【复习必备】(全国通用版)2020版高考数学大二轮复习 考前强化练5 解答题组合练(A)理
- 格式:doc
- 大小:831.86 KB
- 文档页数:9
仿真模拟练(限时120分钟,满分150分)一、选择题(共12小题,每小题5分,满分60分)1.已知集合P={x∈N|1≤x≤10},集合Q={x∈R|x2-x-6<0},则P∩Q等于()A.{1,2,3}B.{1,2}C.[1,2]D.[1,3)2.若i z=-1+i,则复数z的共轭复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.设曲线C是双曲线,则“C的方程为x2-=1”是“C的渐近线方程为y=±2x”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.若2m>2n>1,则()A. B.lo m>lo nC.ln(m-n)>0D.πm-n>15.某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为()A. B. C. D.6.我们可以用随机模拟的方法估计π的值,如图示程序框图表示其基本步骤(函数RAND是产生随机数的函数,它能随机产生(0,1)内的任何一个实数).若输出的结果为786,则由此可估计π的近似值为()A.3.126B.3.144C.3.213D.3.1517.已知函数f(x)=sin(ωx+φ)ω>0,|φ|<,其图象相邻两条对称轴之间的距离为,将函数y=f(x)的图象向左平移个单位后,得到的图象关于y轴对称,那么函数y=f(x)的图象()A.关于点-,0对称B.关于点,0对称C.关于直线x=对称D.关于直线x=-对称8.《中国诗词大会》亮点颇多,十场比赛每场都有一首特别设计的开场诗词,在声光舞美的配合下,百人团齐声朗诵,别有韵味.因为前四场播出后反响很好,所以节目组决定将《将进酒》《山居秋暝》《望岳》《送杜少府之任蜀州》和另外确定的两首诗词排在后六场,并要求《将进酒》与《望岳》相邻,且《将进酒》排在《望岳》的前面,《山居秋暝》与《送杜少府之任蜀州》不相邻,且均不排在最后,则后六场开场诗词的排法有()A.144种B.48种C.36种D.72种9.已知椭圆E:=1(a>b>0)的右焦点为F,短轴的一个端点为M,直线l:3x-4y=0交椭圆E于A,B两点,若|AF|+|BF|=6,点M与直线l的距离不小于,则椭圆E的离心率的取值范围是()A.0,B.0,C.,1D.,110.已知变量x,y满足条件则目标函数z=的最大值为()A. B.1 C. D.11.如图,在边长为2的正方形ABCD中,E,F分别为BC,CD的中点,H为EF的中点,沿AE,EF,FA将正方形折起,使B,C,D重合于点O,在构成的四面体A-OEF中,下列结论中错误的是()A.AO⊥平面EOFB.直线AH与平面EOF所成的角的正切值为2C.异面直线OH和AE所成的角为60°D.四面体A-OEF的外接球表面积为6π12.已知函数f(x)的导函数为f'(x),且对任意的实数x都有f'(x)=e-x(2x+3)-f(x)(e是自然对数的底数),且f(0)=1,若关于x的不等式f(x)-m<0的解集中恰有两个整数,则实数m的取值范围是()A.(-e,0]B.[-e2,0)C.[-e,0)D.(-e2,0]二、填空题(共4小题,每小题5分,满分20分)13.(2x+1)1-6的展开式中的常数项是.14.已知数列{a n}的首项为3,等比数列{b n}满足b n=,且b1 009=1,则a2 018的值为.15.如图,在平面四边形ABCD中,∠A=45°,∠B=60°,∠D=150°,AB=2BC=4,则四边形ABCD的面积为.16.如图所示,将一圆的八个等分点分成相间的两组,连接每组的四个点得到两个正方形,去掉两个正方形内部的八条线段后可以形成一个正八角星.设正八角星的中心为O,并且=e1,=e2,若将点O到正八角星16个顶点的向量都写成λe1+μe2,λ,μ∈R的形式,则λ+μ的取值范围为.三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(2018山东临沂三模,理17)已知等差数列{a n}的n项和为S n,a1=3,公差d>0,且a1,a3-1,a5+1成等比数列.