人教新课标版数学-第一章高效整合
- 格式:doc
- 大小:87.50 KB
- 文档页数:6
新课标人教版七年级数学上册教案第一章
新课标人教版七年级数学上册教案
第一章有理数
1.1正数和负数
★目标预设
一、知识与能力
借助生活中的实例会判断一个数是正数还是负数,能用正负数表示具有相反意义的量
二、过程与方法
1、过程:通过实例引入负数,从而指导学生会识别正负数及其表示法,能应用正负数表示具有相反意义的量。
2、方法:讨论法、探究法、讲授法、观察法。
三、情感、态度、价值观
乐于接触社会环境中的数学信息,愿意谈论数学话题,在数学活动中发挥积极作用
★教学重难点
一、重点:理解正数和负数的概念,判断一个数是正数还是负数,应用正负数表示具有相反意义的量
二、难点:负数的意义,理解具有相反意义的量。
★教学准备
带有负数的实例若干
★预习导学
在生活、生产、科研中,经常遇到数的表示与数的运算的问题。
例如,。
人教版七年级上册2018年8月科学记数法能力提升1.为了响应国家“发展低碳经济、走进低碳生活”的号召,到目前为止,某市共有60 000户家庭建立了“低碳节能减排家庭档案”,则60 000这个数用科学记数法表示为()A.60×104B.6×105C.6×104D.0.6×1062.用科学记数法表示870 000=m×10n,则m,n的值分别是()A.m=87,n=4B.m=8.7,n=4C.m=87,n=5D.m=8.7,n=53.用科学记数法表示-123 000 000,正确的是()A.-1.23×106B.-123×106C.-1.23×108D.-0.123×1094.设有理数A用科学记数法记为A=a×109,则A的整数数位有位.5.北京故宫的占地面积约为7.2×105平方米,即平方米.★6.某街道两侧统一铺设长为20 cm,宽为10 cm的长方形水泥砖,若铺设总面积为10.8万平方米,则大约需水泥砖块.(用科学记数法表示)7.纳米技术已经开始用于生产生活之中,已知1米等于1 000 000 000纳米,请问216.3米等于多少纳米(结果用科学记数法表示)?8.比较大小:(1)9.523×1010与1.002×1011;(2)-8.76×109与-1.03×1010.9.一只草履虫每小时大约能够形成60个食物泡,每个食物泡中大约含有30个细菌,那么,一只草履虫每天大约能够吞食多少个细菌?100只草履虫呢?(用科学记数法表示)10.小明说:“祖父一生共活了3.5×107h”,那么他祖父共活了多少年?有这种可能吗?11.据测算,我国每天因土地沙漠化造成的经济损失约为150 000 000元,若一年按365天计算,用科学记数法表示我国一年因土地沙漠化造成的经济损失.创新应用★12.40 200 000÷2 000=20 100可改写为4.02×107÷(2×103)=2.01×104,照上面的改写方法,你发现(a×10m)÷(b×10n)的算法有什么规律吗?请用你发现的规律直接计算(7.392×109)÷(2.1×104)÷(2×102).参考答案能力提升1.C用科学记数法a×10n表示大于10的数时,1≤|a|<10,n为原数的整数位数减1,所以60000=6×104.2.D3.C4.105.720 0006.5.4×1067.解:216.3×1000000000=216300000000=2.163×1011(纳米).答:216.3米等于2.163×1011纳米.8.解:(1)9.523×1010<1.002×1011.(2)-8.76×109>-1.03×1010.9.解:30×60×24=43200=4.32×104(个),4.32×104×100=4.32×106(个).答:一只草履虫每天大约能够吞食4.32×104个细菌,100只草履虫则可吞食4.32×106个细菌.10.解:因为一年≈365天=365×24h=8760h,3.5×107=35000000,35000000÷8760≈3995(年),所以他祖父共活了约3995年,这是不可能的.11.解:150000000×365=5.475×1010(元).答:我国一年因土地沙漠化造成的经济损失约为5.475×1010元.创新应用12.解:规律:(a×10m)÷(b×10n)=×10m-n.(7.392×109)÷(2.1×104)÷(2×102)=(7.392÷2.1÷2)×109-4-2=1.76×103.。
(人教新课标)四年级数学上册教案大数的认识整理与复习【教学内容】人教版实验教科书四年级《数学》上册第一单元“大数的认识整理和复习”.【设计思想】依据新课标,紧扣新教材,立足学生实际,把握时代脉搏,运用现代化教学手段,渗透新课程理念,采用自主、合作、探究的方式进行教学。
【三维目标】知识与技能:通过整理和复习,让学生对大数的读写、比较、改写、求近似数等知识有个系统全面的理解。
过程与方法:通过观察整理、小组探索、归纳比较等方法,来进行教学。
情感态度与价值观:让学生在对实际资料的分析中感受数学的价值,在合作探究中感受学习的乐趣,在学习知识的同时也感受人生的美好。
