函数基础知识基础测试题及答案解析
- 格式:doc
- 大小:883.50 KB
- 文档页数:17
温馨提醒:成功不是凭梦想和希望,而是凭努力和实践过关检测一、选择题1.函数y= 2-x + 1 (x>0) 的反函数是(A.y = log2 x 1, x €( 1,B.y =—1og2 x 1 , x €( 1 ,2)C.y = log2 xf(x) 2.已知(A)(0,1)(3a 1)x2】4a, xlog a x, xD.y = —1og2 x2】)上的减函数,那么a的取值范围是1(B) (0, 3)(C)[7,3) (D) [7,1)3•在下列四个函数中,满足性质: “对于区间(1,2)上的任意X1,X2(X1 X2) |f(X1) f(X2)| |X2 x1 | 恒成立”的只有(A)1f (x)X (B)x |x|(C)f(x) 2x(D)f(x) x24.已知f (x)是周期为2的奇函数,当01时, f (x) |g x.设6f( ),b5(A)(B)(C)(D) c a5•函数A.6、A. f(x)3x21 xlg(3x 1)的定义域是(1,)F列函数中,3y x ,x(B.(C.1 13‘3D. 在其定义域内既是奇函数又是减函数的是B y sinx , x RC y x , x17、函数y f(x)的反函数y f (x)的图像与y轴交于点P(°,2)(如右图所示),则方程f(x) 0在[1,4]上的根是X A.4 B.3 C. 2 D.1 8设f(x)是R上的任意函数,则下列叙述正确的是(A) f(X)f( X)是奇函数(B)f (x)|f ( x)|3 5I 9,则1D.是奇函数(C) f (x)f( x)是偶函数(D) f(x)f( x)是偶函数9、已知1函数y e白勺图象与函数y f x的图象关于直线A. f2x e (x R) f 2xB.C. f2x2e x(x R) f 2xD.2e x1,x< 2,则f (f (2))的值为f(x)10、设Iog3(x2 1), x 2.(A)0(B)1(C)2 (D)3a,a b11、对a, b R,记max{a, b}= b,a<b,函数f(x)= max{|x + 1|, |x—2|}(xy x对称,则In 2gn x(x 0)In x In 2(x 0)R)的最小值是(A)01(B) 23(C) 2(D)32 212、关于x的方程(x 1)k 0,给出下列四个命题:①存在实数k,使得方程恰有2个不同的实根;②存在实数k,使得方程恰有4个不同的实根;③存在实数k,使得方程恰有5个不同的实根;④存在实数k,使得方程恰有8个不同的实根; 其中假命题的个数是A. 0二、填空题13•函数对于任意实数X满足条件f x 2f x f11 5,则g(x) 14.设xe ,xInx,x0.°.则1g(g(2))15.已知函数1a 2x 1,若X为奇函数,则a16.设 a 0,a 解答题,函数f(x)2loga(x 2x 3)有最小值,则不等式loga(x 1) 0的解集为17.设函数f (x)x24x 5(1)在区间[2,6]上画出函数f(X)的图像;(2)设集合 A x f(x) 5 , 2] [0, 4] [6,).试判断集合A和B之间的关系,并给出证明;f (x)19.已知定义域为R的函数x2 bx 12 a 是奇函数。
人教版初中数学函数根底知识经典测试题附答案一、选择题1 .如图,正方形 ABCD 中,AB=4cm,点E 、F 同时从C 点出发,以1cm/s 的速度分别沿CB- BA 、CD- DA 运动,到点A 时停止运动.设运动时间为 t (s) , AAEF 的面积为S (cm 2),那么S (cm 2)与t (s)的函数关系可用图象表示为()S=-' (t-4) 2+8,此时抛物线的开口向下,顶点坐标为(8);当4vtwS 寸,直接根据三角形面积公式得到S=^ (8-t) 2A (t-8)2,开口向上,顶点坐标为(8, 0),于是根据这些特征可对四个选项进行判断. 解:当 0< t W 附,S=S 正方形 ABCD- S MDF- S MBE- S ACEF -吉(L4) 2+8;当 4v t w 时,S=;j? (8 - t) 2=;j (t - 8) 2. 乙 乙 应选D.考点:动点问题的函数图象.2.如图1,在矩形ABCD 中,动点P 从点A 出发,以相同的速度,沿 A- B-Cf AA 方向 运动到点A 处停止.设点P运动的路程为x, APAB 的面积为y,如果y 与x 的函数图象如 图2所示,那么矩形 ABCD 的面积为〔〕4,此时抛物线=4?4—工?4? (4 —t)?4? (4-t)-・?t?t1 7t 2+4t12—t 2+4t,配成顶点式得【解析】试题分析:分类讨论:当0WtW 附,利用S=S 正方形ABCD- Sm DF :- S MBE- S^CEF 可得S=~A. 24B. 40C. 56D. 60【答案】A【解析】【分析】由点P的运动路径可得APAB面积的变化,根据图2得出AB、BC的长,进而求出矩形ABCD的面积即可得答案.【详解】•・•点P在AB边运动时,APAB的面积为0,在BC边运动时,APAB的面积逐渐增大,・•・由图2 可知:AB=4, BC=10-4=6,...矩形ABCD的面积为ABBC=24,应选:A.【点睛】此题考查分段函数的图象,根据APAB面积的变化,正确从图象中得出所需信息是解题关键.【答案】D【解析】根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.应选D.4.药品研究所开发一种抗菌新药,经过多年的动物实验之后首次用于临床人体试验,测得成人服药后血液中药物浓度y 〔微克/毫升〕与服药后的时间x 〔时〕之间的函数关系如图所示,那么当1&x&6, y的取值范围是〔〕【分析】 值,从而确定y 的范围. 【详解】解:设当0系k 3时,设y kx, 3k 8, 解得:k 8, 38 y :x ; 3当 3 x, 14 时,设 y ax b ,3a b 8 14a b 08a — 11一 112b ——118 112 —x — 11 11当x 1时,y 8,当x 3时,y 有最大值8,当x 6时,y 的值是一4,3 ' ' 11・•・当假Ox 6时,y 的取值范围是8蒯y 8.3【点睛】此题主要考查了求一次函数表达式和函数图象的读图水平.要能根据函数图象的性质和图 象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.5,以下说法:①函数y J x 6的自变量x 的取值范围是x 6;②对角线相等的四边形 是矩形;③正六边形的中央角为 60 ;④ 对角线互相平分且相等的四边形是菱形; 算|J9 2 |的结果为7:⑥相等的圆心角所对的弧相等; ⑦血 我7的运算结果是无理数.其中正确的个数有〔〕A. 1个B. 2个C. 3个D. 4个【答案】BA. 8 64 - W y W —3 1164 ° B - W y W 811D. 8< y<16根据图像分别求出怎k 3和3 x, 14时的函数表达式,再求出当x=1, x=3, x=6 时的 y解得:8 6 42【解析】【解析】【分析】根据正多边形和圆,无理数的定义,二次根式的加减运算,菱形的判定,矩形的判定,函数自变量的取值范围解答即可. 【详解】解:①函数y J X—6的自变量x的取值范围是x 6;故错误;②对角线相等且互相平分的四边形是矩形;故错误;③正六边形的中央角为60°;故正确;④对角线互相平分且垂直的四边形是菱形;故错误;⑤计算|内-2|的结果为1;故错误;⑥同圆或等圆中,相等的圆心角所对的弧相等;故错误;⑦,12 . 27 2.3 3.3 3是无理数;故正确.应选:B.【点睛】此题考查了正多边形和圆,无理数的定义,二次根式的加减运算,菱形的判定,矩形的判定,函数自变量的取值范围,熟练掌握各知识点是解题的关键.6.如图,在Rt^PMN 中,/ P=90°, PM=PN, MN=6cm ,矩形ABCD中AB=2cm, BC=10cm,点C和点M重合,点B、C 〔M〕、N在同一直线上,令RtAPMN不动,矩形ABCD沿MN所在直线以每秒1cm的速度向右移动,至点C与点N重合为止,设移动x秒后,矩形ABCD与4PMN重叠局部的面积为V,那么y与x的大致图象是〔〕B c砌y【答案】A【解析】分析:在RtAPMN中解题,要充分运用好垂直关系和45度角,由于此题也是点的移动问题,可知矩形ABCD以每秒1cm的速度由开始向右移动到停止,和Rt4PMN重叠局部的形状可分为以下三种情况,(1) 0WxW;2 (2) 2<x<4 (3) 4VXW0根据重叠图形确定面积的求法,作出判断即可.详解:•. / P=90°, PM=PN,• ./ PMN=/ PNM=45 ,由题意得:CM=x,分三种情况:①当0W X却力,如图1 ,• •• / PMN=45 ,・•.△ MEC 是等腰直角三角形,此时矩形ABCD 与4PMN 重叠局部是^£“6 ..1 ______ 1 2. .y=S/^MC = —CM?CE=X ;22应选项B 和D 不正确; ②如图2,PB图2当D 在边PN 上时,过 P 作PF± MN 于F,交AD 于G,• •• / N=45 , CD=2, .•.CN=CD=2, .•.CM=6- 2=4,即此时x=4, 当2vxW4时,如图3,矩形ABCD 与 4MN 重叠局部是四边形 EMCD, 过E 作EFL MN 于F,.-.EF=MF=2, ED=CF=x- 2,,c 1…1 ,- y=S 梯形 EMCD =—CD? (DE+CM) =- 2(x2 x) =2x — 2; 2 2③当4vxW6时,如图4,矩形ABCD 与ARMN 重叠局部是五边形 EMCGF,过E 作Ehl± MN 于H, .•.EH=MH=2, DE=CH=x - 2,. MN=6, CM=x, .•.CG=CN=6- x,图F E.•.DF=DG=2- (6-x) =x- 4,1 12 1 - - 1 , .、2 • • y-S 梯形EMCD S ZTDG— CD (DE CM ) - - DG =—x 2 Xx- 2+x) - —(x 4)=-2 2 2 212—x +10x- 18,2应选项A正确;应选:A.点睛:此题是动点问题的函数图象,有难度,主要考查等腰直角三角形的性质和矩形的性质的应用、动点运动问题的路程表示,注意运用数形结合和分类讨论思想的应用.7.假设A(-3, y1)、B(0, y2)、C(2, y3)为二次函数y= (x+1) 2+1 的图象上的三点,那么y1、y2、y3的大小关系是()A. y1V y2〈y3B. y2V y1〈y3C. y3<yK y2D. yKy3< y2【答案】B【解析】【分析】把三个点的坐标代入二次函数解析式分别计算出那么y〔、y2、y3的值,然后进行大小比拟.【详解】解:: A (- 3, y1)、B (0, y2)、C (2, y3)为二次函数y= (x+1) 2+1 的图象上的三点,•-y1= (— 3+1) 2+1 = 5, y2= (0+1) 2+1 = 2, y3= (2+1) 2+1 = 10,•1- y2V y1< y3.应选:B.【点睛】此题考查了比拟函数值大小的问题,掌握二次函数的性质、代入法是解题的关键.8.如图,矩形OABC, A (4, 0) , C (0, 4),动点P从点A出发,沿A- B-C-Q 的路线匀速运动,设动点P的运动路程为t, 4OAP的面积为S,那么以下能大致反映S与t之间关系的图象是〔)【答案】A【解析】【分析】分三段求解:①当P在AB上运动时;②当P在BC上时;③当P在CO上时;分别求出S关于t的函数关系式即可选出答案.