北师大版数学七年级下茂名市育才中学11—12期中考试.doc
- 格式:doc
- 大小:631.94 KB
- 文档页数:8
茂名市茂港区11—12学年七年级(下)期中考试数学试题本试卷共8页,26个小题,总分为120分,考试时间为120分钟、【一】选择题〔本大题共10个小题,每题2分,共20分。
注意每题的四个选项中只有一个是对的,将正确答案相对应的字母填在括号里〕1.〔2017山东济南〕以下运算正确的选项是〔〕 A 、a 2•a 3=a 6 B 、〔a 2〕3=a 6 C 、a 6÷a 2=a 3 D 、2﹣3=﹣62、以下各数据中,是近似数的有〔〕①小明的身高是183.5米;②小明家买了100斤大米;③小明买笔花了4.8元;④小明的体重是70千克。
A 、1个B 、2个C 、3个D 、4个 3.以下说法正确是〔〕 A 、4不是单项式B 、2xy -的系数是2 C 、32y x 的次数是3D、2r π的次数是3.4、以下说法中,正确的选项是〔〕A 、一个角的补角一定比那个角大B 、一个角的余角一定比那个角小C 、一对对顶角的两条角平分线必在同一条直线上D 、有公共顶点同时相等的两个角是对顶角。
5、以下图形中,有对顶角的图形是〔〕6、2017年北京承办奥运会取得圆满成功。
据统计某日奥运会网站的访问人次为201949,用四舍五入法取近似值保留两个有效数字,得〔〕 A 、2.0×105B 、2.0×106C 、2×105D 、0.2×1067、如图,直线l 与直线a 、b 相交,且a ∥b,∠1=80°,那么∠2的度数是〔 〕A 、60°B 、80 °C 、100°D 、120°8、如下图,从边长为a 的大正方形中挖去一个边长是b的小正方形,小明将图甲中的阴影部分拼成了一个如图乙所示的矩形,这一过程能够验证() (A)a 2+b 2-2ab=(a-b)2(B)a 2+b 2+2ab=(a+b)2ba l 1 2(C)2a 2-3ab+b 2=(2a-b)(a-b)(D)a 2-b 2=(a+b(a-b)9、某商场为吸引顾客设计了如下图的自由转盘,当指针指向阴影部分是,该顾客可获奖品一份,那么该顾客获奖的概率为〔〕A 、61B 、51C 、81D 、10110、观看以下顺序排列的等式:9×0+1=1 9×1+2=11 9×2+3=21 9×3+4=31 9×4+5=41 ……依照数表所反映的规律,猜想:第n 个等式(n 为正整数)应为〔〕 A.9(n-1)+n=10(n-1)+1B.9n+n=(n-1)+1 C.9n+(n-1)=n 2-1D.9n+n+1=10n+1【二】填空题〔本大题共8个小题,每题3分,共24分〕 11、计算:()8825.04-⨯=。
北师大版七年级第二学期期中测试数学试卷-带参考答案一、选择题(每题3分,共30分 ) 1.下列各式不是方程的是( )A .x 2+x =0B .x +y =0C.1x +xD .x =02.若a >b >0,则下列不等式一定成立的是( )A .a -1<b -1B .-a >-bC .a +b >2bD .|a |<|b |3.解一元一次方程12(x +1)=-13x 时,去分母正确的是( )A .3(x +1)=2xB .3(x +1)=xC .x +1=2xD .3(x +1)=-2x4.一个不等式的解集在数轴上表示如图,则这个不等式可以是( )(第4题)A .x +3>0B .x -3<0C .2x ≥6D .3-x <05.利用代入法解方程组⎩⎨⎧y =2x +1①,x -y =-1②,将①代入②得( )A .x -2x +1=-1B .x +2x -1=-1C .x -2x -1=-1D .x +2x +1=-16.关于x 的方程3x +5=0与3x =1-3m 的解相同,则m 等于( )A .-2B .2C .-43D.437.在等式y =kx +b 中,当x =1时,y =-2;当x =-1时,y =-4.则2k +b 的值为( ) A .1B .-1C .-2D .-38.8个一样大小的小长方形恰好可以拼成一个大的长方形,如图甲所示,若拼成如图乙所示的正方形,中间还留下一个洞,恰好是边长为2厘米的小正方形.设一个小长方形的长为x 厘米,宽为y 厘米,则所列二元一次方程组正确的是( )(第8题)A.⎩⎨⎧3x =5y 2y =x +2B.⎩⎨⎧5x =3y 2x =y +2C.⎩⎨⎧3x =5y 2x =y +2D.⎩⎨⎧5x =3y 2y =x +29.甲、乙两车从A 地出发到B 地,甲比乙早行驶1 h ,比乙晚到2 h ,甲全程用时6 h ,则从乙出发到甲、乙两车相遇用时( ) A .1 hB .1.5 hC .2 hD .2.5 h10.已知关于x 的不等式组⎩⎨⎧x -a ≥2,2-3x >-7的整数解有5个,则a 的取值范围是( )A .-5≤a ≤-4B .-5<a ≤-4C .-5<a <-4D .-5≤a <-4二、填空题(每题3分,共15分)11.x 的平方与y 的平方的和一定是非负数,用不等式表示为________. 12.若(m +1)x |m |>2是关于x 的一元一次不等式,则m =______.13.若x ,y 满足二元一次方程组⎩⎨⎧x +2y =3,2x +y =3,则x 与y 的关系是________(写出一种关系即可).14.若方程x +y =3,x -y =1和x +2my =0有公共解,则m 的值为________. 15.已知5只碗摞起来的高度是13 cm ,9只碗摞起来的高度是20 cm ,若一摞碗的高度不超过30 cm ,最多能摞______只碗. 三、解答题(共75分)16.(8分)(1)解方程:x +2x +16=1-2x -13;(2)解方程组:⎩⎨⎧8x +5y =2,①4x -3y =-10.②第 3 页 共 9 页17.(9分)阅读下面解题过程,再解题.已知a >b ,试比较-2 024a +1与-2 024b +1的大小. 解:因为a >b ①所以-2 024a >-2 024b ② 故-2 024a +1>-2 024b +1③.(1)上述解题过程中,从第________步开始出现错误; (2)错误的原因是什么? (3)请写出正确的解题过程.18.(8分)解下列不等式(组): (1)3(4x +2)>4(2x -1);(2)⎩⎪⎨⎪⎧3x +6≥5(x -2),①x -52-4x -33<1.②19.(9分)某食品厂元宵节前要生产一批元宵礼袋,每袋中装4颗大元宵和8颗小元宵.生产一颗大元宵要用肉馅15 g,一颗小元宵要用肉馅10 g.现共有肉馅2 100 kg.(1)假设肉馅全部用完,生产两种元宵应各用多少肉馅,才能使生产出的元宵刚好配套装袋?(2)最多能生产多少袋元宵?20.(9分)一个两位数,个位上的数字与十位上的数字之和为6,把这个两位数加上18后,比十位数字大56,请利用二元一次方程组求这个两位数.21.(10分)如图,直线l上有A,B两点,AB=18 cm,O是线段AB上的一点,OA=2OB.(1)OA=________cm,OB=________cm.(2)若动点P,Q分别从点A,B同时出发,向右运动,点P的速度为2 cm/s,点Q的速度为1 cm/s.设运动时间为t s.当t为何值时,2OP-OQ=3 cm?(第21题)22.(10分)读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然正气.某校为提高学生的阅读品味,现决定购买获得茅盾文学奖的甲,乙两种书共100本,已知购买2本甲种书和1本乙种书共需100元;购买3本甲种书和2本乙种书共需165元.(1)求甲,乙两种书的单价分别为多少元;(2)若学校决定购买以上两种书的总费用不超过3 200元,那么该校最多可以购买甲种书多少本?23.(12分)阅读材料:第 5 页共9 页我们把关于x ,y 的两个二元一次方程x +ky =b 与kx +y =b (k ≠1)叫做互为共轭二元一次方程,像x +4y =5与4x +y =5这样的方程是互为共轭二元一次方程;像二元一次方程组⎩⎨⎧x +4y =5,4x +y =5这样由互为共轭二元一次方程组成的方程组叫做共轭二元一次方程组.(1)若关于x ,y 的方程组⎩⎨⎧x +2y =b +2,()1-a x +y =3为共轭二元一次方程组,则a =________,b =________.(2)解共轭二元一次方程组:⎩⎨⎧x +4y =5①,4x +y =5②.解:①+②,得x +y =2③.①-③,得y =1.②-③,得x =1. 所以⎩⎨⎧x =1,y =1是方程组的解.仿照上面方程组的解法解方程组:⎩⎨⎧y -3x =6①,x -3y =6②;(3)发现:若共轭二元一次方程组⎩⎨⎧x +ky =b ,kx +y =b 的解是⎩⎨⎧x =m ,y =n ,则m ,n 之间的数量关系是________.第 7 页 共 9 页答案一、1.C 2.C 3.D 4.B 5.C 6.B 7.B 8.A 9.A 10.B二、11.x 2+y 2≥012.1 易错点睛:易忽略x 的系数不为0而致错. 13.x +y =2(答案不唯一)14.-1 点拨:根据题意,得⎩⎨⎧x +y =3,x -y =1,解得⎩⎨⎧x =2,y =1.将⎩⎨⎧x =2,y =1代入x +2my =0,解得m =-1. 15.14 点拨:设一只碗的高度是x cm ,每摞起来一只碗增加y cm ,则⎩⎨⎧x +(5-1)y =13,x +(9-1)y =20,解得⎩⎪⎨⎪⎧x =6,y =74.设能摞m 只碗,所以6+74(m -1)≤30,m ≤1457,所以最多能摞14只碗.三、16.解:(1)去分母,得6x +(2x +1)=6-2(2x -1) 去括号,得6x +2x +1=6-4x +2 移项,得6x +2x +4x =6+2-1 合并同类项,得12x =7 系数化为1,得x =712.(2)①-②×2,得11y =22,解得y =2 把y =2代入①,得8x +10=2,解得x =-1 故方程组的解为⎩⎨⎧x =-1,y =2.17.解:(1)②(2)错误的原因是不等式的两边都乘以-2 024,不等号的方向没有改变. (3)因为a >b ,所以-2 024a <-2 024b 所以-2 024a +1<-2 024b +1. 18.解:(1)3(4x +2)>4(2x -1)12x +6>8x -4,12x -8x >-4-6,4x >-10. x >-2.5.(2)解不等式①,得x ≤8,解不等式②,得x >-3 所以不等式组的解集是-3<x ≤8.19.解:(1)设生产大元宵要用肉馅x kg ,根据题意,得8×1 000x15=4×1 000(2 100-x )10.解得x =900.所以小元宵要用肉馅2 100-900=1 200(kg).答:大元宵和小元宵分别用900 kg ,1 200 kg 肉馅,才能使生产出的元宵刚好配套装袋.(2)设能生产m 袋元宵,根据题意,得(4×15+8×10)m ≤2 100×1 000,解得m ≤15 000 所以m 可取的最大值为15 000. 答:最多能生产15 000袋元宵.20.解:设这个两位数的十位数字为x ,个位数字为y 依题意得⎩⎨⎧x +y =6,10x +y +18=x +56.解得⎩⎨⎧x =4,y =2.答:这个两位数为42. 21.解:(1)12;6(2)当点P 在点O 左侧时,2OP -OQ =3 cm 即2(12-2t )-(6+t )=3,解得t =3. 当点P 在点O 右侧时,2OP -OQ =3 cm 即2(2t -12)-(6+t )=3,解得t =11. 所以当t 为3或11时,2OP -OQ =3 cm.22.解:(1)设甲种书的单价是x 元,乙种书的单价是y 元,根据题意,得⎩⎨⎧2x +y =100,3x +2y =165,解得⎩⎨⎧x =35,y =30.答:甲种书的单价是35元,乙种书的单价是30元.(2)设该校购买甲种书m 本,则购买乙种书(100-m )本,根据题意,得35m +30(100-m )≤3 200第 9 页 共 9 页 解得m ≤40,所以m 的最大值为40. 答:该校最多可以购买甲种书40本. 23.解:(1)-1;1(2)①+②,得-x -y =6③.①+③,得-4x =12,所以x =-3.②+③,得-4y =12 所以y =-3,所以方程组的解为⎩⎨⎧x =-3,y =-3.(3)m =n。
茂名市七年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)用数学的方式理解“两岸猿声啼不住,轻舟已过万重山”和坐地日行八万里”(只考虑地球的转),其中蕴含的图形运动是().A . 平移和旋转B . 对称和旋转C . 对称和平移D . 旋转和平移2. (2分)(2017·荆门) 下列运算正确的是()A . 4x+5x=9xyB . (﹣m)3•m7=m10C . (x2y)5=x2y5D . a12÷a8=a43. (2分) (2018八上·泸西期末) 下列等式从左到右的变形,属于因式分解的是()A .B .C .D .4. (2分) (2018八上·四平期末) 在和中,,高,则和的关系是()A . 相等B . 互补C . 相等或互补D . 以上都不对5. (2分)(2016·邵阳) 如图所示,点D是△ABC的边AC上一点(不含端点),AD=BD,则下列结论正确的是()A . AC>BCB . AC=BCC . ∠A>∠ABCD . ∠A=∠ABC6. (2分) (2020七下·泗辖期中) 我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图①可以用来解释(a+b)2-(a-b)2=4ab.那么通过图②中阴影部分面积的计算验证了一个恒等式,此等式是()A . a2-b2=(a+b)(a-b)B . (a-b)2=a2-2ab+b2C . (a+b)2=a2+2ab+b2D . (a-b)(a+2b)=a2+ab-b27. (2分)如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A . 锐角三角形B . 钝角三角形C . 直角三角形D . 等腰三角形8. (2分) (2019八上·中山期中) 下列计算正确的是()A .B .C .D .9. (2分)如图所示,小刚手拿20元钱正在和售货员对话,请你仔细看图,1听果奶、1听可乐的单价分别是()A . 3元,3.5元B . 3.5元,3元C . 4元,4.5元D . 4.5元,4元10. (2分) (2019七上·秀洲月考) 不超过的最大整数是()A . –4B . –3C . 3D . 4二、填空题 (共8题;共9分)11. (2分)计算:(﹣3x)2•4x2=________.12. (1分)(2018·惠山模拟) 世界文化遗产长城总长约为6700000m,将6700000用科学记数法表示应为________.13. (1分) (2017七上·巫山期中) 单项式的系数是________ ,多项式的次数是________.14. (1分) (2020七上·阳江期末) 若关于x的方程2x+a=1与方程3x-1=2x+2的解相同,则a的值为________.15. (1分) (2016七下·博白期中) 方程组的解是________.16. (1分) (2018八上·江汉期末) 若x2﹣y2=8,x2﹣z2=5,则(x+y)(y+z)(z+x)(x﹣y)(y﹣z)(z ﹣x)=________.17. (1分) (2018八上·洛阳期中) 如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A=________,∠C=________.18. (1分) (2019八上·绍兴月考) 如图,在△ABC中,∠A=20°,∠ABC与∠ACB的角平分线交于D1 ,∠ABD1与∠ACD1的角平分线交于点D2 ,依此类推,∠ABD4与∠ACD4的角平分线交于点D5 ,则∠BD5C的度数是________.