(1)求S n;(2)若数列{b n}的前n项和为T n,且b n+b n+1=,求T2n.18.如图,已知在四棱锥P-ABCD中,O为AB中点,平面POC⊥平面ABCD,AD∥BC,AB⊥BC,PA=PB=BC=AB=2,AD=3.(1)求证:平面PAB⊥平面ABCD;(2)求二面角O-PD-C的余弦值.19.1995年联合国教科文组织宣布每年的4月23日为世界读书日,主旨宣言为“希望散居在全球各地的人们,都能享受阅读带来的乐趣,都能尊重和感谢为人类文明作出巨大贡献的文学、文化、科学思想的大师们,都能保护知识产权.”为了解大学生课外阅读情况,现从某高校随机抽取100名学生,将他们一年课外阅读量(单位:本)的数据,分成7组[20,30),[30,40),…,[80,90),并整理得到如图频率分布直方图:(1)估计其阅读量小于60本的人数;(2)已知阅读量在[20,30),[30,40),[40,50)内的学生人数比为2∶3∶5.为了解学生阅读课外书的情况,现从阅读量在[20,40)内的学生中随机选取3人进行调查座谈,用X表示所选学生阅读量在[20,30)内的人数,求X的分布列和数学期望;(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计100名学生该年课外阅读量的平均数在第几组(只需写出结论).20.椭圆=1(a>b>0)的左、右焦点分别为F1,F2,与y轴正半轴交于点B,若△BF1F2为等腰直角三角形,且直线BF1被圆x2+y2=b2所截得的弦长为2.(1)求椭圆的方程;(2)直线l与椭圆交于点A,C,线段AC的中点为M,射线MO与椭圆交于点P,点O为△PAC的重心,探求△PAC的面积S是否为定值,若是求出这个值,若不是,求S的取值范围.21.设函数f(x)=x-ln(x+).(1)探究函数f(x)的单调性;(2)若x≥0时,恒有f(x)≤ax3,试求a的取值范围;(3)令a n=6n+ln 2n+(n∈N*),试证明:a1+a2+…+a n<.22.在直角坐标系xOy中,直线l的方程是x=2,曲线C的参数方程为(α为参数),以O为极点,x轴的非负半轴为极轴建立极坐标系.(1)求直线l和曲线C的极坐标方程;(2)射线OM:θ=β其中0<β≤与曲线C交于O,P两点,与直线l交于点M,求的取值范围.23.设函数f(x)=|2x-1|.(1)设f(x)+f(x+1)<5的解集为A,求集合A;(2)已知m为(1)中集合A中的最大整数,且a+b+c=m(其中a,b,c为正实数),求证:≥8.参考答案仿真模拟练1.B解析∵P={1,2,3,4,5,6,7,8,9,10},Q=(-2,3),∴P∩Q={1,2}.故选B.2.D解析由i z=-1+i,得z==1+i,=1-i,∴复数z的共轭复数在复平面内对应的点的坐标为(1,-1),位于第四象限,故选D.3.A解析若C的方程为x2-=1,则a=1,b=2,渐近线方程为y=±x,即为y=±2x,充分性成立.若渐近线方程为y=±2x,则双曲线方程为x2-=λ(λ≠0),∴“C的方程为x2-=1”是“C的渐近线方程为y=±2x”的充分而不必要条件,故选A.4.D解析∵2m>2n>1,∴m>n>0,可排除选项A,B;当1>m-n>0时,选项C错误;由m>n>0得m-n>0,∴πm-n>1,选项D正确.5.D解析从三视图中提供的图形信息与数据信息可知:该几何体的底面是圆心角为的扇形,高是4的圆锥体.容易算得底面面积S=4=,所以其体积V=4×4=,故选D.6.B解析任意(x,y)落在边长为1的正方形内,满足x2+y2<1的点在四分之一圆,∴x2+y2<1发生的概率为P=,当输出结果m=786时,x2+y2<1发生的概率为P=,,即π=3.144,故选B.7.B解析因为函数y=f(x)的图象相邻两条对称轴之间的距离为,所以函数的周期为,∴ω==4,∴f(x)=sin(4x+φ),将函数y=f(x)的图象向左平移个单位后,得到函数y=sin4x++φ的图象,∵图象关于y 轴对称,∴4+φ=kπ+,k∈Z,即φ=kπ-,k∈Z,又|φ|<,∴φ=-,∴f(x)=sin4x-,令4x-=kπ,k∈Z,解得x=,k∈Z,k=0时,得f(x)的图象关于点,0对称,令4x-=kπ+,k∈Z可验证C,D两项均错误.