高三数学直线练习(附答案)
- 格式:docx
- 大小:43.94 KB
- 文档页数:3
高三数学直线综合试题答案及解析1.若动点A,B分别在直线l1:x+y-7=0和l2:x+y-5=0上移动,则AB的中点M到原点的距离的最小值为()A.3B.2C.3D.4【答案】A【解析】依题意知AB的中点M的集合为与直线l1:x+y-7=0和l2:x+y-5=0距离都相等的直线,则M到原点的距离的最小值为原点到该直线的距离,设点M所在直线的方程为l:x+y+m=0,根据平行线间的距离公式得=⇒|m+7|=|m+5|⇒m=-6,即l:x+y-6=0,根据点到直线的距离公式,得M到原点的距离的最小值为=3.2.在点测量到远处有一物体在做匀速直线运动,开始时该物体位于点,一分钟后,其位置在点,且,再过两分钟后,该物体位于点,且,则的值为()A.B.C.D.【答案】B【解析】如图,由题意知,直线的方程为:,.设直线直线的方程为:解方程组可得:.由得.选B.【考点】坐标法.3.点P(x,y)在直线x+y-4=0上,则x2+y2的最小值是________.【答案】8【解析】由题意得,将的最小值转化为直线上的点到原点距离的最小值的平方,即原点到直线的垂线段长的平方,所以.所以正确答案为8.【考点】解析法的应用4.若直线同时平分一个三角形的周长和面积,则称直线为该三角形的“Share直线”,已知△ABC的三边长分别为3、4、5,则这样的“Share直线”()A.存在一条B.存在三条C.存在六条D.不存在【答案】A【解析】(1)直线过的某个顶点,如图,假设直线过点A.若直线平分的面积则有,此时,,所以周长相等不可能.同理直线过B、C也不存在.若直线交AB、BC于点M、N.如下图,设.设,则,作,由,得.接着根据,解得或者(舍),即这样的直线存在,且只有一条,综上,同时平分这个三角形周长和面积的直线只有1条.故选A.【考点】1.确定直线的位置关系.5.过点的倾斜角为的直线与圆交于两点,则 .【答案】22【解析】如图,直线的方程为:,即:,由点到直线的距离公式得:,因为,所以由勾股定理得:,由两点距离公式得:,所以由勾股定理得:,则,,求得【考点】直线的方程点评:当涉及到曲线的交点时,不一定就要联立曲线的方程组去求出交点的坐标,像本题,求出交点的坐标是相当麻烦的。
高三数学直线方程试题1.若存在实常数k和b,使得函数f(x)和g(x)对其定义域上的任意实数x分别满足:f(x)≥kx+b和g(x)≤kx+b,则称直线l:y=kx+b为f(x)和g(x)的“隔离直线”.已知h(x)=x2,φ(x)=2elnx(其中e为自然对数的底数),根据你的数学知识,推断h(x)与φ(x)间的隔离直线方程为________.【答案】y=2x-e【解析】容易观察到h(x)和φ(x)有公共点(,e),又(x-)2≥0,即x2≥2x-e,所以猜想h(x)和φ(x)间的隔离直线为y=2x-e,下面只需证明2eln x≤2x-e恒成立即可,构造函数λ(x)=2eln x-2x+e.由于λ′(x)= (x>0),即函数λ(x)在区间(0,)上递增,在(,+∞)上递减,故λ(x)≤λ()=0,即2eln x-2x+e≤0,得2eln x≤2x-e.故猜想成立,所以两函数间的隔离直线方程为y=2x-e.2.已知点A(3,0),B(0,4),直线AB上一动点P(x,y),则xy的最大值是________.【答案】3【解析】直线AB的方程为+=1,又∵+≥2,即2≤1,当x>0,y>0时,当且仅当=,即x=,y=2时取等号,∴xy≤3,则xy的最大值是3.作x轴3.(2013•重庆)如图,椭圆的中心为原点O,长轴在x轴上,离心率,过左焦点F1的垂线交椭圆于A、A′两点,|AA′|=4.(1)求该椭圆的标准方程;(2)取垂直于x轴的直线与椭圆相交于不同的两点P、P′,过P、P′作圆心为Q的圆,使椭圆上的其余点均在圆Q外.若PQ⊥P'Q,求圆Q的标准方程.【答案】(1)(2)【解析】(1)由题意知点A(﹣c,2)在椭圆上,则,即①∵离心率,∴②联立①②得:,所以b2=8.把b2=8代入②得,a2=16.∴椭圆的标准方程为;(2)设Q(t,0),圆Q的半径为r,则圆Q的方程为(x﹣t)2+y2=r2,不妨取P为第一象限的点,因为PQ⊥P'Q,则P()(t>0).联立,得x2﹣4tx+2t2+16﹣2r2=0.由△=(﹣4t)2﹣4(2t2+16﹣2r2)=0,得t2+r2=8又P()在椭圆上,所以.整理得,.代入t2+r2=8,得.解得:.所以,.此时.满足椭圆上的其余点均在圆Q外.由对称性可知,当t<0时,t=﹣,.故所求椭圆方程为.4.直线2x﹣3y+1=0的一个方向向量是()A.(2,﹣3)B.(2,3)C.(﹣3,2)D.(3,2)【答案】D【解析】由题意可得:直线2x﹣3y+1=0的斜率为k=,所以直线2x﹣3y+1=0的一个方向向量=(1,),或(3,2)故选D.5.已知圆C:x2+y2=9,点A(-5,0),直线l:x-2y=0.(1)求与圆C相切,且与直线l垂直的直线方程;(2)在直线OA上(O为坐标原点),存在定点B(不同于点A),满足:对于圆C上任一点P,都有为一常数,试求所有满足条件的点B的坐标.【答案】(1)y=-2x±3(2)【解析】(1)设所求直线方程为y=-2x+b,即2x+y-b=0,∵直线与圆相切,∴=3,得b=±3,∴所求直线方程为y=-2x±3.(2)(解法1)假设存在这样的点B(t,0),当P为圆C与x轴左交点(-3,0)时,=;当P为圆C与x轴右交点(3,0)时,=,依题意,=,解得,t=-5(舍去),或t=-.下面证明点B对于圆C上任一点P,都有为一常数.设P(x,y),则y2=9-x2,∴=,从而=为常数.(解法2)假设存在这样的点B(t,0),使得为常数λ,则PB2=λ2PA2,∴(x-t)2+y2=λ2[(x+5)2+y2],将y2=9-x2代入得,x2-2xt+t2+9-x2=λ2(x2+10x+25+9-x2),即2(5λ2+t)x+34λ2-t2-9=0对x∈[-3,3]恒成立,∴解得(舍去),所以存在点B对于圆C上任一点P,都有为常数6.已知点P1(2,3)、P2(-4,5)和A(-1,2),求过点A且与点P1、P2距离相等的直线方程.【答案】y-2=-(x+1)或x=-1.【解析】(解法1)设所求直线方程为y-2=k(x+1),即kx-y+k+2=0.由点P1、P2到直线的距离相等得.化简得,则有3k-1=-3k-3或3k-1=3k+3,解得k=-或方程无解.方程无解表明这样的k不存在,但过点A,所以直线方程为x=-1,它与P1、P2的距离都是3.∴所求直线方程为y-2=- (x+1)或x=-1.(解法2)设所求直线为l,由于l过点A且与P1、P2距离相等,所以l有两种情况,如下图:①当P1、P2在l的同侧时,有l∥P1P2,此时可求得l的方程为y-2= (x+1),即y-2=-(x+1);②当P1、P2在l的异侧时,l必过P1、P2的中点(-1,4),此时l的方程为x=-1.∴所求直线的方程为y-2=-(x+1)或x=-1.7.直线l1:2x+y-4=0,求l1关于直线l:3x+4y-1=0对称的直线l2的方程.【答案】2x+11y+16=0【解析】在直线l1上取一点A(2,0),又设点A关于直线l的对称点为B(x,y),则解得B .又l1与l2的交点为M(3,-2),故由两点式可求得直线l2的方程为2x+11y+16=0.8.已知直线l过点P(-2,5),且斜率为-,则直线l的方程为________.【答案】3x+4y-14=0【解析】由y-5=-(x+2),得3x+4y-14=0.9.过点M(0,1)作一条直线,使它被两条直线l1:x-3y+10=0,l2:2x+y-8=0所截得的线段恰好被M点平分.求此直线方程.【答案】x+4y-4=0.【解析】(解法1)由于过点M(0,1)且与x轴垂直的直线显然不合题意,故可设所求直线方程为y=kx+1,与已知两条直线l1、l2分别交于A、B两点,联立方程组xA=,x B =,∵点M平分线段AB,∴xA+xB=2xM,即有+=0,解得k=-.故所求的直线方程为x+4y-4=0.(解法2)设所求的直线与已知两条直线l1、l2分别交于A、B两点,∵点B在直线l2:2x+y-8=0上,∴设B(t,8-2t),由于M(0,1)是线段AB的中点,∴根据中点坐标公式得A(-t,2t-6),而A点在直线l1:x-3y+10=0上,∴(-t)-3(2t-6)+10=0,解之得t=4,∴B(4,0).故所求直线方程为x+4y-4=0.10.设直线l的方程为(a+1)x+y+2-a=0(a∈R).(1)若l在两坐标轴上截距相等,求l的方程;(2)若l不经过第二象限,求实数a的取值范围.【答案】(1)x+y+2=0(2)a≤-1.【解析】(1)当直线过原点时,该直线在x轴和y轴上的截距均为零,∴a=2,即方程为3x+y=0符合题意.当直线不过原点时,由截距存在且均不为0,∴=a-2,即a+1=1,∴a=0,即方程为x+y+2=0.(2)(解法1)将l的方程化为y=-(a+1)x+a-2,∴∴a≤-1.综上可知a的取值范围是a≤-1.(解法2)将l的方程化为(x+y+2)+a(x-1)=0(a∈R).它表示过l1:x+y+2=0与l2:x-1=0交点(1,-3)的直线系(不包括x=1).由图象可知l的斜率-(a+1)≥0,即a≤-1时,直线l不经过第二象限.11.不论m取何值,直线(m-1)x-y+2m+1=0恒过定点________.【答案】(-2,3)【解析】把直线方程(m-1)x-y+2m+1=0,整理得(x+2)m-(x+y-1)=0,则得12.经过直线x+2y-3=0与2x-y-1=0的交点且和点(0,1)的距离等于1的直线方程为.【答案】x-1=0【解析】设所求直线的方程为(x+2y-3)+λ(2x-y-1)=0,即(1+2λ)x+(2-λ)y-3-λ=0,由于点(0,1)到该直线的距离为1,即1==,所以|2λ+1|=,解得λ=2.故所求直线方程为(x+2y-3)+2(2x-y-1)=0,即x-1=0.13.若直线ax+by+c=0经过第一、二、三象限,则有()A.ab>0,bc>0B.ab>0,bc<0C.ab<0,bc>0D.ab<0,bc<0【答案】D【解析】易知直线的斜率存在,将直线ax+by+c=0变形为y=-x-,如图所示.数形结合可知即ab<0,bc<0.14.已知△ABC三顶点坐标A(1,2),B(3,6),C(5,2),M为AB中点,N为AC中点,则直线MN的方程为()A.2x+y-8=0B.2x-y+8=0C.2x+y-12=0D.2x-y-12=0【答案】A【解析】由中点坐标公式可得M(2,4),N(3,2),再由两点式可得直线MN的方程为=,即2x+y-8=0.15.已知点P(3,2)与点Q(1,4)关于直线l对称,则直线l的方程为()A.x-y+1=0B.x-y=0C.x+y+1=0D.x+y=0【答案】A【解析】由题意知直线l与直线PQ垂直,所以kl=-=1,又因为直线l经过PQ的中点(2,3),所以直线l的方程为y-3=x-2,即x-y+1=0.16.已知点A(3,3),B(5,2)到直线l的距离相等,且直线l经过两直线l1:3x-y-1=0和l2:x+y-3=0的交点,求直线l的方程.【答案】x+2y-5=0或x-6y+11=0【解析】解:解方程组得交点P(1,2).(1)若点A,B在直线l的同侧,则l∥AB.而kAB==-,由点斜式得直线l的方程为y-2=- (x-1),即x+2y-5=0;(2)若点A,B分别在直线l的异侧,则直线l经过线段AB的中点,由两点式得直线l的方程为=,即x-6y+11=0.综上所述,直线l的方程为x+2y-5=0或x-6y+11=0.17.已知过A(-1,a),B(a,8)两点的直线与直线2x-y+1=0平行,则a的值为________.【答案】2【解析】依题意得k==2,解得a=2.AB18.过点P(1,1)的直线,将圆形区域{(x,y)|x2+y2≤4}分两部分,使得这两部分的面积之差最大,则该直线的方程为________.【答案】x+y-2=0【解析】当OP与所求直线垂直时面积之差最大,故所求直线方程为x+y-2=0.19.若直线与直线垂直,则的值是()A.或B.或C.或D.或1【答案】B【解析】直线的斜率乘积等于-1,或根据求解。