三、解答题 (共10题;共81分)19. (10分)20. (10分) (2019七下·卢龙期末)(1)因式分解:x2(x-y)+y2(y-x)(2)用简便方法计算:1252-50×125+25221. (5分) (2017七下·乐亭期末) 已知,求的值.22. (5分)某中学响应“阳光体育”活动的号召,准备从体育用品商店购买一些排球、足球和篮球,排球和足球的单价相同,同一种球的单价相同,若购买2个足球和3个篮球共需340元,购买4个排球和5个篮球共需600元.(1)求购买一个足球,一个篮球分别需要多少元?(2)该中学根据实际情况,需从体育用品商店一次性购买三种球共100个,且购买三种球的总费用不超过6000元,求这所中学最多可以购买多少个篮球?23. (5分) (2019八上·下陆月考) 如图: 是的高,为上一点,交于 ,且有 .求证: .24. (5分)已知210=m2=4n ,其中m、n为正整数,求mn的值.25. (15分) (2016八上·太原期末) 计算:(1)(2)26. (10分)已知关于x、y的方程组(1)求该方程组的解(用含a的代数式表示);(2)若方程组的解满足 x<0 , y>0 ,求 a 的取值范围.27. (10分) (2020九下·哈尔滨月考) 已知,是⊙O的直径,弦垂直平分,垂足为F,连接.(1)如图1,求的度数;(2)如图2,点分别为上一点,并且,连接,交点为G,R为上一点,连接与交于点H,,求证:;(3)如图3,在(2)的条件下,,求⊙O半径.28. (6分) (2020七下·龙岩期中) 已知在平面直角坐标系中,点满足,轴于点.(1)点的坐标为________,点的坐标为________;(2)如图1,若点在轴上,连接,使,求出点的坐标;(3)如图2,是线段所在直线上一动点,连接,平分,交直线于点,作,当点在直线上运动过程中,请探究与的数量关系,并证明.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共9分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共10题;共81分)19-1、20-1、20-2、21-1、22-1、23-1、24-1、25-1、25-2、26-1、26-2、27-1、27-2、28-1、28-2、28-3、。
七年级下学期期中考试数学试卷满分:150分考试用时:120分钟范围:第一章《整式的乘除》~第三章《变量之间的关系》班级姓名得分卷Ⅰ一、选择题(本大题共15小题,每小题3分,共45.0分。
在每小题的四个选项中,只有一个选项正确,请把你认为正确的选项填涂在相应的答题卡上)1.某学习小组做了一个试验:从一幢100m高的楼顶随手放下一只苹果(此试验在安全的环境下进行),测得有关数据如下:下落时间t(s)1234下落高度ℎ(m)5204580则下列说法错误的是()A. 苹果每秒下落的高度不变B. 苹果每秒下落的高度越来越长C. 苹果下落的速度越来越快D. 可以推测,苹果落到地面的时间不超过5秒2.下列图形中,∠1与∠2是同旁内角的是()A. B.C. D.3.x n−1⋅()=x n+1,括号内应填的代数式是()A. x n+1B. x n−1C. x2D. x4.冠状病毒的直径约为80∼120纳米,1纳米=1.0×10−9米.若用科学记数法表示110纳米,则正确的结果是()A. 1.1×10−9米B. 1.1×10−8米C. 1.1×10−7米D. 1.1×10−6米5.如果x2+kx+4恰好是另一个整式的平方,那么k的值为()A. 2B. 4C. −4D. ±46.如图,已知两直线l1与l2被第三条直线l3所截,下列等式一定成立的是()A. ∠1=∠2B. ∠2=∠3C. ∠2+∠4=180∘D. ∠1+∠4=180∘7.一跳远运动员跳落沙坑时的痕迹如图所示,则表示运动员成绩的是()A. 线段AP1的长B. 线段BP1的长C. 线段CP2的长D. 线段CP3的长8.一名老师带领x名学生到动物园参观,已知成人票每张30元,学生票每张10元.设门票的总费用为y元,则y与x的关系为()A. y=20xB. y=40xC. y=10+30xD. y=10x+309.张大伯出去散步,从家走了20min,到了一个离家900m的阅报亭,看了10min报纸后,用了15min返回到家,如图图象中能表示张大伯离家时间与距离之间关系的是()A. B.C. D.10.在一条笔直的航道上依次有甲、乙、丙三个港口,一艘船从甲出发,沿直线匀速行驶经过乙港驶向丙港,最终达到丙港,设行驶x(ℎ)后,与乙港的距离为y(km),y与x的关系如图所示,则下列说法正确的是()A. 甲港与丙港的距离是90kmB. 船在中途休息了0.5ℎC. 船的行驶速度是45km/ℎD. 从乙港到达丙港共花了1.5ℎ11.如图,2条直线相交最多有1个交点,3条直线相交最多有3个交点,4条直线相交最多有6个交点,...,按照此规律,n条直线相交最多有()个交点.A. n(n−1)2B. n(n+1)2C. (n−1)(n+1)2D. 无法确定12.若(−2x+a)(x−1)展开后的结果中不含x的一次项,则()A. a=1B. a=−1C. a=−2D. a=213.a表示两个相邻整数的平均数的平方,b表示这两个相邻整数平方的平均数,那么a与b的大小关系是()A. a>bB. a≥bC. a≤bD. a<b14.如图所示,同位角共有()A. 6对B. 8对C. 10对D. 12对15.一辆汽车由韶关匀速驶往广州,下列图象中大致能反映汽车距离广州的路程S(千米)和行驶时间t(小时)的关系的是()A. B. C. D.卷Ⅱ二、填空题(本大题共5小题,共25.0分)16.鸡蛋每个0.8元,那么所付款y(元)与所买鸡蛋个数x(个)之间的函数解析式是______.17.如图,点O在直线l上,当∠1与∠2满足条件时,OA⊥OB.18.用科学记数法表示0.0000109为__________________.19.观察下列图形,2条直线相交,有1个交点,3条直线相交最多有3个交点,4条直线相交最多有6个交点,…,像这样,10条直线相交最多有______个交点.20.根据图中的程序,当输入x=3时,输出的结果y=.三、解答题(本大题共7小题,共80.0分)a),其中a、b21.(8分)先化简,再求值:[(a−b)2+(2a+b)(1−b)−b]÷(−12满足|a+1|+(2b−1)2=0.22.(8分)如图,已知∠AOB=50°,OC平分∠AOB.(1)请在图中∠AOB的外部画出它的一个余角∠BOD;(2)求∠COD的度数.23.(10分)王教授和他的孙子小强星期天一起去爬山,来到山脚下,小强让爷爷先上山,然后追赶爷爷,如图所示,两条线段分别表示小强和爷爷离开山脚的距离(米)与爬山所用时间(分)的关系(小强开始爬山时开始计时),请看图回答下列问题:(1)爷爷比小强先上了多少米?山顶离山脚多少米?(2)谁先爬上山顶?小强爬上山顶用了多少分钟?(3)图中两条线段的交点表示什么意思?这时小强爬山用时多少?离山脚多少米?24.(12分)已知a x⋅a y=a5,a x÷a y=a.(1)求x+y和x−y的值;(2)求x2+y2的值.25.(12分)如图所示,l1,l2,l3相交于点O,∠1=∠2,∠3:∠1=8:1,求∠4的度数.26.(14分)某单位急需用车,但又不准备买车,他们准备和一个体车主或一国营出租车公司其中的一家订立月租车合同.设汽车每月行驶x千米,应付给个体车主月租费是y1元,应付给出租车公司的月租费是y2元,y1与y2分别与x之间的数量关系图象(两条射线)如图所示,观察图象回答下列问题:(1)每月行驶的路程在什么范围内时,租个体车主的车合算?(2)每月行驶的路程等于多少时,两家车的费用相同?(3)如果这个单位估计每月行驶的路程为2300千米,那么这个单位租哪家的车合算27.(16分)如图,直线AB与CD相交于点O,OE⊥AB,OF⊥CD.(1)图中∠AOF的余角是;(把符合条件的角都填出来)(2)图中除直角相等外,还有相等的角,请写出三对: ①; ②; ③;(3) ①如果∠AOD=160∘,那么根据可得∠BOC=; ②如果∠AOD=4∠EOF,求∠EOF的度数.答案1.A2.C3.C4.C5.D6.D7.B8.D9.C10.D11.A12.C13.D14.C15.B16.y=0.8x17.∠1+∠2=90∘18.1.09×10−519.4520.2a),21.解:原式=(a2−2ab+b2+2a−2ab+b−b2−b)÷(−12a),=(a2−4ab+2a)÷(−12=−2a+8b−4,∵|a+1|+(2b−1)2=0,又∵|a+1|≥0,(2b−1)2≥0,∴a=−1.b=1,2∴原式=2+4−4=2.22.解:(1)如图:(2)∵∠AOB=50°,OC平分∠AOB,∴∠AOC=∠BOC=25°,又∵∠AOB与∠BOD互余,∴∠AOB+∠BOD=90°,∴∠BOD=90°−50°=40°,∴∠COD=∠COB+∠BOD=25°+40°=65°.故答案为:65°.23.解:(1)由图可知,爷爷比小强先上了100米,当小强爬了10分钟,爬了300米∴小强的速度300÷10=30米/分,∴山高30×15=450米;(2)小强先到山顶,小强爬了15分钟;(3)图中两条线段的交点表示小强和爷爷相遇的时候,这时小强爬山用时10分钟,离山脚300米.24.解:(1)x+y=5,x−y=1.(2)x2+y2=13.25.解:设∠1=∠2=x∘,则∠3=8x∘.由∠1+∠2+∠3=180∘,得10x=180.解得x=18.所以∠1=∠2=18∘.所以∠4=∠1+∠2=36∘.26.解:(1)每月行驶的路程小于1500千米时,租个体车主的车合算.(2)每月行驶的路程等于1500千米时,两家车的费用相同.(3)由2300>1500可知,如果这个单位估计每月行驶的路程为2300千米,那么这个单位租出租车公司的车合算.27.解:(1)∠EOF,∠BOD,∠AOC(2)(答案不唯一) ①∠AOC=∠EOF ②∠AOC=∠BOD ③∠DOE=∠AOF(3) ①对顶角相等160∘ ②因为∠AOC=∠EOF,所以∠AOD=4∠EOF=4∠AOC.又因为∠AOC+∠AOD=180∘,所以5∠AOC=180∘.所以∠EOF=∠AOC=36∘.。
2023-2024学年七年级下册数学期中试卷及答案A 卷北师大版(考试时间:120分钟 试卷满分:120分)一、单选题1.下列由不能判断的是( )12∠=∠a b ∥A .B .C . D .2.下列五道题是小明的作业,那么小明做对的题数为( )(1)若,则; (2); 3,5m n a a ==15m n a +=()202320240.12588-⨯=(3); (4); (5)()222a b ab ab a -÷=()23624a a -=()()2321253x x x x --+=-A .2个 B .3个 C .4个 D .5个3.下列图形中,与是同位角的是( )1∠2∠A .B .C .D .4.如图,在中,边上的高是( )ABC ABA .B .C .D .CE BE AF BD 5.有以下说法:①;②一个三角形中至少有两个锐角;③两条直线被第三条直线所01a =截,同位角相等;④若三条线段的长满足,则以为边一定能构成a b c 、、a b c +>a b c 、、三角形.其中正确的个数为( )A .1个B .2个C .3个D .4个6.南宋数学家杨辉在其著作《详解九章算法》中揭示了为非负整数)展开式的项数及各项系数的有关规律如下,后人也将下表称为“杨辉三角”.则展开式中所有项的系数()8a b +和是( ).A .128B .256C .512D .10247.某品牌的自行车链条每节长为,每两节链条相连部分重叠的圆的直径为,2.5cm 0.8cm 按照这种连接方式,节链条总长度为,则与的关系式是( )n cm y y nA .B .C .D .2.5y n = 1.7y n = 1.70.8y n =+ 2.50.8y n =-8.设 ,,.若,则的值是( )2022a x =-2024b x =-2023c x =-2216a b +=2c A .5 B .6 C .7 D .89.如图,在中,,点D 为边上一点,将沿直线折叠后,点ABC 42B ∠=︒BC ADC △AD C 落在点E 处,若,则的度数为( )DE AB ∥ADE ∠A .B .C .D .111︒110︒97︒121︒10.如图,正方形的边长为2,动点P 从点B 出发,在正方形的边上沿B →C →D 的ABCD 方向运动到点D 停止,设点P 的运动路程为x ,在下列图象中,能表示的面积y 与PAD x 的关系的图象是( )A .B .C .D .11.若,则代数式的值是 .210a a --=321a a -+12.如图,已知∠A =60°,∠B =20°,∠C =30°,则∠BDC 的度数为 .13.如图,将一张矩形纸片ABCD 沿EF 折叠,使顶点C ,D 分别落在点,处,E 交C 'D ¢C 'AF 于点G .若∠CEF=70°,则∠GF = °.D ¢14.一列慢车从地驶往地,一列快车从地驶往地.两车同时出发,各自抵达目的A B B A 地后停止,如图所示,折线表示两车之间的距离(km )与慢车行驶时间(h )之间的关y t 系.当快车到达地时,慢车与地的距离为 km .A B15.如图,于C ,E 是上一点,,平分平分AC BD ⊥AB CE CF ⊥//,DF AB EH ,BEC DH ∠,则:与之间的数量关系为 .BDG ∠H ∠ACF ∠16.(1);()()()2425x x x +-+-(2)先化简,再求值:,其中,. ()()()()2233362a b b a a b b b ⎡⎤+-+--÷-⎣⎦13a =-2b =-17.某学校自主研制了一种椅子(实物如图所示),可适应上课、课间休息、午睡三种状态,该椅子的凳面始终与地面保持平行,小明作出了椅子在不同状态下的主视图.上课时椅背与凳面垂直,腿托与凳面成夹角(如图1),有利于学生坐直听课.按下开关AD 70︒1,轴1(安装在点B 处)可以控制椅背以顺时针旋转,按下开关2,轴2(安装在点9/s ︒A 处)可以控制腿托以顺时针旋转.10/s ︒(1)课间可将椅背稍微调整一定的角度(如图2)作短时休息,此时腿托与椅背平行舒适度更佳,请作出此时腿托所在的直线;(要求:尺规作图,保留作图痕迹)AD (2)如图3,按下开关1,使椅背从与発面垂直时的状态顺时针旋转,此时测得54︒,求的度数;27BCN ∠=︒CNM ∠18.如图,在中,平分交于点D ,平分交于点E .ABC AD BAC ∠BC BE ABC ∠AD(1)若求的度数;8060C BAC ∠=︒∠=︒,,ADB ∠(2)若,求的度数.65BED ∠=︒C ∠19.如图,.12180,3A ∠+∠=︒∠=∠(1)求证:;AB CD (2)若,求的度数.78,23B BDE ∠=︒∠=∠DEA ∠20.