故选B.8.C解析将《将进酒》与《望岳》捆绑在一起和另外确定的两首诗词进行全排列共有=6种排法,再将《山居秋暝》与《送杜少府之任蜀州》插排在3个空里(最后一个空不排),有=6种排法,则后六场的排法有6×6=36种,故选C.9.B解析可设F'为椭圆的左焦点,连接AF',BF',根据椭圆的对称性可得四边形AFBF'是平行四边形,∴6=|AF|+|BF|=|AF'|+|AF|=2a,∴a=3,取M(0,b),∵点M到直线l的距离不小于,,解得b≥2,e2=,∴e,∴椭圆E的离心率的取值范围是0,,故选B.10.C解析作出表示的可行域,如图所示.变形目标函数,z===2cos θ,其中θ为向量a=(,-1)与b=(x,y)的夹角,由图可知,b=(2,0)时θ有最小值,b=(x,y)在直线y=x上时,θ有最大值,即,∴z≤2cos,目标函数z=的最大值为,故选C.11.C解析如下图,翻折前,AB⊥BE,AD⊥DF,故翻折后,OA⊥OE,OA⊥OF,又OE∩OF=O,∴OA⊥平面EOF.故A正确;连接OH,AH,则∠OHA为AH与平面EOF所成的角,∵OE=OF=1,H是EF的中点,OE⊥OF,∴OH=EF=又OA=2,∴tan∠OHA==2,故B正确;取AF的中点P,连接OP,HP,则PH∥AE,∴∠OHP为异面直线OH和AE所成角,∵OE=OF=1,OA=2,∴OP=AF=,PH=AE=,OH=EF=,∴cos∠OHP=,故C错误;由OA,OE,OF两两垂直可得棱锥的外接球也是棱长为1,1,2的长方体的外接球,∴外接球的半径r=,故外接球的表面积为S=4πr2=6π,故D正确.故选C.12.A解析由题意可知,[f(x)+f'(x)]e x=2x+3,即[f(x)e x]'=2x+3,∴f(x)e x=x2+3x+C,f(0)=1⇒C=1,∴f(x)=(x2+3x+1)e-x,由f(x)可以知道f'(x)=-e-x(x2+x-2),f(x)在(-∞,-2),(1,+∞)上递减,在(-2,1)上递增,∴f(x)有极小值f(-2),f(-2)=-e2,f(-1)=-e,f(-3)=e2,且x>1时,f(x)>0,结合f(x)图象,要使关于x的不等式f(x)-m<0的解集中恰有两个整数,则f(-1)<m≤0,即-e<m≤0,∴实数m的取值范围是(-e,0],故选A.13.-11解析1-6的展开式通项为T r+1=(-1)r x-r,∴1-6展开式中的常数项为1,x-1项的系数为-=-6,∴(2x+1)1-6的展开式中的常数项是2×(-6)+1=-11,故答案为-11. 14.3解析∵b n=,且a1=1,∴b1=,b2=,…,b n-1=,相乘可得=b1b2…b n-1,=b1b2…b2 017=(b1b2 017)·(b2b2 016)…(b1 008b1 010), ∵b1 009=1,(b1b2 017)=(b2b2 016)=…=(b1 008b1 010)==1,=1,a2 018=3,故答案为3.15.6-解析连接AC,在△ABC中,AB=2BC=4,∠B=60°,利用余弦定理得:AC2=BC2+AB2-2BC·AB·cos∠B,解得AC=2,∴AB2=AC2+BC2,则△ABC是直角三角形,∴∠DAC=∠DCA=15°,过点D作DE⊥AC,则AE=AC=,∴DE=tan 15°AE=(2-)=2-3,则S四边形ABCD=S△ACD+S△ABC=6-3+2=6-,故答案为6-16.[-1-,1+]解析以O为原点,以OA为x轴建立平面直角坐标系,如图所示,设圆O的半径为1,则OM=1,过M作MN∥OB,交x轴于N,则△OMN为等腰三角形,∴||=|=,,此时λ+μ=1+,同理,此时λ+μ=1+,=-,此时λ+μ=-1-,=-,此时λ+μ=-1-,在顶点A,B,G,H处,λ+μ=±1,∴λ+μ的最大值为1+,最小值为-1-,故答案为[-1-,1+].17.解 (1)∵a1=3,a1,a3-1,a5+1成等比数列,∴(a3-1)2=a1(a5+1),∴(2+2d)2=3(4+4d),∴d2-d-2=0,∴d=-1或d=2,又d>0,∴d=2,∴S n=na1+d=3n+2=n2+2n.