【详解】解:••• A 〔4, 0〕、C 〔0, 4〕,,-.OA = AB= BC= OC= 4,1 _ _ 1 一①当P由点A向点B运动,即0 t 4, S = -OAgAP =-创4 t = 2t ;2 1 一②当P由点A向点B运动,即4 t 8, S= -OAgAB= —创4 4= 8 ;3 2_ 1 1…③当P 由点A 向点B运动,即8 t 12, S= 2OAgCP =-创4 〔12- t〕= - 2t + 24 ;结合图象可知,符合题意的是 A.应选:A.【点睛】此题主要考查了动点问题的函数图象,解题的关键是根据图形求出S关于t的函数关系式.9.如图,矩形ABCD中,AB 6cm, BC 3cm,动点P从A点出发以1cm/秒向终点B运动,动点Q同时从A点出发以2cm/秒按A D C B的方向在边AD ,2DC , CB上运动,设运动时间为x 〔秒〕,那么APQ的面积y cm 随着时间x〔秒〕变化的函数图象大致为〔〕【答案】A【解析】【分析】根据题意分三种情况讨论祥PQ面积的变化,进而得出9PQ的面积y (cm2)随着时间x (秒)变化的函数图象大致情况.【详解】解:根据题意可知:AP=x, Q点运动路程为2x,①当点Q在AD上运动时,1 1y= -AP?AQ= —x?2x= x2,图象为开口向上的二次函数;2 2②当点Q在DC上运动时,y= AP?DA= — x X 3= - x ,是一次函数;2 2 2③当点Q在BC上运动时,1 1y= -AP?BQ= x?(12-2x) =-x2+6x,为开口向下的二次函数,2 2结合图象可知A选项函数关系图正确,应选:A.【点睛】此题考查了动点问题的函数图象,解决此题的关键是分三种情况讨论三角形APQ的面积变化.10. 一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,y 〔千米〕与快车行驶时间t 〔小时〕之间的函数图象【答案】C【解析】分三段讨论:①两车从开始到相遇,这段时间两车距迅速减小;②相遇后向相反方向行驶至特快到达甲地,这段时间两车距迅速增加;③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大;结合图象可得C选项符合题意.应选C.11 .如图,矩形ABCD的周长是28cm,且AB比BC长2cm.假设点P从点A出发,以那么图中折线大致表示两车之间的距离1cm/s的速度沿A D C方向匀速运动, A B C方向匀速运动,当一个点到达点时间为t〔s〕, VAPQ的面积为S cm2,那么同时点Q从点A出发,以2cm/s的速度沿C时,另一个点也随之停止运动.假设设运动2S cm 与t〔s〕之间的函数图象大致是〔【答案】A【解析】【分析】先根据条件求出AR AD的长,当0WtW叱Q在边AB上,P在边AD上,如图1 ,计算S 与t的关系式,分析图像可排除选项B、C;当4<tw时,Q在边BC上,P在边AD上,如图2,计算S与t的关系式,分析图像即可排除选项D,从而得结论.【详解】解:由题意得2AB 2BC 28, AB BC 2,可解得AB 8, BC 6,即AD 6,①当0Wt司寸,Q在边AB上,P在边AD上,如图1 ,1 1 .〜,2S ZAPQ=— APgAQ 5tg2t t2,图像是开口向上的抛物线,应选项B、C不正确;② 当4vtw时,Q在边BC上,P在边AD上,如图2,1 1S ZAPQ=~APgAB -t 8 4t, 图像是一条线段,应选项D不正确;应选:A.【点睛】此题考查了动点问题的函数图象,根据动点解决此题的关键是利用分类讨论的思想求出P和Q的位置的不同确定三角形面积的不同, S与t的函数关系式.12 .甲、乙两同学骑自行车从A地沿同一条路到B地,乙比甲先出发,他们离出发地的距离S (km)和骑行时间t(h)之间的函数关系如下图,给出以下说法:①他们都骑行了20km;②乙在途中停留了0.5h;③甲、乙两人同时到达目的地;④ 相遇后,甲的速度小于乙的速度.根据图象信息,以上说法正确的有〔0 〞1 2 2.5 魏A. 1个B. 2个C. 3个D. 4个【答案】B【解析】试题分析:根据图象上特殊点的坐标和实际意义即可作出判断.由图可获取的信息是:他们都骑行了20km;乙在途中停留了0.5h;相遇后,甲的速度? 乙的速度,所以甲比乙早0.5小时到达目的地,所以〔1〕〔2〕正确.应选B.考点:此题考查的是学生从图象中读取信息的数形结合水平点评:同学们要注意分析其中的关键点〞,还要善于分析各图象的变化趋势.13 .如下图:边长分别为1和2的两个正方形,其一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t ,大正方形内除去小正方形局部的面积为S 〔阴影局部〕,那么S与t的大致图象应为〔【答案】A【解析】【分析】【详解】解:根据题意,设小正方形运动速度为 V ,由于V 分为三个阶段,①小正方形向右未完成穿入大正方形,S 2 2 vt 1 4 vt 〔vt < 1〕.②小正方形穿入大正方形但未穿出大正方形, S 2 2 1 1 3,③小正方形穿出大正方形,S 2 2 〔1 1 vt 〕 3 vt 〔vt< 1〕,符合变化趋势的是 A 和C, 〔1 C 中面积减小太多不符合实际情况, ,只有A 中的符合实际情况. 应选A.14 . 2021年,中国少年岑小林在第六届上海国际交互绳大赛上,破跳次数最多〞吉尼斯世界纪录!实践证实1分钟跳绳的最正确状态是前最后10秒冲刺,中间频率保持不变,那么跳绳频率〔次 /秒〕与时间用以下哪幅图来近似地刻画〔〕小特毕次,秒〕0 20 5060时间I 件〕 【答案】C 【解析】 【分析】根据前20秒频率匀速增加,最后 10秒冲刺,中间频率保持不变判断图象即可. 【详解】解:根据题意可知,中间 20: 50秒频率保持不变,排除选项 A 和D,再根据最后10秒冲刺,频率是增加的,排除选项 B,因此,选项C 正确.应选:C. 【点睛】此题考查的知识点是一次函数的实际应用,理解题意是解此题的关键.“ 3眇内单脚单摇轮换 20秒频率匀速增加,〔秒〕之间的关系可以A.* 20 5.f©时间〔秒〕C.惋嘴次/秒〕15.某班同学在研究弹簧的长度跟外力的变化关系时,实验记录得到相应的数据如下表:祛码的质量x/g050100150200250300400500指针位置y/cm2345677.57.57.5【答案】B【解析】【分析】通过〔0, 2〕和〔100, 4〕利用待定系数法求出一次函数的解析式,再比照图象中的折点即可选出答案.【详解】解:由题干内容可得,一次函数过点〔0, 2〕和〔100, 4〕.设一次函数解析式为y=kx+b, 代入点〔0,2〕和点〔100,4〕可解得,k=0.02, b=2.那么一次函数解析式为y=0.02x+2.显然当y=7.5 时,x=275,应选B.【点睛】此题主要考查函数的图象和性质,利用待定系数法求一次函数解析式.16.如下图,边长分别为1和2的两个正方形靠在一起,其中一边在同一水平线上.大正方形保持不动,小正方形沿该水平线自左向右匀速运动,设运动时间为t,大正方形内去掉小正方形重叠局部后的面积为s,那么s与t的大致图象应为〔〕A. AB. BC. CD. D【答案】D【解析】根据题意,设小正方形运动的速度为v,分三个阶段;①小正方形向右未完全穿入大正方形, S=2X 2-vt X 1=4-vt②小正方形穿入大正方形但未穿出大正方形, S=2X 2-1 X 1=3③小正方形穿出大正方形,S=VtXJ分析选项可得,D符合,应选D.【点睛】此题考查了动点问题的函数图象,解决此类问题,注意将过程分成几个阶段,依次分析各个阶段得变化情况,进而综合可得整体得变化情况.17 .如图1.正祥BC中,E, F, G分别是AB, BC, CA上的点,且AE= BF= CG,设△EFG的面积为v, AE的长为x, y关于x的函数图象如图2,那么4EFG的最小面积为A.当B. —C. 2D. 5/3【答案】A【解析】【分析】此题根据图2判断在FG的面积y最小时和最大时分别对应的x值,从而确定AB, EG的长度,求出等边三角形EFG的最小面积.【详解】由图2可知,x=2时4EFG的面积y最大,此时E与B重合,所以AB= 2,,等边三角形ABC的高为B,等边三角形ABC的面积为J3,由图2可知,x= 1时AEFG的面积y最小,此时AE= AG= CG= CF= BG= BE,显然AEGF是等边三角形且边长为1 ,所以4EGF的面积为^3,4应选A.【点睛】此题是运动型综合题,考查了动点问题的函数图象等边三角形等知识点.解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.18 .甲、乙两人在一条长为600m的笔直道路上均匀地跑步,速度分别为4m/s和6m/s,起跑前乙在起点,甲在乙前面50m处,假设两人同时起跑,那么从起跑出发到其中一人先到达终点的过程中,两人之间的距离y(m)与时间t(s)的函数图象是( )【答案】C【解析】【分析】甲在乙前面50m处,假设两人同时起跑,在经过25秒,乙追上甲,那么相距是0千米,相遇以后乙在前边,相距的距离每秒增加2米,乙全程用的时间是100秒,那么相遇以后两人之间的最大距离是150米,据此即可作出判断.【详解】甲在乙前面50m处,假设两人同时起跑,经过50+ (6-4) =25秒,乙追上甲,那么相距是0千米,故A、B错误;相遇以后乙在前边,相距的距离每秒增加2米,乙全程用的时间是600+ 6=100#,故B.、D错误;相遇以后两人之间的最大距离是: 2 X (100-25)=150米.应选C.【点睛】此题主要考查函数的图象,理解函数图象上点的坐标的实际意义,掌握行程问题中的根本数量关系:速度刈寸间=距离,是解题的关键.19 .如图,点P是?ABCD边上的一动点,E是AD的中点,点P沿E- Df C-B的路径移动,设P点经过的路径长为x, ABAP的面积是v,那么以下能大致反映y与x的函数关系的3C【答案】D【解析】【分析】根据题意分类讨论,随着点P位置的变化,4BAP的面积的变化趋势. 【详解】通过条件可知,当点P与点E重合时,4BAP的面积大于0;当点P在AD边上运动时,ABAP的底边AB不变,那么其面积是x的一次函数,面积随x增大而增大;当P在DC 边上运动时,由同底等高的三角形面积不变, ABAP面积保持不变;当点P带CB边上运动时,ABAP的底边AB不变,那么其面积是x的一次函数,面积随x增大而减小;应选D.【点睛】此题以动点问题为背景,考查了分类讨论的数学思想以及函数图象的变化规律.20 .如图1,在扇形OAB中, O 60 ,点P从点O出发,沿O A B以1cm/s2的速度匀速运动到点B,图2是点P运动过程中,VOBP的面积y cm 随时间x s变D. 2^2 ,2 2 2~2-3【答案】B【解析】【分析】,3 ,由此可求得a的值,再利用弧长公式进而求得b的值结合函数图像中的〔a, 4百〕可知OB=OA=q S ZAOB=4即可.【详解】解:由图像可知,当点P到达点A时,OB=OA=a, S IAOB= 473 ,过点A 作AD ,OB 交OB 于点D,AD ・•・在 RtAAOD 中,sin/AOD=U AO • •• / AOB=60 ,「.sin60=殷殷/ AO a 2 '..AD 哼 a,, S Z\AOB = 4 J 3 ,• '1 — a —— a 4-J 3 , 2 2• •a=4 〔舍负〕,应选:B.此题是动点函数图象问题,考查了扇形弧长、解直角三角形等相关知识,解答时注意数形 结合思想的应用.那么/AOD=90 , ・•・弧AB 的长为:604土1803。