如图,这是某学校操场的一角,在长为米,宽为米的长方形场地中()35a b +()4a b -间,有两个并排大小一样的篮球场,两个篮球场中间以及篮球场与长方形场地边沿的距离都为b 米.(1)求这两个篮球场的总占地面积.(2)若篮球场每平方米的造价为200元,其余场地每平方米的造价50元,求整个长方形场地的造价.21.如图,点A 、F 、C 、D 在同一条直线上,,,.求BC EF =AF DC =BCD EFA ∠=∠证:.A D ∠=∠22.九河下梢,芳华天津.小明利用假期来到美丽的天津,已知他入住的酒店、文创馆、某老字号糕点店依次在同一条直线上,糕点店离酒店,文创馆离酒店小明从1.5km 2.5km 酒店骑共享单车到文创馆,在那里逛了后返回,匀速步行了到糕点店10min 20min 15min 买糕点,在糕点店停留了后,散步返回酒店.给出的图象反映了这个过程中10min 30min 小明离开酒店的距离与小明离开酒店的时间之间的对应关系.km y min x请根据相关信息,回答下列问题:(1)①填表: 离开酒店的时间/min57 25 50 60离开酒店的距离/km1.25 1.5 ②填空:小明从蛋糕店返回酒店的速度为__________;km/min ③当时,请直接写出小明离酒店的距离关于时间的函数解析式;1045x ≤≤y x (2)当小明离酒店时,请直接写出他离开酒店的时间.2km 23.在△ABC 中,∠ABC 与∠ACB 的平分线相交于点P .(1)如图①,若∠BPC =α,则∠A = ;(用α的代数式表示,请直接写出结论)(2)如图②,作△ABC 外角∠MBC 、∠NCB 的角平分线交于点Q ,试探究∠Q 与∠BPC 之间的数量关系,并说明理由;(3)如图③,延长线段CP 、QB 交于点E ,△CQE 中,存在一个内角等于另一个内角的2倍,求∠A 的度数.一、单选题1.下列由不能判断的是( )12∠=∠a b ∥A .B .C .D . 【答案】C【分析】本题考查了同位角相等两直线平行,据此即可进行判断.【详解】解:由图可知:A 、B 中,均是直线被第三条直线所截形成的同位角, 12∠∠,,a b 根据同位角相等两直线平行,可得;a b ∥D 中:若,12∠=∠∵23∠∠=∴,13∠=∠根据同位角相等两直线平行,可得;a b ∥而C 中,是另两条直线被直线所截形成的同位角,不能得出;12∠∠,b a b ∥故选:C2.下列五道题是小明的作业,那么小明做对的题数为( )(1)若,则; (2); 3,5m n a a ==15m n a +=()202320240.12588-⨯=(3); (4); (5)()222a b ab ab a -÷=()23624a a -=()()2321253x x x x --+=-A .2个B .3个C .4个D .5个 【答案】B【分析】本题考查了整式的运算问题,分别利用同底数幂的乘法法则、幂的乘方、积的乘方法则、多项式的除法,乘法法则计算各式进行判断即可.【详解】解:(1)若,,则,小明计算正确;3m a =5n a =3515m n m n a a a +==⨯= (2);小明计算错误;()()2023202320240.12580.125888-⨯=-⨯⨯=-(3);小明计算错误; ()222221a b ab ab a b ab ab ab a -÷=÷-÷=-(4);小明计算正确;()23624a a -=(5).小明计算正确; ()()22321263253x x x x x x x -+=+--=--综上分析可知,正确的有3个故选:B .3.下列图形中,与是同位角的是( )1∠2∠A .B .C .D .【答案】D【分析】本题考查了同位角.熟练掌握同位角的定义是解题的关键.根据两条直线被第三条直线所截,在截线的同旁且在被截两直线的同一侧的a b ,c c a b ,角为同位角,进行判断作答即可.【详解】解:由题意知,D 选项中与是同位角,故符合要求;1∠2∠故选:D .4.如图,在中,边上的高是( )ABC ABA .B .C .D .CE BE AF BD 【答案】A 【分析】本题考查三角形的高,根据三角形的高的定义判断即可解答.【详解】∵过点C ,且,CE CE AB ⊥∴边上的高是.AB CE 故选:A5.有以下说法:①;②一个三角形中至少有两个锐角;③两条直线被第三条直线所01a =截,同位角相等;④若三条线段的长满足,则以为边一定能构成a b c 、、a b c +>a b c 、、三角形.其中正确的个数为( )A .1个B .2个C .3个D .4个 【答案】A【分析】根据零指数幂的意义,三角形内角和定理,平行线的性质,三角形三条边的关系逐项分析即可.【详解】①当时,,故原说法不正确;0a ≠01a =②一个三角形中至少有两个锐角,正确;③两条平行直线被第三条直线所截,同位角相等,故原说法不正确;④若三条线段的长满足,则以为边不一定能构成三角形,故原说a b c 、、a b c +>a b c 、、法不正确.故选A .【点睛】本题考查了零指数幂的意义,三角形内角和定理,平行线的性质,三角形三条边的关系,熟练掌握各知识点是解答本题的关键.6.南宋数学家杨辉在其著作《详解九章算法》中揭示了为非负整数)展开式的项数及各项系数的有关规律如下,后人也将下表称为“杨辉三角”.则展开式中所有项的系数()8a b +和是( ).A .128B .256C .512D .1024【答案】B 【分析】本题考查了“杨辉三角”展开式中所有项的系数和的求法,通过观察展开式中所有项的系数和,得到规律是解题的关键.根据“杨辉三角”展开式中所有项的系数和规律确定出(n 为非负整数)展开式的项系数和为,求出系数之和即可.()n a b +2n 【详解】解:当时,展开式中所有项的系数和为,0n =012=当时,展开式中所有项的系数和为,1n =11122+==当时,展开式中所有项的系数和为,2n =212142++==当时,展开式中所有项的系数和为3n =3133182+++==,⋯由此可知展开式的各项系数之和为,()n a b +2n 则展开式中所有项的系数和是,8()a b +82256=故选:B .7.某品牌的自行车链条每节长为,每两节链条相连部分重叠的圆的直径为,2.5cm 0.8cm 按照这种连接方式,节链条总长度为,则与的关系式是( )n cm y y nA .B .C .D .2.5y n = 1.7y n = 1.70.8y n =+ 2.50.8y n =-【答案】C 【分析】本题考查规律型:图形的变化类,从数字找规律是解题的关键.依据题意,先求出节链条的长度,节链条的总长度,节链条的总长度,然后从数字找规律,进行计算123即可解答.【详解】解:由题意得:节链条的长度为,1 2.5cm 节链条的总长度为:,2()()2.5 2.50.8cm +-⎡⎤⎣⎦节链条的总长度为,3()()2.5 2.50.82cm +-⨯⎡⎤⎣⎦⋯⋯∴节链条总长度,n ()()()()2.5 2.50.81 1.70.8cm y n n =+-⨯-=+⎡⎤⎣⎦∴与的关系式是:.y n 1.70.8y n =+故选:C .8.设 ,,.若,则的值是( ) 2022a x =-2024b x =-2023c x =-2216a b +=2cA .5B .6C .7D .8 【答案】C 【分析】根据完全平方公式得出,,进而根据已知条件得出6ab =2a b -=,进而即可求解.2)1()(1c a b =-+【详解】,,,2022a x =- 2024b x =-2023c x =-,,120231a x c b ∴-=-==+2a b -=,2216a b +=,∴26(2)1a b ab -+=,∴6ab =∴2)1()(1c a b =-+1ab a b =+--621=+-,7=故选:C .【点睛】本题考查了完全平方公式变形求值,根据题意得出是解题的关2)1()(1c a b =-+键.9.如图,在中,,点D 为边上一点,将沿直线折叠后,点ABC 42B ∠=︒BC ADC △AD C 落在点E 处,若,则的度数为( )DE AB ∥ADE ∠A .B .C .D .111︒110︒97︒121︒【答案】A 【分析】本题考查了翻折变换(折叠问题),平行线的性质,熟练掌握折叠的性质是解题的关键.根据平行线的性质得到,然后由邻补角得到42BDE B ∠=∠=︒180138EDC BDE ∠=︒-∠=︒10.如图,正方形的边长为2,动点P 从点B 出发,在正方形的边上沿B →C →D 的ABCD 方向运动到点D 停止,设点P 的运动路程为x ,在下列图象中,能表示的面积y 与PAD x 的关系的图象是( )A .B .C .D .11.若,则代数式的值是 .210a a --=321a a -+【答案】2【分析】根据题意推出和,原式进行变形把和分别代21a a -=21a a -=21a a -=21a a -=入求解即可.【详解】解:∵,易知和210a a --=21a a -=21a a -=∴()3221111a a a a -+=--+将代入,则原式21a a -=()11a a =-+原式将代入得,原式21a a =-+21a a -=2=故答案为2.【点睛】本题主要考查了整式的运算,运用到了整体代入的思想,根据题意推出21a a -=和是解答本题的关键.21a a -=12.如图,已知∠A =60°,∠B =20°,∠C =30°,则∠BDC 的度数为 .【答案】110°/110度【分析】延长BD 交AC 于点E ,根据三角形的外角性质计算,得到答案.【详解】延长BD 交AC 于点E ,∵∠DEC 是△ABE 的外角,∠A =60°,∠B =20°,∴∠DEC =∠A+∠B =80°,则∠BDC =∠DEC+∠C =110°,故答案为:110°.【点睛】本题考查了三角形外角的性质,三角形的一个外角等于与它不相邻的两个内角的和,作辅助线DE 是解题的关键.13.如图,将一张矩形纸片ABCD 沿EF 折叠,使顶点C ,D 分别落在点,处,E 交C 'D ¢C 'AF 于点G .若∠CEF=70°,则∠GF = °.D ¢【答案】40【详解】解:根据折叠的性质,得∠DFE=∠FE.D¢∵ABCD是矩形,∴AD∥BC.∴∠GFE=∠CEF=70°,180∠DFE=-∠CEF=110°.∴∠GF=∠FE-∠GFE=110°-70°=40°.D¢D¢故答案为:40.【点睛】本题考查折叠问题矩形的性质,平行的性质.14.一列慢车从地驶往地,一列快车从地驶往地.两车同时出发,各自抵达目的A B B Ay t地后停止,如图所示,折线表示两车之间的距离(km)与慢车行驶时间(h)之间的关系.当快车到达地时,慢车与地的距离为 km.A B【点睛】本题考查一次函数的应用,理解图象上点表示的具体含义是解答的关键.15.如图,于C ,E 是上一点,,平分平分AC BD ⊥AB CE CF ⊥//,DF AB EH ,BEC DH ∠,则:与之间的数量关系为 .BDG ∠H ∠ACF ∠16.(1);()()()2425x x x +-+-(2)先化简,再求值:,其中,. ()()()()2233362a b b a a b b b ⎡⎤+-+--÷-⎣⎦13a =-2b =-【点睛】本题主要考查整式的混合运算和化简求值,解答的关键是对相应的运算法则的掌握.17.某学校自主研制了一种椅子(实物如图所示),可适应上课、课间休息、午睡三种状态,该椅子的凳面始终与地面保持平行,小明作出了椅子在不同状态下的主视图.上课时椅背与凳面垂直,腿托与凳面成夹角(如图1),有利于学生坐直听课.按下开关AD 70︒1,轴1(安装在点B 处)可以控制椅背以顺时针旋转,按下开关2,轴2(安装在点9/s ︒A 处)可以控制腿托以顺时针旋转.10/s ︒(1)课间可将椅背稍微调整一定的角度(如图2)作短时休息,此时腿托与椅背平行舒适度更佳,请作出此时腿托所在的直线;(要求:尺规作图,保留作图痕迹)AD (2)如图3,按下开关1,使椅背从与発面垂直时的状态顺时针旋转,此时测得54︒,求的度数;27BCN ∠=︒CNM ∠【答案】(1)见解析(2)117︒【分析】本题考查平行线的判定和性质,三角形的外角的性质:(1)以点A 为顶点,作,即可得到所在的直线;BAD ABD ∠=∠AD (2)延长,交于点,利用外角的性质和两直线平行,同位角相等,进行求解即AB CN E 可;熟练掌握相关知识点并灵活运用是解题的关键.【详解】(1)解:(1)如图所示,直线即为所求;AD ,DAB ABC ∠=∠,AD BC ∴∥直线即为所求.∴AD (2)延长,交于点,如图:AB CN E当时,.6t =9096144ABC ∠=︒+︒⨯=︒又,27BCN ∠=︒ ;117CEB ABC BCN ∴∠=∠-∠=︒,AE MN ∥.117CNM CEB ∴∠=∠=︒18.如图,在中,平分交于点D ,平分交于点E .ABC AD BAC ∠BC BE ABC ∠AD(1)若求的度数;8060C BAC ∠=︒∠=︒,,ADB ∠(2)若,求的度数.65BED ∠=︒C ∠【答案】(1)110ADB ∠=︒(2)50C ∠=︒【分析】本题主要考查了三角形外角的性质,三角形内角和定理,角平分线的定义,熟知三角形一个外角等于与其不相邻的两个内角之和是解题的关键.(1)根据角平分线的定义得到,再由三角形外角的性质即可得到30DAC ∠=︒;110ADB C DAC ∠=∠+∠=︒(2)根据角平分线的定义得到.再由三角形外角的性22BAC BAD ABC ABE ∠=∠∠=∠,质得到,即可利用三角形内角和定理得到答案.130BAC ABC ∠+∠=︒【详解】(1)解:∵平分,,AD BAC ∠60BAC ∠=︒19.如图,.12180,3A ∠+∠=︒∠=∠(1)求证:;AB CD (2)若,求的度数.78,23B BDE ∠=︒∠=∠DEA ∠【答案】(1)见解析(2)146DEA ∠=︒【分析】(1)由得到,即可得到,再根据等量代换得12180∠+∠=︒DE AC ∥A DEB ∠∠=到即可证明;3DEB ∠∠=(2)由平行的性质得到,求出即可求出答案.180BDC B ∠+∠=︒334∠=︒【详解】(1),12180∠+∠=︒ ,DE AC ∴∥,∴A DEB ∠∠=,3A ∠∠=,∴3DEB ∠∠=;∴AB CD(2),AB CD ,∴180BDC B ∠+∠=︒,, 78B ∠=︒23BDE ∠=∠,∴23378180∠+∠+︒=︒,∴334∠=︒,AB CD ,∴3180DEA ∠+∠=︒.∴146DEA ∠=︒【点睛】本题主要考查平行的判定与性质,熟练掌握平行的判定与性质是解题的关键.20.如图,这是某学校操场的一角,在长为米,宽为米的长方形场地中()35a b +()4a b -间,有两个并排大小一样的篮球场,两个篮球场中间以及篮球场与长方形场地边沿的距离都为b 米.(1)求这两个篮球场的总占地面积.(2)若篮球场每平方米的造价为200元,其余场地每平方米的造价50元,求整个长方形场地的造价.【答案】(1)这两个篮球场的总占地面积是平方米 ()22126a ab b --(2)整个长方形场地的造价为元 ()2224007001150a ab b +-【分析】本题考查列代数式,能正确根据题意列出代数式是解此题的关键.(1)把篮球场平移为一个长方形,求出这个长方形的长和宽,即可求出面积;(2)根据篮球场每平方米的造价为200元,其余场地每平方米的造价50元,列出代数式即可.