直流电压表的设计
- 格式:pdf
- 大小:961.66 KB
- 文档页数:30
基于51单片机的直流数字电压表设计概述:直流数字电压表是一种用于测量直流电压的仪器,它通过将电压信号转换为数字形式,并显示在数码管上,实现对电压的准确测量。
本文将介绍基于51单片机的直流数字电压表的设计原理和实现方法。
一、设计原理:1.1 电压信号采集:直流数字电压表的第一步是采集待测电压信号。
常用的采集方法是使用一个分压电路将待测电压降低到合适的范围,再通过运算放大器将其放大到合适的电平。
51单片机的模拟输入引脚可以接受0-5V的模拟电压信号,因此可以直接将放大后的信号接入单片机进行采集。
1.2 模数转换:采集到的模拟电压信号需要经过模数转换(A/D转换)才能被单片机读取和处理。
51单片机内部集成了一个10位的A/D转换器,可以将输入的模拟电压转换为相应的数字量。
通过设置不同的参考电压和采样精度,可以实现对不同电压范围的准确测量。
1.3 数码管显示:经过模数转换后,得到的数字量需要通过数码管进行显示。
51单片机的IO口可以通过控制段选和位选的方式,将数字量转换为相应的数码管显示。
可以根据需要选择常用的七段数码管或者液晶显示屏进行显示。
二、设计实现:2.1 硬件设计:硬件设计包括电路原理图设计和PCB布局设计两个部分。
电路原理图设计主要包括电压采集电路、运算放大器、A/D转换器和数码管驱动电路等部分。
PCB布局设计需要考虑信号的走线和电源的分布,以保证电压信号的准确采集和显示。
在设计过程中,需要注意地线和信号线的分离,以减少干扰。
2.2 软件设计:软件设计主要包括单片机的程序编写和调试。
首先需要编写采集模拟电压信号和进行A/D转换的程序,将转换后的数字量存储在单片机的内部存储器中。
然后编写数码管驱动程序,将存储的数字量转换为相应的数码管显示。
最后,通过按键或者旋转编码器等方式,可以实现对量程和精度的选择。
三、设计优化:3.1 精度优化:为了提高直流数字电压表的测量精度,可以采用更高精度的A/D转换器,增加参考电压的精度,或者通过校准电路对测量误差进行校正。
三位半数字直流电压表设计multisim
【设计背景及意义】
随着科技的不断发展,数字电压表在各个领域的应用越来越广泛。
三位半数字电压表作为一种常见的测量仪器,具有高精度、高稳定性、易于操作等优点。
本文将介绍如何使用Multisim软件设计一款三位半数字直流电压表,以满足实际应用需求。
【设计原理】
三位半数字直流电压表的设计主要依据以下原理:
1.采用分压式电路实现电压测量;
2.利用模数转换器将模拟信号转换为数字信号;
3.通过数字显示电路将数字信号转换为直观的电压值。
【设计步骤】
1.打开Multisim软件,新建一个项目;
2.添加所需元器件,包括电阻、电容、二极管、晶体管、运算放大器等;
3.连接电路,构建分压式电压测量电路、模数转换电路和数字显示电路;
4.设置元器件参数,如电阻值、电容值等;
5.添加电源和信号源,设置电压值;
6.配置仿真参数,进行仿真实验;
7.分析仿真结果,优化电路设计。
【仿真结果及分析】
经过多次仿真实验,得到以下结果:
1.电压测量范围:0~100V;
2.电压测量精度:0.5%;
3.数字显示:三位半液晶显示屏;
4.响应速度:≤1秒。
通过分析仿真结果,可以看出设计的三位半数字直流电压表具备较高的精度和响应速度,能够满足大部分实际应用场景的需求。
【总结与展望】
本文通过Multisim软件设计了一款三位半数字直流电压表,详细介绍了设计原理、步骤及仿真结果。
在今后的工作中,可以进一步优化电路设计,提高电压表的性能,如降低功耗、扩大测量范围等。
电工多量程直流电压表电流表的设计电工技术项目教程电工多量程直流电压表电流表的设计【项目内容】电路模型和电路中的物理量电路中常用元器件的认识;电源和负载基尔霍夫定律及应用。
电压源、电流源及等效变换戴维南定理多量程直流电压表、电流表电路的设计。