【教具学具准备】师生各准备写有0—9的数字卡片若干张、幻灯片。
【教学过程】一、揭示课题师:同学们,我们已经掌握了大数的一些知识。
今天这节课,咱们就对这单元进行整理复习。
(板书:大数的认识整理复习.)二、归纳整理师:在本单元里,你学会了哪些大数的知识?先自己整理一下,再说给同学听一听。
(学生活动交流后,指名汇报,教师板书以下内容:大数的读法大数的写法大数的大小比较大数的改写大数的近似数)师:在复习这些知识之前,我们先回忆一下数位顺序表,哪位同学上来在黑板上把老师已经准备好的但不完整的数位顺序表补充完整?(学生补充,教师引导。
)〖设计意图〗通过让学生回顾本单元知识内容,一方面为本节课复习具体知识细节打好基础,另一方面引导学生逐渐进入到课堂中来。
同时也培养了学生梳理知识、归纳整理的能力。
三、基本练习1。
大数的读法和写法师:大数的知识在我们的日常生活、生产和科学研究中应用非常广泛,请同学们把课前收集到的有关大数的资料给大家说一说。
(指名几个学生汇报,对有价值的资料给予肯定和表扬。
)课前我也搜集了一些有关大数的资料,咱们一起来看看。
(1)放映幻灯片,出示资料一2008年5月12日14时28分,四川汶川发生8。
0级大地震,造成69227名同胞遇难,17923名同胞失踪。
数学·必修5(人教A版)一、本章的中心内容是如何解三角形.正弦定理和余弦定理是解三角形的工具,最后落实在解三角形的应用上.通过本章的学习应当达到以下学习目标:1.通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.2.能够熟练运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际生活问题.3.本章的两个主要数学结论是正弦定理和余弦定理,它们都是关于三角形的边角关系的结论.在初中,学生已经学习了相关边角关系的定性知识,就是“在任意三角形中有大边对大角,小边对小角”,“如果已知两个三角形的两条对应边及其所夹的角相等,那么这两个三角形全等”.“在任意三角形中有大边对大角,小边对小角”的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形”.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题.4.在此内容之前我们已经学习了三角函数、平面向量、直线和圆的方程等与本章知识联系密切的内容,对于余弦定理的证明,常用的方法是借助于三角的方法,需要对三角形进行讨论,方法不够简洁,用了向量的方法,发挥了向量方法在解决问题中的威力.5.勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角是直角;如果小于第三边的平方,那么第三边所对的角是钝角;如果大于第三边的平方,那么第三边所对的角是锐角.从上可知,余弦定理是勾股定理的推广.二、学数学的最终目的是应用数学.能把实际问题抽象成数学问题,把所学的数学知识应用到实际问题中去,通过观察、分析、归纳、类比、抽象、概括、猜想等发现问题,确定解决问题的科学思维方法,学会把数学知识应用于实际.1.正弦定理可建立边角关系,角的正弦越大所对的边就越长.2.由正弦值得出角的大小时特别要注意是一个解还是两个解.一般地,解三角形时,只有当A为锐角且b sin A<a<b时,有两解;其他情况时则只有一解或无解.3.利用正弦定理,可以解决以下两类有关三角形的问题.(1)已知两角和任一边,求其他两边和一角.(2)已知两边和其中一边的对角,求另一边的对角.4.把a=k sin A,b=k sin B代入已知等式可将边角关系全部转化为三角函数关系.5.余弦定理是三角形边角之间的共同规律,勾股定理是余弦定理的特例.6.余弦定理的应用范围是:①已知三边,求三角;②已知两边及一个内角,求第三边.7.已知两边及其中一边所对的角用余弦定理时可能有两个解,注意用三边特点取舍.解决实际测量问题一般要充分理解题意,正确作出图形,从中抽象出一个或几个三角形,把实际问题里的条件和所求转换成三角形中的已知和未知的边、角,然后解三角形,得到实际问题的解.8.解斜三角形应用题的一般步骤.(1)分析:理解题意,分清已知与未知,画出示意图.(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型.(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解.(4)检验:检验上述所求的解是否有实际意义,从而得出实际问题的解.9.平面上两点的距离测量问题一般有如下几类情况:(1)A、B两点都在河的两岸,一点可到达,另一点不可到达.方法是可到达一侧再找一点进行测量.(2)A、B两点都在河的对岸(不可到达).方法是在可到达一侧找两点进行测量.(3)A、B两点不可到达(如隔着一座山或建筑).方法是找一点可同时到达A、B两点进行测量.10.