函数基础知识经典测试题附解析一、选择题1.下列各曲线中,表示y是x的函数的是()A.B.C.D.【答案】B【解析】【分析】根据函数的意义即可求出答案.【详解】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以B 正确.故选:B.【点睛】此题考查函数图象的概念.解题关键在于要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.2.李明骑车上学,一开始以某一速度行进,途中车子发生故障,只好停下修车,车修好后,因怕耽误时间,于是加快了车速.如用s表示李明离家的距离,t为时间.在下面给出的表示s与t的关系图中,符合上述情况的是()A.B.C.D.【答案】C【解析】【分析】先弄清题意,再分析路程和时间的关系.【详解】∵停下修车时,路程没变化,观察图象,A、B、D的路程始终都在变化,故错误;C、修车是的路程没变化,故C正确;故选:C.【点睛】考核知识点:函数的图象.理解题意看懂图是关键.3.下列各曲线中表示y是x的函数的是()A.B.C.D.【答案】D【解析】根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.4.已知圆锥的侧面积是8πcm2,若圆锥底面半径为R(cm),母线长为l(cm),则R关于l的函数图象大致是()A.B.C.D.【答案】A【解析】【分析】根据圆锥的侧面展开图是扇形、扇形面积公式列出关系式,根据反比例函数图象判断即可.【详解】解:由题意得,12×2πR×l=8π,则R=8lπ,故选A.【点睛】本题考查的是圆锥的计算、函数图象,掌握圆锥的圆锥的侧面积的计算公式是解题的关键.5.下列说法:①函数y=x的取值范围是6x>;②对角线相等的四边形是矩形;③正六边形的中心角为60︒;④对角线互相平分且相等的四边形是菱形;⑤计算2|-的结果为7:⑥相等的圆心角所对的弧相等;理数.其中正确的个数有()A.1个B.2个C.3个D.4个【答案】B【解析】【分析】根据正多边形和圆,无理数的定义,二次根式的加减运算,菱形的判定,矩形的判定,函数自变量的取值范围解答即可.【详解】解:①函数y=x的取值范围是6x≥;故错误;②对角线相等且互相平分的四边形是矩形;故错误;③正六边形的中心角为60°;故正确;④对角线互相平分且垂直的四边形是菱形;故错误;⑤计算的结果为1;故错误;⑥同圆或等圆中,相等的圆心角所对的弧相等;故错误;==是无理数;故正确.故选:B.【点睛】本题考查了正多边形和圆,无理数的定义,二次根式的加减运算,菱形的判定,矩形的判定,函数自变量的取值范围,熟练掌握各知识点是解题的关键.6.在某次实验中,测得两个变量m和v之间的4组对应数据如下表:则m与v之间的关系最接近于下列各关系式中的()m1234v0.01 2.98.0315.1A.v=2m﹣2 B.v=m2﹣1 C.v=3m﹣3 D.v=m+1【答案】B【解析】一般情况下是把最大的一对数据代入函数关系式后通过比较得出最接近的关系式.解:当m=4时,A、v=2m﹣2=6;B、v=m2﹣1=15;C、v=3m﹣3=9;D、v=m+1=5.故选B.7.如图所示,菱形ABCD中,直线l⊥边AB,并从点A出发向右平移,设直线l在菱形ABCD内部截得的线段EF的长为y,平移距离x=AF,y与x之间的函数关系的图象如图2所示,则菱形ABCD的面积为()A.3 B3C.3D.3【答案】C【解析】【分析】将图1和图2结合起来分析,分别得出直线l过点D,B和C时对应的x值和y值,从而得出菱形的边长和高,从而得其面积.【详解】解:由图2可知,当直线l过点D时,x=AF=a,菱形ABCD的高等于线段EF的长,此时y=EF3;直线l向右平移直到点F过点B时,y3;当直线l过点C时,x=a+2,y=0∴菱形的边长为a+2﹣a=2∴当点E 与点D 重合时,由勾股定理得a 2+2(3)=4∴a =1 ∴菱形的高为3∴菱形的面积为23.故选:C .【点睛】本题是动点函数图象问题,将图形的运动与函数图象结合起来分析,是解决此类问题的关键,8.函数2x y x =-中自变量x 的取值范围是( ) A .x≠2B .x≥2C .x≤2D .x >2【答案】A【解析】【分析】根据分式的意义,进行求解即可.【详解】解:根据分式的意义得2-x≠0,解得x≠2故选:A【点睛】本题考查了求自变量的取值范围,函数自变量的范围一般从几个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.9.如图,矩形ABCD 中,6cm AB =,3cm BC =,动点P 从A 点出发以1cm /秒向终点B 运动,动点Q 同时从A 点出发以2cm /秒按A D C →→B →的方向在边AD ,DC ,CB 上运动,设运动时间为x (秒),那么APQ ∆的面积()2cm y 随着时间x (秒)变化的函数图象大致为( )A .B .C .D .【答案】A【解析】【分析】根据题意分三种情况讨论△APQ 面积的变化,进而得出△APQ 的面积y (cm 2)随着时间x (秒)变化的函数图象大致情况.【详解】解:根据题意可知:AP =x ,Q 点运动路程为2x ,①当点Q 在AD 上运动时,y =12AP•AQ =12x•2x =x 2,图象为开口向上的二次函数; ②当点Q 在DC 上运动时, y =12AP•DA =12x×3=32x ,是一次函数; ③当点Q 在BC 上运动时, y =12AP•BQ =12x•(12−2x )=−x 2+6x ,为开口向下的二次函数, 结合图象可知A 选项函数关系图正确,故选:A .【点睛】 本题考查了动点问题的函数图象,解决本题的关键是分三种情况讨论三角形APQ 的面积变化.10.在函数3y x =-中,自变量x 的取值范围是( ) A .3x <B .3x >C .3x ≥D .8,5OA OB ==u u u v u u u v【答案】C【解析】【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,二次根式有意义的条件是:被开方数为非负数.【详解】依题意,得x-3≥0,解得x≥3.故选C .【点睛】本题考查了二次根式的性质:二次根式的被开方数是非负数.11.若12x y x -=有意义,则x 的取值范围是( ) A .1x 2≤且x 0≠ B .1x 2≠ C .1x 2≤ D .x 0≠ 【答案】A【解析】【分析】根据二次根式有意义的条件和分式有意义的条件即可求出答案.【详解】 由题意可知:{12x 0x 0-≥≠,解得:1x 2≤且x 0≠, 故选A .【点睛】本题考查了分式有意义的条件、二次根式有意义的条件,熟练掌握分式的分母不为0、二次根式的被开方数为非负数是解题的关键.12.如图,正方形ABCD 的边长为2,动点P 从点D 出发,沿折线D →C →B 作匀速运动,则△APD 的面积S 与点P 运动的路程x 之间的函数图象大致是( )A .B .C.D.【答案】D【解析】【分析】分类讨论:当点D在DC上运动时,DP=x,根据三角形面积公式得到S△APD=x,自变量x的取值范围为0<x≤2;当点P在CB上运动时,S△APD为定值2,自变量x的取值范围为2<x≤4,然后根据两个解析式对各选项中的图象进行判断即可.【详解】解:当点D在DC上运动时,DP=x,所以S△APD=12AD•DP=12•2•x=x(0<x≤2);当点P在CB上运动时,如图,PC=x﹣4,所以S△APD=12AD•DC=12•2•2=2(2<x≤4).故选:D.【点睛】此题考查动点问题的函数图象,解题关键在于掌握分类讨论的思想、函数的知识、正方形的性质和三角形的面积公式.注意自变量的取值范围.13.如图甲,在四边形ABCD中,AD//BC,∠C=90°动点P从点C出发沿线段CD向点D运动.到达点D即停止,若E、F分别是AP、BP的中点,设CP=x,△PEF的面积为y,且y与x 之间的函数关系的图象如图乙所示,则线段AB长为()A.2B.3C.5D.6【答案】C【解析】【分析】根据三角形中位线定理,得到S△PEF=14S△ABP,由图像可以看出当x为最大值CD=4时,S△PEF=2,可求出AD=4,当x为0时,S△PEF=3,可求出BC=6;过点A作AG⊥BC于点G,根据勾股定理即可得解.【详解】解:∵E、F分别为AP、BP的中点,∴EF∥AB,EF=12 AB,∴S△PEF=14S△ABP,根据图像可以看出x的最大值为4,∴CD=4,∵当P在D点时,△PEF的面积为2,∴S△ABP=2×4=8,即S△ABD=8,∴AD=24ABDSV=284⨯=4,当点P在C点时,S△PEF=3,∴S△ABP=3×4=12,即S△ABC=12,∴BC=24ABCSV=2124⨯=6,过点A作AG⊥BC于点G,∴∠AGC=90°,∵AD∥BC,∴∠ADC+∠BCD=180°,∵∠BCD=90°,∴∠ADC=180°-90°=90°,∴四边形AGCD是矩形,∴CG=AD=4,AG=CD=4,∴BG=BC-CG=6-4=2,∴2242+5故选C.【点睛】本题主要考查了动点的函数问题,三角形中位线定理,勾股定理.14.如图,正方形ABCD中,AB=4cm,点E、F同时从C点出发,以1cm/s的速度分别沿CB﹣BA、CD﹣DA运动,到点A时停止运动.设运动时间为t(s),△AEF的面积为S (cm2),则S(cm2)与t(s)的函数关系可用图象表示为()A.B.C.D.【答案】D【解析】试题分析:分类讨论:当0≤t≤4时,利用S=S正方形ABCD﹣S△ADF﹣S△ABE﹣S△CEF可得S=﹣t2+4t,配成顶点式得S=﹣(t﹣4)2+8,此时抛物线的开口向下,顶点坐标为(4,8);当4<t≤8时,直接根据三角形面积公式得到S=(8﹣t)2=(t﹣8)2,此时抛物线开口向上,顶点坐标为(8,0),于是根据这些特征可对四个选项进行判断.解:当0≤t≤4时,S=S正方形ABCD﹣S△ADF﹣S△ABE﹣S△CEF=4•4﹣•4•(4﹣t)﹣•4•(4﹣t)﹣•t•t=﹣t2+4t=﹣(t﹣4)2+8;当4<t≤8时,S=•(8﹣t)2=(t﹣8)2.故选D.考点:动点问题的函数图象.15.“同辞家门赴车站,别时叮咛语千万,学子满载信心去,老父怀抱希望还.”如果用纵轴y表示父亲和学子在行进中离家的距离,横t表示离家的时间,下面与上述诗意大致相吻合的图象是()A.B.C.D.【答案】B【解析】【分析】首先正确理解小诗的含义,然后再根据时间与离家的距离关系找出函数图象.【详解】解:同辞家门赴车站,父亲和孩子的函数图象在一开始的时候应该一样,别时叮咛语千万,时间在加长,路程不变,学子满载信心去,学子离家越来越远,老父怀抱希望还,父亲回家离家越来越近,故选:B.【点睛】此题主要考查了函数图象,首先应理解函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.16.如图1.已知正△ABC中,E,F,G分别是AB,BC,CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,y关于x的函数图象如图2,则△EFG的最小面积为()A.34B3C.2 D3【答案】A 【解析】【分析】本题根据图2判断△EFG的面积y最小时和最大时分别对应的x值,从而确定AB,EG的长度,求出等边三角形EFG的最小面积.【详解】由图2可知,x=2时△EFG的面积y最大,此时E与B重合,所以AB=2,∴等边三角形ABC的高为3,∴等边三角形ABC的面积为3,由图2可知,x=1时△EFG的面积y最小,此时AE=AG=CG=CF=BG=BE,显然△EGF是等边三角形且边长为1,所以△EGF的面积为3,故选A.【点睛】本题是运动型综合题,考查了动点问题的函数图象等边三角形等知识点.解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.17.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h与时间t之间的关系的图象是()A.B.C.D.【答案】C【解析】【分析】首先看图可知,蓄水池的下部分比上部分的体积小,故h与t的关系变为先快后慢.【详解】根据题意和图形的形状,可知水的最大深度h与时间t之间的关系分为两段,先快后慢。
