合,确定具体的施工时间表,保证上述工程不会因本工程的原故而延迟完工;而且我司也充分注意到了本工程施工的特点,在整个工期计划安排及监测费用也作了相应的考虑。
初步的工作安排如下,具体的时间节点进度需根据现场施工进度予以落实:1、监测初始值测定为取得基准数据,各观测点在施工前,随施工进度及时设置,并及时测得初始值,观测次数不少于3次,取连续3次观测值的平均值作为动态观测的初始测值。
测量基准点在施工前埋设,经观测确定其已稳定时方才投入使用。
稳定标准为两次观测值不超过2倍观测点精度。
基准点不少于3个,并设在施工影响范围外。
监测期间定期联测以检验其稳定性。
并采用有效保护措施,保证其在整个监测期间的正常使用。
2、监测点保护(1) 水位管在斜管埋设时,管口用砖砌成窨井,上加铁盖来保护测斜管顶部不被破坏;测管管口用塑料盖封住以防垃圾进入。
3、施工监测频率根据工况合理安排监测时间间隔,做到既经济又安全。
根据以往同类工程的经验,拟定监测频率为见下表 (最终监测频率须与有关部门协商后确定)。
说明1、现场监测将采用定时观测与跟踪观察相结合的方法进行。
2、监测频率可根据监测数据变化大小进行适当调整。
3、各监测项目的开展、监测范围的扩展,随基坑施工进度不断推进。
4、报警指标监测报警指标一般以总变化量和变化速率两个量控制,累计变化量的报警指标一般不宜超过设计限值。
本工程报警指标初步拟定为(须得到有关单位的确认):5、资料整理、提交及流程在现场设立微机数据处理系统,进行实时处理。
每次观察数据经检查无误后送入微机,经过专用软件处理,自动生成报表。
监测成果当天提交给业主、监理、总包及其它有关方面。
现场监测工程师分析当天监测数据及累计数据的变化规律,并经项目负责人审核无误后当天提交正式报告。
如果监测结果超过设计的警戒值即向建设方、总包方、监理方发出警报,提请有关部门关注,以便及时决策并采取措施。
同时根据相关单位要求提供监测阶段报告,并附带变化曲线图;监测工程结束后一个月内提供监测总结报告。