高三数学直线综合练习题直线综合练习题一1.已知直线k: 2x - 3y + 6 = 0,求k与x轴、y轴的交点,并求出k的斜率。
解答:首先,我们可以通过将y轴和x轴的方程带入直线k的方程,求得交点坐标。
当直线与x轴相交时,y = 0,将y代入直线k的方程得:2x - 3(0) + 6 = 02x + 6 = 02x = -6x = -3因此,k与x轴的交点为(-3, 0)。
当直线与y轴相交时,x = 0,将x代入直线k的方程得:2(0) - 3y + 6 = 0-3y + 6 = 0-3y = -6y = 2所以,k与y轴的交点为(0, 2)。
其次,我们需要计算直线k的斜率。
直线的斜率是指直线上任意两点的纵坐标之差与横坐标之差的比值。
我们已经知道直线k经过两个点(-3, 0)和(0, 2)。
将这两个点的坐标代入斜率公式:斜率 = (y2 - y1) / (x2 - x1)斜率 = (2 - 0) / (0 - (-3))斜率 = 2 / 3所以,直线k的斜率为2/3。
综上所述,直线k与x轴的交点为(-3, 0),与y轴的交点为(0, 2),斜率为2/3。
直线综合练习题二2.已知直线l经过点A(3, 4)和点B(-1, 2),求直线l的斜率和方程。
解答:直线l经过点A(3, 4)和点B(-1, 2),我们需要先计算出直线l 的斜率,然后再用斜率和已知点的坐标求出直线l的方程。
首先,我们计算直线l的斜率。
使用斜率公式:斜率 = (y2 - y1) / (x2 - x1)将点A(3, 4)和点B(-1, 2)的坐标代入斜率公式:斜率 = (2 - 4) / (-1 - 3)斜率 = -2 / -4斜率 = 1/2所以,直线l的斜率为1/2。
接下来,使用点斜式可以求出直线l的方程。
点斜式的一般形式为:y - y1 = m(x - x1)其中,m为直线的斜率,(x1, y1)为直线上已知的一个点。
我们已经知道直线l经过点A(3, 4)。
高三数学直线方程试题答案及解析1.过点且斜率为的直线与抛物线相交于,两点,若为中点,则的值是.【答案】【解析】直线,设,,则由有B为AC中点,则,∴,则带入直线中,有,∴.【考点】直线方程、中点坐标公式.2.直线l经过点(3,0),且与直线l′:x+3y-2=0垂直,则l的方程是______________.【答案】3x-y-9=0【解析】直线l′:x+3y-2=0的斜率为k′=-,由题意,得k′k=k=-1,则k=3.所以l 的方程为y=3(x-3),即3x-y-9=0.3.求经过点A(2,m)和B(n,3)的直线方程.【答案】当n≠2时,y-m=(x-2),当n=2时x=2.【解析】(解法1)利用直线的两点式方程.直线过点A(2,m)和B(n,3).①当m=3时,点A的坐标是A(2,3),与点B(n,3)的纵坐标相等,则直线AB的方程是y=3.②当n=2时,点B的坐标是B(2,3),与点A(2,m)的横坐标相等,则直线AB的方程是x=2.③当m≠3,n≠2时,由直线的两点式方程得.(解法2)利用直线的点斜式方程.①当n=2时,点A、B的横坐标相同,直线AB垂直于x轴,则直线AB的方程为x=2.②当n≠2时,过点A,B的直线的斜率是k=.又∵过点A(2,m),∴由直线的点斜式方程y-y1=k(x-x1),得过点A,B的直线的方程是y-m=(x-2).4.直线l经过点(3,2),且在两坐标轴上的截距相等,求直线l的方程.【答案】2x-3y=0或x+y-5=0.【解析】解法1:(借助点斜式求解)由于直线l在两轴上有截距,因此直线不与x、y轴垂直,斜率存在,且k≠0.设直线方程为y-2=k(x-3),令x=0,则y=-3k+2;令y=0,则x=3-.由题设可得-3k+2=3-,解得k=-1或k=.故l的方程为y-2=-(x-3)或y-2=(x-3).即直线l的方程为x+y-5=0或2x-3y=0.解法2:(利用截距式求解)由题设,设直线l在x、y轴的截距均为a.若a=0,则l过点(0,0).又过点(3,2),∴l的方程为y=x,即l:2x-3y=0.若a≠0,则设l为=1.由l过点(3,2),知=1,故a=5.∴l的方程为x+y-5=0.综上可知,直线l的方程为2x-3y=0或x+y-5=0.5. 已知直线l :+4-3m =0.(1)求证:不论m 为何实数,直线l 恒过一定点M ;(2)过定点M 作一条直线l 1,使夹在两坐标轴之间的线段被M 点平分,求直线l 1的方程. 【答案】(1)见解析(2)2x +y +4=0 【解析】(1)证明:∵m +2x +y +4=0, ∴由题意得∴直线l 恒过定点M.(2)解:设所求直线l 1的方程为y +2=k(x +1),直线l 1与x 轴、y 轴交于A 、B 两点,则A,B(0,k -2).∵AB 的中点为M ,∴解得k =-2.∴所求直线l 1的方程为2x +y +4=0.,6. 已知直线的点斜式方程为y -1=- (x -2),则该直线另外三种特殊形式的方程为______________,______________,______________. 【答案】y =-x +,,【解析】将y -1=- (x -2)移项、展开括号后合并,即得斜截式方程y =-x +. 因为点(2,1)、均满足方程y -1=- (x -2),故它们为直线上的两点.由两点式方程得,即.由y =-x +知,直线在y 轴上的截距b =,又令y =0,得x =.故直线的截距式方程为7. 将直线y =3x 绕原点逆时针旋转90°,再向右平移1个单位,所得到的直线方程为________________________________________________________________________. 【答案】y =-x +【解析】将直线y =3x 绕原点逆时针旋转90°得到直线y =-x ,再向右平移1个单位,所得到的直线方程为y =- (x -1),即y =-x +.8. 直线ax +y +1=0与连结A(2,3)、B(-3,2)的线段相交,则a 的取值范围是________. 【答案】(-∞,-2]∪[1,+∞)【解析】直线ax +y +1=0过定点C(0,-1),当直线处在AC 与BC 之间时,必与线段AB 相交,即应满足-a≥或-a≤,得a≤-2或a≥1.9. 点A (1,3)关于直线y =kx +b 对称的点是B (-2,1),则直线y =kx +b 在x 轴上的截距是( ) A .-B .C .-D .【答案】D【解析】由题意知,解得k=-,b=,∴直线方程为y=-x+,其在x轴上的截距为.10.平面直角坐标系中直线y=2x+1关于点(1,1)对称的直线方程是()A.y=2x-1B.y=-2x+1C.y=-2x+3D.y=2x-3【答案】D【解析】在直线y=2x+1上任取两个点A(0,1),B(1,3),则点A关于点(1,1)对称的点为M(2,1),点B 关于点(1,1)对称的点为N(1,-1).由两点式求出对称直线MN的方程为=,即y=2x-3,故选D.11.过点A(2,3)且垂直于直线2x+y-5=0的直线方程为()A.x-2y+4=0B.2x+y-7=0C.x-2y+3=0D.x-2y+5=0【答案】A【解析】方法一,设所求直线方程为x-2y+C=0,将点A代入得2-6+C=0,所以C=4,所以所求直线方程为x-2y+4=0,选A.方法二,直线2x+y-5=0的斜率为-2,设所求直线的斜率为k,则k=,代入点斜式方程得直线方程为y-3= (x-2),整理得x-2y+4=0,选A.12.直线过点(-1,2)且在两坐标上的截距相等,则的方程是________.【答案】或【解析】当过原点时,设直线方程为:,又因为过点,则,∴直线方程为;当直线不过原点时,设直线方程为:,代点得,则直线方程为.【考点】直线的截距式方程.13.若直线与幂函数的图象相切于点,则直线的方程为 .【答案】【解析】幂函数的图象相切于点,则,解得,所以,则,故直线的方程为,化简得.【考点】1.直线的切线方程.14.已知两条直线,且,则=A.B.C.-3D.3【答案】C【解析】根据题意,由于两条直线,且,则可知3+a=0,a=-3,故可知答案为选C.【考点】两直线的垂直点评:根据两条直线垂直的充要条件,就是,这是解题的关键,属于基础题。
高中数学直线的方程练习题及讲解### 练习题1:点斜式方程题目:已知直线过点A(3,4),且斜率为-2,求该直线的方程。
解答:根据点斜式方程 \( y - y_1 = m(x - x_1) \),其中 \( m \) 是斜率,\( (x_1, y_1) \) 是已知点。
代入已知值:\( m = -2 \),\( (x_1, y_1) = (3, 4) \)。
得到方程:\( y - 4 = -2(x - 3) \)。
### 练习题2:斜截式方程题目:若直线的斜率为3,且在y轴上的截距为-5,求该直线的方程。
解答:斜截式方程为 \( y = mx + b \),其中 \( m \) 是斜率,\( b \) 是y轴截距。
代入已知值:\( m = 3 \),\( b = -5 \)。
得到方程:\( y = 3x - 5 \)。
### 练习题3:两点式方程题目:求经过点B(-1,6)和点C(4,-1)的直线方程。
解答:两点式方程为 \( \frac{y - y_1}{y_2 - y_1} = \frac{x -x_1}{x_2 - x_1} \)。
代入点B和点C的坐标:\( \frac{y - 6}{-1 - 6} = \frac{x - (-1)}{4 - (-1)} \)。
化简得到:\( 7(y - 6) = -5(x + 1) \)。
### 练习题4:截距式方程题目:若直线与x轴交于点(4,0),与y轴交于点(0,-3),求该直线的方程。
解答:截距式方程为 \( \frac{x}{a} + \frac{y}{b} = 1 \),其中 \( a \) 和 \( b \) 是x轴和y轴的截距。
代入截距:\( a = 4 \),\( b = -3 \)。
得到方程:\( \frac{x}{4} - \frac{y}{3} = 1 \)。