利用正弦定理和余弦定理来解高度问题时,要学会审题及根据题意画方位图,要懂得从所给的背景资料中进行加工、抽取主要因素,进行适当的简化.11.测量高度的一般方法是选择能观察到测量物体的两点,分别测量仰角或俯角,同时测量出两个观测点的距离,再利用解三角形的方法进行计算.12.求三角形的面积的问题,先观察已知什么,尚缺什么,用正弦定理、余弦定理求出需要的元素,就可以求出三角形的面积.13.利用正弦定理、余弦定理、面积公式将已知条件转化为方程组是解决复杂问题的常见思路,将方程化为只含边的式子或只含角的三角函数式,然后化简并考察边或角的关系.14.许多试题既可用正弦定理也可用余弦定理解决,甚至可以两者兼用,当一个公式求解受阻时要及时考虑其他公式列式.15.本章问题的高考要求不高,学习时要立足基本问题,熟练掌握测量的一般技巧,正确使用定理列方程求解,无须过多延伸与拓广.题型1 利用正、余弦定理解三角形解三角形就是已知三角形中的三个独立元素(至少一条边)求出其他元素的过程,三角形中的元素有基本元素(边和角)和非基本元素(中线、高、角平分线、外接圆半径和内切圆半径),解三角形通常是指求未知的元素,有时也求三角形的面积.解斜三角形包括四种类型:(1)已知三角形的两角和一边(一般先用内角和求角或用正弦定理求边);(2)已知两边及夹角(一般先用余弦定理求第三边);(3)已知三边(先用余弦定理求角);(4)已知两边和一边的对角(先用正弦定理求另一边的对角或先用余弦定理求第三边,注意讨论解的个数).在△ABC 中,c =4,b =7,BC 边上的中线AD 长为72,求a .解析:如图,设CD =DB =x ,在△ACD 中,cos C =72+x 2-⎝ ⎛⎭⎪⎫7222×7×x ,在△ACB 中,cos C =72+(2x )2-422×7×2x, 所以72+x 2-⎝ ⎛⎭⎪⎫7222×7×x =72+(2x )2-422×7×2x. 解得x =92. 所以a =2x =2×92=9.如图,四边形ABCD 中,B =C =120°,AB =4,BC =CD =2,则该四边形的面积等于________.解析:由余弦定理得BD 2=22+22-2×2×2cos 120°=12,∴BD =2 3.∵BC =CD =2,C =120°,∴∠CBD =30°,∴∠ABD =90°,∴S 四边形ABCD =S △ABD +S △BCD=12×4×23sin 90°+12×2×2×sin 120°=5 3. 答案:5 3题型2 利用正、余弦定理判定三角形的形状判定三角形形状通常有两种途径:一是通过正弦定理和余弦定理化边为角,如a =2R sin A ,a 2+b 2-c 2=2ab cos C 等,再利用三角变换得出三角形内角之间的关系进行判断,此时注意一些常见的三角等式所体现的内角关系,如sin A =sin B ⇔A =B ,sin(A -B )=0⇔A =B ,sin 2A =sin 2B ⇔A =B 或A +B =π2等;二是利用正弦定理、余弦定理化角为边,如sin A =a 2R ,cos A =b 2+c 2-a 22bc等,通过代数恒等变换,求出三条边之间的关系进行判断.在△ABC 中,若B =60°,2b =a +c ,试判断△ABC 的形状.解析:解法一:由正弦定理可得2sin B =sin A +sin C ,∵B =60°,∴A +C =120°,A =120°-C ,将其代入上式,得2sin 60°=sin(120°-C )+sin C ,展开整理,得32sin C +12cos C =1,∴sin(C +30°)=1,∴C +30°=90°.∴C =60°,故A =60°,∴△ABC 是正三角形.解法二:由余弦定理可得b 2=a 2+c 2-2ac cos B ,∵B =60°,b =a +c 2, ∴⎝ ⎛⎭⎪⎪⎫a +c 22=a 2+c 2-2ac cos 60°. ∴(a -c )2=0,∴a =c ,∴a =b =c ,∴△ABC 为正三角形.题型3 三角形解的个数的确定(1)利用正弦定理讨论:若已知a ,b ,A ,由正弦定理a sin A =b sin B,得sin B =b sin A a .若sin B >1,则无解;若sin B =1,则有一解;若sin B <1,则可能有两解.(2)利用余弦定理讨论:已知a ,b ,A ,由余弦定理a 2=c 2+b 2-2cb cos A ,即c 2-(2b cos A )c +b 2-a 2=0.若方程无解或无正数解,则三角形无解;若方程有唯一正数解,则三角形有一解;若方程有两个不同正数解,则三角形有两解.在△ABC 中,若a =23,A =30°,则b 为何值时,三角形有一解,两解,无解?解析:由正弦定理a sin A =b sin B得: ①当b sin A <a <b 时,有两解,此时23<b <43;②当a ≥b 时或B 为90°(b 为斜边)时,有一解,此时b ≤23或b =43;③当a <b sin A 时无解,此时b >4 3.