石油工程概论 :第三节 油藏流体饱和度
- 格式:ppt
- 大小:1.82 MB
- 文档页数:2
绪论单元测试1.关于石油工程的理解,说法正确的是()。
A:开展石油工程研究与工作和油气生成、油气藏类型及其特征等无关B: 石油工程包括油气藏工程、钻井工程、油气开采工程、地面工程等多方面内容C:石油工程是石油天然气工业体系中的重要一环D:石油工程是经济有效地将深埋于地下的油气从油气藏中开采到地面所实施的一系列工程和工艺技术的总称答案:BCD第一章测试1.油藏流体是指存在于地下油藏岩石中的石油、石油伴生气(天然气)和地层水;随温度、压力的变化,油藏流体的物理性质也会发生变化。
()A:错B:对答案:B2.多组分烃类系统相图中的三线包括()。
A:露点线B:等压线C:等液量线D:等温线E:泡点线答案:ACE3.地层油的粘度随着温度增加而降低,随着压力增加而增加。
()A:对B:错答案:B4.表征天然气与理想气体差异的主要参数是()。
A:天然气的体积系数B:通用气体常数C:天然气的压缩系数D:天然气的压缩因子答案:D5.关于地层水的高压物性说法正确的是()。
A:同样温度压力条件下,溶有天然气的地层水较不含气的地层水的压缩性大B:地层水的体积系数可近似视为1C:地层水的压缩系数与地层油的压缩系数定义形式相似D:地层水中溶解的天然气量一般比较少答案:ABCD第二章测试1.岩石的孔隙度是指岩石孔隙体积与岩石外表体积之比,可分为绝对孔隙度、有效孔隙度、流动孔隙度等。
()A:错B:对答案:B2.关于流体饱和度的说法正确的是()。
A:同一油气藏中,含油、含气、含水饱和度之和小于1B:剩余油饱和度不随时间变化C:残余油饱和度是指被工作剂驱洗过的地层中被滞留或闭锁在岩石孔隙中的油的体积占孔隙体积的比例D:油藏中若已知束缚水饱和度就可以求出原始含油饱和度答案:CD3.岩石的压缩系数是指单位体积岩石中孔隙体积随有效压力的变化值;该值很小,油田开发过程中常被忽略()。
A:错B:对答案:A4.关于油藏岩石渗透率的说法正确的是()。
储层岩石流体的饱和度储层岩石流体的饱和度摘要:储层岩石流体的饱和度在油气田开发过程中具有十分重要的意义,例如计算地层的原始地质储量,目前地层的可开采储量,通过观测剩余油饱和度分布图来查看地层剩余油的分布等。
本文主要介绍了各流体饱和度的定义,以及测饱和度的三种方法:蒸馏抽提法,常压干馏法,色谱仪法。
关键字:饱和度,蒸馏抽提法,常压干馏法,色谱仪法1流体饱和度的定义储层岩石孔隙中充满一种流体时,孔隙中饱含该流体,则称饱和了一种流体。
当储层岩石孔隙中同时存在多种流体(原油、底层水、天然气)时,岩石孔隙被多种流体所饱和,某种流体所占的体积百分数称为该种流体的饱和度。
1.1饱和度、含水饱和度、含气饱和度根据上述定义,储层岩石孔隙中油、水、气的饱和度可以分别表示为:o o o p b V V S V V φ== (1) w w w p b wV V S V V φ== (2) gg g p b V V S V V φ== (3)式中:o S 、w S 、g S ——含油饱和度、含水饱和度、含气饱和度;o V 、w V 、g V ——油、水、气体在岩石孔隙中所占体积;p V 、b V ——岩石孔隙体积和岩石视体积;φ——岩石的孔隙度,小数。
根据饱和度的概念,o S 、w S 、g S 三者之间有如下关系:1o w g S S S ++≡ (4)当岩石中只有油、水两相,即0g S =时,o S 、w S 有如下关系:1o w S S += (5)1.2 原始含水饱和度——束缚水饱和度油藏投入开发前,并非孔隙中100%含油,而是一部分孔隙被水占据。