【详解】(1)解:()()35342a b b a b b +--- ()()3243a b a b =+-平方米.()22126a ab b =--答:这两个篮球场的总占地面积是平方米.()22126a ab b --(2)平方米,()()()2235412175a b a b a ab b +-=+-()()222212175126aab b a ab b +----222212175126a ab b a ab b =+--++平方米,()218ab b =+()()2222001265018a ab b ab b --++2222400200120090050a ab b ab b =--++元.()2224007001150a ab b =+-答:整个长方形场地的造价为元.()2224007001150a ab b +-21.如图,点A 、F 、C 、D 在同一条直线上,,,.求BC EF =AF DC =BCD EFA ∠=∠证:.A D ∠=∠【答案】见解析【分析】本题主要考查了全等三角形的性质与判定,先证明,,AC DF =ACB DFE ∠=∠进而证明,即可证明. ()SAS ACB DFE ≌A D ∠=∠【详解】证明:∵, AF DC =∴,即, AF CF DC CF +=+AC DF =∵,BCD EFA ∠=∠∴,即, 180180BCD EFA ︒-∠=︒-∠ACB DFE ∠=∠在和中,ACB △DFE △, AC DF ACB DFE BC EF =⎧⎪∠=∠⎨⎪=⎩∴, ()SAS ACB DFE ≌∴.A D ∠=∠22.九河下梢,芳华天津.小明利用假期来到美丽的天津,已知他入住的酒店、文创馆、某老字号糕点店依次在同一条直线上,糕点店离酒店,文创馆离酒店小明从1.5km 2.5km 酒店骑共享单车到文创馆,在那里逛了后返回,匀速步行了到糕点店10min 20min 15min 买糕点,在糕点店停留了后,散步返回酒店.给出的图象反映了这个过程中10min 30min 小明离开酒店的距离与小明离开酒店的时间之间的对应关系.km y min x请根据相关信息,回答下列问题: (1)①填表: 离开酒店的时间/min57 25 50 60离开酒店的距离/km1.251.5②填空:小明从蛋糕店返回酒店的速度为__________;km/min ③当时,请直接写出小明离酒店的距离关于时间的函数解析式; 1045x ≤≤y x (2)当小明离酒店时,请直接写出他离开酒店的时间.2km23.在△ABC中,∠ABC与∠ACB的平分线相交于点P.(1)如图①,若∠BPC =α,则∠A = ;(用α的代数式表示,请直接写出结论) (2)如图②,作△ABC 外角∠MBC 、∠NCB 的角平分线交于点Q ,试探究∠Q 与∠BPC 之间的数量关系,并说明理由;(3)如图③,延长线段CP 、QB 交于点E ,△CQE 中,存在一个内角等于另一个内角的2倍,求∠A 的度数.∵∠ABC 与∠ACB 的平分线相交于点∴∠BPC=180°﹣(∠=180°(∠ABC+12-=180°(180°﹣∠1-∵外角∠MBC ,∠NCB 的角平分线交于点∴∠QBC+∠QCB (∠MBC+12=(360°﹣∠ABC ﹣∠12=(180°+∠A ) 12==90°∠A ,12+∴∠Q=180°﹣(90°1+一、单选题1.下列各图中,与是同位角的是( )1∠2∠A . B . C . D .2.下列多项式中,可以用平方差公式计算的是( ) A . B . (23)(23)a b a b --+(34)(43)a b b a -+--C .D .()()a b b a --()()a b c a b c ---++3.在学习“认识三角形”一节时,嘉嘉用四根长度分别为的小棒摆三2cm,4cm,5cm,6cm 角形,那么所摆成的三角形的周长不可能是( ) A .B .C .D .11cm 12cm 13cm 15cm4.下列四个图形中,线段BE 是△ABC 的高的是( )A .B .C .D .5.如图,观察用直尺和圆规作一个角等于已知角的示意图的作图依据是A O B '''∠AOB ∠( )A .边边边B .边角边C .角边角D .角角边6.下列说法中:①同角或等角的补角相等;②过直线上一点有且只有一条直线垂直于已知直线;③连接直线外一点与直线上各点的所有线段中,垂线段最短;④从直线外一点到这条直线的垂线,叫做点到直线的距离,正确的有( ) A .1个B .2个C .3个D .4个7.如图所示,,,,结论:①;②;90E F ∠=∠=︒B C ∠=∠AE AF =EM FN =CD DN =③;④,其中正确的是有( )FAN EAM ∠=∠ACN ABM ≌A .1个B .2个C .3个D .4个8.如图1,汉代初期的《淮南万毕术》是中国古代有关物理、化学的重要文献,书中记载了我国古代学者在科学领域做过的一些探索及成就.其中所记载的“取大镜高悬,置水盆于其下,则见四邻矣”,是古人利用光的反射定律改变光路的方法,即“反射光线与入射光线、法线在同一平面上;反射光线和入射光线位于法线的两侧;反射角等于入射角”.为了探清一口深井的底部情况,运用此原理,如图在井口放置一面平面镜可改变光路,当太阳光线与地面所成夹角时,要使太阳光线经反射后刚好垂直于地面射入AB CD 50ABC ∠=︒深井底部,则需要调整平面镜与地面的夹角( )EF EBC ∠=A .B .C .D .60︒70︒80︒85︒9.若AB ∥CD ,∠CDE =∠CDF ,∠ABE =∠ABF ,则∠E :∠F =( ) 3434A .1:2B .1:3C .3:4D .2:310.如图所示,已知△ABC 和△BDE 都是等边三角形.则下列结论:①AE=CD ;②BF=BG ;③∠AHC=60°;④△BFG 是等边三角形;⑤HB 平分∠AHD .其中正确的有( )A .2个B .3个C .4个D .5个11.已知,则 .14x x -=24251x x x =-+12.如图,在中,已知点分别为边的中点,且,则ABC ,,D E F ,,BC AD CE 2=4cm BEF S .ABC S = 2cm13.已知,则的值为 .2250x x --=432442000x x x -++14.如图,在中,,,点D 为上一点,连接.过点Rt ABC △90BAC ∠= AB AC =BC AD B 作于点E ,过点C 作交的延长线于点F .若,,则BE AD ⊥CF AD ⊥AD 4BE =1CF =的长度为 .EF15.一副三角板按如图所示(共顶点A )叠放在一起,若固定三角板,改变三角板ABC 的位置(其中A 点位置始终不变),当 时,.ADE BAD ∠=︒DE AB ∥16.阅读理解:我们把称作二阶行列式,规定它的运算法则为,例如a b c da bad bc c d =-,请根据阅读理解解答下列各题: 232534245=⨯-⨯=-________;(2)计算:; 12569798347899100+++ (3)已知实数,满足行列式,则代数式的值. a b 2151aa b a -=-+-2222a b ab +-+17.作图题:(1)在图①中,作过点P 作直线,垂足为H :作直线; PH AB ⊥PQ CD ∥(2)请直接写出图①中三角形的面积是 平方单位;PAB (3)在图②中过点P 作直线(要求:尺规作图,不写作法,但要保留作图痕迹.) PC OA ∥18.阅读下面的解题过程:已知,求的值. 2113x x =+241x x +解:由知,所以,即. 2113x x =+0x ≠213x x+=13x x +=所以,故的值为.2422221112327x x x x x x +⎛⎫=+=+-=-= ⎪⎝⎭241x x +17该题的解法叫做“倒数求值法”,请你利用“倒数求值法”解下面的题目:(1)若,求的值. 2115x x =+241x x +(2)若,求的值. 211x x =-48431x x x -+19.如图1,一条笔直的公路上有A ,B ,C 三地,甲,乙两辆汽车分别从A ,B 两地同时开出,沿公路匀速相向而行,驶往B ,A 两地,甲、乙两车到C 地的距离y 1、y 2(千米)与行驶时间 x (时)的关系如图2所示.(1)A ,B 两地之间的距离为 千米;(2)图中点M 代表的实际意义是什么?(3)分别求出甲,乙两车的速度,并求出他们的相遇点距离点C 多少千米.20.已知:如图,在中,是的平分线,E 为上一点,且于点ABC AD BAC ∠AD EF BC ⊥F .若,,求的度数.35C ∠=︒15DEF ∠=︒B ∠21.如图,已知和,,,,与交于ABC ADE V AB AD =BAD CAE ∠=∠B D ∠=∠AD BC 点P ,点C 在上. DE(1)求证:;BC DE =(2)若,求的度数.3070B APC ∠=︒∠=︒,CAE ∠22.【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图,△ABC 中,若AB =8,AC =6,求BC 边上的中线AD 的取值范围.小明在组内经过合作交流,得到了如下的解决方法:如图,延长AD 到点E ,使DE =AD ,连结BE .请根据小明的方法思考:(1)由已知和作图能得到的理由是( ).ADC EDB ≌△△A .SSS B .SAS C . AAS D .ASA(2)AD 的取值范围是( ).A .B .C .D .68AD <<1216AD <<17AD <<214AD <<(3)【感悟】解题时,条件中若出现“中点”、“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论转化到同一个三角形中.【问题解决】如图,AD 是△ABC 的中线,BE 交AC 于点E ,交AD 于F ,且AE =EF .求证:AC =BF .23.(1)问题发现:如图1, 和均为等边三角形,点在同一直线上,连ABC ADE V B D E 、、接.CE ①求证:; ②求的度数.BD CE =BEC ∠(2)拓展探究:如图2, 和均为等腰直角三角形,,点AB C ADE V 90BAC DAE ∠=∠=︒在同一直线上为中边上的高,连接B D E 、、AF ,ADE V DE .CE ①求的度数:BEC ∠②判断线段之间的数量关系(直接写出结果即可).AF BE CE 、、解决问题:如图3,和均为等腰三角形,,点在()3AB ADE V BAC DAE n ∠=∠= B D E 、、同一直线上,连接.求的度数(用含的代数式表示,直接写出结果即可).CE AEC ∠n一、单选题1.下列各图中,与是同位角的是( )1∠2∠A . B . C . D . 【答案】B【分析】根据同位角的意义,结合图形进行判断即可.【详解】解:A .选项中的两个角不是两条直线被一条直线所截出现的角,不符合题意;B .选项中的两个角符合同位角的意义,符合题意;C .选项中的两个角不是两条直线被一条直线所截出现的角,不符合题意;D .选项中的两个角不是两条直线被一条直线所截出现的角,不符合题意;故选:B .选项【点睛】本题考查了同位角、内错角、同旁内角,判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.2.下列多项式中,可以用平方差公式计算的是( )A .B . (23)(23)a b a b --+(34)(43)a b b a -+--C .D .()()a b b a --()()a b c a b c ---++【答案】B【分析】本题考查了平方差公式,熟练掌握平方差公式的特点是解题的关键.平方差公式的形式是,平方差公式的特点是两个数的和乘以两个数的()()22a b a b a b +-=-差,逐一判断四个选项,即可求解.【详解】解:A 、,不可以用平方差公式计算.(23)(23)(23)(23)a b a b a b a b --+=---B 、,可以用平方差公式计算;(34)(43)(34)(34)a b b a a b a b -+--=-+--C 、,不可以用平方差公式计算;()()()()a b b a a b a b --=---D 、,不可以用平方差公式计算.()()()()a b c a b c a b c a b c ---++=-----故选:B .3.在学习“认识三角形”一节时,嘉嘉用四根长度分别为的小棒摆三2cm,4cm,5cm,6cm 角形,那么所摆成的三角形的周长不可能是( )A .B .C .D .11cm 12cm 13cm 15cm 【答案】B【分析】本题考查了三角形的三边关系:两边之和大于第三边,两边之差小于第三边,据此逐个分析即可作答.【详解】解:A 、当三边为,则周长为,故该选项不符合题意;2cm,4cm,5cm,11cm B 、当三边为,则周长为,但,不能构成三角形,故2cm,4cm,6cm 12cm 2cm 4cm 6cm +=该选项是符合题意的;C 、当三边为,则周长为,故该选项不符合题意;2cm,5cm,6cm 13cm D 、当三边为,则周长为,故该选项不符合题意;4cm,5cm,6cm 15cm 故选:B4.下列四个图形中,线段BE 是△ABC 的高的是( )A .B .C .D . 【答案】D【详解】三角形的高线的定义可得,D 选项中线段BE 是△ABC 的高.故选:D5.如图,观察用直尺和圆规作一个角等于已知角的示意图的作图依据是A O B '''∠AOB ∠( )A .边边边B .边角边C .角边角D .角角边 【答案】A 【分析】本题考查了全等三角形的判定与性质.由作图过程得,,,得到三角形全等,即可求解.OC O C =''OD O D =''CD C D =''【详解】解:由作图过程得:,,,OC O C =''OD O D =''CD C D ='',()OCD O C D SSS ∴''' ≌(全等三角形的对应角相等).AOB A O B ∴∠∠'''=故选:A .6.下列说法中:①同角或等角的补角相等;②过直线上一点有且只有一条直线垂直于已知直线;③连接直线外一点与直线上各点的所有线段中,垂线段最短;④从直线外一点到这条直线的垂线,叫做点到直线的距离,正确的有( )A .1个B .2个C .3个D .4个 【答案】B【分析】根据补角的性质判定①;根据垂线公理判定②;根据垂线段最短判定③;根据点到直线的距离概念判定④.【详解】解:①同角或等角的补角相等,故①正确;②在同一平面内,过直线上(或直线外)一点有且只有一条直线垂直于已知直线,故②错误;③连接直线外一点与直线上各点的所有线段中,垂线段最短,故③正确;④从直线外一点到这条直线的垂线段长度,叫做点到直线的距离,故④错误; ∴正确的有①③,共2个,故选:B .【点睛】本题考查补角的性质,垂线公理,垂线段最短,点到直线的距离概念.熟练掌握相关性质定理及概念是解题的关键.7.如图所示,,,,结论:①;②;90E F ∠=∠=︒B C ∠=∠AE AF =EM FN =CD DN =③;④,其中正确的是有( ) FAN EAM ∠=∠ACN ABM ≌A .1个B .2个C .3个D .4个 【答案】C 【分析】根据已知的条件,可由AAS 判定△AEB ≌△AFC ,进而可根据全等三角形得出的结论来判断各选项是否正确.【详解】解:∵,90E F B C AE AF ∠∠︒⎧⎪∠∠⎨⎪⎩====∴△AEB ≌△AFC ;(AAS )∴∠FAM=∠EAN ,∴∠EAN-∠MAN=∠FAM-∠MAN ,即∠EAM=∠FAN ;(故③正确)又∵∠E=∠F=90°,AE=AF ,∴△EAM ≌△FAN ;(ASA )∴EM=FN ;(故①正确)由△AEB ≌△AFC 知:∠B=∠C ,AC=AB ;又∵∠CAB=∠BAC ,∴△ACN ≌△ABM ;(故④正确)由于条件不足,无法证得②CD=DN ;故正确的结论有:①③④;故选:C .【点睛】此题考查了全等三角形的性质与判别,考查了学生根据图形分析问题,解决问题的能力.其中全等三角形的判别方法有:SSS ,SAS ,ASA ,AAS 及HL .学生应根据图形及已知的条件选择合适的证明全等的方法.8.如图1,汉代初期的《淮南万毕术》是中国古代有关物理、化学的重要文献,书中记载了我国古代学者在科学领域做过的一些探索及成就.其中所记载的“取大镜高悬,置水盆于其下,则见四邻矣”,是古人利用光的反射定律改变光路的方法,即“反射光线与入射光线、法线在同一平面上;反射光线和入射光线位于法线的两侧;反射角等于入射角”.为了探清一口深井的底部情况,运用此原理,如图在井口放置一面平面镜可改变光路,当太阳光线与地面所成夹角时,要使太阳光线经反射后刚好垂直于地面射入AB CD 50ABC ∠=︒深井底部,则需要调整平面镜与地面的夹角( )EF EBC ∠=A .B .C .D .60︒70︒80︒85︒【答案】B【分析】如图,过作平面镜,可得,B BQ ⊥EF 90QBE QBF ∠=∠=︒。