(2)∵b n+b n+1=,∴b n+b n+1=,当n=1,3,5,…,2n-1时,有b1+b2=1-,b3+b4=,2019年b5+b6=,…b2n-1+b2n=,∴T2n=b1+b2+b3+b4+…+b2n-1+b2n=1-18.(1)证明∵AD∥BC,AB⊥BC,BC=AB=2,AD=3,∴OC=,OD=,CD=,OD2=OC2+DC2,∴OC⊥CD,∴CD⊥平面POC,∴CD⊥PO,∵PA=PB=AB,O为AB中点,∴PO⊥AB,∴PO⊥底面ABCD,∴平面PAB⊥平面ABCD.(2)解如图,建立空间直角坐标系O-xyz,则P(0,0,),D(-1,3,0),C(1,2,0),=(0,0,),=(-1,3,0),=(-1,-2,),=(-2,1,0), 设平面OPD的一个法向量为m=(x1,y1,z1),平面PCD的法向量为n=(x2,y2,z2),由可得取y1=1,得x1=3,z1=0,即m=(3,1,0),由可得取x2=,得y2=2,z2=5,即n=(,2,5),∴cos<m,n>=故二面角O-PD-C的余弦值为19.解 (1)100-100×10×(0.04+0.02×2)=20(人).(2)由已知条件可知:[20,50)内的人数为:100-100×10(0.04+0.02+0.02+0.01)=10,[20,30)内的人数为2人,[30,40)内的人数为3人,[40,50)内的人数为5人.X的所有可能取值为0,1,2,P(X=0)=,P(X=1)=,P(X=2)=,所以X的分布列为E(X)=0+1+2(3)估计100名学生该年课外阅读量的平均数在第五组.20.解 (1)由△BF1F2为等腰直角三角形可得b=c,直线BF1:y=x+b被圆x2+y2=b2所截得的弦长为2,所以a=2,b=c=,所以椭圆的方程为=1.(2)若直线l的斜率不存在,则S=3=若直线l的斜率存在,设直线l的方程为y=kx+m,设A(x1,y1),B(x2,y2),即得(2k2+1)x2+4kmx+2m2-4=0.则x1+x2=-,x1x2=,y1+y2=k(x1+x2)+2m=,由题意点O为△PAC重心,设P(x0,y0),则=0,=0,所以x0=-(x1+x2)=,y0=-(y1+y2)=-,代入椭圆=1,得=1,整理得m2=,设坐标原点O到直线l的距离为d,则△PAC的面积S=|AC|·3d=|x1-x2|·3=|x1-x2|·|m|=|m|=|m|=3综上可得△PAC的面积S为定值21.(1)解函数f(x)的定义域为R.由f'(x)=1-0,知f(x)是实数集R上的增函数.(2)解令g(x)=f(x)-ax3=x-ln(x+)-ax3,则g'(x)=,令h(x)=(1-3ax2)-1,则h'(x)=①当a时,h'(x)≤0,从而h(x)是[0,+∞)上的减函数,注意到h(0)=0,则x≥0时,h(x)≤0,所以g'(x)≤0,进而g(x)是[0,+∞)上的减函数,注意到g(0)=0,则x≥0时,g(x)≤0时,即f(x)≤ax3.②当0<a<时,在0,上,总有h'(x)>0,从而知,当x∈0,时,f(x)>ax3;③当a≤0时,h'(x)>0,同理可知f(x)>ax3.综上,所求a的取值范围是,+∞.(3)证明在(2)中,取a=,则x∈0,时,x-ln(x+)>x3,即x3+ln(x+)<x,取x=2n,a n=6n+ln2n+<n,则a1+a2+…+a n<22.解 (1)直线l的极坐标方程是ρcos θ=2,由消参数得x2+(y-2)2=4,∴曲线C的极坐标方程是ρ=4sin θ.(2)将θ=β分别代入ρ=4sin θ,ρcos θ=2,得|OP|=4sin β,|OM|=,sin 2β,∵0<,∴0<2,∴0<sin 2,的取值范围是0,.23.(1)解f(x)+f(x+1)<5即|2x-1|+|2x+1|<5,当x<-时,不等式化为1-2x-2x-1<5,∴-<x<-;当-x时,不等式化为1-2x+2x+1<5,不等式恒成立;当x>时,不等式化为2x-1+2x+1<5,<x<综上,集合A=(2)证明由(1)知m=1,则a+b+c=1.则,同理,则=8,即M≥8.。
