超声TOFD检测课件
- 格式:ppt
- 大小:2.21 MB
- 文档页数:2
无损检测之超声监测--TOFD检测原理超声在工业设备上的应用以承压设备为例,超声主要用于检测设备的腐蚀情况、焊缝和原材料质量等。
(1)检测在用承压设备的厚度,以确定设备腐蚀程度,综合设备使用年限和使用情况,对设备安全性做出评估;(2)检测奥氏体不锈钢、镍合金等堆焊层厚度,以确定耐腐蚀层是否堆焊均匀;(3)最常用的就是检测焊接接头的质量,检测焊缝是否存在缺陷,确定缺陷的位置和形状;(4)检测板材本身的质量,确保板材是否存在缺陷。
传统的脉冲反射超声检测超声检测可检厚度厚度:检测焊缝质量方面,焊缝所连接工件的适用厚度已经扩展为6-500mm甚至更厚的工件;检测板材质量方面,碳素钢和低合金钢制承压设备的板材适用厚度为6-250mm。
TOFD检测TOFD--Time Of Flight Diffraction超声波衍射时差法,属于超声检测(UT)的一员。
采用一发一收探头对工作模式,利用缺陷端点的衍射波信号探测和测定缺陷位置和尺寸的超声检测方法。
1套TOFD设备主要由自动探伤系统传感器、扫查架、系统电路、主机硬件、系统软件等组成。
单通道手动TOFD扫查器TOFD检测为什么用纵波纵波传播速度快,最先到达接收探头,容易识别缺陷,以纵波计算缺陷深度,不会与横波信号混淆。
TOFD检测的优缺点(1)相比射线检测(RT)的优势a.灵敏度高,缺陷检出率高,可达80-95%;b.穿透力强,探测深度大,可用于超厚设备检测;c.缺陷的位置、大小、形状及性质等方面较为准确;d.仅须从一面接近被检验的物体;e.无放射性危害,操作安全,无须清场;f.设备轻便,检测速度快。
(2)自身缺点a.表面测量存在盲区,易受焊缝表面质量影响;b.图像识别和缺陷定性较难,需要丰富的经验,对人员要求高;c.横向缺陷难检测;d.对粗晶粒材料检测困难,易受干扰等。
e.不规则焊缝检出较难。
TOFD检测原理1典型TOFD检测图像工人现场手动TOFD扫查环焊缝工人现场手动TOFD扫查环焊缝。
超声衍射时差(TOFD)技术原理简介(含图表)1.超声衍射时差(TOFD)技术介绍“TOFD”即Timeofflightdiffraction,译成中文是“超声波衍射时差法检测”,TOFD检测技术原理是利用超声波遇到诸如裂纹等的缺陷时,将在缺陷尖端发生迭加到正常反射波上的衍射波,探头探测到衍射波,从而判定缺陷的大小和深度。
极大地提高了缺陷检出率。
TOFD检验技术具有缺陷检出能力强、缺陷定位精度高、节省设备的制造时间等特点,在检测资料上保证安全,并且可以用数字型式永久保存,恰好弥补了常规超声波检测技术的不足。
此技术首先是应用于核工业设备检验,如今在电力、石化、管道、压力容器、钢结构等方面多有应用。
上个世纪七十年代早期,英国原子能管理局(UnitedKingdomAtomicEnergyAuthority,即UKAEA)的国家无损检测研究中心的Harwell实验室提出了了超声波衍射在UT中应用的原理。
UKAEA为了开发比常规超声波检测更精确的缺陷定量技术,最早由史可·毛瑞斯(SILKMG)博士开发出了超声衍射时差技术- 1 -(TimeofFlightDiffraction,简称TOFD)。
后来欧美国家的有关机构进行了大量的试验,到80年代早期证实,对于核反应堆的压力容器和主要部件,TOFD技术作为超声检测是可行的,其可靠性和精度要高于常规超声检测(即脉冲回波)技术;相比常规的脉冲回波技术,当时的TOFD 技术有几个最明显的不同,一是很高的定量精度,绝对误差<±1mm,而裂纹监测的误差<±0.3mm;二是对缺陷的方向和角度不敏感,不向脉冲回波技术那样对某些方向的缺陷有“盲区”;三是对缺陷的定量不是基于信号的波幅,而是基于缺陷尖端衍射信号的声程和时间。
后来开发了便携的设备系统(即国际无损检测中心的ZIPSCAN),TOFD技术被国际工业界广泛公认。