人教版初中数学函数基础知识基础测试题附答案解析一、选择题1.如图,点M 为▱ABCD 的边AB 上一动点,过点M 作直线l 垂直于AB ,且直线l 与▱ABCD 的另一边交于点N .当点M 从A→B 匀速运动时,设点M 的运动时间为t ,△AMN 的面积为S ,能大致反映S 与t 函数关系的图象是( )A .B .C .D .【答案】C【解析】分析:本题需要分两种情况来进行计算得出函数解析式,即当点N 和点D 重合之前以及点M 和点B 重合之前,根据题意得出函数解析式.详解:假设当∠A=45°时,2AB=4,则MN=t ,当0≤t≤2时,AM=MN=t ,则S=212t ,为二次函数;当2≤t≤4时,S=t ,为一次函数,故选C . 点睛:本题主要考查的就是函数图像的实际应用问题,属于中等难度题型.解答这个问题的关键就是得出函数关系式.2.如图,在ABC ∆中,90C =o ∠,30B ∠=o ,10AB cm =,P Q 、两点同时从点A 分别出发,点P 以2/cm s 的速度,沿A B C →→运动,点Q 以1/cm s 的速度,沿A C B →→运动,相遇后停止,这一过程中,若P Q 、两点之间的距离PQ y =,则y 与时间t 的关系大致图像是( )A .B .C .D .【答案】A【解析】【分析】根据题意分当05t ≤≤、5t >时两种情况,分别表示出PQ 的长y 与t 的关系式,进而得出答案.【详解】解:在ABC ∆中,90C =o ∠,30B ∠=o ,AB=10,∴AC=5, 12AC AB =, I. 当05t ≤≤时,P 在AB 上,Q 在AC 上,由题意可得:2AP t =,AQ t =, 依题意得:12AQ AP =, 又∵A A ∠=∠∴APQ ABC V :V , ∴90AQP C ∠=∠=︒ 则3PQ t =,II.当5t >,P 、Q 在BC 上,由题意可得:P 走过的路程是2t ,Q 走过的路程是t , ∴1533PQ t =+,故选:A .【点睛】此题主要考查了动点问题的函数图象,正确理解PQ 长与时间是一次函数关系,并得出函数关系式是解题关键.3.药品研究所开发一种抗菌新药,经过多年的动物实验之后首次用于临床人体试验,测得成人服药后血液中药物浓度y (微克/毫升)与服药后的时间x (时)之间的函数关系如图所示,则当16x ≤≤,y 的取值范围是( )A .864311y ≤≤B .64811y ≤≤C .883y ≤≤D .816y ≤≤【答案】C【解析】【分析】根据图像分别求出03x 剟和314x <„时的函数表达式,再求出当x=1,x=3,x=6时的y 值,从而确定y 的范围.【详解】解:设当03x 剟时,设y kx =, 38k ∴=, 解得:83k =, 83y x ∴=; 当314x <„时,设y ax b =+,∴38140a b a b +=⎧⎨+=⎩, 解得:81111211a b ⎧=-⎪⎪⎨⎪=⎪⎩, 81121111y x ∴=-+; ∴当1x =时,83y =,当3x =时,y 有最大值8,当6x =时,y 的值是6411, ∴当16x 剟时,y 的取值范围是883y 剟.故选:C .【点睛】本题主要考查了求一次函数表达式和函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.4.函数y =) A .7x >B .7x ≠C .7x ≤D .7x ≥ 【答案】C【解析】【分析】根据二次根式中,被开方数是非负数可得.【详解】函数y =70x -≥,所以7x ≤.故选:C【点睛】考核知识点:自变量求值范围.理解二次根式有意义的条件.5.函数中,自变量x 的取值范围是( ) A .x≠1B .x >0C .x≥1D .x >1【答案】D【解析】【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【详解】由题意得,x-1≥0且x-1≠0,解得x >1.故选D .【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.6.某天小明骑自行车上学,途中因自行车发生故障,修车耽误一段时间后继续骑行,按时赶到了学校.如图描述了他上学情景,下列说法中错误的是( )A.用了5分钟来修车B.自行车发生故障时离家距离为1000米C.学校离家的距离为2000米D.到达学校时骑行时间为20分钟【答案】D【解析】【分析】观察图象,明确每一段小明行驶的路程,时间,作出判断即可.【详解】由图可知,修车时间为15-10=5分钟,可知A正确;自行车发生故障时离家距离为1000米,可知B正确;学校离家的距离为2000米,可知C正确;到达学校时骑行时间为20-5=15分钟,可知D错误,故选D.【点睛】本题考查了函数图象,读懂图象,能从图象中读取有用信息的数形、分析其中的“关键点”、分析各图象的变化趋势是解题的关键.7.父亲节当天,学校“文苑”栏登出了某同学回忆父亲的小诗:“同辞家门赴车站,别时叮咛语千万,学子满载信心去,老父怀抱希望还.”如果用纵轴y表示父亲和学子在行进中离家的距离,横轴t表示离家的时间,下面与上述诗意大致相吻合的图像是()A.B.C.D.【答案】B【解析】【分析】正确理解函数图象即可得出答案.【详解】解:同辞家门赴车站,父亲和学子的函数图象在一开始的时候应该一样,当学子离开车站出发,离家的距离越来越远,父亲离开车站回家,离家越来越近.故选B.【点睛】首先应理解函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.8.在平面直角坐标系中有三个点的坐标:()()0,2,2,01(),3A B C ---,,从、、A B C 三个点中依次取两个点,求两点都落在抛物线2y x x 2=--上的概率是( )A .13B .16C .12D .23【答案】A【解析】【分析】先画树状图展示所有6种等可能的结果数,再找出两点都落在抛物线2y x x 2=--上的结果数,然后根据概率公式求解.【详解】解:在()()0,2,2,01(),3A B C ---,三点中,其中AB 两点在2y x x 2=--上, 根据题意画图如下:共有6种等可能的结果数,其中两点都落在抛物线2y x x 2=--上的结果数为2, 所以两点都落在抛物线2y x x 2=--上的概率是2163=; 故选:A .【点睛】本题考查了列表法或树状图法和函数图像上点的特征.通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.也考查了二次函数图象上点的坐标特征.9.李明骑车上学,一开始以某一速度行进,途中车子发生故障,只好停下修车,车修好后,因怕耽误时间,于是加快了车速.如用s 表示李明离家的距离,t 为时间.在下面给出的表示s 与t 的关系图中,符合上述情况的是( )A .B .C.D.【答案】C【解析】【分析】先弄清题意,再分析路程和时间的关系.【详解】∵停下修车时,路程没变化,观察图象,A、B、D的路程始终都在变化,故错误;C、修车是的路程没变化,故C正确;故选:C.【点睛】考核知识点:函数的图象.理解题意看懂图是关键.10.如图,正方形ABCD中,AB=4cm,点E、F同时从C点出发,以1cm/s的速度分别沿CB﹣BA、CD﹣DA运动,到点A时停止运动.设运动时间为t(s),△AEF的面积为S (cm2),则S(cm2)与t(s)的函数关系可用图象表示为()A.B.C.D.【答案】D【解析】试题分析:分类讨论:当0≤t≤4时,利用S=S正方形ABCD﹣S△ADF﹣S△ABE﹣S△CEF可得S=﹣t2+4t,配成顶点式得S=﹣(t﹣4)2+8,此时抛物线的开口向下,顶点坐标为(4,8);当4<t≤8时,直接根据三角形面积公式得到S=(8﹣t)2=(t﹣8)2,此时抛物线开口向上,顶点坐标为(8,0),于是根据这些特征可对四个选项进行判断.解:当0≤t≤4时,S=S正方形ABCD﹣S△ADF﹣S△ABE﹣S△CEF=4•4﹣•4•(4﹣t)﹣•4•(4﹣t)﹣•t•t=﹣t2+4t=﹣(t﹣4)2+8;当4<t≤8时,S=•(8﹣t)2=(t﹣8)2.故选D.考点:动点问题的函数图象.11.某种签字笔的单价为2元,购买这种签字笔x支的总价为y元,则y与x之间的函数关系式为()A.y=-12x B.y=12x C.y=-2x D.y=2x【答案】D【解析】依题意有:y=2x,故选D.12.如图,两块完全重合的正方形纸片,如果上面的一块绕正方形的中心O逆时针0°~90°的旋转,那么旋转时露出的△ABC的面积(S)随着旋转角度(n)的变化而变化,下面表示S与n关系的图象大致是()A.B.C.D.【答案】B【解析】【分析】注意分析y随x的变化而变化的趋势,而不一定要通过求解析式来解决.【详解】旋转时露出的△ABC的面积(S)随着旋转角度(n)的变化由小到大再变小.故选B.【点睛】考查动点问题的函数图象问题,关键要仔细观察.13.甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为20km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是()A.甲的速度是4km/h B.乙的速度是10km/hC.乙比甲晚出发1h D.甲比乙晚到B地3h【答案】C【解析】甲的速度是:20÷4=5km/h;乙的速度是:20÷1=20km/h;由图象知,甲出发1小时后乙才出发,乙到2小时后甲才到,故选C.14.均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为折线),这个容器的形状可以是()A.B.C.D.【答案】D【解析】试题分析:注水量一定,函数图象的走势是稍陡,平,陡;那么速度就相应的变化,跟所给容器的粗细有关.则相应的排列顺序就为D.故选D.考点:函数的图象.15.当实数x 的取值使得2x -有意义时,函数41y x =+中y 的取值范围是( ) A .7y ≥-B .9y ≥C .9y <-D .7y <-【答案】B【解析】【分析】根据二次根式有意义易得x 的取值范围,代入所给函数可得y 的取值范围.【详解】解:由题意得20x -≥, 解得2x ≥, 419x ∴+≥,即9y ≥.故选:B .【点睛】本题考查了函数值的取值的求法;根据二次根式被开方数为非负数得到x 的取值是解决本题的关键.16.如图,点P 是等边△ABC 的边上的一个做匀速运动的动点,其由点A 开始沿AB 边运动到B 再沿BC 边运动到C 为止,设运动时间为t ,△ACP 的面积为S ,则S 与t 的大致图象是( )A .B .C .D .【答案】C【解析】【分析】设等边三角形的高为h ,点P 的运动速度为v ,根据等边三角形的性质可得出点P 在AB 上运动时△ACP 的面积为S ,也可得出点P 在BC 上运动时的表达式,继而结合选项可得出答案.【详解】设等边三角形的高为h ,点P 的运动速度为v ,①点P 在AB 上运动时,△ACP 的面积为S=12hvt ,是关于t 的一次函数关系式;②当点P 在BC 上运动时,△ACP 的面积为S=12h (AB+BC-vt )=-12hvt+12h (AB+BC ),是关于t 的一次函数关系式;故选C .