题型4 正、余弦定理在实际问题中的应用如图,为了解某海域海底构造,在海平面内一条直线上的A ,B ,C 三点进行测量,已知AB =50 m ,BC =120 m ,于A 处测得水深AD =80 m ,于B 处测得水深BE =200 m ,于C 处测得水深CF =110 m ,求∠DEF 的余弦值.解析:如下图,作DM ∥AC 交BE 于N ,交CF 于M ,高中数学-打印版精校版DF =MF 2+DM 2=302+1702=10298, DE =DN 2+EN 2=502+1202=130, EF =(BE -FC )2+BC 2=902+1202=150. 在△DEF 中,由余弦定理得:cos ∠DEF =DE 2+EF 2-DF 22DE ×EF =1302+1502-102×2982×130×150=1665.。
第一章 有理数复习一、【课标要求】二、知识结构三、主要考点考点一:有理数的分类有理数概念有理数 相反数大小比较 绝对值 倒数 数轴运算加法减法 乘法 除法 乘方混合运算科学记数法用计算器进行简单的计算近似数与有效数字正有理数零负有理数正整数正分数负整数负分数有理数含正有限小数和无限循环小数有理数的另一种分类1、填空①_____________统称整数。
_____________统称分数。
_____________统称有理数。
0既不是 ,也不是 。
②增加-20%,实际的意思是 。
甲比乙大-3表示的意思是 。
③月球表面的白天平均温度为126℃,记作+126℃,夜间平均温度零下150°C, 记作 ℃. 白天比夜间高 ℃想一想:零是整数吗?自然数一定是整数吗?自然数一定是正整数吗?整数一定是自然数吗?零是整数;自然数一定是整数;自然数不一定是正整数,因为零也是自然数;整数不一定是自然数,因为负整数不是自然数 2、把下列各数填在相应额大括号内:1,-0.1,-789,25,0,-20,-3.14,-590正整数集{ …} 负整数集{ …} 正分数集{ …}负分数集{ …} 正有理数集{ …} 负有理数集{ …} 自然数集{ …}有理数整数 分数正整数 负整数0 负分数正分数自然数含负有限小数和无限循环小数3、判断正误①不带“-”号的数都是正数 ( )②如果a是正数,那么-a一定是负数 ( )③不存在既不是正数,也不是负数的数 ( )④0℃表示没有温度 ( )考点二:数轴1、填空①规定了,和的直线叫做数轴。
②比-3大的负整数是_______;已知m是整数且-4<m<3,则m为_______________。
③有理数中,最大的负整数是____,最小的正整数是____。
最大的非正数是__。
④与原点的距离为三个单位的点有____个,他们分别表示的有理数是________。
2、选择题①下列数轴画法正确的是( )②在数轴上,原点及原点左边所表示的数是()A整数B负数C非负数D非正数③下列语句中正确的是()A数轴上的点只能表示整数B数轴上的点只能表示分数C数轴上的点只能表示有理数D所有有理数都可以用数轴上的点表示出来考点三:相反数1、填空①-2的相反数是;它的倒数是;它的绝对值是。
课题:§1.1 集合教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。
另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。
课型:新授课教学目标:(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;教学重点:集合的基本概念与表示方法;教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合;教学过程:一、引入课题军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。
阅读课本P2-P3内容二、新课教学(一)集合的有关概念1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。
2.一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。
3.思考1:课本P3的思考题,并再列举一些集合例子和不能构成集1合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。
4.关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。
(3)集合相等:构成两个集合的元素完全一样5.元素与集合的关系;(1)如果a是集合A的元素,就说a属于(belong to)A,记作a∈A(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作a∉A(或a A)(举例)∈6.常用数集及其记法非负整数集(或自然数集),记作N正整数集,记作N*或N+;整数集,记作Z有理数集,记作Q实数集,记作R(二)集合的表示方法我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。