90年代,该项技术开始应用与石油化工管线的检测。
TOFD–超声波衍射时差法超声波衍射时差法(TOFD)是一种非破坏性检测技术,常用于测量材料中的缺陷尺寸和位置。
TOFD基于超声波传播的原理,通过计算超声波信号的到达时间差来确定材料中的缺陷。
TOFD的原理是利用超声波在材料中的传播速度来测量缺陷。
当超声波传播到材料中的缺陷时,它将发生衍射现象,这导致超声波信号的出射角度和到达时间发生变化。
通过测量这些角度和时间的变化,可以计算出缺陷的尺寸和位置。
TOFD的检测设备包括一个超声波发射器和一个接收器。
发射器将超声波信号发送到被测材料上,接收器接收反射回来的信号。
接收器上的传感器测量信号的到达时间,并将数据发送给计算机进行处理。
TOFD的步骤如下:1.准备工作:确保被测材料表面清洁,并涂上耦合剂以方便超声波的传播。
2.发送超声波信号:发射器发送超声波信号,信号穿过被测材料并遇到任何缺陷。
3.接收超声波信号:接收器接收被缺陷反射的超声波信号,传感器测量信号的到达时间。
4.数据处理:计算机接收到传感器测量的到达时间数据后,使用TOFD原理计算缺陷的尺寸和位置。
TOFD的优点是能够提供准确而详细的缺陷信息。
它可以测量缺陷的尺寸和位置,并且在一次扫描中能够检测到多个缺陷。
此外,TOFD对材料的表面和涂层厚度没有严格要求,适用于不同类型的材料。
然而,TOFD也有一些限制。
首先,TOFD需要高度训练的操作员才能正确操作设备和解读结果。
此外,材料的形状和尺寸可能会影响到信号的传播,导致检测不准确。
此外,TOFD对材料的密度和声波传播速度也有一定要求。
总之,超声波衍射时差法是一种非破坏性检测技术,通过计算超声波信号的到达时间差来确定材料中的缺陷尺寸和位置。
它可以提供准确而详细的缺陷信息,适用于不同类型的材料。
然而,正确操作设备和解读结果需要高度训练的操作员,且对材料的形状、尺寸、密度和声波传播速度有一定要求。
衍射波时差法超声检测技术(TOFD王庆军大连西太平洋石油化工有限公司 116600简介:本文简要介绍了工业发达国家正在兴起和应用的TOFD技术的起源,原理,优缺点,标准规定和在实际产品订货中节约的费用和时间。
主题词:TOFD起源原理优缺点相关费用1. 衍射波时差法检测技术(TOFD的起源TOFD(Time-of-flight-diffraction technique检测技术是在1977年,由Silk根据超声波衍射现象提出来,意大利AEA sonovatiion公司在TOFD应用方面,已经有15年历史,此技术首先是应用于核工业设备在役检验,现在在核电,建筑,化工,石化,长输管道等工业的厚壁容器和管道方面多有应用,TOFD技术的成本是脉冲回声技术的1/10。
现在,TOFD检测技术在西方国家是一个热门话题,现在已经开始推广应用,经过几年以后,将有取代RT趋势的可能。
2. TOFD原理及系统组成2.1 TOFD原理是当超声波遇到诸如裂纹等的缺陷时,将在缺陷尖端发生叠加到正常反射波上的衍射波,探头探测到衍射波,可以判定缺陷的大小和深度。
TOFD原理当超声波在存在缺陷的线性不连续处,如裂纹等处出现传播障碍时,在裂纹端点处除了正常反射波以外,还要发生衍射现象。
衍射能量在很大的角度范围内放射出并且假定此能量起源于裂纹末端(图1。
这与依赖于间断反射能量总和的常规超声波形成一个显著的对比。
图11 =发射波2 =反射波3 =穿透波4 =顶部裂纹端衍射波5 =底部裂纹端衍射波除了发现由缺陷衍射的能量变化以外,TOFD方法也探测到一个直接穿过两个探针的表面(横向波和达到试块底部(测试对面没有受到缺陷干涉的底部反射波(图1中的注1和4。
图. 21- 横向波 2 - 顶部裂纹端衍射波3 - 底部裂纹端衍射波 4- 对面器壁反射波这种现象的研究产生了用于下列应用衍射波时差法无损检测方法:■探伤检验因为来自于缺陷范围的信号可记录。