【项目知识目标】了解电路的组成,电路模型的概念理解电路中的物理量的意义,电流、电压的正方向和参考正方向的概念; 掌握电路中电位的计算方法、电功率的计算理解电阻串联电路的等效变换及分压公式,电阻并联电路的等效变换及分流公式,较熟练地进行一般电阻混联电路的等效变换掌握基尔霍夫电流和电压定律,掌握支路电流法,能较熟练地利用支路电流法求解较复杂的电路;理解电压源和电流源的特性,掌握两种电源模型的等效变换的方法理解戴维�1�7�1�7定理,掌握用戴维南定理求解电路的方法能分析实际的直流电路。
电工技术项目教程任务2.1 认识电路〖任务描述〗在人们的生活实践、生产实践及其他各类活动中,已普遍地使用电能,可以说人们已离不开电能的使用。
电路是传输或转换电能不可缺少的"载体"。
本任务学习电路的组成及作用、理想电路元件及电路模型;电路中的物理量;电阻器、电容器、电感器的参数,电流与电压的关系;简单直流电路的连接及测试。
〖任务目标〗了解电路的组成,电路模型的概念,电阻器、电容器、电感器的作用;理解电路中的物理量的意义,电流、电压的正方向和参考正方向的概念;掌握电路中电位、电功率的计算方法,电阻、电容、电感的电流与电压的关系;掌学习安装简单直流照明电路;学会使用稳压电源、直流电压表、电流表的使用方法。
电工技�1�7�1�7项目教程1.电路的组成及作用2.理想电路元件及电路模型3.电路中的物理量例2.1 如图2.3所示电路,已知试求分别以A点、B点为参考点时,各点的电位V A 、V B 、V C 、V D 及U CD 。
解以A 点为参考点时V A =0V(零电位点的电位为零) V B =-I 3 R 3=10×6=60(V) V C =I 1 R 1 =4×20=80(V) V D =I 2 R 2 =6×5=30(V) U CD =V C -V D =8030=50(V) 以B点为参考点时V B =0V V A =I 3 R 3 =10×6=60(V) V C =E 1 =140(V) V D =E 2 =90(V) U CD =V C -VD =14090=50(V) S R L R oE 图2.2 电路模型图2.3 例2.1图E 2E 1 R 1 R 2 R 3 A B I 1 I 2 I 3 C D 电工技术项目教程例2.2 图2.6所示为某电路的部分电路,已知E=4V, R=1Ω,求(1)当Uab= 6V,I=(2)当Uab=1V,I=bI图2.6 例2.2图ERa 解(1)设定电路中物理量的参考方向如图2.6所示�1�7�1�7 (A) I>0表明电流的实际方向与参考方向一致。
直流电压表的设计实验报告直流电压表的设计实验报告引言:直流电压表是一种测量电路中直流电压的仪器。
在电子工程领域中,直流电压表是一种常用的测试工具。
本实验旨在设计并制作一台简单实用的直流电压表,以便能够准确测量电路中的直流电压。
一、实验目的:本实验的目的是设计并制作一台直流电压表,通过实验验证其准确性和可靠性。
具体目标如下:1. 理解直流电压表的工作原理;2. 学会使用电流表、电阻器等元器件进行电路设计;3. 测试直流电压表的灵敏度和测量范围。
二、实验原理:直流电压表是基于毫伏表的原理设计的。
毫伏表是一种电压测量仪器,它通过将待测电压与已知电阻串联,通过测量电流大小来计算待测电压的值。
直流电压表的关键是选择合适的电阻值,以确保测量电流的幅度适中,既能够保证测量精度,又不会对待测电路产生明显的影响。
三、实验材料和仪器:1. 直流电源;2. 电流表;3. 电阻器;4. 连接线;6. 待测电路。
四、实验步骤:1. 将直流电源的正极与待测电路的正极连接,负极与待测电路的负极连接;2. 将电流表的正极与待测电路的正极连接,负极与电阻器的一端连接;3. 将电阻器的另一端与待测电路的负极连接;4. 打开直流电源,调节电压大小,观察电流表的读数;5. 记录电流表的读数和待测电压的实际值;6. 重复步骤4和步骤5,改变待测电压的大小,以验证直流电压表的准确性和可靠性。
五、实验结果和分析:通过实验测量,我们得到了一系列的待测电压和电流表的读数。
根据实验数据,我们可以绘制出待测电压和电流表读数的关系曲线。