人教版七年级上册2018年8月有理数加减法同步练习题1.某天上午的温度是5℃,中午又上升了3℃,下午由于冷空气南下,到夜间又下降了9℃,则这天夜间的温度是 ℃。
2.直接写出答案(1)(-2.8)+(+1.9)= ,(2)10.75(3)4--= , (3)0(12.19)--= ,(4)3(2)---= 3. 已知两个数556和283-,这两个数的相反数的和是 。
4. 将()()()6372-+--+-中的减法改成加法并写成省略加号的代数和的形式应是 。
5. 已知m 是6的相反数,n 比m 的相反数小2,则m n -等于 。
6.在-13与23之间插入三个数,使这5个数中每相邻两个数之间的距离相等,则这三个数的和是 。
7. 小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数的和是 .二.选择:8.下列交换加数的位置的变形中,正确的是( )A 、14541445-+-=-+-B 、1311131134644436-+--=+-- C 、 12342143-+-=-+- D 、4.5 1.7 2.5 1.8 4.5 2.5 1.8 1.7--+=-+-9. 下列计算结果中等于3的是( )A. 74-++B. ()()74-++C. 74++-D. ()()74+--10. 下列说法正确的是( )A. 两个数之差一定小于被减数B. 减去一个负数,差一定大于被减数C. 减去一个正数,差一定大于被减数D. 0减去任何数,差都是负数11.校、家、书店依次坐落在一条南北走向的大街上,学校在家的南边20米,书店在家北边100米,张明同学从家里出发,向北走了50米,接着又向北走了-70米,此时张明的位置在A. 在家B. 在学校C. 在书店D. 不在上述地方12、火车票上的车次号有两个意义,一是数字越小表示车速越快,1~98次为特快列车,101~198次为直快列车,301~398次为普快列车,401~498次为普客列车;二是单数与双数表示不同的行驶方向,其中单数表示从北京开出,双数表示开往北京,根据以上规定,杭州开往北京的某一直快列车的车次号可能是( )(A) 20 (B) 119 (C) 120 (D) 31913. 计算: ①-57+(+101) ②90-(-3)③-0.5-(-341)+2.75-(+721) ④712143269696⎛⎫⎛⎫⎛⎫⎛⎫----++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⑤ ()34187.5213772⎛⎫⎛⎫⎛⎫-+-+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ⑥ ()232321 1.75343⎛⎫⎛⎫⎛⎫------+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭14. 某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负,某天自O 地出发到收工时所走路线(单位:千米)为:+10、-3、+4、+2、-8、+13、-2、+12、+8、+5(1)问收工时距O 地多远?(2)若每千米耗油0.2升,从O 地出发到收工时共耗油多少升?15、某商场老板对今年上半年每月的利润作了如下记录:1、2、5、6月盈利分别是13万元、12万元、12.5万元、10万元,3、4月亏损分别是0.7万元和0.8万元。
第一章章末总结一、直观图和三视图的画法直观图和三视图是空间几何体的不同表现形式,空间几何体的三视图可以使我们更好地把握空间几何体的性质,由空间几何体可以画出它的三视图,同样由三视图可以想象出空间几何体的形状,两者之间可以相互转化,解决此类问题主要依据它们的概念和画法规则.例1一几何体的三视图如图所示,尺寸如图中所示.(1)说出该几何体的结构特征并画出直观图;(2)计算该几何体的体积与表面积.例2若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如下图所示,则这个棱柱的体积为()A.12 3 B.36 3 C.27 3 D.6二、共点、共线、共面问题1.关于多点共线问题往往需证明这些点在某两个平面的交线上.2.多线共点问题的证明往往让其他线都过某两条线的交点.3.多点共面问题的证明往往让其他点在某三点或四点确定的平面上.4.多线共面问题的证明往往让其他线在某两条直线确定的平面内.例3如图,四边形ABB′A′,BCC′B′,CAA′C′都是梯形.求证:三直线AA′,BB′,CC′相交于一点.三、平行问题1.空间平行关系的判定方法:(1)判定线线平行的方法.①利用线线平行的定义证共面而且无公共点(结合反证法);②利用平行公理;③利用线面平行性质定理;④利用线面垂直的性质定理(若a⊥α,b⊥α,则a∥b);⑤利用面面平行性质定理(若α∥β,α∩γ=a,β∩γ=b,则a∥b).