所谓原始含水饱和度(wi S )是油藏投入开发前储层岩石孔隙空间中原始含水体积wi V 和岩石孔隙体积p V 的比值,即:wi wi pV S V = (6) 大量的现场取心分析表明。
即使是纯油气藏,其储层内部都会含有一定数量的不流动水,称之为束缚水。
束缚水一般存在于砂粒表面、砂粒接触处角隅或微毛管孔道中。
1石油工程的主要内容:以弄清的油气田地质资料为基础,对油气层进行分类排队,选定油田开发方式;选定油田开发方式;根据地下油气藏的结构和压力特点,选择合理的布井方式,确定保持生产层能量的方法和技术措施。
2油气层的形成过程:石油生成——运移——聚集——保存3油气藏形成的条件可归纳为四个必要条件:生油层、储油层、盖层和保护层。
4孔隙度:岩石孔隙体积与岩石的外形体积之比5流体饱和度: 油的饱和度:r O PO O V V V V S Φ== 水的饱和度:r w Pww V V V V S Φ== 气的饱和度:r g P gg V V V V S Φ==地质储量:()o wi B Ahr S N /1Φ-=6渗透率只与岩石本身性质有关,与流体无关。
7润湿性的判断:θ=0º岩石表面完全水湿θ<90°岩石表面亲水θ=90°岩石表面中间湿润θ>90°岩石表面亲油θ=180°岩石表面完全油湿8油田正规的开发阶段:开发前准备阶段;开发设计和投产;开发方案的调整和完善。
9油藏驱动方式:①弹性驱动主要依靠岩石和流体的弹性膨胀能驱油;②地层压力低于饱和压力后,原来溶解在原油中的溶解气就会分离出来,主要依靠这种不断分离出的溶解气的弹性来驱油成为溶解气驱③当油藏存在边水、底水或注入水时则会形成水压驱动④当油藏在气顶且气顶中的压缩气为主要的驱油能量时为气压驱动⑤主要靠自身的重力将油驱向井底时则为重力驱动。
一个地层原始压力高于饱和压力的油田如果不向地层补充能量地开发,可能存在的驱动方式有弹性水驱。
弹性气驱主要用的地层气顶膨胀的能量。
10钻井工艺过程:钻前准备、钻进和完井,各项过程的任务。
11洗井液密度增大,“压持效应”增加,阻碍钻进;粘度降低,增快钻进速度;固相含量及分散性对钻头的磨损。
12大位移井是指水平位移与垂深之比等于或大于2的井。
13在钻出的井眼内下入套管柱,并在套管柱与井壁之间注入水泥浆,使套管与井壁固结在一起的工艺过程称之为固井。
可编辑修改精选全文完整版油层物理教学大纲(杜建芬)-西南石油大学油气田油气井考研内部题库《油层物理》教学大纲一、课程基本信息1、课程英文名称:Petrophysics2、课程类别:专业基础课程3、课程学时:总学时48,实验学时84、学分:35、先修课程:石油地质、物理化学、工程流体力学6、适用专业:石油工程、资源勘查工程及相关专业7、大纲执笔:石油工程教研室杜建芬8、大纲审批:石油工程学院学术委员会9、制定(修订)时间:2006.10二、课程的目的与任务:《油层物理》是石油工程、资源勘查工程等专业必修的一门重要的专业基础课,是一门建立在实验基础上的、实践性很强的课程,是学好其它后续专业课程如渗流力学、油藏工程、油藏数值模拟、采油工程、试井分析、保护储层技术、天然气工程、提高采收率等的非常关键的课程。
其主要目的与任务是培养学生的实验动手能力,掌握有关储层岩石和储层流体的基本物理性质以及多相流体在储层岩石中的基本渗流机理。
三、课程的基本要求:1、要求学生能准确理解、牢固掌握、正确运用本课程涉及到的基本概念、基本理论和基本方法。
2、要求学生掌握油层物理相应的实验技能,包括各种物性参数的实验测定原理,实验数据的处理方法等。
四、教学内容、要求及学时分配:(一)理论教学(42学时)绪论(2学时)教学内容:一、学科发展概况二、研究对象三、研究内容四、研究目的五、研究方法六、课程的特点和要求七、参考书●教学要求:了解油层物理的学科发展、研究对象、内容和方法,明确学习目和方法。