### 练习题5:一般式方程题目:将直线方程 \( 3x + 4y - 12 = 0 \) 转换为斜截式。
高考数学《直线的倾斜角与斜率、直线的方程》真题含答案一、选择题1.直线经过点(0,2)和点(3,0),则它的斜率k 为( )A .23B .32C .-23D .-32答案:C解析:k =0-23-0 =-23 .2.直线x + 3 y +1=0的倾斜角是( )A .π6B .π3C .23 πD .56 π答案:D解析:由x + 3 y +1=0,得y =-33 x -33 ,∴直线的斜率k =-33 ,其倾斜角为56 π.3.已知直线l 过点P(-2,5),且斜率为-34 ,则直线l 的方程为( )A .3x +4y -14=0B .3x -4y +14=0C .4x +3y -14=0D .4x -3y +14=0答案:A解析:由点斜式得y -5=-34 (x +2),即:3x +4y -14=0.4.已知直线l 的倾斜角为α、斜率为k ,那么“α>π3 ”是“k> 3 ”的() A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案:B解析:∵当π2 <α<π时,k<0,∴α>π3 D ⇒/k> 3 ; 当k> 3 时,π3 <α<π2 ,∴k> 3 ⇒π3 <α<π2 ,∴α>π3是k> 3 的必要不充分条件. 5.倾斜角为120°,在x 轴上的截距为-1的直线方程是( )A . 3 x -y +1=0B . 3 x -y - 3 =0C . 3 x +y - 3 =0D . 3 x +y + 3 =0答案:D解析:由于倾斜角为120°,故斜率k =- 3 .又直线过点(-1,0),由点斜式可知y =- 3 (x +1),即: 3 x +y + 3 =0.6.经过点P(1,2)且在x 轴、y 轴上的截距相等的直线方程为( )A .2x -y =0B .x +y -3=0C .x -y -3=0或2x -y =0D .x +y -3=0或2x -y =0答案:D解析:若直线过原点,则直线方程为y =2x ,若直线不过原点,设所求的直线方程为x +y =m ,又P(1,2)在直线上,∴1+2=m ,∴m =3,即:x +y =3.7.直线ax +by +c =0同时要经过第一、二、四象限,则a ,b ,c 应满足( )A .ab>0,bc<0B .ab>0,bc>0C .ab<0,bc>0D .ab<0,bc<0答案:A解析:ax +by +c =0可化为y =-a b x -c b ,又直线过一、二、四象限,∴-a b<0且-c b>0,即ab>0,bc<0. 8.直线x sin α+y +2=0的倾斜角的取值范围是( )A .[0,π)B .⎣⎡⎦⎤0,π4 ∪⎣⎡⎭⎫34π,π C .⎣⎡⎦⎤0,π4 D .⎣⎡⎦⎤0,π4 ∪⎝⎛⎭⎫π2,π 答案:B解析:设直线的倾斜角为θ,0≤θ<π,由题意得tan θ=-sin α∈[-1,1],∴θ∈⎣⎡⎦⎤0,π4 ∪⎣⎡⎭⎫34π,π .9.已知点A(2,3),B(-3,-2),若直线kx -y +1-k =0与线段AB 相交,则k 的取值范围是( )A .⎣⎡⎦⎤34,2B .⎝⎛⎦⎤-∞,34 ∪[2,+∞) C .(-∞,1]∪[2,+∞)D .[1,2]答案:B解析:直线kx -y +1-k =0恒过P(1,1),k PA =2,k PB =34,∴k 的取值范围是⎝⎛⎦⎤-∞,34 ∪[2,+∞).二、填空题10.若A(4,3),B(5,a),C(6,5)三点共线,则a 的值为________.答案:4解析:由题意得k AC =k BC ,∴5-36-4 =5-a 6-5,得a =4. 11.曲线y =x 3-2x +4在点(1,3)处的切线的倾斜角为________.答案:45°解析:y′=3x 2-2,当x =1时,该曲线的导函数值为1,∴k =1,其倾斜角为45°.12.过点M(-2,m),N(m ,4)的直线的斜率为1,则m =________.答案:1解析:由题意得,4-m m +2=1,得m =1.。
高中数学直线练习题一、选择题1.已知点M (0,-1),点N 在直线x -y +1=0上,若直线MN 垂直于直线x +2y -3=0,则点N 的坐标是( )A.(-2,-1)B.(2,3)C.(2,1)D.(-2,1) 答案 B解析 由题意知,直线MN 的方程为2x -y -1=0.又∵点N 在直线x -y +1=0上,∴⎩⎪⎨⎪⎧ x -y +1=0,2x -y -1=0,解得⎩⎪⎨⎪⎧x =2,y =3. 2.三点A (3,1),B (-2,k ),C (8,11)在一条直线上,则k 的值为( )A.-8B.-9C.-6D.-7答案 B解析 ∵三点A (3,1),B (-2,k ),C (8,11)在一条直线上,∴k AB =k AC ,∴k -1-2-3=11-18-3, 解得k =-9.故选B.3.若三条直线y =2x ,x +y =3,mx +ny +5=0相交于同一点,则点(m ,n )可能是( )A.(1,-3)B.(3,-1)C.(-3,1)D.(-1,3)考点 两条直线的交点题点 求两条直线的交点坐标答案 A解析 由已知可得直线y =2x ,x +y =3的交点为(1,2),此点也在直线mx +ny +5=0上, ∴m +2n +5=0,再将四个选项代入,只有A 满足此式.4.与直线l :x -y +1=0关于y 轴对称的直线的方程为( )A.x +y -1=0B.x -y +1=0C.x +y +1=0D.x -y -1=0 考点 对称问题的求法题点 直线关于直线的对称问题答案 A解析 直线l :x -y +1=0与两坐标轴的交点分别为(-1,0)和(0,1),因为这两点关于y 轴的对称点分别为(1,0)和(0,1),所以直线l :x -y +1=0关于y 轴对称的直线方程为x +y -1=0.5.已知A (2,3),B (-4,a ),P (-3,1),Q (-1,2),若直线AB ∥PQ ,则a 的值为( )A.0B.1C.2D.3答案 A解析 ∵直线AB 的斜率k AB =3-a 6,直线PQ 的斜率k PQ =2-1-1-(-3)=12,直线AB ∥PQ ,∴3-a 6=12,解得a =0,故选A. 6.如果AB >0,BC >0,则直线Ax -By -C =0不经过的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限考点 直线的一般式方程题点 直线的一般式方程的概念答案 B解析 直线Ax -By -C =0化成斜截式方程y =A B x -C B, ∵AB >0,BC >0,∴斜率大于0,纵截距小于0,∴直线不经过第二象限.7.已知点P (2,-3),Q (3,2),直线ax -y +2=0与线段PQ 相交,则a 的取值范围是( )A.a ≥43B.a ≤-43C.-52≤a ≤0D.a ≤-43或a ≥12 考点 直线的图象特征与倾斜角、斜率的关系题点 倾斜角、斜率的变化趋势及其应用答案 C解析 直线ax -y +2=0可化为y =ax +2,斜率k =a ,恒过定点A (0,2),如图,直线与线段PQ 相交,则k AP ≤k ≤0,即-52≤a ≤0,故选C. 8.过点A (3,-1)且在两坐标轴上截距的绝对值相等的直线有( )A.2条B.3条C.4条D.无数多条答案 B解析 由题意知,直线的斜率存在,设所求直线的方程为y =k (x -3)-1.当y =0时,得横截距x =3+1k; 当x =0时,得纵截距y =-1-3k .由题意得⎪⎪⎪⎪3+1k =|-1-3k |, ∴-1-3k =3+1k 或-1-3k =-1k-3, ∴k =-1或k =-13或k =1, ∴所求直线有3条.故选B.二、填空题9.若直线l 的斜率是过点(1,6),(-1,2)的直线的斜率的2倍,则直线l 的斜率为________. 答案 4解析 过点(1,6),(-1,2)的直线的斜率为6-21-(-1)=2,∴l 的斜率为k =2×2=4. 10.若无论m 为何值,直线l :(2m +1)x +(m +1)y -7m -4=0恒过一定点P ,则点P 的坐标为________.答案 (3,1)解析 特殊值法:令m =-1,得-x +3=0;令m =0,得x +y -4=0.联立⎩⎪⎨⎪⎧ x =3,x +y -4=0,解得⎩⎪⎨⎪⎧x =3,y =1. 故点P 的坐标为(3,1).11.设直线l 经过点(-1,1),则当点(2,-1)与直线l 的距离最远时,直线l 的方程为________. 答案 3x -2y +5=0解析 数形结合(图略)可知,当直线l 与过两点的直线垂直时,点(2,-1)与直线l 的距离最远,因此所求直线的方程为y -1=-2-(-1)-1-1·(x +1),即3x -2y +5=0. 三、解答题12.已知直线l 的倾斜角为135°,且经过点P (1,1).(1)求直线l 的方程;(2)求点A (3,4)关于直线l 的对称点A ′的坐标.解 (1)∵k =tan 135°=-1,∴由直线的点斜式方程得直线l 的方程为y -1=-(x -1),即x +y -2=0.(2)设点A ′的坐标为(a ,b ),则根据题意有⎩⎪⎨⎪⎧ b -4a -3×(-1)=-1,a +32+b +42-2=0,故a =-2,b =-1.∴A ′的坐标为(-2,-1).13.在平面直角坐标系中,已知A (-1,2),B (2,1),C (1,0).(1)判定△ABC 的形状;(2)求过点A 且在x 轴和y 轴上的截距互为倒数的直线方程;(3)已知l 是过点A 的直线,点C 到直线l 的距离为2,求直线l 的方程.考点 分类讨论思想的应用题点 分类讨论思想的应用解 (1)k AC =-1,k BC =1,k AC ·k BC =-1,且|AC |≠|BC |,∴△ABC 为直角三角形.(2)设所求直线方程为x a+ay =1(a ≠0), 则-1a +2a =1,即a =-12或a =1, ∴-2x -12y =1或x +y =1, ∴所求直线方程为-2x -12y =1或x +y =1,即4x +y +2=0或x +y -1=0. (3)①当直线l 的斜率不存在时,l 的方程为x =-1,此时点C 到直线l 的距离为2,符合题意;②当直线l 的斜率存在时,设斜率为k ,则直线l 的方程为y -2=k (x +1),即kx -y +k +2=0,则点C 到直线l 的距离d =|2k +2|k 2+1=2,解得k =0, ∴直线l 的方程为y -2=0.综上可知,直线l 的方程为x +1=0或y -2=0.14.已知平面上一点M (5,0),若直线上存在点P 使|PM |=4,则称该直线为“切割型直线”.下列直线中是“切割型直线”的是( )①y =x +1;②y =2;③y =43x ;④y =2x +1. A.①③B.①④C.②③D.③④ 考点 点到直线的距离题点 与点到直线的距离有关的最值问题 答案 C解析 设点M 到下列4条直线的距离分别为d 1,d 2,d 3,d 4,对于①,d 1=|5-0+1|2=32>4; 对于②,d 2=2<4;对于③,d 3=|5×4-3×0|5=4; 对于④,d 4=|5×2-0+1|5=115>4, 所以符合条件的有②③.15.已知一束光线经过直线l 1:3x -y +7=0和l 2:2x +y +3=0的交点M ,且射到x 轴上一点N (1,0)后被x 轴反射.(1)求点M 关于x 轴的对称点P 的坐标;(2)求反射光线所在的直线l 3的方程.考点 对称问题的求法题点 关于对称的综合应用解 (1)由⎩⎪⎨⎪⎧ 3x -y +7=0,2x +y +3=0,得⎩⎪⎨⎪⎧x =-2,y =1,∴M (-2,1). ∴点M 关于x 轴的对称点P 的坐标为(-2,-1).(2)易知l 3经过点P 与点N , ∴l 3的方程为y -0-1-0=x -1-2-1, 即x -3y -1=0.。