七年级(下)期中数学试卷题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.-ab2x2的系数和次数分别是( )A. 系数是0,次数是5B. 系数是1,次数是5C. 系数是-1,次数是D. 系数是-1,次数是-62.下列计算正确的是( )A. 3x-2x=1B. (-m)6÷m3=-m3C. (x+2)(x-2)=x2-4D. (x+2)2=x2+2x+43.2x(-3xy)2的计算结果是( )A. -18x3y2B. 18x3y2C. 18xy2D. 6x3y24.计算3-2的结果是( )A. -9B. -6C. -D.5.若(x-3)0-2(2x-4)-1有意义,则x取值范围是( )A. x≠3B. x≠2C. x≠3或x≠2D. x≠3且x≠26.下列多项式乘法中,能用平方差公式计算的是( )A. (2a+b)(-2a+b)B. (a+2)(2+a)C. (-a+b)(a-b)D. (a+b2)(a2-b)7.如果∠1与∠2互余,∠2与∠3互余,那么∠1与∠3的关系为( )A. 互余B. 互补C. 相等D. 无法确定8.如图,已知∠1=∠2,则有( )A. AD∥BCB. AB∥CDC.∠ABC=∠ADC D. AB⊥CD9.如果∠1的余角是∠2,并且∠1=2∠2,则∠1的补角为( )A. 30°B. 60°C. 120°D. 150°10.如图是某市一天的温度随时间变化的图象,通过观察可知,下列说法中错误的是( )A. 这天15时的温度最高B. 这天3时的温度最低C. 这天最高温度与最低温度的差是13℃D. 这天21时的温度是30℃二、填空题(本大题共6小题,共24.0分)11.多项式3x2-2x3y-15的次数是______,其中最高次项的系数是______.12.若x2+2mx+16是完全平方公式,则m=______.13.如果(x+my)(x-my)=x2-9y2,那么m=______.14.当k= ______ 时,多项式x2+(3k-1)xy-3y2-6xy-8中不含xy项.15.如图,∠BOE的对顶角是______.16.汽车开始行驶时,油箱中有油40升,如果每小时耗油5升,则油箱内余油量y(升)与行驶时间x(小时)的关系式为______,该汽车最多可行驶______小时.三、计算题(本大题共3小题,共19.0分)17.已知a+b=1,ab=-12,求:①a2+b2,②a-b的值.18.如图,AB∥CD,直线EF分别与AB、CD交于点G,H,GM⊥EF,HN⊥EF,交AB于点N,∠1=50°.(1)求∠2的度数;(2)试说明HN∥GM;(3)∠HNG= ______ °.19.已知:C为线段AB的中点,D在线段BC上,且AD=7,BD=5,求:线段CD的长度.四、解答题(本大题共5小题,共47.0分)20.计算:(1)(-)-2+(-2)2-(π-3.14)0(2)[(x-1)2-(1+x)2]÷(-2x)(3)(-6ab2)2÷(3ab2)×b221.先化简,后求值:(2a-3b)(3b+2a)-(2a-3b)2,其中a=2,b=3.22.先观察下列各式,再解答后面问题:(x+5)(x+6)=x2+11x+30;(x-5)(x-6)=x2-11x+30;(x-5)(x+6)=x2+x-30;(x+5)(x-6)=x2-x-30;(1)根据以上各式呈现的规律,用公式表示出来,则(x+m)(x+n)=______;(2)试用你写的公式,直接写出下列两式的结果①(a+99)(a-100)=______;②(y-5)(y-8)=______.23.随着地球上的水资源日益枯竭,各级政府越来越重视倡导节约用水.某市民生活用水按“阶梯水价”方式进行收费,人均月生活用水收费标准如图所示,图中x表示人均月生活用水的吨数,y表示生活用水费(元).请根据图象信息,回答下列问题:(1)该市人均月生活用水的收费标准是:不超过5吨,每吨按______元收取;超过5吨的部分,每吨按______元收取;(2)请写出居民使用5吨水以内y与x的关系式;(3)若小明家这个月交水费32元,他家本月用了多少吨水?24.探究题:(1)如图1,若AB∥CD,则∠B+∠D=∠E,你能说明理由吗?(2)反之,若∠B+∠D=∠E,直线AB与直线CD有什么位置关系?简要说明理由;(3)若将点E移至图2的位置,此时∠B、∠D、∠E之间有什么关系?直接写出结论;(4)若将点E移至图3的位置,此时∠B、∠D、∠E之间有什么关系?直接写出结论.答案和解析1.【答案】C【解析】解:-ab2x2的系数和次数分别是:-1,5.故选:C.直接利用单项式的系数与次数确定方法进而得出答案.此题主要考查了单项式,正确把握单项式的系数与次数确定方法是解题关键.2.【答案】C【解析】解:A、原式=x,不符合题意;B、原式=m6÷m3=m3,不符合题意;C、原式=x2-4,符合题意;D、原式=x2+4x+4,不符合题意,故选:C.各项计算得到结果,即可作出判断.此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.3.【答案】B【解析】解:2x(-3xy)2=2x•9x2y2=18x3y2.故选:B.根据积的乘方和单项式的乘法法则,直接得出结果.本题主要考查了单项式乘单项式及积的乘方,单项式与单项式相乘,把它们的系数分别相乘,相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式.注意相同字母的指数相加.4.【答案】D【解析】解:原式==.故选D.根据负整数指数幂的运算法则进行计算.幂的负整数指数运算,先把底数化成其倒数,然后将负整数指数幂当成正的进行计算.5.【答案】D【解析】解:若(x-3)0-2(2x-4)-1有意义,则x-3≠0且2x-4≠0,解得:x≠3且x≠2.故选:D.直接利用负整数指数幂的性质以及零指数幂的性质得出答案.此题主要考查了负整数指数幂的性质以及零指数幂的性质,正确把握相关定义是解题关键.6.【答案】A【解析】解:A、(2a+b)(-2a+b)符合平方差公式,正确;B、(a+2)(2+a)两项均相同,不符合平方差公式,故本选项错误;C、(-a+b)(a-b)两项都是互为相反数,不符合平方差公式,故本选项错误;D、(a+b2)(a2-b)两项都不相同,不符合平方差公式,故本选项错误.故选:A.根据平方差公式特点:两个数的和乘以这两个数的差,等于这两个数的平方差,对各选项分析判断后利用排除法求解.本题主要考查了平方差公式的结构.解题的关键是准确认识公式,正确应用公式.7.【答案】C【解析】解:∵∠1与∠2互余,∠2与∠3互余,∴∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3,故选:C.∠1和∠2互余,∠2与∠3互余,则∠1和∠3是同一个角∠2的余角,根据同角的余角相等.因而∠1=∠3.本题考查了余角的定义.解题的关键是掌握余角的定义,以及同角的余角相等这一性质.8.【答案】B【解析】解:∵∠1=∠2,∴AB∥CD,故选:B.根据平行线的判定解答即可.此题考查平行线的判定和性质问题,解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题是一道探索性条件开放性题目,能有效地培养学生“执果索因”的思维方式与能力.9.【答案】C【解析】解:∵∠1的余角是∠2,∴∠1+∠2=90°,∵∠1=2∠2,∴2∠2+∠2=90°,∴∠2=30°,∴∠1=60°,∴∠1的补角为180°-60°=120°.故选:C.根据∠1的余角是∠2,并且∠1=2∠2求出∠1,再求∠1的补角.本题考查了余角和补角,熟记概念并理清余角和补角的关系求解更简便.10.【答案】C【解析】解:横轴表示时间,纵轴表示温度.温度最高应找到函数图象的最高点所对应的x值与y值:为15时,38℃,A对;温度最低应找到函数图象的最低点所对应的x值与y值:为3时,24℃,B对;这天最高温度与最低温度的差应让前面的两个y值相减,即38-24=14℃,C错;从图象看出,这天21时的温度是30℃,D对.故选C.根据图象的信息,逐一判断.本题考查数形结合,会根据所给条件找到对应的横纵坐标的值.11.【答案】4 -2【解析】解:多项式3x2-2x3y-15的次数是-2x3y的次数,故次数为4,最高次项是-2x3y,则的系数是-2.故答案为:4,-2.根据多项式的次数、系数的定义分别求出即可.本题考查了对多项式的有关内容的应用,注意:说多项式的项和系数时,带着前面的符号.12.【答案】±4【解析】解:∵x2+2mx+16是完全平方公式,∴2mx=±2•x•4,解得:m=±4,故答案为:±4.根据完全平方式得出2mx=±2•x•4,求出即可.本题考查了完全平方式,能熟记完全平方式的特点是解此题的关键,注意:完全平方式有两个:a2+2ab+b2和a2-2ab+b2.13.【答案】±3【解析】解:∵x2-9y2=(x+3y)(x-3y)=(x+my)(x-my),∴m=±3.故答案为:±3根据平方差平公式求解即可.本题主要考查了平方差公式:(a+b)(a-b)=a2-b2.14.【答案】【解析】解:x2+(3k-1)xy-3y2-6xy-8=x2+(3k-1-6)xy-3y2+8,x2+(3k-1)xy-3y2-6xy-8中不含xy项,∴3k-7=0,k=,故答案为:.根据合并同类项,可化简整式,根据整式中不含xy项,可得一元一次方程,根据解一元一次方程,可得答案.本题考查了多项式,先合并同类项,再解一元一次方程.15.【答案】∠AOF【解析】解:如图,∠BOE的对顶角是∠AOF.故答案是:∠AOF.利用对顶角的定义直接回答即可.本题主要考查了对顶角的定义:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.16.【答案】y=40-5x 8【解析】解:依题意得,油箱内余油量y(升)与行驶时间x(小时)的关系式为:y=40-5x ,当y=0时,40-5x=0,解得:x=8,即汽车最多可行驶8小时.故答案为:y=40-5x,8.根据:油箱内余油量=原有的油量-x小时消耗的油量,可列出函数关系式,进而得出行驶的最大路程.本题考查了列函数关系式以及代数式求值.关键是明确油箱内余油量,原有的油量,x 小时消耗的油量,三者之间的数量关系,根据数量关系可列出函数关系式.17.【答案】解:①将a+b=1两边平方得:(a+b)2=a2+2ab+b2=1,把ab=-12代入得:a2-24+b2=1,即a2+b2=25;②∵a+b=1,ab=-12,∴(a-b)2=(a+b)2-4ab=1+48=49,则a-b=±7.【解析】①将a+b=1两边平方,利用完全平方公式展开,把ab的值代入即可求出a2+b2的值;②将所求式子两边平方,利用完全平方公式后,把a+b与zb的值代入计算,开方即可求出值.此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.18.【答案】40【解析】解:(1)∵AB∥CD,∴∠EHD=∠1=50°,∴∠2=∠EHD=50°;(2)∵GM⊥EF,HN⊥EF,∴∠MGH=90°,∠NHF=90°,∴∠MGH=∠NHF,∴HN∥GM;(3)∵HN⊥EF,∴∠NHG=90°∵∠NGH=∠1=50°,∴∠HNG=90°-50°=40°.故答案为40.(1)根据平行线的性由AB∥CD得到∠EHD=∠1=50°,再根据对顶角相等可得到∠2的度数;(2)根据垂直的定义得到∠MGH=90°,∠NHF=90°,然后根据平行线的判定有HN∥GM ;(3)先由HN⊥EF得到∠NHG=90°,再根据对顶角相等得∠NGH=∠1=50°,然后根据互余可计算出∠HNG=40°.本题考查了平行线的判定与性质:同位角相等,两直线平行;两直线平行,同位角相等.同旁内角互补.19.【答案】解:∵AD=7,BD=5∴AB=AD+BD=12∵C是AB的中点∴AC=AB=6∴CD=AD-AC=7-6=1.【解析】根据已知可求得AB的长,从而可求得AC的长,已知AD的长则不难求得CD 的长.此题主要考查学生对比较线段的长短的掌握情况,比较简单.20.【答案】解:(1)原式=+4-1=;(2)原式=(x2-2x+1-1-2x-x2)÷(-2x)=-4x÷(-2x)=2;(3)原式=36a2b4÷(3ab2)×b2=12ab4.【解析】(1)原式利用零指数幂、负整数指数幂法则计算即可求出值;(2)原式中括号中利用完全平方公式化简,合并后利用多项式除以单项式法则计算即可求出值;(3)原式先计算乘方运算,再计算乘除运算即可求出值.此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.21.【答案】解:(2a-3b)(3b+2a)-(2a-3b)2=4a2-9b2-4a2+12ab-9b2=12ab-18b2,当a=2,b=3时,原式=72-108=-36.【解析】先算乘法,再合并同类项,最后代入求出即可.本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解此题的关键.22.【答案】x2+(m+n)x+mn a2-a-9900 y2-13y+40【解析】解:(1)(x+m)(x+n)=x2+(m+n)x+mn;故答案为:x2+(m+n)x+mn;(2)①(a+99)(a-100)=a2-a-9900;②(y-5)(y-8)=y2-13y+40.故答案为:a2-a-9900;y2-13y+40.(1)直接利用已知中运算规律得出答案;(2)①结合已知运算规律即可得出答案;②结合已知运算规律即可得出答案.此题主要考查了多项式乘以多项式,正确得出运算规律是解题关键.23.