【点睛】 此题考查了动点问题的函数图象,根据题意求出两个阶段S 与t 的关系式,难度一般.17.已知:[]x 表示不超过x 的最大整数.例:[]3.93=,[]1.82-=-.记1()44k k f k +⎡⎤⎡⎤=-⎢⎥⎢⎥⎣⎦⎣⎦(k 是正整数).例:3133144()f ⎡⎤⎡⎤+=-=⎢⎥⎢⎥⎣⎦⎣⎦.则下列结论正确的个数是( )(1)()10f =;(2)()()4f k f k +=;(3)()()1f k f k +≥;(4)()0f k =或1.A .1个B .2个C .3个D .4个 【答案】C【解析】【分析】根据题中所给的定义,依次作出判断即可.【详解】 解:111(1)00044f +⎡⎤⎡⎤=-=-=⎢⎥⎢⎥⎣⎦⎣⎦,正确; 41411(4)11()444444k k k k k k f k f k +++++⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+=-=+-+=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦,正确; 当k=3时,414(31)11044f +⎡⎤⎡⎤+=-=-=⎢⎥⎢⎥⎣⎦⎣⎦,而(3)1f =,错误; 当k=3+4n (n 为自然数)时,f (k )=1,当k 为其它的正整数时,f (k )=0,正确; 正确的有3个,故选:C .【点睛】本题考查新定义下的实数运算,函数值.能理解题中新的定义,并根据题中的定义进行计算是解决此题的关键.18.甲、乙两人在一条长为600m 的笔直道路上均匀地跑步,速度分别为4/m s 和6/m s ,起跑前乙在起点,甲在乙前面50m 处,若两人同时起跑,则从起跑出发到其中一人先到达终点的过程中,两人之间的距离y(m)与时间t(s)的函数图象是( )A.B. C.D.【答案】C【解析】【分析】甲在乙前面50m处,若两人同时起跑,在经过25秒,乙追上甲,则相距是0千米,相遇以后乙在前边,相距的距离每秒增加2米,乙全程用的时间是100秒,则相遇以后两人之间的最大距离是150米,据此即可作出判断.【详解】甲在乙前面50m处,若两人同时起跑,经过50÷(6−4)=25秒,乙追上甲,则相距是0千米,故A、 B错误;相遇以后乙在前边,相距的距离每秒增加2米,乙全程用的时间是600÷6=100秒,故B.、D错误;相遇以后两人之间的最大距离是:2×(100−25)=150米.故选C.【点睛】本题主要考查函数的图象,理解函数图象上点的坐标的实际意义,掌握行程问题中的基本数量关系:速度×时间=距离,是解题的关键.19.如图,点P是▱ABCD边上的一动点,E是AD的中点,点P沿E→D→C→B的路径移动,设P点经过的路径长为x,△BAP的面积是y,则下列能大致反映y与x的函数关系的图象是()A. B.C.D.【答案】D【解析】【分析】根据题意分类讨论,随着点P位置的变化,△BAP的面积的变化趋势.【详解】通过已知条件可知,当点P与点E重合时,△BAP的面积大于0;当点P在AD边上运动时,△BAP的底边AB不变,则其面积是x的一次函数,面积随x增大而增大;当P在DC 边上运动时,由同底等高的三角形面积不变,△BAP面积保持不变;当点P带CB边上运动时,△BAP的底边AB不变,则其面积是x的一次函数,面积随x增大而减小;故选D.【点睛】本题以动点问题为背景,考查了分类讨论的数学思想以及函数图象的变化规律.20.甲、乙两车同时从A地出发,各自都以自己的速度匀速向B地行驶,甲车先到B地,停车1小时后按原速匀速返回,直到两车相遇.已知,乙车的速度是60千米/时,如图是两车之间的距离y(千米)与乙车行驶的时间x(小时)之间的函数图象,则下列说法不正确的是()A.A、B两地之间的距离是450千米B.乙车从出发到与甲车返回时相遇所用的时间是6.6小时C.甲车的速度是80千米/时D.点M的坐标是(6,90)【答案】C【解析】【分析】A.仔细观察图象可知:两车行驶5小时后,两车相距150千米,据此可得两车的速度差,进而得出甲车的速度,从而得出A、B两地之间的距离;B.根据路程,时间与速度的关系解答即可;C.由A的解答过程可得结论;D.根据题意列式计算即可得出点M的纵坐标..【详解】∵根据题意,观察图象可知5小时后两车相距150千米,故甲车比乙车每小时多走30千米,∴甲车的速度为90千米/时;∴A、B两地之间的距离为:90×5=450千米.故选项A不合题意;设乙车从出发到与甲车返回时相遇所用的时间是x小时,根据题意得:60x+90(x﹣6)=450,解得x=6.6,∴乙车从出发到与甲车返回时相遇所用的时间是6.6小时.故选项B不合题意;∵甲车的速度为90千米/时.故选项C符合题意;点M的纵坐标为:90×5﹣60×6=90,故选项D不合题意.故选:C.【点睛】本题主要考查根据函数图象的信息,解决实际问题,理解x,y的实际意义,根据函数图象上点的坐标的实际意义,求出甲,乙车的速度和A,B两地之间的距离是解题的关键.。
2020-2021学年高中数学必修一第三章《函数的概念与性质》测试卷一.选择题(共10小题)1.已知函数f (x )的定义域是[﹣1,1],则函数g (x )=1−x的定义域是( ) A .[0,1]B .(0,1)C .[0,1)D .(0,1]【解答】解:∵f (x )的定义域是[﹣1,1]; ∴g (x )需满足:{−1≤2x −1≤11−x >0;解得:0≤x <1;∴g (x )的定义域是[0,1). 故选:C .2.函数f (x )满足f (x )﹣2f (1﹣x )=x ,则函数f (x )等于( ) A .x−23B .x+23C .x ﹣1D .﹣x +1【解答】解:因为f (x )﹣2f (1﹣x )=x , 所以f (1﹣x )﹣2f (x )=1﹣x , 联立可得,f (x )=x−23. 故选:A .3.函数f (2x ﹣1)的定义域是[1,2],则函数f (x +1)的定义域是( ) A .[1,3]B .[2,4]C .[0,1]D .[0,2]【解答】解:∵函数f (2x ﹣1)的定义域为[1,2],∴1≤2x ﹣1≤3, 即函数f (x )的定义域为[1,3],∴函数f (x +1)的定义域需满足1≤x +1≤3, 即0≤x ≤2,函数f (x +1)的定义域为[0,2], 故选:D .4.若当x ∈[0,m ]时,函数y =x 2﹣3x ﹣4的值域为[−254,﹣4],则实数m 的取值范围是( ) A .(0,4]B .[32,4]C .[32,3]D .[32,+∞]【解答】解:函数y =x 2﹣3x ﹣4=(x −32)2−254,所以当x =32时,函数有最小值−254. 当y =x 2﹣3x ﹣4=﹣4时,即y =x 2﹣3x =0,解得x =0或x =3. 因为函数的定义域为[0,m ],要使值域为[−254,﹣4], 则有32≤m ≤3,故选:C .5.函数f (x )=√2x −x 2的单调递增区间为( ) A .(﹣∞,1)B .(1,2)C .(0,1)D .(1,+∞)【解答】解:由题意可得2x ﹣x 2≥0,解可得0≤x ≤2,根据二次函数及复合函数的性质可知,f (x )=√2x −x 2的单调递增区间为(0,1), 故选:C .6.函数f (x )=3x+22x+1,x ∈[3,+∞)的值域是( ) A .[117,+∞)B .[32,+∞)C .[117,2)D .(32,117]【解答】解:f (x )=3x+22x+1=32(2x+1)+122x+1=32+14x+2,∵x ∈[3,+∞)∴f (x )为减函数∴当x =3时,f (x )=117,取得最大值;当x 接近+∞时,f (x )接近32, 所以f (x )的值域为(32,117].故选:D .7.已知函数f (x )=x 5+ax 3+bx ﹣8,若f (﹣3)=10,则f (3)=( ) A .﹣26B .26C .18D .10【解答】解:令g (x )=x 5+ax 3+bx ,由函数奇偶性的定义,易得其为奇函数; 则f (x )=g (x )﹣8,所以f (﹣3)=g (﹣3)﹣8=10,得g (﹣3)=18,又因为g (x )是奇函数,即g (3)=﹣g (﹣3), 所以g (3)=﹣18,则f (3)=g (3)﹣8=﹣26. 故选:A .8.设函数f (x )=x 3+(a ﹣1)x 2+ax ,若f (x )为奇函数,则a 的值为( ) A .0B .1C .﹣1D .1或0【解答】解:由奇函数的性质可知,f (﹣x )=﹣f (x )恒成立,故﹣x 3+(a ﹣1)x 2﹣ax =﹣x 3﹣(a ﹣1)x 2﹣ax , 整理可得,(a ﹣1)x 2=0即a ﹣1=0, 所以a =1. 故选:B .9.某商场以每件30元的价格购进一种商品,试销售中发现,这种商品每天的销量m (件)与每件的售价x (元)满足一次函数:m =162﹣3x .若要每天获得最大的销售利润,每件商品的售价应定为( ) A .30元B .42元C .54元D .越高越好【解答】解:设每天获得的销售利润为y 元,则y =mx ﹣30m =(162﹣3x )(x ﹣30)=﹣3x 2+252x ﹣4860=﹣3(x ﹣42)2+432, 当x =42时,y 有最大值,为432,所以若要每天获得最大的销售利润,每件商品的售价应定为42元. 故选:B .10.已知定义在R 上的偶函数f (x )满足f (x )=f (2﹣x ),且x ∈[0,1]时,f (x )=x 2,则f(−112)=( ) A .14B .12C .34D .1【解答】解:由f (x )=f (2﹣x )=f (﹣x ), 可可得f (x )=f (x +2)即f (x )为周期为2的函数, 所以f(−112)=f(−112+6)=f(12)=14, 故选:A .二.多选题(共2小题)11.已知函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论正确的是( ) A .f (x )|g (x )|是奇函数 B .|f (x )|g (x )是奇函数C .f (x )g (x )是偶函数D .|f (x )g (x )|是偶函数【解答】解:因为f (x )是奇函数,g (x )是偶函数, 所以f (﹣x )=﹣f (x ),g (﹣x )=g (x ),f (﹣x )|g (﹣x )|=﹣f (x )|g (x )|,故f (x )|g (x )|为奇函数,A 正确;|f (﹣x )|g (﹣x )=|﹣f (x )|g (x )=|f (x )|g (x ),故|f (x )|g (x )为偶函数,B 不正确;f(﹣x)g(﹣x)=﹣f(x)g(x)|,故f(x)g(x)为奇函数,C不正确;|f(﹣x)g(﹣x)|=|﹣f(x)g(x)|=|f(x)g(x)|,故|f(x)g(x)|为偶函数,D正确;故选:AD.12.已知幂函数y=xα(α∈R)的图象过点(2,8),下列说法正确的是()A.函数y=xα的图象过原点B.函数y=xα是偶函数C.函数y=xα是单调减函数D.函数y=xα的值域为R【解答】解:幂函数y=xα的图象过点(2,8),所以2α=8,解得α=3,所以幂函数为y=x3;所以所以幂函数y=x3的图象过原点,A正确;且幂函数y=x3是定义域R上的奇函数,B错误;幂函数y=x3是定义域R上的增函数,C错误;幂函数y=x3的值域是R,所以D正确.故选:AD.三.填空题(共4小题)13.函数f(x)=√2+x−x2的定义域为[﹣1,2].【解答】解:要使函数有意义,须满足2+x﹣x2≥0,解得:﹣1≤x≤2,所以函数的定义域为[﹣1,2],故答案为:[﹣1,2].14.