高中数学直线方程练习题一.选择题(共12小题)1.已知A(﹣2,﹣1),B(2,﹣3),过点P(1,5)的直线l与线段AB有交点,则l的斜率的范围是()A.(﹣∞,﹣8]B.[2,+∞)C.(﹣∞,﹣8]∪[2,+∞)D.(﹣∞,﹣8)∪(2,+∞)2.已知点A(1,3),B(﹣2,﹣1).若直线l:y=k(x﹣2)+1与线段AB相交,则k的取值范围是()A.[,+∞)B.(﹣∞,﹣2]C.(﹣∞,﹣2]∪[,+∞)D.[﹣2,]3.已知点A(﹣1,1),B(2,﹣2),若直线l:x+my+m=0与线段AB(含端点)相交,则实数m的取值范围是()A.(﹣∞,]∪[2,+∞) B.[,2] C.(﹣∞,﹣2]∪[﹣,+∞)D.[﹣,﹣2]4.已知M(1,2),N(4,3)直线l过点P(2,﹣1)且与线段MN相交,那么直线l的斜率k的取值范围是()A.(﹣∞,﹣3]∪[2,+∞)B.[﹣,]C.[﹣3,2]D.(﹣∞,﹣]∪[,+∞)5.已知M(﹣2,﹣3),N(3,0),直线l过点(﹣1,2)且与线段MN相交,则直线l的斜率k的取值范围是()A.或k≥5 B.C.D.6.已知A(﹣2,),B(2,),P(﹣1,1),若直线l过点P且与线段AB有公共点,则直线l的倾斜角的范围是()A.B.C.D.∪7.已知点A(2,3),B(﹣3,﹣2),若直线l过点P(1,1)与线段AB始终没有交点,则直线l的斜率k的取值范围是()A.<k<2 B.k>2或k<C.k>D.k<28.已知O为△ABC内一点,且,,若B,O,D三点共线,则t的值为()A.B.C.D.9.经过(3,0),(0,4)两点的直线方程是()A.3x+4y﹣12=0B.3x﹣4y+12=0 C.4x﹣3y+12=0 D.4x+3y﹣12=010.过点(3,﹣6)且在两坐标轴上的截距相等的直线的方程是()A.2x+y=0 B.x+y+3=0C.x﹣y+3=0 D.x+y+3=0或2x+y=011.经过点M(1,1)且在两轴上截距相等的直线是()A.x+y=2 B.x+y=1 C.x=1或y=1 D.x+y=2或x﹣y=012.已知△ABC的顶点A(2,3),且三条中线交于点G(4,1),则BC边上的中点坐标为()A.(5,0) B.(6,﹣1)C.(5,﹣3)D.(6,﹣3)二.填空题(共4小题)13.已知直线l1:ax+3y+1=0,l2:2x+(a+1)y+1=0,若l1∥l2,则实数a的值是.14.直线l1:(3+a)x+4y=5﹣3a和直线l2:2x+(5+a)y=8平行,则a=.15.设直线l1:x+my+6=0和l2:(m﹣2)x+3y+2m=0,当m=时,l1∥l2,当m=时,l1⊥l2.16.如果直线(2a+5)x+(a﹣2)y+4=0与直线(2﹣a)x+(a+3)y﹣1=0互相垂直,则a的值等于.三.解答题(共11小题)17.已知点A(1,1),B(﹣2,2),直线l过点P(﹣1,﹣1)且与线段AB始终有交点,则直线l的斜率k的取值范围为.18.已知x,y满足直线l:x+2y=6.(1)求原点O关于直线l的对称点P的坐标;(2)当x∈[1,3]时,求的取值范围.19.已知点A(1,2)、B(5,﹣1),(1)若A,B两点到直线l的距离都为2,求直线l的方程;(2)若A,B两点到直线l的距离都为m(m>0),试根据m的取值讨论直线l 存在的条数,不需写出直线方程.20.已知直线l的方程为2x+(1+m)y+2m=0,m∈R,点P的坐标为(﹣1,0).(1)求证:直线l恒过定点,并求出定点坐标;(2)求点P到直线l的距离的最大值.21.已知直线方程为(2+m)x+(1﹣2m)y+4﹣3m=0.(Ⅰ)证明:直线恒过定点M;(Ⅱ)若直线分别与x轴、y轴的负半轴交于A,B两点,求△AOB面积的最小值及此时直线的方程.22.已知光线经过已知直线l1:3x﹣y+7=0和l2:2x+y+3=0的交点M,且射到x 轴上一点N(1,0)后被x轴反射.(1)求点M关于x轴的对称点P的坐标;(2)求反射光线所在的直线l3的方程.(3)求与l3距离为的直线方程.23.已知直线l:y=3x+3求(1)点P(4,5)关于l的对称点坐标;(2)直线y=x﹣2关于l对称的直线的方程.24.已知点M(3,5),在直线l:x﹣2y+2=0和y轴上各找一点P和Q,使△MPQ 的周长最小.25.已知直线l经过点P(3,1),且被两平行直线l1;x+y+1=0和l2:x+y+6=0截得的线段之长为5,求直线l的方程.26.已知直线l:5x+2y+3=0,直线l′经过点P(2,1)且与l的夹角等于45,求直线l'的一般方程.27.已知点A(2,0),B(0,6),O为坐标原点.(1)若点C在线段OB上,且∠ACB=,求△ABC的面积;(2)若原点O关于直线AB的对称点为D,延长BD到P,且|PD|=2|BD|,已知直线L:ax+10y+84﹣108=0经过点P,求直线l的倾斜角.高中数学直线方程练习题参考答案与试题解析一.选择题(共12小题)1.(2016秋•滑县期末)已知A(﹣2,﹣1),B(2,﹣3),过点P(1,5)的直线l与线段AB有交点,则l的斜率的范围是()A.(﹣∞,﹣8]B.[2,+∞)C.(﹣∞,﹣8]∪[2,+∞)D.(﹣∞,﹣8)∪(2,+∞)【分析】利用斜率计算公式与斜率的意义即可得出.【解答】解:k PA==2,k PB==﹣8,∵直线l与线段AB有交点,∴l的斜率的范围是k≤﹣8,或k≥2.故选:C.【点评】本题考查了斜率计算公式与斜率的意义,考查了推理能力与计算能力,属于中档题.2.(2016秋•碑林区校级期末)已知点A(1,3),B(﹣2,﹣1).若直线l:y=k (x﹣2)+1与线段AB相交,则k的取值范围是()A.[,+∞)B.(﹣∞,﹣2]C.(﹣∞,﹣2]∪[,+∞)D.[﹣2,]【分析】由直线系方程求出直线l所过定点,由两点求斜率公式求得连接定点与线段AB上点的斜率的最小值和最大值得答案.【解答】解:∵直线l:y=k(x﹣2)+1过点P(2,1),连接P与线段AB上的点A(1,3)时直线l的斜率最小,为,连接P与线段AB上的点B(﹣2,﹣1)时直线l的斜率最大,为.∴k的取值范围是.故选:D.【点评】本题考查了直线的斜率,考查了直线系方程,是基础题.3.(2016秋•雅安期末)已知点A(﹣1,1),B(2,﹣2),若直线l:x+my+m=0与线段AB(含端点)相交,则实数m的取值范围是()A.(﹣∞,]∪[2,+∞) B.[,2] C.(﹣∞,﹣2]∪[﹣,+∞)D.[﹣,﹣2]【分析】利用斜率计算公式、斜率与倾斜角的关系及其单调性即可得出.【解答】解:直线l:x+my+m=0经过定点P(0,﹣1),k PA==﹣2,k PB==﹣.∵直线l:x+my+m=0与线段AB(含端点)相交,∴≤≤﹣2,∴.故选:B.【点评】本题考查了斜率计算公式、斜率与倾斜角的关系及其单调性,考查了推理能力与计算能力,属于中档题.4.(2016秋•庄河市校级期末)已知M(1,2),N(4,3)直线l过点P(2,﹣1)且与线段MN相交,那么直线l的斜率k的取值范围是()A.(﹣∞,﹣3]∪[2,+∞)B.[﹣,]C.[﹣3,2]D.(﹣∞,﹣]∪[,+∞)【分析】画出图形,由题意得所求直线l的斜率k满足k≥k PN或k≤k PM,用直线的斜率公式求出k PN和k PM的值,解不等式求出直线l的斜率k的取值范围.【解答】解:如图所示:由题意得,所求直线l的斜率k满足k≥k PN或k≤k PM,即k≥=2,或k≤=﹣3,∴k≥2,或k≤﹣3,故选:A.【点评】本题考查直线的斜率公式的应用,体现了数形结合的数学思想.5.(2013秋•迎泽区校级月考)已知M(﹣2,﹣3),N(3,0),直线l过点(﹣1,2)且与线段MN相交,则直线l的斜率k的取值范围是()A.或k≥5 B.C.D.【分析】求出边界直线的斜率,作出图象,由直线的倾斜角和斜率的关系可得.【解答】解:(如图象)即P(﹣1,2),由斜率公式可得PM的斜率k1==5,直线PN的斜率k2==,当直线l与x轴垂直(红色线)时记为l′,可知当直线介于l′和PM之间时,k≥5,当直线介于l′和PN之间时,k≤﹣,故直线l的斜率k的取值范围是:k≤﹣,或k≥5故选A【点评】本题考查直线的斜率公式,涉及数形结合的思想和直线的倾斜角与斜率的关系,属中档题.6.(2004秋•南通期末)已知A(﹣2,),B(2,),P(﹣1,1),若直线l过点P且与线段AB有公共点,则直线l的倾斜角的范围是()A.B.C.D.∪【分析】先求出直线的斜率的取值范围,再根据斜率与倾斜角的关系以及倾斜角的范围求出倾斜角的具体范围.【解答】解:设直线l的斜率等于k,直线的倾斜角为α由题意知,k PB==﹣,或k PA==﹣设直线的倾斜角为α,则α∈[0,π),tanα=k,由图知0°≤α≤120°或150°≤α<180°故选:D.【点评】本题考查直线的倾斜角和斜率的关系,直线的斜率公式的应用,属于基础题.7.已知点A(2,3),B(﹣3,﹣2),若直线l过点P(1,1)与线段AB始终没有交点,则直线l的斜率k的取值范围是()A.<k<2 B.k>2或k<C.k>D.k<2【分析】求出PA,PB所在直线的斜率,数形结合得答案.【解答】解:点A(2,3),B(﹣3,﹣2),若直线l过点P(1,1),∵直线PA的斜率是=2,直线PB的斜率是=.如图,∵直线l与线段AB始终有公共点,∴斜率k的取值范围是(,2).故选:A.【点评】本题考查了直线的倾斜角和直线的斜率,考查了数形结合的解题思想方法,是基础题.8.(2017•成都模拟)已知O为△ABC内一点,且,,若B,O,D三点共线,则t的值为()A.B.C.D.【分析】以OB,OC为邻边作平行四边形OBFC,连接OF与BC相交于点E,E 为BC的中点.由,可得=2=2,点O是直线AE的中点.根据,B,O,D三点共线,可得点D是BO与AC的交点.过点O作OM∥BC交AC于点M,则点M为AC的中点.即可得出.【解答】解:以OB,OC为邻边作平行四边形OBFC,连接OF与BC相交于点E,E为BC的中点.∵,∴=2=2,∴点O是直线AE的中点.∵,B,O,D三点共线,∴点D是BO与AC的交点.过点O作OM∥BC交AC于点M,则点M为AC的中点.则OM=EC=BC,=,∴DM=MC,∴AD=AM=AC,∴t=.故选:B.【点评】本题考查了向量共线定理、向量三角形与平行四边形法则、平行线的性质,考查了推理能力与计算能力,属于中档题.9.(2016秋•沙坪坝区校级期中)经过(3,0),(0,4)两点的直线方程是()A.3x+4y﹣12=0B.3x﹣4y+12=0 C.4x﹣3y+12=0 D.4x+3y﹣12=0【分析】直接利用直线的截距式方程求解即可.【解答】解:因为直线经过(3,0),(0,4)两点,所以所求直线方程为:,即4x+3y﹣12=0.故选D.【点评】本题考查直线截距式方程的求法,考查计算能力.10.(2016秋•平遥县校级期中)过点(3,﹣6)且在两坐标轴上的截距相等的直线的方程是()A.2x+y=0 B.x+y+3=0C.x﹣y+3=0 D.x+y+3=0或2x+y=0【分析】当直线过原点时,用点斜式求得直线方程.当直线不过原点时,设直线的方程为x+y=k,把点(3,﹣6)代入直线的方程可得k值,从而求得所求的直线方程,综合可得结论.【解答】解:当直线过原点时,方程为y=﹣2x,即2x+y=0.当直线不过原点时,设直线的方程为x+y=k,把点(3,﹣6)代入直线的方程可得k=﹣3,故直线方程是x+y+3=0.综上,所求的直线方程为x+y+3=0或2x+y=0,故选:D.【点评】本题考查用待定系数法求直线方程,体现了分类讨论的数学思想,注意当直线过原点时的情况,这是解题的易错点,属于基础题.11.(2015秋•运城期中)经过点M(1,1)且在两轴上截距相等的直线是()A.x+y=2 B.x+y=1 C.x=1或y=1 D.x+y=2或x﹣y=0【分析】分两种情况考虑,第一:当所求直线与两坐标轴的截距不为0时,设出该直线的方程为x+y=a,把已知点坐标代入即可求出a的值,得到直线的方程;第二:当所求直线与两坐标轴的截距为0时,设该直线的方程为y=kx,把已知点的坐标代入即可求出k的值,得到直线的方程,综上,得到所有满足题意的直线的方程.【解答】解:①当所求的直线与两坐标轴的截距不为0时,设该直线的方程为x+y=a,把(1,1)代入所设的方程得:a=2,则所求直线的方程为x+y=2;②当所求的直线与两坐标轴的截距为0时,设该直线的方程为y=kx,把(1,1)代入所求的方程得:k=1,则所求直线的方程为y=x.综上,所求直线的方程为:x+y=2或x﹣y=0.故选:D.【点评】此题考查直线的一般方程和分类讨论的数学思想,要注意对截距为0和不为0分类讨论,是一道基础题.12.(2013春•泗县校级月考)已知△ABC的顶点A(2,3),且三条中线交于点G(4,1),则BC边上的中点坐标为()A.(5,0) B.(6,﹣1)C.(5,﹣3)D.(6,﹣3)【分析】利用三角形三条中线的交点到对边的距离等于到所对顶点的距离的一半,用向量表示即可求得结果.【解答】解:如图所示,;∵△ABC的顶点A(2,3),三条中线交于点G(4,1),设BC边上的中点D(x,y),则=2,∴(4﹣2,1﹣3)=2(x﹣4,y﹣1),即,解得,即所求的坐标为D(5,0);故选:A.【点评】本题考查了利用三角形三条中线的交点性质求边的中点坐标问题,是基础题.二.填空题(共4小题)13.(2015•益阳校级模拟)已知直线l1:ax+3y+1=0,l2:2x+(a+1)y+1=0,若l1∥l2,则实数a的值是﹣3.【分析】根据l1∥l2,列出方程a(a+1)﹣2×3=0,求出a的值,讨论a是否满足l1∥l2即可.