第一章储层岩石的物理特性(14学时)●教学内容及学时分配:第一节储层岩石的骨架性质(3学时)一、岩石的粒度组成二、岩石的比面第二节储层岩石的孔隙结构及孔隙性(4学时)一、储层岩石的孔隙结构二、岩石的孔隙度三、影响岩石孔隙度大小的因素四、岩石孔隙度的测定方法五、孔隙度与表征体积单元六、储层岩石的压缩性第三节储层岩石的流体饱和度(1学时)一、流体饱和度的概念二、几个重要的饱和度三、流体饱和度的测定方法第四节储层岩石的渗透性(3学时)一、达西定律及岩石的绝对渗透率二、岩石绝对渗透率的测定原理三、岩石渗透率的实验室测定四、影响岩石渗透率的因素五、岩石渗透率的估算第五节储层岩性参数的平均值处理方法(1学时)一、岩石物性参数的算术平均法二、岩石物性参数的加权平均法三、岩石物性参数的渗流方程平均法第六节储层岩石的其它物理性质(自学)一、储层岩石的热学性质二、储层岩石的导电性三、储层岩石的声学特性四、储层岩石的放射性第七节储层岩石的敏感性(2学时)一、胶结物及胶结类型二、胶结物中的敏感性矿物三、储层敏感性评价方法●教学要求:明确储层岩石的骨架结构和孔隙结构的复杂性;掌握各种岩石物性参数的基本定义、影响因素及测定方法;明确储层伤害机理及评价方法。
1.3.1 常规压汞实验图1-1是30块岩心常规压汞实验所得的不同孔径的孔喉分布频率。
可以看出,低渗透砂岩气藏储层的孔径峰值主要是小孔喉。
不同渗透率岩心孔径小于0.1微米的小孔喉占据的孔隙体积比例如图1-2所示,可以看出,岩心渗透率越小,小孔喉(小于0.1μm)所占孔隙体积就越大,渗透率低于0.1mD 的岩心中小孔喉(小于0.1μm)控制的孔隙体积约为40%以上,随着渗透率的增大,小于0.1微米的孔喉占据的孔隙体积比例基本保持在同一水平,并没有降低的趋势。
这表明须家河低渗气藏储层渗流通道主要受到小于0.1μm的小孔喉控制。
低渗砂岩气藏储层中流体的储集和流动都受小孔喉影响严重,决定了储量丰度低、开发难度大的特点。
图1-3是低渗砂岩岩心孔喉平均半径和中值半径与渗透率的关系图,可以发现低渗储层渗透率与孔喉中值半径、平均半径之间相关关系差。
由于常规压汞只能给出孔喉半径及对应孔喉控制体积分布,并非准确的喉道分布,而恒速压汞可以同时得到孔道和喉道的信息,对于孔喉性质差别非常大的低渗、特低渗储层尤为适合。
因此还需要通过恒速压汞实验作进一步深入研究储层微观孔喉特征。
1.3.2 恒速压汞实验图1-4和图1-5分别是14块岩心恒速压汞实验得到的不同半径孔道分布频率和累计分布频率。
可以看出,不同渗透率的岩心孔道半径分布一致,孔道集中分布在110微米左右。
这说明孔道不是决定储层渗透性能的关键因素。
图1-4 不同半径孔道分布频率图1-5 不同半径孔道累计分布频率图1-6和图1-7是恒速压汞实验得到的不同半径喉道分布频率和累计分布频率图,可以看出不同渗透率岩心喉道半径分布频率差别很大。
图1-8是不同半径单根喉道对渗透率的贡献率图,表明渗透率高的岩心大吼道对于渗透率的贡献起主要作用,而渗透率特低的岩心小喉道对渗透率的贡献起主要作用,从而导致特低渗透率储层渗流阻力巨大,对应的开发难度增加,开发效果明显变差。
同时图1-28到图1-30还可以表明,渗透率小于0.1mD的岩心,平均喉道半径在1μm以下,喉道在0.7μm左右处集中;渗透率在0.1~1mD 的岩心,平均喉道半径在1~3μm,喉道半径分布相对有所展宽;渗透率大于1mD的岩心,平均喉道半径在3μm以上,喉道半径的分布则比前两类宽得多,既有小于1μm的小喉道,也有10-15μm这样的比较大的喉道,且后者的比例随渗透率的变大所占比例变大。