已知函数f(x)=2x−1,g(x)=3x2,则f(g(1))=1.【解答】解:根据题意,g(x)=3x2,则g(1)=3,又由f(x)=2x−1,则f(g(1))=f(3)=23−1=1,故答案为:115.若f(x)是R上单调递减的一次函数,若f[f(x)]=4x﹣1,则f(x)=﹣2x+1.【解答】解:由于f(x)是单调递减的一次函数,故可设f(x)=kx+b(k<0),于是f[f(x)]=k(kx+b)+b=k2x+kb+b,又f [f (x )]=4x ﹣1,∴{k 2=4kb +b =−1,又k <0, ∴k =﹣2,b =1, ∴f (x )=﹣2x +1. 故答案为:﹣2x +1.16.已知函数f(x)={2x (x <−1)3x −2(x ≥−1),则f (f (﹣2))= −54 .【解答】解:∵函数f(x)={2x (x <−1)3x −2(x ≥−1),∴f(−2)=2−2=14,∴f(f(−2))=f(14)=3×14−2=−54. 故答案为:−54. 四.解答题(共6小题)17.已知函数f (x )=ax 2+bx +c ,且满足f (0)=1,对任意的实数x 都有f (x +1)﹣f (x )=x +1成立.(1)求f (x )的解析式;(2)若g (x )=f (x )﹣mx 在[2,4]上是单调递减函数,求实数m 的取值范围. 【解答】解:(1)根据题意,函数f (x )=ax 2+bx +c ,且满足f (0)=1, 即f (0)=c =1,又由f (x +1)﹣f (x )=a (x +1)2+b (x +1)+c ﹣(ax 2+bx +c )=2ax +a +b =x +1, 则有{c =12a =1a +b =1,解可得a =b =12,c =1,则函数f (x )的解析式为:f(x)=12x 2+12x +1,(2)由(1)知f(x)=12x 2+12x +1,则g(x)=f(x)−mx =12x 2+(12−m)x +1, 函数g (x )的对称轴x =m −12,若函数g (x )在[2,4]上是单调减函数,则有m −12≥4,解可得m ≥92, 即m 的取值范围为{m |m ≥92}. 18.已知函数f (x )=x 2+(2a ﹣1)x ﹣3.(1)当a =2,x ∈[﹣2,3]时,求函数f (x )的值域.(2)若函数f (x )在[﹣1,3]上单调递增,求实数a 的取值范围.【解答】解:(1)当a =2,x ∈[﹣2,3]时,函数f (x )=x 2+(2a ﹣1)x ﹣3=x 2+3x ﹣3=(x +32)2−214,故当x =−32时,函数取得最小值为−214,当x =3时,函数取得最大值为15,故函数f (x )的值域为[−214,15]. (2)若函数f (x )在[﹣1,3]上单调递增,则1−2a 2≤−1,∴a ≥32,即实数a 的范围为[32,+∞)19.已知函数f (x )满足f (2﹣x )=f (2+x ),当x ≤2时,f (x )=﹣x 2+kx +2. (1)求f (x )的解析式;(2)求f (x )在[2,4]上的最大值.【解答】解:(1)函数f (x )满足f (2﹣x )=f (2+x ),所以函数f (x )=f (4﹣x ). 当x >2时,4﹣x <2,则f (x )=f (4﹣x )=﹣(4﹣x )2+k (4﹣x )+2=﹣x 2+(8﹣k )x +4k ﹣14, 故函数的关系式为f (x )={−x 2+kx +2(x ≤2)−x 2+(8−k)x +4k −14(x >2).(2)当x ∈[2,4]时,f (x )=﹣x 2+(8﹣k )x +4k ﹣14=−(x −8−k 2)2+k 2+84.①当8−k 2≥4时,即k ≤0,所以函数f (x )在[2,4]上单调递增,则f (x )max =f (4)=2, ②当8−k 2≤2时,即k ≥4时,函数f (x )在[2,4]上单调递减,则f (x )max =f (2)=2k ﹣2.③当2<8−k 2<4时,即0<k <4时,f(x)max =f(8−k 2)=k 2+84.所以f(x)max ={2(k ≤0)k 2+84(0<k <4)2k −2(k ≥4). 20.已知函数f (x )=4x 2﹣kx ﹣8在定义域[5,20]内是单调的. (1)求实数k 的取值范围;(2)若f (x )的最小值为﹣8,求k 的值.【解答】解:(1)由题意,可知f (x )=4x 2﹣kx ﹣8的对称轴为x =k8, 而函数f (x )=4x 2﹣kx ﹣8,x ∈[5,20]是单调函数, ∴k8≤5或k8≥20,即k ≤40或k ≥160,∴实数k 的取值范围是(﹣∞,40]∪[160,+∞);(2)当k ≤40时,由f(x)min =f(5)=4×52−5k −8=−8,解得k =20; 当k ≥160时,由f(x)min =f(20)=4×202−20k −8=−8,解得k =80(舍去). 综上,k =20.21.已知y =f (x )是定义在R 上的奇函数,当x >0时,f (x )=﹣x 2+2ax +3. (Ⅰ)求函数f (x )的解析式;(Ⅱ)当a =1时,写出函数y =|f (x )|的单调递增区间(只写结论,不用写解答过程); (Ⅲ)若f (x )在(﹣∞,0)上单调递减,求实数a 的取值范围.【解答】解:(Ⅰ)根据题意,设x <0,则﹣x >0,则f (﹣x )=﹣(﹣x )2+2a (﹣x )+3=﹣x 2﹣2ax +3,又由f (x )为奇函数,则f (x )=﹣f (﹣x )=﹣(﹣x 2﹣2ax +3)=x 2+2ax ﹣3, 又由y =f (x )是定义在R 上的奇函数,则f (0)=0,则f(x)={x 2+2ax −3,x <00,x =0−x 2+2ax +3,x >0;(Ⅱ)a =1时,f(x)={x 2+2x −3,x <00,x =0−x 2+2x +3,x >0;此时y =|f (x )|的单调递增区间为(﹣3,﹣1),(0,1),(3,+∞); (Ⅲ)根据题意,x <0时,f (x )=x 2+2ax ﹣3=(x +a )2﹣a 2﹣3, 若f (x )在(﹣∞,0)上单调递减,必有﹣a ≥0,解可得a ≤0, 即a 的取值范围为(﹣∞,0].22.已知函数f (x )=ax 2﹣(a +2)x +1﹣b .(1)若a =﹣2,b =9,求函数y =f(x)x (x <0)的最小值; (2)若b =﹣1,解关于x 的不等式f (x )≥0.【解答】解:(1)若a=﹣2,b=9,则y=f(x)x=−2x2−8x=−2x−8x,∵x<0,∴y=﹣2x−8x≥2√(−2x)⋅(−8x)=8,当且仅当−2x=−8x,即x=﹣2时y取得最小值8;(2)若b=﹣1,则f(x)=ax2﹣(a+2)x+2=(x﹣1)(ax﹣2).若a=0,f(x)≥0化为﹣2x+2≥0,即x≤1;若a≠0,f(x)=0的两根为1,2a.若a=2,f(x)≥0化为2(x﹣1)2≥0,x∈R;若0<a<2,则1<2a,则不等式f(x)≥0的解集为(﹣∞,1]∪[2a,+∞);若a<0,则2a <1,则不等式f(x)≥0的解集为[2a,1];若a>2,则2a <1,则不等式f(x)≥0的解集为(﹣∞,2a]∪[1,+∞).综上,当a<0时,f(x)≥0的解集为[2a,1];当a=0时,f(x)≥0的解集为(﹣∞,1];当0<a<2时,f(x)≥0的解集为(﹣∞,1]∪[2a,+∞);当a=2时,f(x)≥0的解集为R;当a>2时,f(x)≥0的解集为(﹣∞,2a]∪[1,+∞).。
高中数学--《函数概念与基本初等函数》测试题(含答案)1.三个数a=0.67,b=70.6,c=log0.76的大小关系为()A.b<c<a B.b<a<c C.c<a<b D.c<b<a【答案解析】C【考点】对数值大小的比较.【分析】利用指数函数与对数函数的单调性即可得出.【解答】解:∵0<a=0.67<1,b=70.6>1,c=log0.76<0,∴c<a<b,故选:C.2.已知函数的图象与直线y=x恰有三个公共点,则实数m的取值范围是()A.(﹣∞,﹣1] B.[﹣1,2) C.[﹣1,2] D.[2,+∞)【答案解析】B【考点】函数的零点;函数的图象;函数与方程的综合运用.【专题】函数的性质及应用.【分析】由题意可得只要满足直线y=x和射线y=2(x>m)有一个交点,而且直线y=x与函数f(x)=x2+4x+2的两个交点即可,画图便知,直线y=x与函数f(x)=x2+4x+2的图象的两个交点为(﹣2,﹣2)(﹣1,﹣1),由此可得实数m的取值范围.【解答】解:由题意可得射线y=x与函数f(x)=2(x>m)有且只有一个交点.而直线y=x与函数f(x)=x2+4x+2,至多两个交点,题目需要三个交点,则只要满足直线y=x与函数f(x)=x2+4x+2的图象有两个交点即可,画图便知,y=x与函数f(x)=x2+4x+2的图象交点为A(﹣2,﹣2)、B(﹣1,﹣1),故有m≥﹣1.而当m≥2时,直线y=x和射线y=2(x>m)无交点,故实数m的取值范围是[﹣1,2),故选B.【点评】本题主要考查函数与方程的综合应用,体现了转化、数形结合的数学思想,属于基础题.3.若函数f(x)=ax+loga(x+1)在[0,1]上的最大值与最小值之和为a,则a的值为()A.2 B.4 C. D.【答案解析】C【考点】函数单调性的性质.【专题】函数的性质及应用.【分析】根据同底的指数函数和对数函数有相同的单调性,建立方程关系即可得到结论.【解答】解:∵函数y=ax与y=loga(x+1)在[0,1]上有相同的单调性,∴函数函数f(x)=ax+loga(x+1)在[0,1]上是单调函数,则最大值与最小值之和为f(0)+f(1)=a,即1+loga1+loga2+a=a,即loga2=﹣1,解得a=,故选:C【点评】本题主要考查函数最值是应用,利用同底的指数函数和对数函数有相同的单调性是解决本题的关键.本题没有对a进行讨论.4.函数f(x)=ln(x-)的图象是()A. B.C. D.【答案解析】B【考点】对数函数图象与性质的综合应用.【专题】计算题;数形结合.【分析】求出函数的定义域,通过函数的定义域,判断函数的单调性,推出选项即可.【解答】解:因为x->0,解得x>1或﹣1<x<0,所以函数f(x)=ln(x-)的定义域为:(﹣1,0)∪(1,+∞).所以选项A、C不正确.当x∈(﹣1,0)时, g(x)=x-是增函数,因为y=lnx是增函数,所以函数f(x)=ln(x-)是增函数.故选B.【点评】本题考查函数的图象的综合应用,对数函数的单调性的应用,考查基本知识的综合应用,考查数形结合,计算能力.判断图象问题,一般借助:函数的定义域、值域、单调性、奇偶性、周期性、以及函数的图象的变化趋势等等.5.函数f(x)=x3+sinx+1(x∈R),若f(a)=2,则f(﹣a)的值为()A.3 B.0 C.﹣1 D.﹣2【答案解析】B【考点】函数奇偶性的性质.【分析】把α和﹣α分别代入函数式,可得出答案.【解答】解:∵由f(a)=2∴f(a)=a3+sina+1=2,a3+sina=1,则f(﹣a)=(﹣a)3+sin(﹣a)+1=﹣(a3+sina)+1=﹣1+1=0.故选B【点评】本题主要考查函数奇偶性的运用.属基础题.6.函数f(x)=x3+3x﹣1在以下哪个区间一定有零点()A.(﹣1,0) B.(0,1) C.(1,2) D.(2,3)【答案解析】B【考点】函数零点的判定定理.【专题】函数的性质及应用.【分析】根据函数零点的判定定理将选项中区间的端点值代入验证即可得到答案.