奇次谐波与偶次谐波
- 格式:docx
- 大小:287.13 KB
- 文档页数:4
一.什么是谐波电力系统中除基本波(50/60Hz)外,任一周期性之讯号,皆称为谐波。
二.谐波的种类整数谐波:2nd、3rd、4th、偶次谐波:2nd、4th、6th奇次谐波:3rd、5th、7th非整数谐波:2.3th、5.6th、次级谐波:<1之谐波三.谐波产生的负荷非线性负荷的应用:变频器、整流器、UPS、荧光灯、计算机…………四.谐波的影响1)变压器对变压器而言,谐波电流可导致铜损和杂散损增加,谐波电压则会增加铁损。
与纯正基本波运行的正弦电流和电压相较,谐波对变压器的整体影响是温升较高。
须注意的是; 这些由谐波所引起的额外损失将与电流和频率的平方成比例上升,进而导致变压器的基波负载容量下降。
而当你为非线性负载选择正确的变压器额定容量时,应考虑足够的降载因子,以确保变压器温升在允许的范围内。
还应注意的是用户由于谐波所造成的额外损失将按所消耗的能量(仟瓦一小时)反应在电费上,而且谐波也会导致变压器噪声增加。
2)电力电缆在导体中非正弦波电流所产生的热量与俱有相同均方根值的纯正弦波电流相较,则非正弦波会有较高的热量。
该额外温升是由众所周知的集肤效应和邻近效应所引起的,而这两种现象取决于频率及导体的尺寸和间隔。
这两种效应如同增加导体交流电阻,进而导致I2Rac损耗增加。
3)电动机与发电机谐波电流和电压对感应及同步电动机所造成的主要效应为在谐波频率下铁损和铜损的增加所引起之额外温升。
这些额外损失将导致电动机效率降低,并影响转矩。
当设备负荷对电动机转矩的变动较敏感时,其扭动转矩的输出将影响所生产产品的质量。
例如: 人造纤维纺织业和一些金属加工业。
对于旋转电机设备,与正弦磁化相比,谐波会增加噪音量。
像五次和七次这种谐波源,在发电机或电动机负载系统上,可产生六次谐波频率的机械振动。
机械振动是由振动的扭矩引起的,而扭矩的振动则是由谐波电流和基波频率磁场所造成,如果机械谐振频率与电气励磁频率重合,会发生共振进而产生很高的机械应力,导致机械损坏的危险。
什么是谐波?谐波的危害一、谐波1. 何为谐波?在电力系统中谐波产生的根本原因是由于非线性负载所致。
当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,即电路中有谐波产生。
谐波频率是基波频率的整倍数,根据法国数学家傅立叶(M.Fourier)分析原理证明,任何重复的波形都可以分解为含有基波频率和一系列为基波倍数的谐波的正弦波分量。
谐波是正弦波,每个谐波都具有不同的频率,幅度与相角。
谐波可以区分为偶次与奇次性,第3、5、7次编号的为奇次谐波,而2、4、6、8等为偶次谐波,如基波为50Hz时,2次谐波为l00Hz,3次谐波则是150Hz。
一般地讲,奇次谐波引起的危害比偶次谐波更多更大。
在平衡的三相系统中,由于对称关系,偶次谐波已经被消除了,只有奇次谐波存在。
对于三相整流负载,出现的谐波电流是6n±1次谐波,例如5、7、11、13、17、19等,变频器主要产生5、7次谐波。
“谐波”一词起源于声学。
有关谐波的数学分析在18世纪和19世纪已经奠定了良好的基础。
傅里叶等人提出的谐波分析方法至今仍被广泛应用。
电力系统的谐波问题早在20世纪20年代和30年代就引起了人们的注意。
当时在德国,由于使用静止汞弧变流器而造成了电压、电流波形的畸变。
1945年J.C.Read发表的有关变流器谐波的论文是早期有关谐波研究的经典论文。
到了50年代和60年代,由于高压直流输电技术的发展,发表了有关变流器引起电力系统谐波问题的大量论文。
70年代以来,由于电力电子技术的飞速发展,各种电力电子装置在电力系统、工业、交通及家庭中的应用日益广泛,谐波所造成的危害也日趋严重。