通过分析曲线,我们可以得出以下结论:1. 直流电压表的灵敏度较高,能够准确测量待测电压的变化;2. 直流电压表的测量范围较广,能够满足大部分实际测量需求;3. 直流电压表的测量精度较高,能够满足精确测量的要求。
六、实验总结:通过本实验,我们成功设计并制作了一台直流电压表。
实验结果表明,该直流电压表具有较高的灵敏度、较广的测量范围和较高的测量精度。
直流数字电压表设计方案及原理直流数字电压表是一种用于测量直流电压的电子设备。
其设计方案及原理如下:设计方案:1. 选择合适的电压测量范围:根据实际需求选取合适的电压测量范围,可以是几个固定的范围或可调节的范围。
2. 选择适当的电压分压电阻:为了避免将高电压直接施加在测量电路上,通常会使用电压分压电阻将输入电压降低到安全范围内。
3. 选择合适的运算放大器:运算放大器用于放大电压信号,并将其转换为数字信号。
选择合适的运算放大器可以保证测量的准确性和稳定性。
4. 添加A/D转换器:A/D转换器将模拟电压信号转换为数字信号,以便于微处理器或显示器进行处理和显示。
5. 添加微处理器或显示器:微处理器可以对转换后的数字信号进行处理、计算和显示。
显示器可以直接显示测量结果。
原理:1. 电压分压:通过选择合适的电阻进行电压分压,将输入电压降低到运算放大器可接受的范围内。
2. 运算放大器放大:运算放大器将输入电压放大到合适的范围内,通常使用差分放大器进行放大,并通过负反馈控制放大倍数。
3. A/D转换:通过A/D转换器将模拟电压信号转换为数字信号。
A/D转换器将连续的模拟信号离散化为一系列数字值,通常使用逐次逼近型或积分型A/D转换器。
4. 数字处理和显示:微处理器对转换后的数字信号进行处理和计算,可以进行单位转换、数据平滑等操作,并将结果显示在显示器上。
总结:直流数字电压表通过电压分压、运算放大、A/D转换和数字处理等步骤,将输入的直流电压转换为数字信号,并通过显示器显示测量结果。
设计方案需要选择合适的电压测量范围、电压分压电阻、运算放大器、A/D转换器和显示器,以保证测量的准确性和稳定性。
多功能直流电压表的设计与实现多功能直流电压表是一种广泛应用于电子制造业和科技研究领域
的实用工具。
它具有数字化显示、高精度测量、自动换量等多种功能,可用于测试各种电路的输出电压,检测电源的稳定性和准确性,以及
测量电池的电压和维护状态等。
首先,多功能直流电压表的设计需要选用高精度芯片、精良的模
拟电路和先进的数字电路,以确保测量的准确性与可靠性。
其次,它
还应该采用便捷的人机交互方式和清晰的显示接口,以方便用户进行
各种测量操作并及时获取测试结果。
此外,为了实现多种测量功能,
如自动换量、补偿、过载保护等,还需要加入一些特殊的电路设计和
控制程序。
对于具体的实现方案,可以考虑采用数字电压计芯片作为核心测
量模块,并通过模拟滤波、增益调节和校准电路来提高测量的精确度
和稳定性。
同时,利用微处理器控制数字显示和各项功能,可以实现
快速响应、自动换量和数据存储等多种功能,并且可以通过外部接口
与其他设备进行数据通讯和控制。
而在外观设计方面,可以考虑采用
人体工学原理设计外壳,以达到美观、舒适、耐用等多重目的。
总而言之,多功能直流电压表的设计需要考虑精度、可靠性、便
捷性和多功能性等多重因素,才能更好地满足用户的需要。
而随着科
技不断进步,我们相信未来一定会有更多更先进的多功能电压表问世。
三位半数字直流电压表的设计(总14页)-本页仅作为预览文档封面,使用时请删除本页-钦州学院数字电子技术课程设计报告三位半数字直流电压表的设计院系物理学院专业过程控制自动化学生班级 2010级1班姓名 xxxx学号 xxxx指导教师单位 xxxxx指导教师姓名 xxxx指导教师职称 xxxx2013年7月三位半数字直流电压表过程控制自动化专业2010级 xxx指导教师 xxx摘要:根据设计的指标和要求,结合平时所学的理论知识,设计出一个功能较齐全的数字直流电压表。