【解答】解:∵f(x)=x3+3x﹣1∴f(﹣1)f(0)=(﹣1﹣3﹣1)(﹣1)>0,排除A.f(1)f(2)=(1+3﹣1)(8+6﹣1)>0,排除C.f(0)f(1)=(﹣1)(1+3﹣1)<0,∴函数f(x)在区间(0,1)一定有零点.故选:B.【点评】本题主要考查函数零点的判定定理.属基础题.7.函数y=ax+1(a>0且a≠1)的图象必经过点()A.(0,1) B.(1,0) C.(2,1) D.(0,2)【答案解析】D【考点】指数函数的单调性与特殊点.【专题】函数的性质及应用.【分析】已知函数f(x)=ax+1,根据指数函数的性质,求出其过的定点.【解答】解:∵函数f(x)=ax+1,其中a>0,a≠1,令x=0,可得y=1+1=2,点的坐标为(0,2),故选:D【点评】本题主要考查指数函数的性质及其特殊点,是一道基础题.8.已知函数f(x)=,若函数g(x)=f(x)﹣kx有零点,则实数k的取值范围是()A.(﹣∞,+∞) B. [,+∞) C.(﹣∞,] D.(﹣∞,1)【答案解析】考点:函数零点的判定定理.专题:计算题;数形结合;函数的性质及应用.分析:画出f(x)的图象,函数g(x)=f(x)﹣kx有零点,即为y=f(x)的图象和直线y=kx有交点,作出直线y=kx,由图象观察k≤0,直线和曲线有交点,设直线y=kx与曲线y=log2x相切的切点为p(m,n),运用导数,求出切线的斜率,再由图象观察即可得到k的取值范围.解答:解:函数f(x)=,画出f(x)的图象,函数g(x)=f(x)﹣kx有零点,即为y=f(x)的图象和直线y=kx有交点,作出直线y=kx,由图象观察k≤0,直线和曲线有交点,设直线y=kx与曲线y=log2x相切的切点为p(m,n),由于(log2x)′=,即切线的斜率为=k,又n=km,n=log2m,解得m=e,k=,则k>0时,直线与曲线有交点,则0<k,综上,可得实数k的取值范围是:(﹣∞,].故选C.点评:本题考查分段函数及运用,考查分段函数的图象和运用,考查数形结合的思想方法,考查运用导数求切线的斜率,属于中档题.9.函数f(x)=ln(x2+1)的图象大致是()【答案解析】考点:函数的图象.专题:函数的性质及应用.分析:∵x2+1≥1,又y=lnx在(0,+∞)单调递增,∴y=ln(x2+1)≥ln1=0,函数的图象应在x轴的上方,在令x取特殊值,选出答案.解答:解:∵x2+1≥1,又y=lnx在(0,+∞)单调递增,∴y=ln(x2+1)≥ln1=0,∴函数的图象应在x轴的上方,又f(0)=ln(0+1)=ln1=0,∴图象过原点,综上只有A符合.故选:A点评:对于函数的选择题,从特殊值、函数的性质入手,往往事半功倍,本题属于低档题.10.设函数f(x),g(x)满足下列条件:(1)对任意实数x1,x2都有f(x1)•f(x2)+g(x1)•g(x2)=g(x1﹣x2);(2)f(﹣1)=﹣1,f(0)=0,f(1)=1.下列四个命题:①g(0)=1;②g(2)=1;③f2(x)+g2(x)=1;④当n>2,n∈N*时,[f(x)]n+[g(x)]n的最大值为1.其中所有正确命题的序号是()A.①③ B.②④ C.②③④ D.①③④【答案解析】考点:命题的真假判断与应用.专题:函数的性质及应用.分析:既然对任意实数x1,x2都有f(x1)•f(x2)+g(x1)•g(x2)=g(x1﹣x2),那么分别令x1,x2取1,0,﹣1求出g(0),g(1),g(﹣1),g(2),然后令x1=x2=x可得③,再根据不等式即可得④解答:解;对于①结论是正确的.∵对任意实数x1,x2都有f(x1)•f(x2)+g(x1)•g(x2)=g(x1﹣x2)且f(﹣1)=﹣1,f(0)=0,f(1)=1,令x1=x2=1,得[f(1)]2+[g(1)]2=g(0),∴1+[g(1)]2=g(0),∴g(0)﹣1=[g(1)]2 令x1=1,x2=0,得f(1)f(0)+g(1)g(0)=g(1),∴g(1)g(0)=g(1),g(1)[g(0)﹣1]=0解方程组得对于②结论是不正确的,令x1=0,x2=﹣1,得f(0)f(﹣1)+g(0)g(﹣1)=g(1),∴g(﹣1)=0令x1=1,x2=﹣1,得f(1)f(﹣1)+g(1)g(﹣1)=g(2),∴﹣1=g(2),∴g(2)≠1对于③结论是正确的,令x1=x2=1,得f2(x)+g2(x)=g(0)=1,对于④结论是正确的,由③可知f2(x)≤1,∴﹣1≤f(x)≤1,﹣1≤g(x)≤1∴|fn(x)|≤f2(x),|gn(x)|≤g2(x)对n>2,n∈N*时恒成立,[f(x)]n+[g(x)]n≤f2(x)+g2(x)=1综上,①③④是正确的.故选:D。
函数基础知识经典测试题含答案一、选择题1.如图,AB 为半圆的直径,点P 为AB 上一动点.动点P 从点A 出发,沿AB 匀速运动到点B ,运动时间为t .分别以AP 与PB 为直径作半圆,则图中阴影部分的面积S 与时间t 之间的函数图象大致为( )A .B .C .D .【答案】D【解析】【分析】【详解】 解:设P 点运动速度为v (常量),AB=a (常量),则AP=vt ,PB=a-vt ; 则阴影面积22222111S )()()22222244a vt a vt v av t t πππππ-=--=+( 由函数关系式可以看出,D 的函数图象符合题意.故选D .2.如图,在直角三角形ABC ∆中,90B ∠=︒,4AB =,3BC =,动点E 从点B 开始沿B C →以2cm/s 的速度运动至C 点停止;动点F 从点B 同时出发沿B A →以1cm/s 的速度运动至A 点停止,连接EF .设运动时间为x (单位:s ),ABC ∆去掉BEF ∆后剩余部分的面积为y (单位:2cm ),则能大致反映y 与x 的函数关系的图象是( )A .B .C .D .【答案】B【解析】【分析】根据已知题意写出函数关系,y 为ABC ∆去掉BEF ∆后剩余部分的面积,注意1.5秒时点E 运动到C 点,而点F 则继续运动,因此y 的变化应分为两个阶段.【详解】 解:14362ABC S ∆=⨯⨯=, 当302x ≤≤时,2122BEF S x x x ∆=⋅⋅=.26ABC BEF y S S x ∆∆=-=-; 当342x <≤时,13322BEF S x x ∆=⋅⋅=,362ABC BEF y S S x ∆∆=-=-, 由此可知当302x ≤≤时,函数为二次函数,当342x <≤时,函数为一次函数. 故选B .【点睛】本题主要考查了动点问题与函数图像相结合,解题的关键在于根据运动过程写出函数关系,要注意自变量的取值范围,以及是否为分段函数.3.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的最大公里数(单位:km/L ),如图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列叙述正确的是( )A .以相同速度行驶相同路程,甲车消耗汽油最多B .以10km/h 的速度行驶时,消耗1升汽油,甲车最少行驶5千米C .以低于80km/h 的速度行驶时,行驶相同路程,丙车消耗汽油最少D .以高于80km/h 的速度行驶时,行驶相同路程,丙车比乙车省油【答案】D【解析】【分析】根据题意和函数图象可以判断各个选项是否正确,从而可以解答本题.【详解】解:由图可得:以相同速度行驶相同路程,甲车消耗汽油最少.故选项A 错误. 以10km/h 的速度行驶时,消耗1升汽油,甲车最多行驶5千米.故选项B 错误. 以低于80km/h 的速度行驶时,行驶相同路程,甲车消耗汽油最少.故选项C 错误. 以高于80km/h 的速度行驶时,行驶相同路程,丙车比乙车省油.故选项正确. 故选D .【点睛】本题考查了函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.4.如图,在ABC ∆中,90C =o ∠,30B ∠=o ,10AB cm =,P Q 、两点同时从点A 分别出发,点P 以2/cm s 的速度,沿A B C →→运动,点Q 以1/cm s 的速度,沿A C B →→运动,相遇后停止,这一过程中,若P Q 、两点之间的距离PQ y =,则y 与时间t 的关系大致图像是( )A .B .C .D .【答案】A【解析】【分析】根据题意分当05t ≤≤、5t >时两种情况,分别表示出PQ 的长y 与t 的关系式,进而得出答案.【详解】解:在ABC ∆中,90C =o ∠,30B ∠=o ,AB=10,∴AC=5, 12AC AB =, I. 当05t ≤≤时,P 在AB 上,Q 在AC 上,由题意可得:2AP t =,AQ t =,依题意得:12AQ AP =, 又∵A A ∠=∠∴APQ ABC V :V , ∴90AQP C ∠=∠=︒则3PQ t =,II.当5t >,P 、Q 在BC 上,由题意可得:P 走过的路程是2t ,Q 走过的路程是t , ∴15533PQ t =+-,故选:A .【点睛】此题主要考查了动点问题的函数图象,正确理解PQ 长与时间是一次函数关系,并得出函数关系式是解题关键.5.如图,一只蚂蚁以均匀的速度沿台阶A 1⇒A 2⇒A 3⇒A 4⇒A 5爬行,那么蚂蚁爬行的高度h 随时间t 变化的图象大致是( )A .B .C .D .【答案】B【解析】【分析】从A :到A 2蚂蚁是匀速前进,随着时间的增多,爬行的高度也将由0匀速上升,从A 2到A :随着时间的增多,高度将不再变化,由此即可求出答案.【详解】解:因为蚂蚁以均匀的速度沿台阶A 1→A 2→A 3→A 4→A 5爬行,从A 1→A 2的过程中,高度随时间匀速上升,从A 2→A 3的过程,高度不变,从A 3一A 4的过程,高度随时间匀速上升,从A4.→A5的过程中,高度不变,所以蚂蚁爬行的高度h随时间t变化的图象是B.故选:B.【点睛】主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际情况采用排除法求解.6.一水池放水,先用一台抽水机工作一段时间后停止,然后再调来一台同型号抽水机,两台抽水机同时工作直到抽干.设从开始工作的时间为t,剩下的水量为s.下面能反映s与t之间的关系的大致图象是()A.B.C.D.【答案】D【解析】【分析】根据s随t的增大而减小,即可判断选项A、B错误;根据先用一台抽水机工作一段时间后停止,再调来一台同型号抽水机,两台抽水机同时工作直到抽干得出s随t的增大减小得比开始的快,即可判断选项C、D的正误.【详解】解:∵s随t的增大而减小,∴选项A、B错误;∵先用一台抽水机工作一段时间后停止,再调来一台同型号抽水机,两台抽水机同时工作直到抽干得出s随t的增大减小得比开始的快,∴s随t的增大减小得比开始的快,∴选项C错误;选项D正确;故选:D.【点睛】本题主要考查对函数图象的理解和掌握,能根据实际问题所反映的内容来观察与理解图象是解答此题的关键7.如图,已知矩形OABC,A(4,0),C(0,4),动点P从点A出发,沿A﹣B﹣C﹣O 的路线匀速运动,设动点P的运动路程为t,△OAP的面积为S,则下列能大致反映S与t 之间关系的图象是()A .B .C .D .【答案】A【解析】【分析】分三段求解:①当P 在AB 上运动时;②当P 在BC 上时;③当P 在CO 上时;分别求出S 关于t 的函数关系式即可选出答案.【详解】解:∵A (4,0)、C (0,4),∴OA =AB =BC =OC =4,①当P 由点A 向点B 运动,即04t ≤≤,114222S OA AP t t ==创=g ; ②当P 由点A 向点B 运动,即48t <≤,1144822S OA AB ==创=g ; ③当P 由点A 向点B 运动,即812t <≤,()1141222422S OA CP t t ==创-=-+g ; 结合图象可知,符合题意的是A .