(2)判断线面平行的方法:①线面平行的定义(无公共点);②利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α);③面面平行的性质定理(α∥β,a⊂α⇒a∥β);④面面平行的性质(α∥β,a⊄α,a⊄β,a∥α⇒a∥β).(3)面面平行的判定方法有:①平面平行的定义(无公共点);②判定定理(若a∥β,b∥β,a、b⊂α,且a∩b=A,则α∥β);③判定定理的推论(若a∥a′,b∥b′,a⊂α,b⊂α且a∩b=A,a′⊂β,b′⊂β,且a′∩b′=A′,则α∥β);④线面垂直性质定理(若a⊥α,a⊥β,则α∥β);⑤平面平行的性质(传递性:α∥β,β∥γ⇒α∥γ).2.平行关系的转化是:例4如图,S为矩形ABCD所在平面外一点,E、F分别是SD、BC上的点,且SE∶ED =BF∶FC.求证:EF∥平面SAB.例5如图所示,直四棱柱ABCD-A 1B1C1D1的底面是梯形,AB∥CD,AD⊥DC,CD=2,DD1=AB=1,P、Q分别是CC1、C1D1的中点.求证:AC∥平面BPQ.四、垂直问题1.空间垂直关系的判定方法:(1)判定线线垂直的方法有:①计算所成的角为90°(包括平面角和异面直线所成的角);②线面垂直的性质(若a⊥α,b⊂α,则a⊥b);③面面垂直的定义:两平面相交形成的二面角的平面角为90°.(2)判定线面垂直的方法有:①线面垂直定义(一般不易验证任意性);②线面垂直的判定定理(a⊥b,a⊥c,b⊂α,c⊂α,b∩c=M⇒a⊥α);③平行线垂直平面的传递性质(a∥b,b⊥α⇒a⊥α);④面面垂直的性质(α⊥β,α∩β=l,a⊂β,a⊥l⇒a⊥α);⑤面面平行的性质(a⊥α,α∥β⇒a⊥β);⑥面面垂直的性质(α∩β=l,α⊥γ,β⊥γ⇒l⊥γ).(3)面面垂直的判定方法有:①根据定义(作两平面构成二面角的平面角,计算其为90°);②面面垂直的判定定理(a⊥β,a⊂α⇒α⊥β).2.垂直关系的转化是:例6如图所示,在四棱锥P—ABCD中,侧面PAD是正三角形,且与底面ABCD垂直,底面ABCD是边长为2的菱形,∠BAD=60°,N是PB的中点,过A,D,N的平面交PC于M,E为AD的中点.求证:(1)EN∥平面PDC;(2)BC⊥平面PEB;(3)平面PBC⊥平面ADMN.第一章章末总结答案重点解读例1解(1)由三视图知该几何体是由一个圆柱与一个等底圆锥拼接而成的组合体,其直观图如图所示.(2)由三视图中的尺寸知,组合体下部是底面直径为8 cm,高为20 cm的圆柱,上部为底面直径为8 cm ,母线长为5 cm 的圆锥.易求得圆锥高h =52-42=3(cm ), ∴体积V =π·42·20+13π·42·3=336π(cm 3),表面积S =π·42+2π·4·20+π·4·5 =196π(cm 2).∴该几何体的体积为336πcm 3,表面积为196πcm 2. 例2 B例3 证明 梯形ABB ′A ′中,A ′B ′∥AB .∴AA ′,BB ′在同一平面A ′B 内. 设直线AA ′,BB ′相交于点P ,同理BB ′、CC ′同在平面BC ′内,CC ′、AA ′同在平面A ′C 内. ∵P ∈AA ′,AA ′⊂平面A ′C , ∴P ∈平面A ′C . 同理点P ∈平面BC ′.根据基本性质3,点P 在平面A ′C 与平面BC ′的交线上,而平面A ′C ∩平面BC ′=CC ′,故点P ∈直线CC ′,即三直线AA ′、BB ′、CC ′相交于一点.例4 证明 方法一 转化为证明面面平行. 过F 作FG ∥AB ,交AD 于G ,连接EG .∵FG ∥AB ,∴AG ∶GD =BF ∶FC , ∴AG ∶GD =SE ∶ED , 故EG ∥SA .又∵FG ∥AB ,AB ∩SA =A , ∴平面SAB ∥平面EFG . 又∵EF ⊂平面SAB , ∴EF ∥平面SAB .方法二 转化为证明线线平行.过E 作EG ∥AD 交SA 于G ,连接BG ,∵BF ∥AD ,∴BF ∥EG ,∴平面BFEG∩平面SAB=BG.∵SE∶ED=BF∶FC,∴SE∶SD=BF∶BC.又∵SE∶SD=EG∶AD.∴BF∶BC=EG∶AD,∵BC=AD.∴BF=EG,故四边形BFEG为平行四边形.∴EF∥BG,∴EF∥平面SAB.例5证明连接CD 1、AD1,∵P、Q分别是CC1、C1D1的中点,∴PQ∥CD1,且CD1⊄平面BPQ,∴CD1∥平面BPQ.又D1Q=AB=1,D1Q∥AB,∴四边形ABQD1是平行四边形,∴AD1∥BQ,且AD1⊄平面BPQ,∴AD1∥平面BPQ.又AD1∩CD1=D1,∴平面ACD1∥平面BPQ,∵AC⊂平面ACD1,∴AC∥平面BPQ.例6证明(1)因为AD∥BC,BC⊂平面PBC,AD⊄平面PBC,所以AD∥平面PBC,又平面ADMN∩平面PBC=MN,所以AD∥MN,所以MN∥BC.因为N为PB的中点,所以M为PC的中点,所以MN∥BC,且MN=12BC.又E为AD的中点,所以四边形DENM为平行四边形.所以EN∥DM.又EN⊄平面PDC,DM⊂平面PDC,所以EN∥平面PDC.(2)因为ABCD是边长为2的菱形,且∠BAD=60°,所以BE⊥AD.又因为PE⊥AD,PE∩BE=E,所以AD⊥平面PEB.因为AD∥BC,所以BC⊥平面PEB.(3)由(2)知AD⊥PB.又因为PA=AB且N为PB的中点,所以AN⊥PB,又AD∩AN=A,所以PB⊥平面ADMN.又PB⊂平面PBC,所以平面PBC⊥平面ADMN.。