世界各国都对谐波问题予以充分和关注。
国际上召开了多次有关谐波问题的学术会议,不少国家和国际学术组织都制定了限制电力系统谐波和用电设备谐波的标准和规定。
谐波研究的意义,道德是因为谐波的危害十分严重。
谐波使电能的生产、传输和利用的效率降低,使电气设备过热、产生振动和噪声,并使绝缘老化,使用寿命缩短,甚至发生故障或烧毁。
什么是谐波?谐波的危害一、谐波1. 何为谐波?在电力系统中谐波产生的根本原因是由于非线性负载所致。
当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,即电路中有谐波产生。
谐波频率是基波频率的整倍数,根据法国数学家傅立叶(M.Fourier)分析原理证明,任何重复的波形都可以分解为含有基波频率和一系列为基波倍数的谐波的正弦波分量。
谐波是正弦波,每个谐波都具有不同的频率,幅度与相角。
谐波可以区分为偶次与奇次性,第3、5、7次编号的为奇次谐波,而2、4、6、8等为偶次谐波,如基波为50Hz时,2次谐波为l00Hz,3次谐波则是150Hz。
一般地讲,奇次谐波引起的危害比偶次谐波更多更大。
在平衡的三相系统中,由于对称关系,偶次谐波已经被消除了,只有奇次谐波存在。
对于三相整流负载,出现的谐波电流是6n±1次谐波,例如5、7、11、13、17、19等,变频器主要产生5、7次谐波。
“谐波”一词起源于声学。
有关谐波的数学分析在18世纪和19世纪已经奠定了良好的基础。
傅里叶等人提出的谐波分析方法至今仍被广泛应用。
电力系统的谐波问题早在20世纪20年代和30年代就引起了人们的注意。
当时在德国,由于使用静止汞弧变流器而造成了电压、电流波形的畸变。
1945年J.C.Read发表的有关变流器谐波的论文是早期有关谐波研究的经典论文。
ﻫ到了50年代和60年代,由于高压直流输电技术的发展,发表了有关变流器引起电力系统谐波问题的大量论文。
70年代以来,由于电力电子技术的飞速发展,各种电力电子装置在电力系统、工业、交通及家庭中的应用日益广泛,谐波所造成的危害也日趋严重。
世界各国都对谐波问题予以充分和关注。
国际上召开了多次有关谐波问题的学术会议,不少国家和国际学术组织都制定了限制电力系统谐波和用电设备谐波的标准和规定。
ﻫ谐波研究的意义,道德是因为谐波的危害十分严重。
谐波使电能的生产、传输和利用的效率降低,使电气设备过热、产生振动和噪声,并使绝缘老化,使用寿命缩短,甚至发生故障或烧毁。
电机谐波阶次-概述说明以及解释1.引言1.1 概述电机谐波阶次是指在电机工作过程中产生的谐波波形中,每个谐波的频率与基波频率的比值。
在电机工作中,谐波阶次会对电机的性能和运行稳定性产生影响。
谐波主要包括奇次谐波和偶次谐波,它们会引起电机电流和电压的失真,影响电机的效率和能耗。
了解电机谐波阶次的概念及其影响因素,对于优化电机工作、提高电机性能具有重要意义。
本文将深入探讨电机谐波阶次的概念、影响因素和应用,并对其重要性进行总结和展望。
通过对电机谐波阶次的研究,可以为电机领域的发展提供理论支持和技术指导。
1.2文章结构本文主要分为引言、正文和结论三个部分。
在引言部分,将对电机谐波阶次的概念进行概述,并说明本文的研究目的和结构。
在正文部分,将分别探讨电机谐波阶次的概念、影响因素和应用,通过对相关理论和实践案例的分析,揭示电机谐波阶次在电机运行中的重要作用。
最后,在结论部分,将总结电机谐波阶次的重要性,展望未来电机谐波阶次的发展方向,并给出结论。
整体结构清晰,逻辑性强,有助于读者全面了解和深入理解电机谐波阶次的相关知识。
1.3 目的电机谐波阶次是指电机中不同频率的谐波分量在旋转磁场中的顺序。
通过研究电机谐波阶次,可以更好地了解电机运行中的谐波现象及其对电机性能的影响。
本文的目的是探讨电机谐波阶次的概念、影响因素和应用,以增进对电机谐波阶次的认识,并为电机设计和运行提供理论支持。