【答案】1.6 2.4【解析】解:(1)用水5吨是8元,每吨按8÷5=1.6元收取;超过5吨的部分,每吨按(20-8)÷(10-5)=2.4元收取,即该市人均月生活用水的收费标准是:不超过5吨,每吨按1.6元收取;超过5吨的部分,每吨按2.4元收取;故答案为:1.6;2.4(2)当0≤x≤5时,设y=kx,代入(5,8)得8=5k,解得k=,即居民使用5吨水以内y与x的关系式为;(3)当x>5时,设y=kx+b,代入(5,8)、(10,20)得,解得,∴y=,把y=32代入y=,得,解得x=15.答:小明家这个月用了15吨水.(1)由图可知,用水5吨是8元,每吨按8÷5=1.6元收取;超过5吨的部分,每吨按(20-8)÷(10-5)=2.4元收取;(2)当0≤x≤5时,设y=kx,代入对应点,得出答案即可;(3)求出x>5时y与x之间的关系式,再把y=32代入x>5的y与x的函数关系式,求出x的数值即可.此题考查一次函数的实际运用,结合图形,利用基本数量关系,得出函数解析式,进一步利用解析式解决问题.24.【答案】解:(1)如图1,作EF∥AB,∵AB∥CD,∴∠B=∠1,∵AB∥CD,EF∥AB,∴EF∥CD,∴∠D=∠2,∴∠B+∠D=∠1+∠2,又∵∠1+∠2=∠E,∴∠B+∠D=∠E.(2)如图1,作EF∥AB,∵EF∥AB,∴∠B=∠1,∵∠E=∠1+∠2=∠B+∠D,∴∠D=∠2,∴EF∥CD,又∵EF∥AB,∴AB∥CD.(3)如图2,过E作EF∥AB,∵EF∥AB,∴∠BEF+∠B=180°,∵EF∥CD,∴∠D+∠DEF=180°,∵∠BEF+∠DEF=∠E,∴∠E+∠B+∠D=180°+180°=360°.(4)如图3,∵AB∥CD,∴∠B=∠BFD,∵∠D+∠E=∠BFD,∴∠D+∠E=∠B.【解析】(1)首先作EF∥AB,根据AB∥CD,可得EF∥CD,据此分别判断出∠B=∠1,∠D=∠2,即可判断出∠B+∠D=∠E,据此解答即可.(2)首先作EF∥AB,即可判断出∠B=∠1;然后根据∠E=∠1+∠2=∠B+∠D,可得∠D=∠2,据此判断出EF∥CD,再根据EF∥AB,可得AB∥CD,据此判断即可.(3)首先过E作EF∥AB,即可判断出∠BEF+∠B=180°,然后根据EF∥CD,可得∠D+∠DEF=180°,据此判断出∠E+∠B+∠D=360°即可.(4)首先根据AB∥CD,可得∠B=∠BFD;然后根据∠D+∠E=∠BFD,可得∠D+∠E=∠B,据此解答即可.此题主要考查了平行线的性质和应用,要熟练掌握,解答此题的关键是要明确:(1)定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.(2)定理2:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.(3)定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.第11页,共11页。
初中数学试卷桑水出品茂名市育才中学11—12学年七年级(下)期中考试数 学 试 题【注意:请将答案做在答题卷的指定位置】一、选择题(每小题3分,本大题共45分)1.(2011盐城)已知a ﹣b =1,则代数式2a ﹣2b ﹣3的值是( )A.﹣1B.1C.﹣5D.52.如图,∠1和∠2是对顶角的图形个数有( ).甲A .1个B .2个C .3个D .4个 3.(2011郴州)下列计算,正确的是( )A 、x 2+x 3=x 5B 、x 2•x 3=x 6C 、(x 2)3=x 5D 、2x ﹣3x=﹣x4.轮船航行到B 处观测小岛A 的方向是北偏西32°,那么小岛A 观测到轮船B 的方向是( ).A.南偏西32°B.南偏东32°C.南偏西58°D.南偏东58° 5.下列运算正确的是( ).A .ab b a 532=+B .b a b a -=-4)2(2C .22))((b a b a b a -=-+D .222)(b a b a +=+6. 对于四舍五入得到的近似数53.2010⨯,下列说法正确的是( ).A .有3个有效数字,精确到百分位B .有3个有效数字,精确到千位C .有2个有效数字,精确到万位D .有6个有效数字,精确到个位7.下列算式能用平方差公式计算的是( ) A.(2)(2)a b b a +- B.)121)(121(--+x x C.(3)(3)x y x y --+ D. ()()m n m n -+-- 8.如图,AB ∥CD ,下列结论中错误..的是( ). A .21∠=∠ B .ο18052=∠+∠ C .018032=∠+∠ D .ο18043=∠+∠9. 长方形面积是a ab a 6332+-,一边长为3a ,则它的周长是( ).A. 22a b -+B. 82a b -C. 824a b -+D. 42a b -+10.在电子显微镜下测得一个圆球体细胞的直径是5510cm -⨯.3102⨯个这样的细胞排成的细胞链的长是( ).A .cm 110-B .cm 210-C .cm 310-D .cm 410-11. 已知0x ≠,22(21)(21)M x x x x =++-+,22(1)(1)N x x x x =++-+,则M 与N 的大小关系是( ).A. M >NB. M <NC. M N =D.无法确定12.任意给定一个非零数,按下列程序计算,最后输出的结果是( ).A.m B .2m C .1m + D.1m - 13.如图,边长为(3)m +的正方形纸片剪出一个边长为m 的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是( ). A .23m + B .26m + C .3m + D .6m +14.如图,直线,a b 被直线c 所截,现给出下列四个条件:①∠1=∠5;②∠4=∠6;③∠4+∠5=180°;④∠2+∠7=180°.其中能判定a ∥b 的条件的个数有( ).A.1个B.2个C.3个D.4个15.用棋子摆出下列一组“口”字,按照这种方法摆下去,则摆第n 个“口”字需用棋子( ).第13题第8题A .4n 枚B .(44)n - 枚C .(44)n +枚D .2n 枚茂名市育才中学11—12学年七年级(下)期中考试数 学 试 题答题卷(时间:120分钟 总分120分)一、选择题(3×15=45)二、解答题(第16题20分,第17~22题每题6分,本大题共56分) 16.计算:(每小题5分,共20分) (1)401322()7-⨯÷- (2)23243(2)(7)(14)x y xy x y ⋅-÷第2个“口” 第1个“口” 第3个“口”第n 个“口”………………?(3)2(5)(2)(3)x x x ---- (4)22()()()2(2)a b a b a b a a ⎡⎤+-++-÷-⎣⎦17. 如图,AB ∥CD ,直线EF 分别交AB 、CD 于点E 、F ,EG 平分AEF ∠,交CD 于G .已知∠1=40°,求∠2的度数.18. 某同学在计算一个多项式乘以23x -时,因抄错运算符号,算成了加上23x -,得到的结果是241x x -+,那么正确的计算结果是多少?19. 如图,在ABC ∆中,延长BC 至D ,0060,45A B ∠=∠=. (1)过点C 作直线CE ∥AB (尺规作图,不写作法,保留作图痕迹);(2)求ACD ∠的度数.BDSY 中学各年级的植树情况 统计图20.已知221x x -=,求2(1)(31)(1)x x x -+-+ 的值.21.今年植树节,我市SY 中学的同学们都参加了植树活动,其中七年级植树200棵.小聪用扇形统计图统计了今年植树三个年级所占百分比的情况,如图1所示. 小明用象形统计图对各年级的植树情况进行了统计,如图2所示.七年级 八年级九年级根据以上信息,解决下列问题:(1)七年级今年植树棵数占三个年级植树棵数的百分比是多少? (2)三个年级今年一共植树多少棵? (3)指出图2的含义;(4)补全图2中的象形统计图.22.如图,点E 在DF 上,点B 在AC 上,12∠=∠,C D ∠=∠. 试说明:AC ∥DF .将过程补充完整. 解:∵12∠=∠(已知)图1 图213∠=∠( ) ∴23∠=∠(等量代换)∴ ∥ ( ) ∴C ABD ∠=∠ ( ) 又∵C D ∠=∠(已知)∴D ABD ∠=∠( )∴AC ∥DF ( )三、综合解答题(第23题9分,第24题10分,本大题共19分)23. 某超市今年2月份的销售收入比1月份有所下降.3月份的销售收入比1月份的销售收入增长了92%,且比2月份的销售收入翻了一番.(1)求该超市今年2月份的销售收入比1月份下降了百分之几?(2)若该超市今年1~3月份每月的销售分别获得了25%、20%、20%的利润,求该超市今年第一季...度.销售的利润率.(=+销售收入成本利润,=100%⨯利润利润率成本)24. 如图,已知直线AB //CD ,0100A C ∠=∠=,E 、F 在CD 上,且满足DBF ABD ∠=∠,BE 平分CBF ∠.(1)求DBE ∠的度数.(2)若平行移动AD ,那么BFC ∠:BDC ∠的比值是否随之发生变化?若变化,找出变化规律;若不变,求出这个比值.(3)在平行移动AD 的过程中,是否存在某种情况,使BEC ADB ∠=∠?若存在,求出其度数;若不存在,请说明理由.参考答案一、选择题(3×15=45) 1~5 AADBC 6~10 BDCDA 11~15 BCADA二、解答题(第16题20分,第17~22题每题6分,共56分) 16.计算:(5×4=20) (1)2;(2)424x y - ; (3)519;x -+(4).b - 17.02100∠=.18. 这个多项式是222(41)(3)441x x x x x -+--=-+,(3分)正确的计算结果是:22432(441)(3)12123.x x x x x x -+⋅-=-+-(3分) 19. (1)作图略;(3分)(2)0105ACD ∠=.(3分)20.22(1)(31)(1)242x x x x x -+-+=-- (3分) 22(2)20x x =--=. (3分) 21.(1)180130%20%360--=(1分);(2)20020%1000÷=(2分);(3表示植树50棵(2分);(4)补41分).22.①对顶角相等,②BD ∥CE ,③同位角相等,两直线平行,④两直线平行,同位角相等,⑤等量代换,⑥内错角相等,两直线平行.(每空1分)三、综合解答题(第23题9分,第24题10分,共19分)23. (1)设该超市今年1月份的销售收入为a 元,2月份的销售收入比1月份下降的百分数为x .则:。
七年级下学期数学期中考试试卷(满分150分 时间120分钟)一.选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列运算中正确的是( )A.(﹣a )3=﹣a 3B.(a 3)4=a 7C.a 3•a 4=a 12D.(ab 2)3=ab 62.三条线段首尾顺次相接能构成三角形的是( )A.3,3,4B.4,9,5C.5,18,8D.9,15,33.如图,直线a 、b 被直线c 所截.若∠1=55°,则∠2的度数是( )时能判定a ∥b .A.35°B.45°C.125°D.145°(第3题图) (第7题图)4. 0.00 000 001用科学记数法表示为( )A.0.1×10﹣7B.1×10﹣8C.1×10﹣7D.0.1×10﹣85.下列计算正确的是( ) A.a 2+a 3=a 5 B.2x 2(﹣13xy )=﹣23x 3yC.(a -b )(﹣a -b )=a 2-b 2D.(﹣2x 2y )3=﹣6x 6y 3 6.在圆的面积计算公式S=πr 2,其中r 为圆的半径,则变量是( )A.SB.RC.π,rD.S ,r7.如图,用不同的代数式表示图中阴影部分的面积,可得等式()A.(a+b)2=a2+2ab+b2B.(a-b)2=a2+2ab-b2C.(a+b)(a-b)=a2-b2D.(a-b)2=a2-2ab+b28.如果x2+kxy+36y2是完全平方式,则k的值是()A.6B.6或-6C.12D.12或-129.如图,AB∥CD∥EF,若∠ABC=130°,∠BCE=55°,则∠CEF的度数为()A.95B.105C.110D.115(第9题图)(第10题图)10.如图,把一张长方形纸片ABCD沿EF折叠后,点C、D分别落在C'、D'的位置上,EC'交AD于点G,已知∠EFG=56°,则∠BEG等于()A.112°B.88°C.68°D.56°二、填空题(本大题共6个小题.每小题4分,共24分.)11.计算(a2)3÷a2的结果等于.12.式子(x+2)0无意义时,x= 。
北师大版七年级下册数学期中考试卷及答案一、选择题(每题3分)1.下列运动属于平移的是( )A.看书时候翻页B.人随着电梯在运动C.士兵听从口令向后转D.汽车到路口转弯2.如图,直线a、b被直线c所截,a∥b,∠1=35°,则∠2等于( )A.35°B.55°C.165°D.145°3.如图,△ABC的边BC上的高是( )A.BEB.DBC.CFD.AF4.有一个多边形,它的内角和等于它的外角和的2倍,则它是( )A.三边形B.四边形C.五边形D.六边形5.芝麻作为食品和药物,均广泛使用.经测算,一粒芝麻约有0.00000201千克,用科学记数法表示为( )A.2.01×10﹣6千克B.0.201×10﹣5千克C.20.1×10﹣7千克D.2.01×10﹣7千克6.单项式乘以多项式运算法则的依据是( )A.乘法交换律B.加法结合律C.乘法分配律D.加法交换律7.如果用平方差公式计算(x﹣y+5)(x+y+5),则可将原式变形为( )A.[(x﹣y)+5][(x+y)+5]B.[(x﹣y)+5][(x﹣y)﹣5]C.[(x+5)﹣y][(x+5)+y] D.[x﹣(y+5)][x+(y+5)]8.将一副三角尺按如图方式进行摆放,∠1、∠2不一定互补的是( )A. B. C. D.二、填空题(每题3分)9.计算:a3a3=.10.计算:(x﹣1)(2x+1)=.11.已知,在△ABC中,∠A=80°,那么∠B=∠C=度.12.am=2,a4m=.13.a+b=5,ab=2,则(a﹣2)(3b﹣6)=.14.若,分式 =.15.如图,平面上直线a、b分别过线段AB两端点,则a、b相交成的锐角为度.16.如图,已知矩形纸片的一条边经过直角三角形纸片的直角顶点,若矩形纸片的一组对边与直角三角形纸片的两条直角边相交成∠1、∠2,则∠2﹣∠1=.三、解答题17.计算:(1)﹣32+(π﹣2)0+( )﹣2(2)5m(﹣ abm2)(﹣a2m)(3)(a﹣2b)(2a+b)﹣(a+2b)2(4)10 ×9 .18.因式分解:(1)a5﹣a3(2)4﹣4(x﹣y)+(x﹣y)2.19.先化简,再求值:3(x+2)2﹣2(x﹣2)(x+2),其中x=﹣ .20.如图所示,在四边形ABCD中.(1)求四边形的内角和;(2)若∠A=∠C,∠B=∠D,判断AD与BC的位置关系,并说明理由.21.如图,AD、BE分别是△ABC的中线,AD、BE相交于点F.(1)△ABC与△ABD的面积有怎样的数量关系?为什么?(2)△BDF与△AEF的面积有怎样的数量关系?为什么?22.对有理数a、b、c、d定义新运算“ ”,规定 =ad﹣bc,请你根据新定义解答下列问题:(1)计算 ;(2)当x= ,y=﹣时,求上式的值.23.如图,已知AB∥CD,试猜想∠A、∠C、∠E的关系,并说明理由.24.数学课上,我们知道可以用图形的面积来解释一些代数恒等式,如图1可以解释完全平方公式(a+b)2=a2+2ab+b2.(1)如图2,请用不同的代数式表示图中阴影部分的面积,由此,你能得到怎样的等式?