【解答】解:∵l1∥l2,∴a(a+1)﹣2×3=0,即a2+a﹣6=0,解得a=﹣3,或a=2;当a=﹣3时,l1为:﹣3x+3y+1=0,l2为:2x﹣2y+1=0,满足l1∥l2;当a=2时,l1为:2x+3y+1=0,l2为:2x+3y+1=0,l1与l2重合;所以,实数a的值是﹣3.故答案为:﹣3.【点评】本题考查了两条直线平行,斜率相等,或者对应系数成比例的应用问题,是基础题目.14.(2015秋•天津校级期末)直线l1:(3+a)x+4y=5﹣3a和直线l2:2x+(5+a)y=8平行,则a=﹣7.【分析】根据两直线平行的条件可知,(3+a)(5+a)﹣4×2=0,且5﹣3a≠8.进而可求出a的值.【解答】解:直线l1:(3+a)x+4y=5﹣3a和直线l2:2x+(5+a)y=8平行,则(3+a)(5+a)﹣4×2=0,即a2+8a+7=0.解得,a=﹣1或a=﹣7.又∵5﹣3a≠8,∴a≠﹣1.∴a=﹣7.故答案为:﹣7.【点评】本题考查两直线平行的条件,其中5﹣3a≠8是本题的易错点.属于基础题.15.(2015秋•台州期末)设直线l1:x+my+6=0和l2:(m﹣2)x+3y+2m=0,当m=﹣1时,l1∥l2,当m=时,l1⊥l2.【分析】利用直线平行、垂直的性质求解.【解答】解:∵直线l1:x+my+6=0和l2:(m﹣2)x+3y+2m=0,l1∥l2,∴=≠,解得m=﹣1;∵直线l1:x+my+6=0和l2:(m﹣2)x+3y+2m=0,l1⊥l2,∴1×(m﹣2)+3m=0,解得m=;故答案为:﹣1,.【点评】本题考查实数的取值范围的求法,是基础题,解题时要认真审题,注意直线的位置关系的合理运用.16.(2016春•信阳月考)如果直线(2a+5)x+(a﹣2)y+4=0与直线(2﹣a)x+(a+3)y﹣1=0互相垂直,则a的值等于a=2或a=﹣2.【分析】利用两条直线互相垂直的充要条件,得到关于a的方程可求.【解答】解:设直线(2a+5)x+(a﹣2)y+4=0为直线M;直线(2﹣a)x+(a+3)y﹣1=0为直线N①当直线M斜率不存在时,即直线M的倾斜角为90°,即a﹣2=0,a=2时,直线N的斜率为0,即直线M的倾斜角为0°,故:直线M与直线N互相垂直,所以a=2时两直线互相垂直.②当直线M和N的斜率都存在时,k M=(,k N=要使两直线互相垂直,即让两直线的斜率相乘为﹣1,故:a=﹣2.③当直线N斜率不存在时,显然两直线不垂直.综上所述:a=2或a=﹣2故答案为:a=2或a=﹣2【点评】本题考查两直线垂直的充要条件,若利用斜率之积等于﹣1,应注意斜率不存在的情况.三.解答题(共11小题)17.(2016秋•兴庆区校级期末)已知点A(1,1),B(﹣2,2),直线l过点P (﹣1,﹣1)且与线段AB始终有交点,则直线l的斜率k的取值范围为k≤﹣3,或k≥1.【分析】由题意画出图形,数形结合得答案.【解答】解:如图,∵A(1,1),B(﹣2,2),直线l过点P(﹣1,﹣1),又,∴直线l的斜率k的取值范围为k≤﹣3,或k≥1.故答案为:k≤﹣3,或k≥1.【点评】本题考查直线的斜率,考查了数形结合的解题思想方法,是中档题.18.(2015春•乐清市校级期末)已知x,y满足直线l:x+2y=6.(1)求原点O关于直线l的对称点P的坐标;(2)当x∈[1,3]时,求的取值范围.【分析】(1)设对称后的点P(a,b),根据点的对称即可求原点O关于直线l 的对称点P的坐标.(2)根据斜率公式可知,表示的为动点(x,y)到定点(2,1)的两点的斜率的取值范围.【解答】解:(1)设原点O关于直线l的对称点P的坐标为(a,b),则满足,解得a=,b=,故;(2)当x∈[1,3]时,的几何意义为到点C(2,1)的斜率的取值范围.当x=1时,y=,当x=3时,y=,由可得A(1,),B(3,),从而k BC==,k AC==﹣,∴k的范围为(﹣∞,﹣]∪[,+∞)【点评】本试题主要是考查了直线的方程以及点关于直线对称点的坐标的求解和斜率几何意义的灵活运用.19.(2016秋•浦东新区校级月考)已知点A(1,2)、B(5,﹣1),(1)若A,B两点到直线l的距离都为2,求直线l的方程;(2)若A,B两点到直线l的距离都为m(m>0),试根据m的取值讨论直线l 存在的条数,不需写出直线方程.【分析】(1)要分为两类来研究,一类是直线L与点A(1,2)和点B(5,﹣1)两点的连线平行,一类是线L过两点A(1,2)和点B(5,﹣1)中点,分类解出直线的方程即可;(2)根据A,B两点与直线l的位置关系以及m与两点间距离5的一半比较,得到满足条件的直线.【解答】解:∵|AB|==5,|AB|>2,∴A与B可能在直线l的同侧,也可能直线l过线段AB中点,①当直线l平行直线AB时:k AB=,可设直线l的方程为y=﹣x+b依题意得:=2,解得:b=或b=,故直线l的方程为:3x+4y﹣1=0或3+4y﹣21=0;②当直线l过线段AB中点时:AB的中点为(3,),可设直线l的方程为y﹣=k(x﹣3)依题意得:=2,解得:k=,故直线l的方程为:x﹣2y﹣=0;(2)A,B两点到直线l的距离都为m(m>0),AB平行的直线,满足题意得一定有2条,经过AB中点的直线,若2m<|AB|,则有2条;若2m=|AB|,则有1条;若2m>|AB|,则有0条,∵|AB|=5,综上:当m<2.5时,有4条直线符合题意;当m=2.5时,有3条直线符合题意;当m>2.5时,有2条直线符合题意.【点评】本题考查点到直线的距离公式,求解本题关键是掌握好点到直线的距离公式与中点坐标公式,对空间想像能力要求较高,考查了对题目条件分析转化的能力20.(2015秋•眉山校级期中)已知直线l的方程为2x+(1+m)y+2m=0,m∈R,点P的坐标为(﹣1,0).(1)求证:直线l恒过定点,并求出定点坐标;(2)求点P到直线l的距离的最大值.【分析】(1)把直线方程变形得,2x+y+m(y+2)=0,联立方程组,求得方程组的解即为直线l恒过的定点.(2)设点P在直线l上的射影为点M,由题意可得|PM|≤|PQ|,再由两点间的距离公式求得点P到直线l的距离的最大值【解答】(1)证明:由2x+(1+m)y+2m=0,得2x+y+m(y+2)=0,∴直线l恒过直线2x+y=0与直线y+2=0的交点Q,解方程组,得Q(1,﹣2),∴直线l恒过定点,且定点为Q(1,﹣2).(2)解:设点P在直线l上的射影为点M,则|PM|≤|PQ|,当且仅当直线l与PQ垂直时,等号成立,∴点P到直线l的距离的最大值即为线段PQ的长度,等于=2.【点评】本题考查了直线系方程问题,考查了点到直线的距离公式,正确理解题意是关键,是中档题.21.(2010秋•常熟市期中)已知直线方程为(2+m)x+(1﹣2m)y+4﹣3m=0.(Ⅰ)证明:直线恒过定点M;(Ⅱ)若直线分别与x轴、y轴的负半轴交于A,B两点,求△AOB面积的最小值及此时直线的方程.【分析】(Ⅰ)直线方程按m集项,方程恒成立,得到方程组,求出点的坐标,即可证明:直线恒过定点M;(Ⅱ)若直线分别与x轴、y轴的负半轴交于A,B两点,说明直线的斜率小于0,设出斜率根据直线过的定点,写出直线方程,求出△AOB面积的表达式,利用基本不等式求出面积的最小值,即可得到面积最小值的直线的方程.【解答】(Ⅰ)证明:(2+m)x+(1﹣2m)y+4﹣3m=0化为(x﹣2y﹣3)m=﹣2x ﹣y﹣4.(3分)得∴直线必过定点(﹣1,﹣2).(6分)(Ⅱ)解:设直线的斜率为k(k<0),则其方程为y+2=k(x+1),∴OA=|﹣1|,OB=|k﹣2|,(8分)S△AOB=•OA•OB=|(﹣1)(k﹣2)|=|﹣|..(10分)∵k<0,∴﹣k>0,∴S=[﹣]=[4+(﹣)+(﹣k)]≥4.△AOB当且仅当﹣=﹣k,即k=﹣2时取等号.(13分)∴△AOB的面积最小值是4,(14分)直线的方程为y+2=﹣2(x+1),即y+2x+4=0.(15分)【点评】本题是中档题,考查直线恒过定点的知识,三角形面积的最小值的求法,基本不等式的应用,考查计算能力,转化思想的应用.22.(2016秋•枣阳市校级月考)已知光线经过已知直线l1:3x﹣y+7=0和l2:2x+y+3=0的交点M,且射到x轴上一点N(1,0)后被x轴反射.(1)求点M关于x轴的对称点P的坐标;(2)求反射光线所在的直线l3的方程.(3)求与l3距离为的直线方程.【分析】(1)联立方程组,求出M的坐标,从而求出P的坐标即可;(2)法一:求出直线的斜率,从而求出直线方程即可;法二:求出直线PN的方程,根据对称性求出直线方程即可;(3)设出与l3平行的直线方程,根据平行线的距离公式求出即可.【解答】解:(1)由得,∴M(﹣2,1).所以点M关于x轴的对称点P的坐标(﹣2,﹣1).…(4分)(2)因为入射角等于反射角,所以∠1=∠2.直线MN的倾斜角为α,则直线l3的斜斜角为180°﹣α.,所以直线l3的斜率.故反射光线所在的直线l3的方程为:.即.…(9分)解法二:因为入射角等于反射角,所以∠1=∠2.根据对称性∠1=∠3,∴∠2=∠3.所以反射光线所在的直线l3的方程就是直线PN的方程.直线PN的方程为:,整理得:.故反射光线所在的直线l3的方程为.…(9分)(3)设与l3平行的直线为,根据两平行线之间的距离公式得:,解得b=3,或,所以与l3为:,或.…(13分)【点评】本题考查了点对称、直线对称问题,考查求直线方程,是一道中档题.23.(2015秋•嘉峪关校级期末)已知直线l:y=3x+3求(1)点P(4,5)关于l的对称点坐标;(2)直线y=x﹣2关于l对称的直线的方程.【分析】(1)设点P(4,5)关于直线y=3x+3对称点P′的坐标为(m,n),得到关于m,n的方程组,求得m、n的值,可得P′的坐标;(2)求出交点坐标,在直线y=x﹣2上任取点(2,0),得到对称点坐标,求出直线方程即可.【解答】解:(1)设点P(4,5)关于直线y=3x+3对称点P′的坐标为(m,n),则由,求得m=﹣2,n=7,故P′(﹣2,7).(2)由,解得:交点为,在直线y=x﹣2上任取点(2,0),得到对称点为,所以得到对称的直线方程为7x+y+22=0【点评】本题主要考查求一个点关于某直线的对称点的坐标的方法,利用了垂直、和中点在对称轴上这两个条件,属于中档题.24.(2014秋•宜秀区校级期中)已知点M(3,5),在直线l:x﹣2y+2=0和y轴上各找一点P和Q,使△MPQ的周长最小.【分析】本题实际是求点M关于l的对称点M1,点M关于y轴的对称点M2,求得直线M1M2的方程,与y轴交点为Q,与直线l:x﹣2y+2=0的交点为P.【解答】解:由点M(3,5)及直线l,可求得点M关于l的对称点M1(5,1).同样容易求得点M关于y轴的对称点M2(﹣3,5).据M1及M2两点可得到直线M1M2的方程为x+2y﹣7=0.得交点P(,).令x=0,得到M1M2与y轴的交点Q(0,).解方程组x+2y﹣7=0,x﹣2y+2=0,故点P(,)、Q(0,)即为所求.【点评】本题考查直线关于直线对称的问题,三角形的几何性质,是中档题.25.(2010•广东模拟)已知直线l经过点P(3,1),且被两平行直线l1;x+y+1=0和l2:x+y+6=0截得的线段之长为5,求直线l的方程.【分析】法一如图,若直线l的斜率不存在,直线l的斜率存在,利用点斜式方程,分别与l1、l2联立,求得两交点A、B的坐标(用k表示),再利用|AB|=5可求出k的值,从而求得l的方程.法二:求出平行线之间的距离,结合|AB|=5,设直线l与直线l1的夹角为θ,求出直线l的倾斜角为0°或90°,然后得到直线方程.就是用l1、l2之间的距离及l 与l1夹角的关系求解.法三:设直线l1、l2与l分别相交于A(x1,y1),B(x2,y2),则通过求出y1﹣y2,x1﹣x2的值确定直线l的斜率(或倾斜角),从而求得直线l 的方程.【解答】解:解法一:若直线l的斜率不存在,则直线l的方程为x=3,此时与l1、l2的交点分别为A′(3,﹣4)或B′(3,﹣9),截得的线段AB的长|AB|=|﹣4+9|=5,符合题意.