同时,通过总结和展望电机谐波阶次的发展,可以为未来的研究和应用提供参考和指导,促进电机领域的进步和发展。
2.正文2.1 电机谐波阶次的概念电机谐波阶次的概念是指在电机运行过程中产生的谐波分量在频谱中的排序等级。
谐波是指频率是基波频率的整数倍的电磁波成分,它们会影响电机的运行性能和稳定性。
电机谐波阶次的概念是电机工程中非常重要的一个概念,因为谐波频率会引起电机各种问题,如振动、噪音、温升等。
谐波阶次的大小和频率分布会直接影响到电机的电磁、机械、热力等性能。
电压电流谐波标准
电压和电流的谐波标准是根据国际电工委员会(IEC)和中国的国家标准(GB)来制定的。
根据IEC标准,电压和电流的谐波总畸变率(THD)应小于5%,其中单个谐波畸变率(HD)不应超过3%。
而在中国的国家标准GB/T14549-93中,对于不同的系统电压等级,有不同的谐波电压及电流管制标准。
以400V系统电压为例,其规范电压总谐波失真率不得大于5%,其中奇次谐波电压失真率不得大于4%,偶次谐波电压失真率不得大于2%。
同时,对于各个阶次的谐波电流也分别规定有允许值,例如5次谐波电流不得大于62安培,7次谐波电流不得大于44安培等。
谐波的产生、危害及治理办法令狐采学谐波定义:从严格的意义来讲,谐波是指电流中所含有的频率为基波的整数倍的电量,一般是指对周期性的非正弦电量进行傅里叶级数分解,其余大于基波频率的电流产生的电量。
从广义上讲,由于交流电网有效分量为工频单一频率,因此任何与工频频率不同的成分都可以称之为谐波,这时“谐波”这个词的的意义已经变得与原意有些不符。
正是因为广义的谐波概念,才有了“分数谐波”、“间谐波”、“次谐波”等等说法。
产生的原因:由于正弦电压加压于非线性负载,基波电流发生畸变产生谐波。
主要非线性负载有UPS、开关电源、整流器、变频器、逆变器等。
周期性波形的展开根据傅立叶级数的原理,周期函数都可以展开为常数与一组具有共同周期的正弦函数和余弦函数之和。
其展开式中,常数表达的部分称之为直流分量,最小正周期等于原函数的周期的部分称之为基波或一次谐波,最小正周期的若干倍等于原函数的周期的部分称之为高次谐波。
因此高次谐波的频率必然也等于基波的频率的若干倍,基波频率3倍的波称之为三次谐波,基波频率5倍的波称之为五次谐波,以此类推。
不管几次谐波,他们都是正弦波。
谐波的危害:降低系统容量如变压器、断路器、电缆等加速设备老化,缩短设备使用寿命,甚至损坏设备危害生产安全与稳定浪费电能等。
谐波的治理:有源电力滤波器是治理谐波的最优产品。
折叠产生原因在理想的干净供电系统中,电流和电压都是正弦波的。
在只含线性元件(电阻、电感及电容)的简单电路里,流过的电流与施加的电压成正比,流过的电流是正弦波。
用傅立叶分析原理,能够把非正弦曲线信号分解成基本部分和它的倍数。
在电力系统中,谐波产生的根本原因是由于非线性负载所致。
当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,即电路中有谐波产生。
由于半导体晶闸管的开关操作和二极管、半导体晶闸管的非线性特性,电力系统的某些设备如功率转换器比较大的背离正弦曲线波形。
谐波电流的产生是与功率转换器的脉冲数相关的。
jianbo035实习小编一级(40) | 我的百科 | 我的知道 | 我的消息(0/0)| 百度首页 | 退出新闻网页贴吧知道MP3图片视频百科设置∙首页∙自然∙文化∙地理∙历史∙生活∙社会∙艺术∙人物∙经济∙科学∙体育编辑词条谐波目录[隐藏]一、谐波的来源二、谐波的定义三、谐波的产生四、谐波的分类五、谐波的参数六、与谐波有关的参数定义七、谐波的危害八、国内治理谐波污染的几种方法一、谐波的来源二、谐波的定义三、谐波的产生四、谐波的分类五、谐波的参数六、与谐波有关的参数定义七、谐波的危害八、国内治理谐波污染的几种方法∙九、谐波污染治理有关谐波的数学分析在18世纪和19世纪已经奠定了良好的基础。