(2)请说明这个等式成立;(3)已知(2m+n)2=13,(2m﹣n)2=5,请利用上述等式求mn.25.如图1,将△ABC中纸片沿DE折叠,使点A落在四边形DBCE 内点A′的位置,探索∠A与∠1+∠2之间的数量关系,并说明理由 (1)如图2,将△ABC中纸片沿DE折叠,使点A落在四边形DBCE 的外部点A′的位置,探索∠A与∠1、∠2之间的数量关系,并说明理由;(2)如图3,将四边形ABCD沿EF折叠,使点A、D落在四边形BCFE 内部点A′D′的位置,请直接写出∠A、∠D、∠1与∠2之间的数量关系.参考答案与试题解析一、选择题(每题3分)1.下列运动属于平移的是( )A.看书时候翻页B.人随着电梯在运动C.士兵听从口令向后转D.汽车到路口转弯【考点】生活中的平移现象.【分析】根据旋转的定义,平移的定义对各选项分析判断即可得解.【解答】解:A、看书时候翻页是旋转,故本选项错误;B、人随着电梯在运动是平移,故本选项错误;C、士兵听从口令向后转是旋转,故本选项错误;D、汽车到路口转弯是旋转,故本选项错误.故选B.2.如图,直线a、b被直线c所截,a∥b,∠1=35°,则∠2等于( )A.35°B.55°C.165°D.145°【考点】平行线的性质.【分析】根据对顶角相等求出∠3,再根据两直线平行,同旁内角互补列式计算即可得解.【解答】解:由对顶角相等可得∠3=∠1=35°,∵a∥b,∴∠2=180°﹣∠3=180°﹣35°=145°.故选D.3.如图,△ABC的边BC上的高是( )A.BEB.DBC.CFD.AF【考点】三角形的角平分线、中线和高.【分析】根据从三角形顶点向对边作垂线,顶点和垂足之间的线段叫做三角形的高,确定出答案即可.【解答】解:由图可知,△ABC中BC边上的高是AF故选D.4.有一个多边形,它的内角和等于它的外角和的2倍,则它是( )A.三边形B.四边形C.五边形D.六边形【考点】多边形内角与外角.【分析】n边形的内角和可以表示成(n﹣2)180°,外角和为360°,根据题意列方程求解.【解答】解:设多边形的边数为n,依题意,得:(n﹣2)180°=2×360°,解得n=6.故选:D.5.芝麻作为食品和药物,均广泛使用.经测算,一粒芝麻约有0.00000201千克,用科学记数法表示为( )A.2.01×10﹣6千克B.0.201×10﹣5千克C.20.1×10﹣7千克D.2.01×10﹣7千克【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 002 01=2.01×10﹣6;故选A.6.单项式乘以多项式运算法则的依据是( )A.乘法交换律B.加法结合律C.乘法分配律D.加法交换律【考点】单项式乘多项式.【分析】单项式与多项式相乘的法则,就是根据单项式去乘多项式的每一项,再把所得的积相加,就是乘法的分配律.【解答】解:乘法的分配律:a(b+c)=ab+ac.故选C.7.如果用平方差公式计算(x﹣y+5)(x+y+5),则可将原式变形为( )A.[(x﹣y)+5][(x+y)+5]B.[(x﹣y)+5][(x﹣y)﹣5]C.[(x+5)﹣y][(x+5)+y]D.[x﹣(y+5)][x+(y+5)]【考点】平方差公式.【分析】能用平方差公式计算式子的特点是:(1)两个二项式相乘,(2)有一项相同,另一项互为相反数.把x+5看作公式中的a,y看作公式中的b,应用公式求解即可.【解答】解:(x﹣y+5)(x+y+5)=[(x+5)﹣y][(x+5)+y],故选:C.8.将一副三角尺按如图方式进行摆放,∠1、∠2不一定互补的是( )A. B. C. D.【考点】余角和补角.【分析】如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角,据此分别判断出每个选项中∠1+∠2的度数和是不是180°,即可判断出它们是否一定互补.【解答】解:如图1,,∵∠2+∠3=90°,∠3+∠4=90°,∴∠2=∠4,∵∠1+∠4=180°,∴∠1+∠2=180°,∴∠1、∠2互补.如图2,,∠2=∠3,∵∠1+∠3=180°,∴∠1+∠2=180°,∴∠1、∠2互补.如图3,,∵∠2=60°,∠1=30°+90°=120°,∴∠1+∠2=180°,∴∠1、∠2互补.如图4,,∵∠1=90°,∠2=60°,∴∠1+∠2=90°+60°=150°,∴∠1、∠2不互补.故选:D.二、填空题(每题3分)9.计算:a3a3= a6 .【考点】同底数幂的乘法.【分析】根据同底数幂乘法,底数不变指数相加,即可求出答案.【解答】解:a3a3=a6.故答案为:a6.10.计算:(x﹣1)(2x+1)= 2x2﹣x﹣1 .【考点】多项式乘多项式.【分析】根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,计算即可.【解答】解:(x﹣1)(2x+1)=2x2+x﹣2x﹣1=2x2﹣x﹣1.故答案为2x2﹣x﹣1.11.已知,在△ABC中,∠A=80°,那么∠B=∠C=50 度.【考点】三角形内角和定理.【分析】根据三角形内角和定理可知∠B=∠C= ,由此即可解决问题.【解答】解:∵∠A+∠B+∠C=180°,又∵∠A=80°,∠B=∠C,∴∠B=∠C= =50°,故答案为5012.am=2,a4m= 16 .【考点】幂的乘方与积的乘方.【分析】逆运用幂的乘方,底数不变指数相乘进行计算即可得解.【解答】解:a4m=(am)4=24=16.故答案为:16.13.a+b=5,ab=2,则(a﹣2)(3b﹣6)= ﹣12 .【考点】多项式乘多项式.【分析】直接利用多项式乘以多项式运算法则去括号,进而将已知代入求出答案.【解答】解:∵a+b=5,ab=2,∴(a﹣2)(3b﹣6)=3ab﹣6a﹣6b+12=3ab﹣6(a+b)+12=3×2﹣6×5+12=﹣12.故答案为:﹣12.14.若,分式 = 5 .【考点】完全平方公式.【分析】由题意将x+ 看为一个整体,然后根据(x﹣ )2=x2+ ﹣2=(x+ )2﹣4,把x+ =3代入从而求解.【解答】解:∵x+ =3∴(x﹣ )2=x2+ ﹣2=(x+ )2﹣4=9﹣4=5.故答案为:5.15.如图,平面上直线a、b分别过线段AB两端点,则a、b相交成的锐角为30 度.【考点】三角形的外角性质.【分析】根据三角形的外角等于不相邻的两个内角的和即可求解.【解答】解:110°﹣80°=30°.故答案是:30.16.如图,已知矩形纸片的一条边经过直角三角形纸片的直角顶点,若矩形纸片的一组对边与直角三角形纸片的两条直角边相交成∠1、∠2,则∠2﹣∠1=90°.【考点】平行线的性质.【分析】先根据平角的定义得出∠3=180°﹣∠2,再由平行线的性质得出∠4=∠3,根据∠4+∠1=90°即可得出结论.【解答】解:∵∠2+∠3=180°,∴∠3=180°﹣∠2.∵直尺的两边互相平行,∴∠4=∠3,∴∠4=180°﹣∠2.∵∠4+∠1=90°,∴180°﹣∠2+∠1=90°,即∠2﹣∠1=90°.故答案为:90°.三、解答题17.计算:(1)﹣32+(π﹣2)0+( )﹣2(2)5m(﹣ abm2)(﹣a2m)(3)(a﹣2b)(2a+b)﹣(a+2b)2(4)10 ×9 .【考点】整式的混合运算;零指数幂;负整数指数幂.【分析】(1)先算平方,零指数幂和负整数指数幂,再相加计算即可求解;(2)根据单项式乘以单项式的计算法则计算即可求解;(3)根据多项式乘以多项式的计算法则和完全平方公式计算,再合并同类项即可求解;(4)根据平方差公式计算即可求解.【解答】解:(1)﹣32+(π﹣2)0+( )﹣2=﹣9+1+9=1;(2)5m(﹣ abm2)(﹣a2m)=(5× )(a1+2bm2+1)= a3bm3;(3)(a﹣2b)(2a+b)﹣(a+2b)2=2a2+ab﹣2ab﹣2b2﹣a2﹣4ab﹣4b2=a2﹣7ab﹣6b2;(4)10 ×9=(10+ )(10﹣ )=100﹣=99 .18.因式分解:(1)a5﹣a3(2)4﹣4(x﹣y)+(x﹣y)2.【考点】提公因式法与公式法的综合运用.【分析】(1)首先提取公因式a3,进而利用平方差公式分解因式得出答案;(2)直接利用完全平方公式分解因式得出答案.【解答】解:(1)a5﹣a3=a3(a2﹣1)=a3(a+1)(a﹣1);(2)4﹣4(x﹣y)+(x﹣y)2=(x﹣y﹣2)2.19.先化简,再求值:3(x+2)2﹣2(x﹣2)(x+2),其中x=﹣ .【考点】整式的混合运算—化简求值.【分析】直接利用多项式乘法去括号,进而合并同类项,再将已知数据代入求出答案【解答】解:3(x+2)2﹣2(x﹣2)(x+2)=3(x2+4x+4)﹣2(x2﹣4)=3x2+12x+12﹣2x2+8=x2+12x+20,把x=﹣代入得:原式=(﹣)2+12×(﹣ )+20= ﹣6+20=14 .20.如图所示,在四边形ABCD中.(1)求四边形的内角和;(2)若∠A=∠C,∠B=∠D,判断AD与BC的位置关系,并说明理由.【考点】多边形内角与外角.【分析】(1)根据四边形的内角和即可得到结论;(2)根据四边形的内角和和已知条件得到∠A+∠B+∠A+∠B=360°,于是得到∠A+∠B=180°,根据平行线的判定定理即可得到结论.【解答】解:(1)∠A+∠B+∠C+∠D=(4﹣2)180°=360°;(2)∵∠A=∠C,∠B=∠D,∠A+∠B+∠C+∠D=360°,∴∠A+∠B+∠A+∠B=360°,∴2∠A+2∠B=360°即:∠A+∠B=180°,∴AD∥BC.21.如图,AD、BE分别是△ABC的中线,AD、BE相交于点F.(1)△ABC与△ABD的面积有怎样的数量关系?为什么?(2)△BDF与△AE F的面积有怎样的数量关系?为什么?【考点】三角形的面积;三角形的角平分线、中线和高.【分析】(1)根据三角形的中线将三角形分成面积相等的两部分进行判断;(2)根据三角形的中线将三角形分成面积相等的两部分,得出△ABE的面积=△ABD的面积,再根据△BDF的面积+△ABF的面积=△AEF的面积+△ABF的面积,得出结论即可.【解答】解:(1)△ABC的面积是△ABD的面积的2倍.理由:∵AD是△ABC的中线,∴BD=CD,又∵点A为△ABC的顶点,△ACD与△ABD同底等高,∴△ACD的面积=△ABD的面积,∴△ABC的面积是△ABD的面积的2倍.(2)△BDF与△AEF的面积相等.理由:∵BE是△ABC的中线,∴△ABC的面积是△ABE的面积的2倍,又∵△ABC的面积是△ABD的面积的2倍,∴△ABE的面积=△ABD的面积,即△BDF的面积+△ABF的面积=△AEF的面积+△ABF的面积,∴△BDF与△AEF的面积相等.22.对有理数a、b、c、d定义新运算“ ”,规定 =ad﹣bc,请你根据新定义解答下列问题:(1)计算 ;(2)当x= ,y=﹣时,求上式的值.【考点】整式的混合运算.【分析】(1)根据题目中的新定义可以化简所求的式子;(2)将x、y的值代入(1)中化简后的式子即可解答本题.【解答】解:(1)由题意可得,=(2x﹣3y)(2x+3y)﹣4x(x﹣5)=4x2﹣9y2﹣4x2+20x=﹣9y2+20x;(2)当x= ,y=﹣时,﹣9y2+20x=﹣9× =﹣9× +4=﹣4+4=0.23.如图,已知AB∥CD,试猜想∠A、∠C、∠E的关系,并说明理由.【考点】平行线的性质.【分析】反向延长AB交CE于F,根据两直线平行,同位角相等可得∠1=∠C,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式进行计算即可得解.【解答】解:∠A=∠C+∠EE,延长BA交CE于点F,∵AB∥CD,∴∠AFE=∠C,在△AEF中,∠AFE+∠E+∠EAF=180°,∵∠EAB+∠EAF=180°,∴∠AFE+∠E=∠EAB,∴∠C+∠E=∠EAB.24.数学课上,我们知道可以用图形的面积来解释一些代数恒等式,如图1可以解释完全平方公式(a+b)2=a2+2ab+b2.(1)如图2,请用不同的代数式表示图中阴影部分的面积,由此,你能得到怎样的等式?(2)请说明这个等式成立;(3)已知(2m+n)2=13,(2m﹣n)2=5,请利用上述等式求mn.【考点】完全平方公式的几何背景.【分析】(1)根据阴影部分的面积=4个小长方形的面积=大正方形的面积﹣小正方形的面积,利用完全平方公式,即可解答;(2)根据完全平方公式解答;(3)根据平方差公式解答.【解答】解:(1)阴影部分的面积为:4ab或(a+b)2﹣(a﹣b)2,得到等式:4ab=(a+b)2﹣(a﹣b)2;(2)右边=a2+2ab+b2﹣(a2﹣2ab+b2)=a2+2ab+b2﹣a2+2ab﹣b2=4ab=左边,即等式成立;(3)(2m+n)2﹣(2m﹣n)2=4×2mn,13﹣5=8mn,mn=1.25.如图1,将△ABC中纸片沿DE折叠,使点A落在四边形DBCE 内点A′的位置,探索∠A与∠1+∠2之间的数量关系,并说明理由 (1)如图2,将△ABC中纸片沿DE折叠,使点A落在四边形DBCE 的外部点A′的位置,探索∠A与∠1、∠2之间的数量关系,并说明理由;(2)如图3,将四边形ABCD沿EF折叠,使点A、D落在四边形BCFE 内部点A′D′的位置,请直接写出∠A、∠D、∠1与∠2之间的数量关系.【考点】三角形内角和定理.【分析】根据折叠性质得出∠AED=∠A′ED,∠ADE=∠A′DE,根据三角形内角和定理得出∠AED+∠ADE=180°﹣∠A,代入∠1+∠2=180°+180°﹣2(∠AED+∠ADE)求出即可;(1)运用三角形的外角性质即可解决问题;(2)先根据翻折的性质表示出∠3、∠4,再根据四边形的内角和定理列式整理即可得解.【解答】解:图1中,2∠A=∠1+∠2,理由是:∵沿DE折叠A和A′重合,∴∠AED=∠A′ED,∠ADE=∠A′DE,∵∠AED+∠ADE=180°﹣∠A,∠1+∠2=180°+180°﹣2(∠AED+∠ADE),∴∠1+∠2=360°﹣2=2∠A;(1)如图2,2∠A=∠1﹣∠2.∵∠1=∠DFA+∠A,∠DFA=∠A′+∠2,∴∠1=∠A+∠A′+∠2=2∠A+∠2,∴2∠A=∠1﹣∠2;(2)如图3,根据翻折的性质,∠3= ,∠4= ,∵∠A+∠D+∠3+∠4=360°,∴∠A+∠D+ + =360°,整理得,2(∠A+∠D)=∠1+∠2+360°.。
北 师 大 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题:(每题3分,共30分) 1.下列代数运算正确的是( ) A.66x x x ⋅=B.()3322x x =C.()2224x x +=+D.()326xx =2. 目前,世界上能制造出的最小晶体管的长度只有0.00000004m ,将0.00000004用科学记数法表示为( ) A.8410⨯B.8410-⨯C.80.410⨯D.8410-⨯3.下面是一名学生所做的4道练习题:①224-=;②336a a a +=;③44144m m-=;④()3236xy x y =。