若直线l的斜率存在,则设直线l的方程为y=k(x﹣3)+1.解方程组得A(,﹣).解方程组得B(,﹣).由|AB|=5.得(﹣)2+(﹣+)2=52.解之,得k=0,直线方程为y=1.综上可知,所求l的方程为x=3或y=1.解法二:由题意,直线l1、l2之间的距离为d==,且直线L被平行直线l1、l2所截得的线段AB的长为5,设直线l与直线l1的夹角为θ,则sinθ==,故θ=45°.由直线l1:x+y+1=0的倾斜角为135°,知直线l的倾斜角为0°或90°,又由直线l过点P(3,1),故直线l的方程为:x=3或y=1.解法三:设直线l与l1、l2分别相交A(x1,y1)、B(x2,y2),则x1+y1+1=0,x2+y2+6=0.两式相减,得(x1﹣x2)+(y1﹣y2)=5.①又(x1﹣x2)2+(y1﹣y2)2=25.②联立①、②可得或由上可知,直线l的倾斜角分别为0°或90°.故所求的直线方程为x=3或y=1.【点评】本题是中档题,考查直线与直线的位置关系,直线与直线所成的角,直线的点斜式方程,斜率是否存在是容易出错的地方,注意本题的三种方法.26.(2009秋•重庆期末)已知直线l:5x+2y+3=0,直线l′经过点P(2,1)且与l的夹角等于45,求直线l'的一般方程.【分析】设出直线l′的斜率为k′,通过直线的夹角公式求出直线的斜率,然后求出直线的方程.【解答】解:设直线l′的斜率为k′,则,…(7分),…(10分)直线l′:7x﹣3y﹣11=0和3x+7y﹣13=0;…(13分)【点评】本题是基础题,考查直线方程的求法,夹角公式的应用,注意夹角公式与到角公式的区别,考查计算能力.27.已知点A(2,0),B(0,6),O为坐标原点.(1)若点C在线段OB上,且∠ACB=,求△ABC的面积;(2)若原点O关于直线AB的对称点为D,延长BD到P,且|PD|=2|BD|,已知直线L:ax+10y+84﹣108=0经过点P,求直线l的倾斜角.【分析】(1)依据条件求出AC的斜率,可得点C的坐标,即得边长BC,点A 的横坐标就是三角形的高,代入三角形的面积公式进行计算.(2)利用对称的特点,待定系数法求出原点O关于直线AB的对称点D的坐标,由题意可得=2,把相关向量的坐标代入,利用两个向量相等的条件求出点P的坐标,再把点P的坐标代入代入直线l的方程,求出a,即得直线l的斜率,由斜率求直线l的倾斜角.【解答】解:(1)∵点C在线段OB上,且∠ACB=,∴∠ACO=,故AC 的倾斜角为,故AC的斜率为﹣1,设点C(0,b),由﹣1=得b=2,即点C(0,2),BC=4,点A到BC的距离为2,故△ABC的面积为×4×2=4.(2)设D(m,n),点P(c,d),AB的方程+=1,即3x+y﹣6=0,由得m=,n=,故D(,),=(﹣c,﹣d),=(﹣,),由题意知,=2,∴﹣c=﹣,﹣d=,解得c=,d=﹣,故P(,﹣),把P(,﹣)代入直线l:ax+10y+84﹣108=0,得a•+10•+84﹣108=0,即得a=10.∴直线l的斜率为=﹣,故直线l的倾斜角为120°.【点评】本题考查直线的倾斜角的定义,倾斜角与斜率的关系;点关于直线的对称点的坐标求法,两个向量相等时向量坐标间的关系.。
心尺引州丑巴孔市中潭学校第一章 直线 专项训练〔4〕两条直线的位置关系〔二〕【例题精选】:例1::直线l x y 13420:+-=求证:l l l 123、、交于一点。
证明:先求l l 23与的交点把〔-2,2〕代入3420x y +-=的左边左边()=⨯-+⨯-==324220右边∴l l 23与的交点在l 1上,即l l l 123、、交于一点。
例2::∆ABC 中,A 〔32,10〕,B 〔42,0〕,C 〔0,0〕求:∆ABC 的外心。
解:如图,BC 的中垂线为:x=21 ∵k AC =--=100320516AC 的中点为〔16,5〕∴AC 的中垂线为:()y x -=--516516 即:1652810x y +-=∴外心的坐标是x x y =+-=⎧⎨⎩211652810的解即:〔21,-11〕例3::直线l :330x y -+=求:点P 〔4,5〕关于直线l 的对称点。
解:设P 关于l 的对称点为()'''P x y ,直线l 的斜率为3∴直线PP '的方程为:()y x -=--5134即:x y +-=3190 设PP '与l 交于Q 点Q 点坐标是x y x y +-=-+=⎧⎨⎩3190330的解∴Q 〔1,6〕 ∵Q 是线段PP '的中点∴14265227='+='+⎧⎨⎪⎪⎩⎪⎪⇒'=-'=⎧⎨⎩x y x y∴所求对称点为〔-2,7〕例4:求直线x y +-=3100关于直线x y --=20对称的直线方程。
解:先求直线x y +-=3100与直线x y --=20的交点 ∴交点为〔4,2〕直线x y +-=3100的斜率为-13直线x y --=20的斜率为1设所求直线的斜率为k如图,∴所求直线方程为:()y x -=--234即:3140x y +-=例5:判定以下两条直线的位置关系: ①2704210x y x y --=+-=和解:∵2412≠- ∴两直线相交②2640320x y x y -+=-+=和解:∵216342=--=∴两直线重合 ③23504670x y x y -+=--=和解:∵243657=--≠-∴两直线平行例6::∆ABC 的顶点坐标为()()()A B C 011235,,,,,--,求:S ABC ∆。
高三数学直线试题答案及解析1.动点关于直线的对称点是,则的最大值为()A.B.C.D.【答案】D【解析】依题意知,动点在以原点为圆心的单位圆上,原点到直线的距离,所以直线与单位圆圆相离.设动点与直线的距离为,则.,所以的最大值为.所以选D.【考点】直线与圆的位置关系、点关于直线对称2.已知是直线上一动点,是圆的两条切线,切点分别为.若四边形的最小面积为2,则= .【答案】2【解析】圆的圆心为,半径为1,因为四边形的面积,而最小值为2,所以的最小值为,即圆心到直线距离,解得.【考点】圆的切线的性质、点到直线的距离公式,函数的应用.3.已知直线与圆交于不同的两点若,是坐标原点,那么实数的取值范围是 .【答案】【解析】由已知,两边平方得:,化简得。
设把代入,得由得①.解得或②结合①②得或.【考点】考查直线与圆的位置关系、平面向量.4.已知点A(-1,0);B(1,0),C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是A.(0,1)B.(1-,) (C.(1-,D.[,)【答案】B【解析】由题意知:;当直线过点(-1,0)时,要将△ABC分割为面积相等的两部分,直线必须过点,此时有且,解得;当时,直线y=ax+b平行于直线AC,要将△ABC分割为面积相等的两部分,可求此时的=.【考点】本小题主要考查直线方程的基础知识以及数形结合等数学思想,考查同学们分析问题与解决问题的能力.5.直线mx-y+2m+1=0经过一定点,则该定点的坐标是【答案】(-2,1)【解析】直线mx-y+2m+1=0的方程可化为m(x+2)-y+1=0,根据x=-2,y=1时方程恒成立,可直线过定点的坐标解:直线mx-y+2m+1=0的方程可化为,m(x+2)-y+1=0,当x=-2,y=1时方程恒成立,故直线mx-y+2m+1=0恒过定点(-2,1),故答案为:(-2,1)【考点】直线方程点评:本题考查的知识点是恒过定义的直线,解答的关键是将参数分离,化为Am+B=0的形式(其中m为参数),令A,B=0可得答案6.以A(1,3)和B(-5,1)为端点的线段AB的垂直平分线方程是A.B.C.D.【答案】B【解析】线段AB的中点为,所以所求直线斜率为3,中垂线方程为,整理得【考点】直线方程点评:利用两直线垂直,斜率乘积为,由AB斜率求得中垂线斜率,由点斜式写出直线方程,整理成一般式7.直线与函数的图像相切于点,且,为坐标原点,为图像的极大值点,与轴交于点,过切点作轴的垂线,垂足为,则=A.B.C.D. 2【答案】B【解析】,直线l的斜率即为OP的斜率,设,由于函数y=sinx在点A处的导数即为直线l的斜率,,AB直线的方程为令y=0可得点B的横坐标为8.已知函数在R上满足,则曲线在点处的切线方程是()A.B.C.D.【答案】B【解析】根据导数可知,在x=1处的斜率为该点的导数值,那么由,赋值法,求解得到f(x),进而得到导数值为1,利用点斜式方程得到结论,选B9.(本小题满分12分)设直线(I)证明与相交;(II)证明与的交点在椭圆【答案】(I)反证法,见解析;(II)交点P在椭圆【解析】(I)本小题不易直接证明,因而可考虑采用反证法,先假设l1与l2不相交,则l1与l2平行可得k 1=k2,这样可以推证与已知条件矛盾.从而问题得证.(II)先根据l1和l2的方程联立解方程组可求出其交点坐标,然后代入椭圆方程证明方程成立即可.证明:(I)反证法,假设是l1与l2不相交,则l1与l2平行,有k1=k2,代入k1k2+2=0,得此与k1为实数的事实相矛盾. 从而相交. …………5 分(II)(方法一)由方程组解得交点P的坐标为而此即表明交点…………12分(方法二)交点P的坐标满足整理后,得所以交点P在椭圆10.在直角坐标系平面内,与点距离为,且与点距离为的直线条数共有条.【答案】3【解析】略11.(12分)自点A(-3,3)发出的光线L射到x轴上,被x轴反射,其反射光线所在直线与圆x2+y2-4x-4y+7=0相切,求光线L所在直线的方程。
第七章 直线和平面(一)选择题1.有下列四个命题:(1)n 条直线中,若任意两条都共面,则这n 条直线都共面 (2)分别与两条异面直线都相交的两条直线是异面直线 (3)空间中有三个角是直角的四边形是矩形(4)两条异面直线在同一平面内的射影不可能是平行线 其中,真命题的个数为( )A.0B.1C.2D.3 2.下列命题中,真命题是( )A.若直线m 、n 都平行于平面α则m ∥nB.设α—l —β是直二面角,若直线m ⊥l,则m ⊥βC.若m 、n 在平面α内的射影依次是一个点和一条直线,且m ⊥n,则n 在α内或n 与α平行D.若直线m 、n 是异面直线,若m 与平面α平行,则n 与α平行,则n 与α相交 3.已知直线a 、b 和平面α,下列命题正确的是( ) (1)a b a a b a ⊥⇒⎭⎬⎫⊥∥ (2) b a a b a a ∥⇒⎭⎬⎫⊥⊥(3) a b b a a a ∥⇒⎭⎬⎫⊥⊥ (4) a a b a a b ⊥⇒⎭⎬⎫⊥∥A.(1)(2)B.(1)(2)(3)C.(1)(2)(4)D.(2)(3)(4) 4.设α、β是两个不重合的平面,m 和l 是两条不重合的直线,则α∥β的一个充分条( ) A.l ⊂α,m ⊂α且l ∥β,m ∥β B.l ⊂α, m ⊂β且l ∥m C.l ⊥α,m ⊥β,且l ∥m D.l ∥α,m ∥β且l ∥m5.四棱柱成平行六面体的充分但不必要条件是( )A.底面是矩形B.侧面是平行四边形C.一个侧面是矩形D.两个相邻侧面是矩形 6.二面角α—EF —β是直二面角,C ∈EF ,AC ⊂α,BC ⊂β,如果∠ACF=30°,∠ACB=60° ,∠BCF=θ,那么cos θ的值等于,则( ) A.332 B.36 C.22 D.337.如图,有共同底边的等边△ABC 和等边三角形BCD 所在平面互相 垂直,则异面直线AB 和CD 所成角的余弦值为( )A.31 B.41C.43D.228.正方体ABCD —A 1B 1C 1D 1中截面AB 1C 和截面A 1B 1C 所成的二面角的大小( )A.45°B.60°C.arccos26 D.arccos 36 9.如图,BCDE 是一个正方形,AB ⊥平面CE ,侧图中相互垂直的平面有( )A.3组B.6组C.7组D.8组10.正方形ABCD-A 1B 1C 1D 1中,平面A 1BC 1与平面ABCD 所成二面角的正弦值是( ) A.36 B.33 C.23 D.22 (二)填空题11.两条异面直线所成的角为θ,则cos θ的取值范围是 .12.棱长为1的正方体,PA 、PB 、PC 是共一个顶点P 的三条棱,那么点P 到平面ABC 的距离是 .13.从三棱锥六条棱的中点中,任选四个作为四边形的顶点.其中为平行四边形的个数有 个. 14.正方体ABCD 所在平面与正方形ABEF 所在平面成60°的二面角,则异面直线AD 与BF 所成角为 .15.正四棱锥S-ABCD 的高为2,底面边长为2,P 、Q 两点分别在线段BD 和SC 上 ,则P 、Q 两点的最短距离为 . (三)解答题16.已知平面α和不在这个平面内的直线a 都垂直于平面β,求证a ∥α.17.如图,正方形ABCD ,E 、F 分别在AB 、CD 的中点,G 为BF 的中点,现将正方形沿EF 折成 120°的二面角.求①异面直线EF 和AG 所成的角;②AG 和平 面EBCF 所形成的角.18.圆柱底面半径是3,高是4,A 与B 分别是两底的圆周上的点,且AB =5,求异面直线AB与OO 1间的距离。