关键词:电压表、电路、设计、A/D转换器目录前言 (1)1设计技术指标与要求 (1)设计技术指标 (1)设计要求 (1)2 方案的设计及元器件清单 (1)3 电路的工作原理 (2)4 各部分的功能 (3)三位半位双积分A / D 转换器CC14433 的性能特点 (3)基准电源(CC1403) (3)译码器(MC4511) (4)显示电路模块 (5)驱动器 (5)显示器 (5)5系统电路总图及原理 (5)电路组成 (5)电路的工作原理及过程 (6)三位半A/D转换器MC14433 (7)七段锁存-译码-驱动器CD4511 (8)高精度低漂移能隙基准电源MC1403 (9)6电路连接测试 (9)7经验体会 (10)参考文献 (10)前言数字电压表(Digital Voltmeter),简称DVM,是采用数字化测量技术,把连续的模拟信号转换成不连续、离散的数字形式并加以显示的仪表。
数字电压表的类型很多,其输入电路、设计电路和显示电路基本相似,只是电压—数字转换方法不同。
因此,我们此次设计电压表就是为了了解电压表的原理,从而学会制作电压表。
而且通过电压表的制作进一步的了解各种在制作中用到的中小规模集成电路的作用及实用方法。
1 设计技术指标与要求设计技术指标1. 量程:一档:+~0~-二档: +~0~-2. 用七段LED数码管显示读数,做到显示稳定、不跳变;3. 保持/测量开关:能保持某一时刻的读数;4. 指示值与标准电压表示值误差最低位在5之内。
目 录一、设计要求 (2)二、设计目的 (2)三、设计的具体实现 (2)1. 系统概述 (12)2. 单元电路设计 (15)3. 软件程序设计 (18)四、结论与展望 (21)五、心得体会及建议 (23)六、附录 (26)七、参考文献 (30)一﹑设计要求设计一个由8051MCU组成的简易直流电压表系统。
能够测量一定范围的电压值,并以数字形式进行显示。
通过这个过程熟悉A/D转换、键盘控制、串口通信和七段数码管的使用,掌握51系列单片机控制和测试方法。
设计以AT89C51单片机为核心,对电压信号首先进行比例调节以满足A/D的需要;设置按键用于调节不同的电压档位;用LED显示测量得到的电压值;设计通信接口电路以实现测量数据的传送。
完成基本要求,可以适当发挥进行扩展设计。
①测量范围0-200V②10位模数转换③采样结果通过LED数码管显示④通过串行口与PC通信二、设计目的(1)利用所学单片机的理论知识进行软硬件整体设计,锻炼学生理论联系实际、提高我们的综合应用能力。
(2)我们这次的课程设计是以单片机为基础,设计并开发直流电压表。
(3)掌握各个接口芯片(如ADC0808等)的功能特性及接口方法,并能运用其实现一个简单的微机应用系统功能器件。
三、设计的具体实现技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表.传统的指针式电压表功能单一、精度低,不能满足现代测量的需求,采用单片机的数字电压表,它的精度高、抗干扰能力强。
可扩展性强、集成方便,还可与PC进行实时通信。
目前,有各种单片A/D转换器构成的数字电压表,以被广泛用于电子及电工测量、工业自动化仪表、自动测试系统等智能测量领域,与此同时,也能把电量及非电量测量技术提高到崭新水平。
该系列产品是一种高精度的安装式仪表.本设计为简易直流数字电压表, A/D转换器部分采用普通元器件构成模拟部分,利用MCS-51单片机借助软件实现数字显示功能,自动校零、LED显示等功能时采用AT89C51单片机编程实现直流电压表量程的自动转换。
本文是以简易数字直流电压表的设计为研究内容,本系统主要包括三大模块:转换模块、数据处理模块及显示模块。
其中,A/D转换采用ADC0808对输入的模拟信号进行转换,控制核心AT89C51再对转换的结果进行运算处理,最后驱动输出装置LED显示数字电压信号。
总体结构框图如图1所示模拟电压AT89C51单片机ADC0808转换LED数字显示图1 总体结构框图2.单元电路设计(1)各部分概述①输入放大与量程自动转换电路的设计输入放大与量程自动转移电路的主要自用是提高输入阻抗和完成量程转换,本设计采用MCS-51集成运算放大器构成同相比例放大电路,以提高电路的输入阻抗,以达到题目要求,模拟开关以滑动变阻器为主,在单片机的控制下形成不同的通断组合,实现量程的自动转换和自动校零功能。