傅里叶等人提出的谐波分析方法至今仍被广泛应用。
[编辑本段]一、谐波的来源“谐波”一词起源于声学。
电力系统的谐波问题早在20世纪20年代和30年代就引起了人们的注意。
当时在德谐波波形图国,由于使用静止汞弧变流器而造成了电压、电流波形的畸变。
1945年J.C.Read发表的有关变流器谐波的论文是早期有关谐波研究的经典论文。
[编辑本段]二、谐波的定义谐波(harmonic)定义:谐波是指电流中所含有的频率为基波的整数倍的电量,一般是指对周期性的非正弦电量进行傅里叶级数分解,其余大于基波频率的电流产生的电量。
产生的原因:由于正弦电压加压于非线性负载,基波电流发生畸变产生谐波。
主要非线性负载有UPS、开关电源、整流器、变频器、逆变器等。
谐波的危害:降低系统容量如变压器、断路器、电缆等;加速设备老化,缩短设备使用寿命,甚至损坏设备;危害生产安全与稳定;浪费电能等。
谐波的治理:有源电力滤波器是治理谐波的最优产品。
[编辑本段]三、谐波的产生用傅立叶分析原理,能够把非正弦曲线信号分解成基本部分和它的倍数。
在电力系统中,谐波产生的根本原因是由于非线性负载所致。
当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,即电路中有谐波产生。
什么是谐波?谐波有什么伤害?一、谐波1.什么称为谐波:在电力系统中谐波产生的根本原因是由于非线性负载所致。
当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,即电路中有谐波产生。
谐波频率是基波频率的整倍数,根据法国数学家傅立叶(M.Fourier)分析原理证明,任何重复的波形都可以分解为含有基波频率和一系列为基波倍数的谐波的正弦波分量。
谐波是正弦波,每个谐波都具有不同的频率,幅度与相角。
谐波可以区分为偶次与奇次性,第3、5、7次编号的为奇次谐波,而2、4、6、8等为偶次谐波,如基波为50Hz时,2次谐波为l00Hz,3次谐波则是150Hz。
一般地讲,奇次谐波引起的危害比偶次谐波更多更大。
在平衡的三相系统中,由于对称关系,偶次谐波已经被消除了,只有奇次谐波存在。
对于三相整流负载,出现的谐波电流是6n±1次谐波,例如5、7、11、13、17、19等,变频器主要产生5、7次谐波。
“谐波”一词起源于声学。
有关谐波的数学分析在18世纪和19世纪已经奠定了良好的基础。
傅里叶等人提出的谐波分析方法至今仍被广泛应用。
电力系统的谐波问题早在20世纪20年代和30年代就引起了人们的注意。
当时在德国,由于使用静止汞弧变流器而造成了电压、电流波形的畸变。
1945年J.C.Read发表的有关变流器谐波的论文是早期有关谐波研究的经典论文。
到了50年代和60年代,由于高压直流输电技术的发展,发表了有关变流器引起电力系统谐波问题的大量论文。
70年代以来,由于电力电子技术的飞速发展,各种电力电子装置在电力系统、工业、交通及家庭中的应用日益广泛,谐波所造成的危害也日趋严重。
世界各国都对谐波问题予以充分和关注。
国际上召开了多次有关谐波问题的学术会议,不少国家和国际学术组织都制定了限制电力系统谐波和用电设备谐波的标准和规定。
谐波研究的意义,道德是因为谐波的危害十分严重。
谐波使电能的生产、传输和利用的效率降低,使电气设备过热、产生振动和噪声,并使绝缘老化,使用寿命缩短,甚至发生故障或烧毁。
奇次谐波和偶次谐波的计算可以通过以下公式进行:
奇次谐波的频率为基波频率的(2k-1)倍,其中k为正整数。
例如,基波频率为f,则三次谐波的频率为2f,五次谐波的
频率为4f,以此类推。