故选:A .【点睛】本题主要考查了动点问题的函数图象,解题的关键是根据图形求出S 关于t 的函数关系式.8.在平面直角坐标系中有三个点的坐标:()()0,2,2,01(),3A B C ---,,从、、A B C 三个点中依次取两个点,求两点都落在抛物线2y x x 2=--上的概率是( )A .13B .16C .12D .23【答案】A【解析】【分析】先画树状图展示所有6种等可能的结果数,再找出两点都落在抛物线2y x x 2=--上的结果数,然后根据概率公式求解.【详解】解:在()()0,2,2,01(),3A B C ---,三点中,其中AB 两点在2y x x 2=--上,根据题意画图如下:共有6种等可能的结果数,其中两点都落在抛物线2y x x 2=--上的结果数为2, 所以两点都落在抛物线2y x x 2=--上的概率是2163=; 故选:A .【点睛】 本题考查了列表法或树状图法和函数图像上点的特征.通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.也考查了二次函数图象上点的坐标特征.9.李明骑车上学,一开始以某一速度行进,途中车子发生故障,只好停下修车,车修好后,因怕耽误时间,于是加快了车速.如用s 表示李明离家的距离,t 为时间.在下面给出的表示s 与t 的关系图中,符合上述情况的是( )A .B .C .D .【答案】C【解析】【分析】先弄清题意,再分析路程和时间的关系.【详解】∵停下修车时,路程没变化,观察图象,A 、B 、D 的路程始终都在变化,故错误;C 、修车是的路程没变化,故C 正确;故选:C .【点睛】考核知识点:函数的图象.理解题意看懂图是关键.10.下列各曲线中,表示y是x的函数的是()A.B.C.D.【答案】B【解析】【分析】根据函数的意义即可求出答案.【详解】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以B 正确.故选:B.【点睛】此题考查函数图象的概念.解题关键在于要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.11.如图,在△ABC中,AC=BC,有一动点P从点A出发,沿A→C→B→A匀速运动.则CP的长度s与时间t之间的函数关系用图象描述大致是()A.B.C .D .【答案】D【解析】试题分析:如图,过点C 作CD ⊥AB 于点D .∵在△ABC 中,AC=BC ,∴AD=BD .①点P 在边AC 上时,s 随t 的增大而减小.故A 、B 错误;②当点P 在边BC 上时,s 随t 的增大而增大;③当点P 在线段BD 上时,s 随t 的增大而减小,点P 与点D 重合时,s 最小,但是不等于零.故C 错误;④当点P 在线段AD 上时,s 随t 的增大而增大.故D 正确.故答案选D .考点:等腰三角形的性质,函数的图象;分段函数.12.在平面直角坐标系xoy 中,四边形0ABC 是矩形,且A ,C 在坐标轴上,满足3OA = ,OC=1.将矩形OABC 绕原点O 以每秒15°的速度逆时针旋转.设运动时间为t 秒()06t ≤≤ ,旋转过程中矩形在第二象限内的面积为S ,表示S 与t 的函数关系的图象大致如右图所示,则矩形OABC 的初始位置是( )A .B .C .D .【答案】D【解析】【分析】【详解】解:根据图形可知当t=0时,s=0,所以矩形OABC的初始位置不可能在第二象限,所以A、C错误;因为1OC=,所以当t=2时,选项B中的矩形在第二象限内的面积为S=13312⨯⨯=,所以B错误,因为3OA=,所以当t=2时,选项D中的矩形在第二象限内的面积为S=131322⨯⨯=,故选D.考点:1.图形旋转的性质;2.直角三角形的性质;3.函数的图象.13.一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示,下列叙述正确的是()A.甲乙两地相距1200千米B.快车的速度是80千米∕小时C.慢车的速度是60千米∕小时D.快车到达甲地时,慢车距离乙地100千米【答案】C【解析】【分析】(1)由图象容易得出甲乙两地相距600千米;(2)由题意得出慢车速度为60010=60(千米/小时);设快车速度为x千米/小时,由图象得出方程60×4+4x=600,解方程即可;(3)求出快车到达的时间和慢车行驶的路程,即可得出答案.【详解】解:(1)由图象得:甲乙两地相距600千米,故选项A错;(2)由题意得:慢车总用时10小时,∴慢车速度为:60010=60(千米/小时);设快车速度为x千米/小时,由图象得:60×4+4x=600,解得:x=90,∴快车速度为90千米/小时,慢车速度为60千米/小时;选项B错误,选项C正确;(3)快车到达甲地所用时间:60020903小时,慢车所走路程:60×203=400千米,此时慢车距离乙地距离:600-400=200千米,故选项D错误.故选C【点睛】本题考核知识点:函数图象. 解题关键点:从图象获取信息,由行程问题基本关系列出算式.14.如图所示的图象(折线ABCDE)描述了一辆汽车在某一笔直的公路上的行驶过程中,汽车离出发地的距离s(千米)与行驶时间t(小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了140千米;②汽车在行驶途中停留了1小时;③汽车出发后6小时至9小时之间行驶的速度比汽车出发后4小时至6小时之间行驶的速度大;④汽车出发后6小时至9小时之间行驶的速度在逐渐减小.其中正确的说法共有()A.1个B.2个C.3个D.4个【答案】B【解析】【分析】根据函数图象上的特殊点以及函数图象自身的实际意义进行判断即可.【详解】解:①由图象可知,汽车走到距离出发点140千米的地方后又返回出发点,所以汽车共行驶了280千米,故①错;②从3时开始到4时结束,时间在增多,而路程没有变化,说明此时在停留,停留了4-3=1(小时),故②对;③汽车4小时至6小时之间的速度为:(140-90)÷(6-4)=25(千米/小时),汽车6小时至9小时之间的速度为:140÷(9-6)≈46.7(千米/小时),所以汽车出发后6小时至9小时之间行驶的速度比汽车出发后4小时至6小时之间行驶的速度大,故③对;④汽车自出发后6小时至9小时,图象是直线,说明是在匀速前进,故④错;故选:B.【点睛】本题考查函数图象,由函数图象的实际意义,理解函数图象所反映的运动过程是解答本题的关键.15.甲乙两同学同时从400m环形跑道上的同一点出发,同向而行,甲的速度为6/m s,乙的速度为4/m s ,设经过xs 后,跑道上两人的距离(较短部分)为ym ,则y 与x 0300x ≤≤之间的关系可用图像表示为( )A .B .C .D .【答案】C【解析】【分析】根据同向而行,二人的速度差为642/m s -=,二人间的最长距离为200,最短距离为0,从而可以解答本题.【详解】二人速度差为642/m s -=,100秒时,二人相距2×100=200米,200秒时,二人相距2×200=400米,较短部分的长度为0,300秒时,二人相距2×300=600米,即甲超过乙600-400=200米.∴()201004002(100200)2400(200300)x x y x x x x ⎧≤≤⎪=-<≤⎨⎪-<≤⎩,函数图象均为线段,只有C 选项符合题意.故选:C .【点睛】本题考查了利用函数的图象解决实际问题以及动点问题的函数图象,正确理解函数图象表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.16.“同辞家门赴车站,别时叮咛语千万,学子满载信心去,老父怀抱希望还.”如果用纵轴y 表示父亲和学子在行进中离家的距离,横t 表示离家的时间,下面与上述诗意大致相吻合的图象是( )A .B .C.D.【答案】B【解析】【分析】首先正确理解小诗的含义,然后再根据时间与离家的距离关系找出函数图象.【详解】解:同辞家门赴车站,父亲和孩子的函数图象在一开始的时候应该一样,别时叮咛语千万,时间在加长,路程不变,学子满载信心去,学子离家越来越远,老父怀抱希望还,父亲回家离家越来越近,故选:B.【点睛】此题主要考查了函数图象,首先应理解函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.17.如图,在平行四边形ABCD中,AC=4,BD=6,P是BD上的任一点,过点P作EF∥AC,与平行四边形的两条边分别交于点E、F,设BP=x,EF=y,则能反映y与x之间关系的图象是()A.B.C.D.【答案】C【解析】【分析】【详解】图象是函数关系的直观表现,因此须先求出函数关系式.分两段求:当P在BO上和P在OD上,分别求出两函数解析式,根据函数解析式的性质即可得出函数图象.解:设AC与BD交于O点,当P在BO上时,∵EF∥AC,∴EF BPAC BO=即43y x=,∴43y x =;当P在OD上时,有643 DP EF y x DO AC-==即,∴y=48 3x-+.故选C.18.小亮的奶奶出去散步,从家走了20分钟到一个离家900米的报亭,奶奶看了10分钟报纸后,用了15分钟返回家,下面图中的哪一幅能表示奶奶离家的时间与距离之间的关系()A.B.C.D.【答案】D【解析】【分析】根据函数图像的横坐标确定时间,纵坐标确定离家距离,然后进行判断即可解答.【详解】解: 0分钟到报亭离家的距离随时间的增加而增加,看报10分钟,离家的距离不变;15分钟回家离家的距离岁时间的增加而减少,故D符合题意.故答案为D.【点睛】本题考查了函数图像的应用,根据图像确定出时间与离家距离的关系是解答本题的关键.19.骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大变化,其体温(C )与时间(小时)之间的关系如图1所示.小清同学根据图1绘制了图2,则图2中的变量有可能表示的是().A.骆驼在t时刻的体温与0时体温的绝对差(即差的绝对值)B.骆驼从0时到t时刻之间的最高体温与当日最低体温的差C.骆驼在t时刻的体温与当日平均体温的绝对差D.骆驼从0时到t时刻之间的体温最大值与最小值的差【答案】B【解析】【分析】根据时间和体温的变化,将时间分为3段:0-4,4-8,8-16,16-24,分别观察每段中的温差,由此即可求出答案.【详解】解:观察可得从0时到4时,温差随时间的增大而增大,在4时达到最大,是2℃;再到8时,这段时间的最高温度是37℃,最低是35℃,温差不变,从8时开始,最高温度变大,最低温度不变是35℃,温差变大,达到3℃,从16时开始体温下降,温差不变.则图2中的变量y有可能表示的是骆驼从0时到t时刻之间的最高体温与当日最低体温的差.故选:B.【点睛】本题考查函数图象,正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小以及理解本题中温差的含义是解决本题的关键.D次哈尔滨至幸福镇的动车需要匀速通过一条隧道(隧道长大于火车20.如图,2020长),火车在隧道内的长度与火车进入隧道的时间x之间的关系用图象描述大致是()A.B.C.D.【答案】A【解析】【分析】火车通过隧道分为3个过程:逐渐进入隧道,完全进入隧道并在其中行驶,逐渐出隧道【详解】火车在逐渐进入隧道的过程中,火车在隧道内的长度逐渐增加;火车完全进入隧道后,还在隧道内行驶一段时间,因此在隧道内的长度是火车长,且保持一段时间不变;火车在逐渐出隧道的过程中,火车在隧道内的长度逐渐减少;符合上述分析过程的为:A故选:A【点睛】本题考查函数图像在生活中的应用,解题关键是分析事件变化的过程,并能够匹配对应函数图像变化。