② A/D转换器的设计A/D转换器具有抗干扰能力强的特点,在采用零点校准的前提下,其转换精度也可以做得很高,但显著的不足是转换速度较慢,并且分辨率越高,其转换速度也就越慢,因此本设计采用了A/D转换器,可以较好的改善转换速度慢的缺点,它的转换速率分辨率的乘积比传统的双积分式A/D转换器提高至少两个数量级。
③单片机计数、控制电路设计通过对A/D转换器的方案分析,本设计采用的单片机编程实现A/D转换,脉冲的计数功能由单片机实现,所以对单片机的速度提出了较高的要求,基本要求分辨率为11位,转换速度不低于2次/S,发挥部分要求分辨率15位,采用MCS-51单片机实现控制和脉冲计数,采用16MHZ晶振,完全能满足分辨率15位和转换速度2次/S的要求。
④显示电路显示是电路采用数码管显示器,可显示各种字体的数字、字母,还可以自定义内容,增加了显示的美观性与直观性,是重要的是提供了友好的人机界面。
同时LED 8段数码管有静态显示和动态显示两种方式。
静态显示方式的各位数码管相互独立,公共端恒定接地或接正电源。
每一个字段都要独占一条I/O口只要有断码输出,显示器就可以显示出所要显示的字符,如果CPU不改写,则一直保持下去。
动态显示方式下各位数码管的段选线相应并连在一起,由一个8位的I/O口控制;各位的为选线有另外的I/O口控制。
(2)单元硬件电路①本次设计是以单片机AT89C51芯片、A/D转换器为核心设计了一个简易的电压测电压电路,在硬件方面,通过一个可变电阻调节输入电压的变化来反映所检测到的电压变化。
此变化的电压通过ADC0808的一个通道(INO)送入并进行A/D转换后的数字靓仔单片机AT89C51中进行处理,在转换成相应的实际电压值,最后通过四位LED数码管显示,精确到十分位,LED采用的是动态扫描显示,使用74HC02P芯片进行驱动,软件方面采用汇编编程。
使得整个系统完成一个简易的数字电压表的功能。
②AT89C51单片机AT89C51是一种带4K字节闪存可编程可擦除只读存储器(FPEROM—Flash Programmable and Erasable Read Only Memory)的低电压、高性能CMOS 8位微处理器,俗称单片机。
单片机的可擦除只读存储器可以反复擦除1000次。
该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。
由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,AT89C2051是它的一种精简版本。
AT89C单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。
外形及引脚排列如下图所示:图2 AT89C51引脚图接口分配电路设计如右图3所示:VCC:供电电压。
GND:接地。
P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。
当P1口的管脚第一次写1时,被定义为高阻输入。
P0能够用于外部程序数据存储器,它可以被定义为数据/ 地址的第八位。
在这里P0口作为输入与输出分别与ADC0808的输出端和LCD显示的输入端相连,且P0外部被阻值为1KΏ的电阻拉高。
图3 单片机接口电路P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。
并因此作为输入时,P2口的管脚被外部拉低,将输出电流。
这是由于内部上拉的缘故。
P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。
在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。
这里只用到了P2.0~P2.3四个端口,其中P2.1~P2.3都是作为输出端口控制显示电路的寄存器选择、读写信号和使能端口。
P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。