(本栏目内容,在学生用书中以独立形式分册装订)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知f (x )=⎩⎪⎨⎪⎧x 2+1,(x <1)-2x +3,(x ≥1)则f (f (2))=( )A .-7B .2C .-1D .5解析: f (2)=-2×2+3=-1, f (f (2))=f (-1)=(-1)2+1=2. 答案: B2.已知集合M ={-1,0},则满足M ∪N ={-1,0,1}的集合N 的个数是( ) A .2 B .3 C .4D .8解析: 可知1∈N ,∴N ={1}或{1,-1}或{1,0}或{1,-1,0}共4个. 答案: C3.设集合U ={0,1,2,3,4,5},M ={0,3,5},N ={1,4,5},则M ∩(∁U N )=( ) A .{5} B .{0,3} C .{0,2,3,5}D .{0,1,3,4,5}解析: ∁U N ={0, 2,3,} ∴M ∩∁U N ={0,3}. 答案: B4.设集合A ={-1,3,5},若f :x →2x -1是集合A 到集合B 的映射,则集合B 可以是( ) A .{0,2,3} B .{1,2,3} C .{-3,5}D .{-3,5,9} 解析: 注意到题目中的对应法则,将A 中的元素-1代入得-3,3代入得5,5代入得9,故选D.答案: D5.下列四个函数中,在(-∞,0)上是增函数的为( ) A .f (x )=x 2+4 B .f (x )=3-2xC .f (x )=x 2-5x -6D .f (x )=1-x解析: A 、C 、D 中函数在(-∞,0)上是减函数;B 中函数f (x )=3-2x 在(-∞,0)上是增函数.故选B.答案: B 6.设函数f (x )=⎩⎨⎧x ,(x ≥0)-x ,(x <0)若f (a )+f (-1)=2,则a =( )A .-3B .±3C .-1D .±1解析: ∵f (a )+f (-1)=2,且f (-1)=1=1, ∴f (a )=1,当a ≥0时,f (a )=a =1,∴a =1; 当a <0时,f (a )=-a =1,∴a =-1.答案: D7.下列四个集合:①A ={x ∈R|y =x 2+1};②B ={y |y =x 2+1,x ∈R};③C ={(x ,y )|y =x 2+1,x ∈R};④D ={不小于1的实数}.其中相同的集合是( )A .①与②B .①与④C .②与③D .②与④解析: 可知A =R ;当x ∈R 时,y ≥1,∴B ={y |y ≥1}=D ;而C 是一点集,故相同的集合只有B 与D .答案: D8.若函数f (x )为奇函数,且当x >0时,f (x )=x -1,则当x <0时有( ) A .f (x )>0 B .f (x )<0 C .f (x )·f (-x )≤0D .f (x )-f (-x )>0解析: f (x )为奇函数,当x <0,-x >0时,f (x )=-f (-x )=-(-x -1)=x +1,f (x )·f (-x )=-(x +1)2≤0.答案: C9.一辆中型客车的营运总利润y (单位:万元)与营运年数x (x ∈N)的变化关系如下表所示,要使总利润达到最大值,则该客车的营运年数是( )A.15 C .9D .6解析: 表中给出了二次函数模型y =ax 2+bx +c .显然,二次函数的图象经过点(4,7),(6,11),(8,7),则⎩⎪⎨⎪⎧16a +4b +c =7,36a +6b +c =11,64a +8b +c =7.解得⎩⎪⎨⎪⎧a =-1,b =12,c =-25,即y =-x 2+12x -25,易知x =6时,y 取得最大值.答案: D10.若函数f (x )为偶函数,且在(0,+∞)上是减函数,又f (3)=0,则f (x )+f (-x )2x<0的解集为( )A .(-3,3)B .(-∞,-3)∪(3,+∞)C .(-3,0)∪(3,+∞)D .(-∞,-3)∪(0,3)解析: ∵f (x )为偶函数,f (-x )=f (x ),故f (x )+f (-x )2x <0可化为f (x )x<0,而f (x )在(0,+∞)上是减函数,且f (3)=0,故当x >3时,f (x )<0,当-3<x <0时,f (x )>0,故f (x )x<0的解集为(-3,0)∪(3,+∞).