心尺引州丑巴孔市中潭学校第一章直线综合练习(3)<两条直线的位置关系及曲线和方程>【例题精选】例1、两条直线:l1 = x + my + 6 = 0, l2: (m-2)x + 3y + 2m = 0当m为何值时, l1与l2(i)相交; (ii)平行; (iii)重合。
解: 假设m = 0时l1: x = -6l2: 2x-3y = 0, 此时l1与l2相交假设mmmm m≠-==-= 021313,由有或由3263 mmm==±有故i)当m m mm≠-≠-≠13213且时,, l1与l2相交ii)当m = -1时, mmm-=≠21326, l1与l2平行(iii)当m = 3时mmm-==21326, l1与l2重合。
例2、两条直线l1、l2, 其中一条没有斜率。
这两条直线什么时候(1)平行; (2)解: (1)另一条也没有斜率且在x轴上的横截距不相等时, 它们平行。
(2)另一条斜率为零时, 它们垂直。
:(1')两条直线l1、l2, 其中一条没有斜率且它们平行, 那么另一条也没有斜率且它们在x轴上的横截距不相等。
成立!(2')两条直线l1、l2, 其中一条没有斜率且它们垂直, 那么另一条斜率为零。
成立!例3、假设直线x + ay + 2 = 0和2x + 3y + 1 = 0互相垂直, 求a值。
解: 由直线A1x + B1y + C1 = 0与A2x + B2y + C2 = 0互相垂直的充要条件A1B2 + A2B1 = 0, 有3 + 2a= 0解得a=-32。
例4、A (1, 3)、B (2, 1), 求过P (-1, 0)点与A 、B 两点距离相等的直线l 的方程。
解: 依几何性质, 知过P 点与直线AB 平行的直线以及过P 点及线段AB 中点C 的直线为所求。
设C (x 0, y 0)那么x y 00322==⎧⎨⎪⎩⎪那么所求直线l 的方程为: y = -2(x + 1)及()y x =+451, 即2x + y + 2 = 0及4x -5y + 4 = 0为所求。
心尺引州丑巴孔市中潭学校直线专项训练【例题精选】:例1:点p r r p r r 111222(cos ,sin )(cos ,sin )θθθθ,其中,r >0-<<-<<-23212πθπθπ。
求p p 12解:由,-<<-<-<-<-<>23232001212πθππθππθθ,,得,又r 例2:假设B 分AC 所成的比为-23, 那么B 分CA 所成的比λ1= ;A 分BC 所成的比λ2= 。
答案:λλ12322=-=,。
分析:由B 分AC 所成的比λ==-AB BC 23小结:此题主要是运用定比分点概念解题,这是使用定比分点公式的根底,假设根据条件画出示意图更直观。
例3 :点P M E PQ PE QE (,)(,)(,),,--=21144312,Q,点在直线上且,延长ME 至,F 使EF EM =13,求点F 的坐标.解:PE QE PE EQ ==-1212,即 由延长ME 至F ,且EF EM F ME ==-134,可知外分的比λ 那么x y F =---=-=----=-4451483421453()(),例4:〔理〕直线()ax by c ab --=<00()的倾斜角是分析:直线ax by ck abab k --==<<000的斜率,由得设倾斜角为,,,α答案:C例5 :直线l 过点P A B (,)(,),(,),---122330且与以为端点的线段相交则直线的斜率的取值范围是l 。
分析:如图11-1,直线PA 的斜率k PB PA =+-+=23125,直线的斜率k PB =---=-201312,过点P 作x 轴的 垂线PQ ,当PA 绕P 点向PQ 靠近,那么直线l 的倾斜角变大,当PB 绕P 点向PQ 靠近,那么直线l 的倾斜角变小,又正切值在(,)(,)022πππ,是单调递增,所以直线l 斜率的取值范围是: (∪)-∞-+∞,][,125答案:(∪)-∞-+∞,][,125小结:要准确掌握倾斜角的概念,注意倾斜角α的取值范围是0≤<απ,对斜率概念要注意它的前提,ααα≠︒==︒9090时,;时,不存在。
高三数学直线试题答案及解析1.设A1,A2,A3,A4是平面直角坐标系中两两不同的四点,若=λ(λ∈R),=μ(μ∈R),且+=2,则称A3,A4调和分割A1,A2,已知平面上的点C,D调和分割点A,B,则下面说法正确的是()A.C可能是线段AB的中点B.D可能是线段AB的中点C.C、D可能同时在线段AB上D.C、D不可能同时在线段AB的延长线上【答案】D【解析】由已知,不妨设C(c,0),D(d,0),A(0,0),B(1,0),由题意有(c,0)=λ(1,0),(d,0)=μ(1,0),所以λ=c,μ=d,代入+=2,得 (1)若C是线段AB的中点,则c=,代入(1),d不存在,故C不可能是线段AB的中点,A错误;同理B错误;若C,D同时在线段AB上,则,,代入(1)得c=d=1,此时C和D点重合,与条件矛盾,故C错误.故选:D.【考点】1.新定义;2.命题的真假判断.2.若的弦AB的中点,则直线AB的方程是( )A.B.C.D.【答案】A【解析】圆的圆心为.由圆的性质知,直线垂直于弦所在的直线,则.所以直线的方程为:,即.故选A【考点】垂直圆3.设动点P在直线x=1上,O为坐标原点,以OP为直角边、点O为直角顶点作等腰直角△OPQ,则动点Q的轨迹是()A.圆B.两条平行直线C.抛物线D.双曲线【答案】B【解析】【思路点拨】设动点P的纵坐标t为参数,来表示|OP|=|OQ|,·=0,并消去参数得轨迹方程,从而确定轨迹.设P(1,t),Q(x,y),由题意知|OP|=|OQ|,∴1+t2=x2+y2,①又·=0,∴x+ty=0,∴t=-,y≠0.②把②代入①,得(x2+y2)(y2-1)=0,即y=±1.所以动点Q的轨迹是两条平行直线.4.已知是直线上一动点,是圆的两条切线,切点分别为.若四边形的最小面积为2,则= .【答案】2【解析】圆的圆心为,半径为1,因为四边形的面积,而最小值为2,所以的最小值为,即圆心到直线距离,解得.【考点】圆的切线的性质、点到直线的距离公式,函数的应用.5.已知点A(-1,0);B(1,0),C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是A.(0,1)B.(1-,) (C.(1-,D.[,)【答案】B【解析】由题意知:;当直线过点(-1,0)时,要将△ABC分割为面积相等的两部分,直线必须过点,此时有且,解得;当时,直线y=ax+b平行于直线AC,要将△ABC分割为面积相等的两部分,可求此时的=.【考点】本小题主要考查直线方程的基础知识以及数形结合等数学思想,考查同学们分析问题与解决问题的能力.6.直线过点 (-3,-2)且在两坐标轴上的截距相等,则这直线方程为 .【答案】2x-3y=0或x+y+5=0【解析】当在两坐标轴上的截距都为0时,所求直线方程为2x-3y=0;当在两坐标轴上的截距不为0时,设所求直线方程为,因为过点(-3,-2),代入得,所以所求直线方程为,即x+y+5=0。
高三数学直线试题答案及解析1.已知,点依次满足。
(1)求点的轨迹;(2)过点作直线交以为焦点的椭圆于两点,线段的中点到轴的距离为,且直线与点的轨迹相切,求该椭圆的方程;(3)在(2)的条件下,设点的坐标为,是否存在椭圆上的点及以为圆心的一个圆,使得该圆与直线都相切,如存在,求出点坐标及圆的方程,如不存在,请说明理由.【答案】(1) 以原点为圆心,1为半径的圆, (2) (3)存在点,其坐标为或.【解析】(1)求动点轨迹方程,分四步.第一步,设动点坐标第二步建立等量关系:第三步化简等量关系:第四步,去杂.求轨迹,不仅求出轨迹方程,而且说明轨迹形状.(2)求椭圆标准方程,一般利用待定系数法.设直线的方程为椭圆的方程由与圆相切得:由直线的方程与椭圆方程联立方程组得:所以,∴(3)存在性问题,一般从假设存在出发,列等量关系,将存在性问题转化为方程是否有解问题. 假设,:: ,又,解得:或(舍).解析:(1) 设所以,点的轨迹是以原点为圆心,1为半径的圆. 4分(2)设直线的方程为①椭圆的方程②由与圆相切得: 6分将①代入②得:,又,可得,有,∴,.∴ 9分(3) 假设存在椭圆上的一点,使得直线与以Q为圆心的圆相切,则Q到直线的距离相等,::12分化简整理得:∵点在椭圆上,∴解得:或(舍)时,,, 15分∴椭圆上存在点,其坐标为或,使得直线与以Q为圆心的圆相切 16分【考点】动点轨迹方程,直线与椭圆位置关系2.已知A(1,0),B(2,a),C(a,1),若A,B,C三点共线,则实数a的值为()A.2B.-2C.D.【答案】C【解析】a=1时,显然A,B,C三点不共线,由已知有,∴a2-a-1=0,解得a=,选C.3.若的弦AB的中点,则直线AB的方程是( )A.B.C.D.【答案】A【解析】圆的圆心为.由圆的性质知,直线垂直于弦所在的直线,则.所以直线的方程为:,即.故选A【考点】垂直圆4.点(1,cosθ)(其中0≤θ≤π)到直线xsinθ+ycosθ-1=0的距离是,那么θ等于________.【答案】θ=或.【解析】由已知得=,即|sin θ-sin2θ|=,∴ 4sin2θ-4sin θ-1=0或4sin2θ-4sin θ+1=0,∴ sin θ=或sinθ=.∵ 0≤θ≤π,∴0≤sin θ≤1,∴ sin θ=,即θ=或.5.设动点P在直线x=1上,O为坐标原点,以OP为直角边、点O为直角顶点作等腰直角△OPQ,则动点Q的轨迹是()A.圆B.两条平行直线C.抛物线D.双曲线【答案】B【解析】【思路点拨】设动点P的纵坐标t为参数,来表示|OP|=|OQ|,·=0,并消去参数得轨迹方程,从而确定轨迹.设P(1,t),Q(x,y),由题意知|OP|=|OQ|,∴1+t2=x2+y2,①又·=0,∴x+ty=0,∴t=-,y≠0.②把②代入①,得(x2+y2)(y2-1)=0,即y=±1.所以动点Q的轨迹是两条平行直线.6.已知是直线上一动点,是圆的两条切线,切点分别为.若四边形的最小面积为2,则= .【答案】2【解析】圆的圆心为,半径为1,因为四边形的面积,而最小值为2,所以的最小值为,即圆心到直线距离,解得.【考点】圆的切线的性质、点到直线的距离公式,函数的应用.7.已知直线与圆交于不同的两点若,是坐标原点,那么实数的取值范围是 .【答案】【解析】由已知,两边平方得:,化简得。
高三数学直线试题答案及解析1.已知,点依次满足。