偶次谐波的频率为基波频率的2k倍,其中k为正整数。
例如,基波频率为f,则二次谐波的频率为2f,四次谐波的
频率为4f,以此类推。
在电压和电流的计算中,可以使用向量法来计算奇次谐波和偶次谐波的分量。
具体来说,电压和电流的谐波分量可以表示为向量和相位差的乘积。
对于奇次谐波,相位差为π/2;对于偶次谐波,相位差为π/4。
需要注意的是,在计算谐波时,需要考虑电压和电流的有效值和相位角等因素。
同时,由于电力系统中存在多种谐波源,因此需要对各谐波源进行分别计算和叠加,以得到准确的谐波值。
什么是谐波?谐波的危害一、谐波1. 何为谐波?在电力系统中谐波产生的根本原因是由于非线性负载所致。
当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,即电路中有谐波产生。
谐波频率是基波频率的整倍数,根据法国数学家傅立叶(M.Fourier)分析原理证明,任何重复的波形都可以分解为含有基波频率和一系列为基波倍数的谐波的正弦波分量。
谐波是正弦波,每个谐波都具有不同的频率,幅度与相角。
谐波可以区分为偶次与奇次性,第3、5、7次编号的为奇次谐波,而2、4、6、8等为偶次谐波,如基波为50Hz时,2次谐波为l00Hz,3次谐波则是150Hz。
一般地讲,奇次谐波引起的危害比偶次谐波更多更大。
在平衡的三相系统中,由于对称关系,偶次谐波已经被消除了,只有奇次谐波存在。
对于三相整流负载,出现的谐波电流是6n±1次谐波,例如5、7、11、13、17、19等,变频器主要产生5、7次谐波。
“谐波”一词起源于声学。
有关谐波的数学分析在18世纪和19世纪已经奠定了良好的基础。
傅里叶等人提出的谐波分析方法至今仍被广泛应用。
电力系统的谐波问题早在20世纪20年代和30年代就引起了人们的注意。
当时在德国,由于使用静止汞弧变流器而造成了电压、电流波形的畸变。
1945年发表的有关变流器谐波的论文是早期有关谐波研究的经典论文。
到了50年代和60年代,由于高压直流输电技术的发展,发表了有关变流器引起电力系统谐波问题的大量论文。
70年代以来,由于电力电子技术的飞速发展,各种电力电子装置在电力系统、工业、交通及家庭中的应用日益广泛,谐波所造成的危害也日趋严重。
世界各国都对谐波问题予以充分和关注。
国际上召开了多次有关谐波问题的学术会议,不少国家和国际学术组织都制定了限制电力系统谐波和用电设备谐波的标准和规定。
谐波研究的意义,道德是因为谐波的危害十分严重。
谐波使电能的生产、传输和利用的效率降低,使电气设备过热、产生振动和噪声,并使绝缘老化,使用寿命缩短,甚至发生故障或烧毁。
奇次谐波与偶次谐波
2010-10-15 13:42:27| 分类:电子| 标签:|字号大中小订阅
其基频与奇次谐波两者的波峰、波谷的对应位置是峰对峰、谷对谷,
因此可归纳出奇次谐波失真不会造成波形的正负半周不对称。
绿色为基频,红色为二次谐波,蓝色为合成后的图形.
而且基频与奇次谐波两者的波峰、波谷的对应位置是峰对峰、谷对谷,
所以互补元件的奇次谐波失真还是同相,
因此互补电路的奇次谐波失真不会抵消掉。
意思是差分输入的放大器,奇次的谐波是不能消除的. 接下来看偶次谐波产生的失真
图中的二次谐波跟上一个图反相,
所以这两种失真波形相加之后,
二次谐波会抵消掉。
意思是差分放大后,这种谐波将会抵消掉,偶次谐波得到了抑制.
偶次谐波失真相当于共模讯号,
而平衡式放大系统的主要功能便是消除共模讯号,所以平衡式放大系统可以彻底消除偶次谐波失真,只留下奇次谐波失真。
仿真测试
输入电路
蓝色为RL两端的电压波形,红,绿为单端对地的信号波形,最终在RL两端还原了信号,消除了偶次谐波.
如果有人把非平衡的放大器改成平衡式放大器后,觉得声音变难听了,说明这个人比较喜欢听含有偶次谐波的声音.。