答案: C二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上) 11.设a ,b ∈R ,集合{a,1}={0,a +b },则b -a =________.解析: 由题意知⎩⎨⎧a =0,a +b =1,∴b -a =1.答案: 1 12.f (x )=x1-1-x的定义域是________.解析: 由题意得⎩⎪⎨⎪⎧1-1-x ≠0,1-x ≥0,解得x ≤1,且x ≠0,故函数的定义域有(-∞,0)∪(0,1].答案: (-∞,0)∪(0,1] 13.已知函数分别由下表给出则f (g (1))的值为______;满足g (f (x ))=1的x 值是______. 解析: f (g (1))=f (3)=1; ∵g (3)=1而已知g (f (x ))=1, ∴f (x )=3;又∵f (2)=3,∴x =2. 答案: 1 214.函数f (x )=x 2+2(a -1)x +2在区间(-∞,4)上是减函数,那么实数a 的取值范围是________.解析: 因为函数的对称轴为x =-2(a -1)2=1-a ,函数在(-∞,4)上为减函数,依题意可得1-a ≥4,所以a ≤-3.答案: a ≤-3三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)若集合A ={x |-3≤x ≤4}和B ={x |2m -1≤x ≤m +1}. (1)当m =-3时,求集合A ∩B . (2)当B ⊆A 时,求实数m 的取值范围. 解析: (1)当m =-3时, B ={x |-7≤x ≤-2}, A ∩B ={x |-3≤x ≤-2}. (2)∵B ⊆A ,∴B =∅或B ≠∅. 当B =∅时,2m -1>m +1,即m >2. 当B ≠∅时,有 ⎩⎪⎨⎪⎧2m -1≤m +1,2m -1≥-3,m +1≤4,即-1≤m ≤2.综上所述,所求m 的范围是m ≥-1. 16.(本小题满分12分)已知奇函数f (x )= ⎩⎪⎨⎪⎧-x 2+2x ,(x >0)0,(x =0)x 2+mx .(x <0)(1)求实数m 的值; (2)画出函数图象;(3)若函数f (x )在区间[-1,|a |-2]上单调递增,试确定a 的取值范围. 解析: (1)当x <0时,-x >0, f (-x )=-(-x )2+2(-x )=-x 2-2x 又∵f (x )为奇函数,所以f (-x )=-f (x )=-x 2-2x , 所以f (x )=x 2+2x ,则m =2.(2)由(1)知f (x )=⎩⎪⎨⎪⎧-x 2+2x , (x >0)0, (x =0)x 2+2x , (x <0)函数f (x )的图象如图所示.(3)由图象可知f (x )在[-1,1]上单调递增,要使f (x )在[-1,|a |-2]上单调递增,只需-1<|a |-2≤1,即1<|a |≤3,解得-3≤a <-1或1<a ≤3.17.(本小题满分12分)设全集是实数集R ,A ={x |2x 2-7x +3≤0},B ={x |x 2+a <0}. (1)当a =-4时,求A ∩B 和A ∪B ; (2)若(∁R A )∩B =B ,求实数a 的取值范围.解析: (1)∵A =⎩⎨⎧⎭⎬⎫x ⎪⎪12≤x ≤3, 当a =-4时,B ={x |-2<x <2},∴A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪12≤x <2, A ∪B ={x |-2<x ≤3}.(2)∁R A =⎩⎨⎧⎭⎬⎫x ⎪⎪x <12或x >3, 当(∁R A )∩B =B 时,B ⊆∁R A ,即A ∩B =∅.①当B =∅,即a ≥0时,满足B ⊆∁R A ; ②当B ≠∅,即a <0时, B ={x |--a <x <-a }, 要使B ⊆∁R A ,需-a ≤12,解得-14≤a <0.综上可知,实数a 的取值范围是a ≥-14.18.(本小题满分14分)已知函数f (x )=x 2+ax ,且f (1)=2,(1)证明函数f (x )是奇函数;(2)证明f (x )在(1,+∞)上是增函数; (3)求函数f (x )在[2,5]上的最大值与最小值.解析: (1)证明:f (x )的定义域为{x |x ≠0},关于原点对称,因为f (1)=2,所以1+a =2,即a =1f (x )=x 2+1x =x +1x ,f (-x )=-x -1x =-f (x ),所以f (x )是奇函数.(2)证明:任取x 1,x 2∈(1,+∞)且x 1<x 2. f (x 1)-f (x 2)=x 1+1x 1-(x 2+1x 2)=(x 1-x 2)·x 1x 2-1x 1x 2.∵x 1<x 2,且x 1x 2∈(1,+∞), ∴x 1-x 2<0,x 1x 2>1, ∴f (x 1)-f (x 2)<0,所以f (x )在(1,+∞)上为增函数. (3)由(2)知,f (x )在[2,5]上的最大值为 f (5)=265,最小值为f (2)=52.。