他做对的个数是( )A.1B.2C.3D.44.下列各式中,计算结果正确的是( ) A.()()22x y x y x y +--=-B.()()232346x y xy x y -+=-C.()()22339x y x y x y ---+=--D.()()2242222x yx y x y -+=-5.小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把最后一项染黑了,得到正确的结果变为2412a ab -+( ),你觉得这一项应是( ) A.23bB.26bC.29bD.236b6.如图,通过计算大正方形的面积,可以验证的公式是( ) A.()222a b c a b c++=++B.()2222a b c a b c ab bc ac++=+++++C.()2222222a b c a b c ab bc ac ++=+++++ D.()2222234a b c a b c ab bc ac ++=+++++7.如图,从边长为(a +4)cm 的正方形纸片中剪去一个边长为(a +1)cm 的正方形。
(a >0)剩余部分沿虚线又剪拼成一个长方形(不重叠无缝隙)则长方形的面积为( )第6题图A.()2225cm a a +B.()2315cm a +C.()269cm a +D.()2615cm a +8.如图,有一块含有45°角的直角三角板的两个顶点放在直尺的对边上. 如果∠1=20°,么∠2的度数是( ) A.15°B.20°C.25°D.30°第8题图第9题图9.如图,已知∠1=∠B ,∠2=∠C ,则下列结论不成立的是( ) A.∠B =∠CB.AD //BCC.∠2+∠B =180°D.AB //CD10.下列正确说法的个数是( )①同位角相等;②等角的补角相等;③两直线平行,同旁内角相等;④在同一平面内,过一点有且只有一条直线与已知直线垂直. A.1B.2C.3D.4二、填空题:本题共10小题,每小题填对得3分,共30分. 只要求在答题纸上填写最后结果. 11.若长方形的面积是2323a ab a ++,长为3a ,则它的宽为________. 12.已知()2893n =,则n =________.13.若∠1与∠2互补,∠3与30°互余,∠2+∠3=210°,则∠1=________度.14.三角形ABC 的底边BC 上的高为8cm,当它的底边BC 从16cm 变化到5cm 时,三角形ABC 的面积从________变化到________.15.如图所示,根据平行线的性质,完成下列问题: 如果AB //CD ,那么∠1=________,∠2+________=180°; 如果AD //BC ,那么∠1=________,∠2+________=180°.16.一个圆柱的底面半径为R cm,高为8cm,若它的高不变,将底面半径增加了2cm,体积相应增加了192πcm.则R =________. 17.(3分)已知a 2﹣a +1=2,那么a ﹣a 2+1的值是 .18.(3分)如图,在△AB C 中,AB =13,AC =10,AD 为中线,则△ABD 与△ACD 的周长之差= .第15题图19.(3分)某货物以a 元买入,如果加上进价的m %作为定价,后因货物卖不出去,又按定价n %降低出售,则降价后的售价用式子表示出来是 元.20.(3分)如图,在△AB C 中,∠BAC =56°,∠ABC =74°,BP 、CP 分别平分∠ABC 和∠ACB ,则∠BPC =__________A .102°B .112°C .115°D .118°三、解答题:(21,24,25题每题8分,22题5分,23题7分,其余每题12分,共60分) 21.(本小题满分8分)解下列各题: (1)计算:()()220181133π-⎛⎫---+- ⎪⎝⎭.(2分) (2)计算:()()222323x x y xy y x x y x y ⎡⎤---÷⎣⎦.(2分)(3)用乘法公式计算:2199199201-⨯.(2分) (x +1)(x +3)﹣(x ﹣2)2(2分).22.(本小题满分5分)先化简,再求值:()()()()()222222m n m n m n m n m n +--+--+,其中12m =-,n =2.23.(本小题满分7分)已知()25a b +=,()23a b -=,求下列式子的值: (1)22a b +; (2)6ab .24.(本小题满分8分)小安的一张地图上有A ,B ,C 3三个城市,地图上的C 城市被墨污染了(如图),但知道∠ABC =∠α,∠ABC =∠β,你能用尺规作图帮他在下图中确定C 城市的具体位置吗?(不作法,保留作图痕迹)25.(本小题满分8分)如图,直线AB //CD ,BC 平分∠ABD ,∠1=65°,求∠2的度数.第25题图26.(本小题满分12分)如图,在△AB C中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,试判断DG与BC的位置关系,并说明理由.第26题图27.(本小题满分12分)周末,小明坐公交车到滨海公园游玩,他从家出发0.8小时后达到中心书城,逗留一段时间后继续坐公交车到滨海公园,小明离家一段时间后,爸爸驾车沿相同的路线前往海滨公园. 如图是他们离家路程s(km)与小明离家时间t(h)的关系图,请根据图回答下列问题:(1)图中自变量是____,因变量是______;(2)小明家到滨海公园的路程为____ km,小明在中心书城逗留的时间为____ h;(3)小明出发______小时后爸爸驾车出发;(4)图中A点表示___________________________________;(5)小明从中心书城到滨海公园的平均速度为______km/h,小明爸爸驾车的平均速度为______km/h;(补充;爸爸驾车经过______追上小明);(6)小明从家到中心书城时,他离家路程s与坐车时间t之间的关系式为________.第27题图答案与解析一、选择题:(每题3分,共30分) 1.下列代数运算正确的是( ) A.66x x x ⋅= B.()3322x x =C.()2224x x +=+D.()326x x =【答案】:D3. 目前,世界上能制造出的最小晶体管的长度只有0.00000004m ,将0.00000004用科学记数法表示为( ) A.8410⨯B.8410-⨯C.80.410⨯D.8410-⨯【答案】:B3.下面是一名学生所做的4道练习题:①224-=;②336a a a +=;③44144mm -=;④()3236xy x y =。
初中数学试卷鼎尚图文**整理制作茂名市育才中学11—12学年七年级(下)期中考试数 学 试 题【注意:请将答案做在答题卷的指定位置】一、选择题(每小题3分,本大题共45分)1.(2011盐城)已知a ﹣b =1,则代数式2a ﹣2b ﹣3的值是( )A.﹣1B.1C.﹣5D.52.如图,∠1和∠2是对顶角的图形个数有( ).甲21乙12丙12丁21A .1个B .2个C .3个D .4个 3.(2011郴州)下列计算,正确的是( )A 、x 2+x 3=x 5B 、x 2•x 3=x 6C 、(x 2)3=x 5D 、2x ﹣3x=﹣x4.轮船航行到B 处观测小岛A 的方向是北偏西32°,那么小岛A 观测到轮船B 的方向是( ).A.南偏西32°B.南偏东32°C.南偏西58°D.南偏东58° 5.下列运算正确的是( ).A .ab b a 532=+B .b a b a -=-4)2(2C .22))((b a b a b a -=-+D .222)(b a b a +=+6. 对于四舍五入得到的近似数53.2010⨯,下列说法正确的是( ).A .有3个有效数字,精确到百分位B .有3个有效数字,精确到千位C .有2个有效数字,精确到万位D .有6个有效数字,精确到个位32°北北BA第4题7.下列算式能用平方差公式计算的是( ) A.(2)(2)a b b a +- B.)121)(121(--+x x C.(3)(3)x y x y --+ D. ()()m n m n -+-- 8.如图,AB ∥CD ,下列结论中错误..的是( ). A .21∠=∠ B .18052=∠+∠ C .018032=∠+∠ D . 18043=∠+∠9. 长方形面积是a ab a 6332+-,一边长为3a ,则它的周长是( ).A. 22a b -+B. 82a b -C. 824a b -+D. 42a b -+10.在电子显微镜下测得一个圆球体细胞的直径是5510cm -⨯.3102⨯个这样的细胞排成的细胞链的长是( ).A .cm 110-B .cm 210-C .cm 310-D .cm 410-11. 已知0x ≠,22(21)(21)M x x x x =++-+,22(1)(1)N x x x x =++-+,则M 与N 的大小关系是( ).A. M >NB. M <NC. M N =D.无法确定12.任意给定一个非零数,按下列程序计算,最后输出的结果是( ).m 平方 -m ÷m +2 结果A .mB .2m C .1m + D .1m - 13.如图,边长为(3)m +的正方形纸片剪出一个边长为m 的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是( ). A .23m + B .26m + C .3m + D .6m +14.如图,直线,a b 被直线c 所截,现给出下列四个条件:①∠1=∠5;②∠4=∠6;③∠4+∠5=180°;④∠2+∠7=180°.其中能判定a ∥b 的条件的个数有( ).A.1个B.2个C.3个D.4个15.用棋子摆出下列一组“口”字,按照这种方法摆下去,则摆第n 个“口”字需用棋子( ).第13题m +3m3a bc56784321第14题第8题45312ABC DEFG HA .4n 枚B .(44)n - 枚C .(44)n +枚D .2n 枚茂名市育才中学11—12学年七年级(下)期中考试数 学 试 题答题卷(时间:120分钟 总分120分)题号 一 二 三 总分 得分一、选择题(3×15=45) 题号 1 2 3 4 5 6 7 8 9 10 答案题号 11 12 13 14 15 答案二、解答题(第16题20分,第17~22题每题6分,本大题共56分) 16.计算:(每小题5分,共20分) (1)401322()7-⨯÷- (2)23243(2)(7)(14)x y xy x y ⋅-÷第2个“口” 第1个“口” 第3个“口”第n 个“口”………………?(3)2(5)(2)(3)x x x ---- (4)22()()()2(2)a b a b a b a a ⎡⎤+-++-÷-⎣⎦17. 如图,AB ∥CD ,直线EF 分别交AB 、CD 于点E 、F ,EG 平分AEF ∠,交CD 于G .已知∠1=40°,求∠2的度数.18. 某同学在计算一个多项式乘以23x -时,因抄错运算符号,算成了加上23x -,得到的结果是241x x -+,那么正确的计算结果是多少?19. 如图,在ABC ∆中,延长BC 至D ,060,45A B ∠=∠=. (1)过点C 作直线CE ∥AB (尺规作图,不写作法,保留作图痕迹);(2)求ACD ∠的度数.21G FEABC DDAB CSY 中学各年级的植树情况 统计图七年级180°九年级八年级30%20.已知221x x -=,求2(1)(31)(1)x x x -+-+ 的值.21.今年植树节,我市SY 中学的同学们都参加了植树活动,其中七年级植树200棵.小聪用扇形统计图统计了今年植树三个年级所占百分比的情况,如图1所示. 小明用象形统计图对各年级的植树情况进行了统计,如图2所示.七年级 八年级九年级根据以上信息,解决下列问题:(1)七年级今年植树棵数占三个年级植树棵数的百分比是多少? (2)三个年级今年一共植树多少棵? (3)指出图2的象形统计图中的每一个 的含义;(4)补全图2中的象形统计图.22.如图,点E 在DF 上,点B 在AC 上,12∠=∠,C D ∠=∠. 试说明:AC ∥DF .将过程补充完整. 解:∵12∠=∠(已知)1234DACEFB 图1 图213∠=∠( ) ∴23∠=∠(等量代换)∴ ∥ ( ) ∴C ABD ∠=∠ ( ) 又∵C D ∠=∠(已知)∴D ABD ∠=∠( )∴AC ∥DF ( )三、综合解答题(第23题9分,第24题10分,本大题共19分)23. 某超市今年2月份的销售收入比1月份有所下降.3月份的销售收入比1月份的销售收入增长了92%,且比2月份的销售收入翻了一番.(1)求该超市今年2月份的销售收入比1月份下降了百分之几?(2)若该超市今年1~3月份每月的销售分别获得了25%、20%、20%的利润,求该超市今年第一..季度..销售的利润率.(=+销售收入成本利润,=100%⨯利润利润率成本)24. 如图,已知直线AB //CD ,0100A C ∠=∠=,E 、F 在CD 上,且满足DBF ABD ∠=∠,BE 平分CBF ∠.(1)求DBE ∠的度数.(2)若平行移动AD ,那么BFC ∠:BDC ∠的比值是否随之发生变化?若变化,找出变化规律;若不变,求出这个比值.(3)在平行移动AD 的过程中,是否存在某种情况,使BEC ADB ∠=∠?若存在,求出其度数;若不存在,请说明理由.E F A D BC参考答案一、选择题(3×15=45) 1~5 AADBC 6~10 BDCDA 11~15 BCADA二、解答题(第16题20分,第17~22题每题6分,共56分) 16.计算:(5×4=20) (1)2;(2)424x y - ; (3)519;x -+(4).b - 17.02100∠=.18. 这个多项式是222(41)(3)441x x x x x -+--=-+,(3分)正确的计算结果是:22432(441)(3)12123.x x x x x x -+⋅-=-+-(3分) 19. (1)作图略;(3分)(2)0105ACD ∠=.(3分)20.22(1)(31)(1)242x x x x x -+-+=-- (3分) 22(2)20x x =--=. (3分) 21.(1)180130%20%360--=(1分);(2)20020%1000÷=(2分);(3)每一个 表示植树50棵(2分);(4)补4个(1分).22.①对顶角相等,②BD ∥CE ,③同位角相等,两直线平行,④两直线平行,同位角相等,⑤等量代换,⑥内错角相等,两直线平行.(每空1分)三、综合解答题(第23题9分,第24题10分,共19分)23. (1)设该超市今年1月份的销售收入为a 元,2月份的销售收入比1月份下降的百分数为x .则:2(1)(192%)a x a -=+,0.044%x ==;(3分)(2)该超市今年第一季度销售收入:0.96 1.92 3.88a a a a ++=;(1分)第一季度的成本:0.96 1.92 3.2125%120%120%a a aa ++=+++;(3分)第一季度销售的利润率:3.88 3.221.25%3.2a aa-=.(2分) E F ADBC24.(1)∵AB //CD ,∴018080ABC C ∠=-∠=,∴01402DBE ABC ∠=∠=;(3分) (2)∵AB //CD ,∴2BFC ABF ABD ∠=∠=∠,ABD BDC ∠=∠,∴2BFC BDC ∠=∠,∴BFC ∠:BDC ∠=2;(3分)(3)设0ABD DBF BDC x ∠=∠=∠=.∵AB //CD ,∴040BEC ABE x ∠=∠=+; ∵AB //CD ,∴018080ADC A ∠=-∠=,∴080ADB x ∠=-.若BEC ADB ∠=∠,则04080x x +=-,得020x =. ∴存在060BEC ADB ∠=∠=.(4分)。