(1)求点的轨迹;(2)过点作直线交以为焦点的椭圆于两点,线段的中点到轴的距离为,且直线与点的轨迹相切,求该椭圆的方程;(3)在(2)的条件下,设点的坐标为,是否存在椭圆上的点及以为圆心的一个圆,使得该圆与直线都相切,如存在,求出点坐标及圆的方程,如不存在,请说明理由.【答案】(1) 以原点为圆心,1为半径的圆, (2) (3)存在点,其坐标为或.【解析】(1)求动点轨迹方程,分四步.第一步,设动点坐标第二步建立等量关系:第三步化简等量关系:第四步,去杂.求轨迹,不仅求出轨迹方程,而且说明轨迹形状.(2)求椭圆标准方程,一般利用待定系数法.设直线的方程为椭圆的方程由与圆相切得:由直线的方程与椭圆方程联立方程组得:所以,∴(3)存在性问题,一般从假设存在出发,列等量关系,将存在性问题转化为方程是否有解问题. 假设,:: ,又,解得:或(舍).解析:(1) 设所以,点的轨迹是以原点为圆心,1为半径的圆. 4分(2)设直线的方程为①椭圆的方程②由与圆相切得: 6分将①代入②得:,又,可得,有,∴,.∴ 9分(3) 假设存在椭圆上的一点,使得直线与以Q为圆心的圆相切,则Q到直线的距离相等,::12分化简整理得:∵点在椭圆上,∴解得:或(舍)时,,, 15分∴椭圆上存在点,其坐标为或,使得直线与以Q为圆心的圆相切 16分【考点】动点轨迹方程,直线与椭圆位置关系2.已知点A(3,0),B(0,4),动点P(x,y)在线段AB上运动,则xy的最大值为()A.2B.3C.4D.5【答案】B【解析】线段AB的方程为,所以,所以xy≤3,当0≤x≤3时,可以取到等号,所以xy的最大值为3.选B.3.在同一直角坐标系中,方程与方程表示的曲线可能是( ).【答案】A【解析】直线方程变形为:,在选项B和C中,,解得,所以表示的曲线是焦点在轴上的双曲线,所以B和C都是错误的;在选项A中,,解得,所以表示的曲线是椭圆;在选项D中,,解得,同号,所以不可能表示双曲线,选项D错误.【考点】1.直线方程;2.椭圆定义;3.双曲线定义4.直线过点(-1,3),且与曲线在点(1,-1)处的切线相互垂直,则直线的方程为。
高三数学直线综合试题答案及解析1.若动点A,B分别在直线l1:x+y-7=0和l2:x+y-5=0上移动,则AB的中点M到原点的距离的最小值为()A.3B.2C.3D.4【答案】A【解析】依题意知AB的中点M的集合为与直线l1:x+y-7=0和l2:x+y-5=0距离都相等的直线,则M到原点的距离的最小值为原点到该直线的距离,设点M所在直线的方程为l:x+y+m=0,根据平行线间的距离公式得=⇒|m+7|=|m+5|⇒m=-6,即l:x+y-6=0,根据点到直线的距离公式,得M到原点的距离的最小值为=3.2.直线与直线,若的方向向量是的法向量,则实数a= .【答案】【解析】直线的方向向量是,直线的法向量是,题意告诉我们这两个向量是平行向量,故,即.【考点】直线的方向向量与法向量.3.过点且与直线垂直的直线方程是()A.B.C.D.【答案】C【解析】根据垂直直线系的直线的方程的特点,不妨设所求直线的方程为,由于该直线过点,则有,故过点且与直线垂直的直线方程是,选C.【考点】垂直直线系的方程4.设点,,若直线与线段(包括端点)有公共点,则的最小值为 ( )A.B.C.D.1【答案】C【解析】若直线与线段(包括端点)有公共点,则点应位于直线的两侧,于是或,作出点可行域,则的最小值应在原点到直线的距离处,于是,所以.【考点】1.线性规划;2.点到直线的距离.5.已知点,直线将△分割为面积相等的两部分,则的取值范围是()A.B.C.D.【解析】由题意可得,三角形ABC的面积为 S= •AB•OC=1,由于直线y=ax+b(a>0)与x轴的交点为M(−,0),由−≤0可得点M在射线OA上.设直线和BC的交点为 N,则由,可得点N的坐标为(),若点M和点A重合,则点N为线段BC的中点,则−=-1,且=,解得a=b=,若点M在点O和点A之间,则点N在点B和点C之间,由题意可得三角形NMB的面积等于,即•MB• =,即•=,解得a=>0,故b<,若点M在点A的左侧,则−<-1,b<a,设直线y=ax+b和AC的交点为P,则由求得点P的坐标为(),此时,,此时,点C(0,1)到直线y=ax+b的距离等于,由题意可得,三角形CPN的面积等于,即••=,化简可得2(1-b)2=|a2-1|.由于此时 0<b<a<1,∴2(1-b)2=|a2-1|=1-a2 .两边开方可得<1,则1-b<,即b>1−,综合以上可得,b=可以,且b<,且b>1−,即b的取值范围是(1−,)。
心尺引州丑巴孔市中潭学校第一章 直线 专项训练有向线段,两点间的距离以及定比分点【例题精选】:例1::数轴上三点A ,B ,C 的坐标分别是4,-2,-6,求:AB ,BC CA ,的数量和长度。
解:AB AB =--=-=2466,例2::A ,B ,C 是数轴上的三个点,求证:不管A ,B ,C 如何排列,总有AB BC AC +=证明:设A ,B ,C 三点的坐标为a b c ,, 例3:试判断以()()()A B C -202460,,,,,为顶点的三角形的形状。
解:()AB =++=2244222∴∆ABC 为等腰直角三角形例4::∆ABC 中,AO 是BC 边上的中线。
求证:()AB AC AO OC 22222+=+证明:以O 为原点,BC 为x 轴,过O 点与BC 垂直的直线为y 轴建立坐标系。
设()()()A a b B c C c ,,,,,-00例5:求与A 〔32,10〕,B 〔42,0〕,C 〔0,0〕等距离点的坐标。
解:设所求的点为()P a b ,()∴-P 2111,即为所求例6:求在x 轴上与两点A 〔-1,3〕,B 〔2,4〕距离相等的点的坐标。
解:设所求的点为()P a ,0∴⎛⎝ ⎫⎭⎪P 530,即为所求 例7::如图P P PP 1232==, 求:①P 分P P 12所成的λ②P 分P P 21所成的λ③P 1分PP 2所成的λ ④P 1分P P 2所成的λ解:①λ==P P PP 1232②λ==P P PP 2123③λ==-PP P P 11235④λ==-P P P P 21153 例8::()()P P 121630--,,,,连结P P 21并延长到P ,使P P P P 11213=。
求:()P x y , 解法1:把P 看成分点P 分P P 12所成的λ==-P P PP 1214解法2:把P 1看成分点P 1分PP 2所成的λ==PP P P 11213例9::三角形的顶点()()()A x y B x y C x y 112233,,,,,求:∆ABC 的重心()G x y ,解:设D 为BC 的中点注:例9的结论可作为公式直接使用。
高三数学直线练习
(一)选择题
1.直线Ax+By+C=0通过第一、二、三象限,当且仅当( )
A.A ·B >0,A ·C >0
B.A ·B >0,A ·C <0
C.A ·B <0,A ·C >0
D.A ·B <0,A ·C <0
2.已知点M(3,4),N(12,7),P 在直线MN 上,且3
1=MN PM ,则点P 的坐标是( ) A.(6,5) B.(9,6)
C.(0,3)
D.(0,3)或(6,5)
3.已知点A(3,3),B(-1,5),直线y=ax+1与线段AB 有公共点,则实数a 应满足的条件是( )
A.a ∈[-4,
32] B.a ≠-2
1 C.a ∈[-4,21]∪(-21,32) D.a ∈(-∞,-4)∪(32,+∞] 4.方程│x-1│+y=1确定的曲线与x 轴围成的图形的面积是( ) A. 2
1 B.1 C.
2 D.4 5.过点(2,3)且在两坐标轴上截距相等的直线方程是( )
A.x+y=5
B.3x-2y=0
C.x+y=5或3x-2y=0
D.4x-y=5
6.直线l 过点P(3,2),与x 轴、y 轴的正半轴交于A 、B 两点,O 是坐标原点,当△AOB 面积为最 小值时,直线l 的方程是( )
A.x-y-1=0
B.x+y-5=0
C.2x+3y-12=0
D.3x+2y-13=0
7.如果直线Ax+By+C=0的倾斜角是一锐角,且在y 轴上的截距大于零,则( )
A.AB >0,AC >0
B.AB >0,AC <0
C.AB <0,AC >0
D.AB <0,AC <0
8.下列各点中,不与P(4,3)、Q(-1,6)两点共线的点是( )
A.(5,6)
B.(2,-3)
C.(3t ,t+3)(这里t ∈Z)
D.(t+3,3t)(这里t ∈Z)
9.两条不重合的直线mx+y-n=0和x+my+1=0互相平行的充要条件是( )
A.m=1,n=1
B.m=-1,n=-1
C.m=1,n ≠-1,或m=-1,n ≠1
D.m ≠±1,n ≠±1
10.与直线2x+3y-6=0关于点(1,-1)对称的直线是( )
A.3x-2y+2=0
B.2x+3y+1=0
C.3x-2y-12=0
D.2x+3y+8=0
11.已知0≤θ≤
2π,且点(1,cos θ) 到直线xsin θ+ycos θ=1的距离等于41 ,则θ等于( ) A.
6π B. 4π C. 3
π D. 125π
12.已知直线l 1∶x-2y-6=0,l 2∶3x-y+4=0下列说法中错误的是( )
A.l 1与l 2的夹角是45°
B.l 1到l 2的角是45°
C.l 2到l 1的夹角是45°
D.l 2到l 1的角是135 °
13.若a 2+b 2=c 2,则直线ax+by+c=0被圆x 2+y 2=2所截的弦长等于( ) A.1 B.2 C.3 D.23
14.△ABC 中,B(-a,0)、C(a,0),且两底角的正切的乘积为定值k(k >0),则顶点A 的轨迹方 程是( )
A.kx 2+y 2=ka 2(y ≠0)
B.kx 2-y 2=ka 2(y ≠0)
C.x 2+ky 2=ka 2(y ≠0)
D.x 2-ky 2=ka 2(y ≠0)
15.设点A(-1,2),B(2,-2),C(0,3),且M(a ,b)是线段AB 上的一点(a ≠0),则直线MC 的 斜率的取值范围是( )
A.[-
25,1] B.[-1, 2
5] C.[-25,0]∪(0,1) D.(-∞ ,-25]∪〔1,+∞) (二)填空题
16.两条平行直线2x-7y+8=0和2x-7y-8=0间的距离是 .
17.如果直线l 1、l 2的斜率分别是二次方程x 2-4x+1=0的两根,那么l 1与l 2所成 角的大小
是 .
18.直线y=-x+b 和5x+3y-31=0的交点在第一象限,那么b 的范围是 .
19.已知点P 是直线l 上一点,将直线l 绕点P 沿逆时针方向旋转角α(0°<α<90°),所得直 线的方程是x-y-2=0,若将它继续为转90°-α,所得直线的方程2x+y-1=0,则直线l 的方程为 .
(三)解答题
20.正方形中心为G(-1,0),一边所在直线的斜率为3,且此正方形的面积为14.4,求这正方 形各边所在直线的方程.
21.已知在△ABC 的边上运动的点D 、E 、F 在t=0时分别从A 、B 、C 出发,各以一定的速度向B 、 C 、A 前进,在t=1时分别达到B 、C 、A ,试证明在运动过程中,△DEF 的重心是一个定点.
22.一条光线从点M(5,3)射出,被直线l ∶x+y=1反射,入射光线到直线l 的角为β,已知tg β=2,求入射光线与反射光线所在直线的方程.
23.用解析法证明三角形内角平分线性质定理.
24.已知点P(6,8),过P 点作直线PA ⊥PB 分别交x 轴正半轴、y 轴正半轴于A 、B 两点。
①求线段AB 的中点的轨迹。
②若△AOB 面积等于△APB 面积,求此时直线PA 与直线PB 的方程。
25.已知动点P(x,y)在以A(π,0)、B(-
2π,-2π)为两端点的线段上移动,且sinx+sin2y=0。
求点P 的坐标。
参考答案
(一)1.C 2.D 3.D 4.B 5.C 6.C 7.D 8.C 9.C 10.D 11.A 12.C 13.B 14.A
15.D
(二)16.535316; 17.3
π;18.531<b <331;19.略 (三)20.3x-y+9=0,3x-y-3=0,x+3y+7=0,x+3y-5=0;21,证略:22.入射光线:y -3x+12=0,反射光线:3y-x+10=0;23.证略;24.(1)3x+4y-25=0第一象限内的部分;(2)
PA ∶x=6,PB ∶y =8或PA ∶24x+7y-200=0,PB ∶7x-24y+150=0 25.(
52π,-5
π)或(π,0).。