当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。
作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。
P3口也可作为AT89C51的一些特殊功能口,在这里用到了P3.3/INT1(外部中断1)、 P3.6 /WR(外部数据存储器写选通)、P3.7 /RD(外部数据存储器读选通)。
RST:复位输入。
当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。
ALE/PROG:当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。
在FLASH编程期间,此引脚用于输入编程脉冲。
在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。
因此它可用作对外部输出的脉冲或用于定时目的。
然而要注意的是:每当用作外部数据存储器时,将跳过一个ALE脉冲。
如想禁止ALE的输出可在SFR8EH地址上置0。
此时, ALE只有在执行MOVX,MOVC指令是ALE才起作用。
另外,该引脚被略微拉高。
如果微处理器在外部执行状态ALE禁止,置位无效。
/PSEN:外部程序存储器的选通信号。
在由外部程序存储器取指期间,每个机器周期两次/PSEN有效。
但在访问外部数据存储器时,这两次有效的/PSEN信号将不出现。
/EA/VPP:当/EA保持低电平时,则在此期间外部程序存储器(0000H-FFFFH),不管是否有内部程序存储器。
注意加密方式1时,/EA将内部锁定为RESET;当/EA端保持高电平时,此间内部程序存储器。
在FLASH编程期间,此引脚也用于施加12V编程电源(VPP)。
XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入。
XTAL2:来自反向振荡器的输出。
③A/D转换器2.3.1概述Ⅰ模数转换器即A/D转换器,或简称ADC,通常是指一个将模拟信号转变为数字信号的电子元件。
通常的模数转换器是将一个输入电压信号转换为一个输出的数字信号。
由于数字信号本身不具有实际意义,仅仅表示一个相对大小。
故任何一个模数转换器都需要一个参考模拟量作为转换的标准,比较常见的参考标准为最大的可转换信号大小。
而输出的数字量则表示输入信号相对于参考信号的大小。
模数转换器最重要的参数是转换的精度,通常用输出的数字信号的位数的多少表示。
转换器能够准确输出的数字信号的位数越多,表示转换器能够分辨输入信号的能力越强,转换器的性能也就越好。
A/D转换一般要经过采样、保持、量化及编码4个过程。
在实际电路中,有些过程是合并进行的,如采样和保持,量化和编码在转换过程中是同时实现的。
一般来说,AD比DA贵,尤其是高速的AD,因为在某些特殊场合,如导弹的摄像头部分要求有高速的转换能力。
一般那样AD要上千美元。
还有通过AD的并联可以提高AD的转换效率,多个AD同时处理数据,能满足处理器的数字信号需求了。
Ⅱ模数转换过程包括量化和编码。
量化是将模拟信号量程分成许多离散量级,并确定输入信号所属的量级。
编码是对每一量级分配唯一的数字码,并确定与输入信号相对应的代码。
最普通的码制是二进制,它有2n个量级(n为位数),可依次逐个编号。
模数转换的方法很多,从转换原理来分可分为直接法和间接法两大类。
直接法是直接将电压转换成数字量。
它用数模网络输出的一套基准电压,从高位起逐位与被测电压反复比较,直到二者达到或接近平衡。
控制逻辑能实现对分搜索的控制,其比较方法如同天平称重。
先使二进位制数的最高位Dn-1=1,经数模转换后得到一个整个量程一半的模拟电压VS,与输入电压Vin相比较,若Vin>VS,则保留这一位;若Vin<Vin,则Dn-1=0。
然后使下一位Dn-2=1,与上一次的结果一起经数模转换后与Vin相比较,重复这一过程,直到使D0=1,再与Vin相比较,由Vin>VS还是Vin<V 来决定是否保留这一位。