2020高考理科数学二轮专题提分全国通用基础保分强化试题二A .[1,+∞)B.⎣⎢⎡⎦⎥⎤12,1 C.⎣⎢⎡⎭⎪⎫23,+∞ D .(1,+∞)答案 A 解析因为A ∩B ≠∅,所以⎩⎨⎧2a -1≥1,2a -1≥12a ,解得a ≥1,故选A.2.若复数z =1+m i1+i 在复平面内对应的点在第四象限,则实数m 的取值范围是( )A .(-1,1)B .(-1,0)C .(1,+∞)D .(-∞,-1)答案 A解析 因为z =1+m i 1+i =(1+m i )(1-i )(1+i )(1-i )=1+m 2+m -12i ,在复平面内对应的点为⎝ ⎛⎭⎪⎫1+m 2,m -12,且在第四象限,所以⎩⎨⎧1+m2>0,m -12<0,解得-1<m <1,故选A.3.设S n 是各项均不为0的等差数列{a n }的前n 项和,且S 13=13S 7,则a 7a 4等于( )A .1B .3C .7D .13答案 C解析 因为S n 是各项均不为0的等差数列{a n }的前n 项和,且S 13=13S 7,所以13(a 1+a 13)2=13×7(a 1+a 7)2,即a 7=7a 4,所以a 7a 4=7.故选C.4.如图,网格纸上小正方形的边长为1,粗实线画出的是某简单几何体的三视图,则该几何体的体积为( )A.4π3B.8π3C.16π3D.32π3 答案 A解析 由三视图可得该几何体为半圆锥,底面半圆的半径为2,高为2,则其体积V =12×13×π×22×2=4π3,故选A.5.已知i 与j 为互相垂直的单位向量,a =i -2j ,b =i +λj ,且a 与b 的夹角为锐角,则实数λ的取值范围是( )A .(-∞,-2)∪⎝ ⎛⎭⎪⎫-2,12 B.⎝⎛⎭⎪⎫12,+∞ C.⎝ ⎛⎭⎪⎫-2,23∪⎝ ⎛⎭⎪⎫23,+∞ D.⎝ ⎛⎭⎪⎫-∞,12 答案 A解析 因为i 与j 为互相垂直的单位向量,所以i 2=j 2=1,i ·j =0.又因为a =i -2j ,b =i +λj ,且a 与b 的夹角为锐角,所以a ·b =1-2λ>0,λ<12.但当λ=-2时,a =b ,不满足要求,故满足条件的实数λ的取值范围为(-∞,-2)∪⎝⎛⎭⎪⎫-2,12.故选A.6.若函数f (x )=sin2x +cos2x ,则下列结论正确的是( ) A .函数f (x )的最小正周期为2πB .对任意的x ∈R ,都有f ⎝ ⎛⎭⎪⎫x -π4+f (-x )=0 C .函数f (x )在⎝⎛⎭⎪⎫π2,3π4上是减函数D .函数f (x )的图象关于直线x =-π8对称 答案 B解析 函数f (x )=sin2x +cos2x =2sin ⎝ ⎛⎭⎪⎫2x +π4,则函数f (x )的最小正周期为T=2π2=π,故A 错误;f ⎝ ⎛⎭⎪⎫x -π4+f (-x )=2sin ⎝ ⎛⎭⎪⎫2x -π4+2sin ⎝ ⎛⎭⎪⎫-2x +π4=0,故B 正确;令π2+2k π≤2x +π4≤2k π+3π2(k ∈Z ),解得π8+k π≤x ≤k π+5π8(k ∈Z ),当k=0时,函数的单调递减区间为⎣⎢⎡⎦⎥⎤π8,5π8,故C 错误;当x =-π8时,f ⎝ ⎛⎭⎪⎫-π8=0,故D 错误.故选B.7.已知长方体ABCD -A 1B 1C 1D 1中,B 1C ,C 1D 与底面ABCD 所成的角分别为60°和45°,则异面直线B 1C 和C 1D 所成角的余弦值为( )A.64B.14C.26D.36答案 A解析 ∵B 1C 和C 1D 与底面ABCD 所成的角分别为60°和45°,∴∠B 1CB =60°,∠C 1DC =45°.由图可知,B 1C 与C 1D 所成的角,即为A 1D 与C 1D 所成的角,即∠A 1DC 1.令BC =1,则B 1B =AB =3,∴A 1D =2,A 1C 1=2,C 1D = 6.由余弦定理,得cos ∠A 1DC 1=22+(6)2-222×2×6=64.故选A.8.把标号为1,2,3,4的四个小球分别放入标号为1,2,3,4的四个盒子中,每个盒子只放一个小球,则1号球不放入1号盒子的方法共有( )A .18种B .9种C .6种D .3种 答案 A解析 由于1号球不放入1号盒子,则1号盒子有2,3,4号球三种选择,还剩余三个球可以任意放入2,3,4号盒子中,则2号盒子有三种选择,3号盒子还剩两种选择,4号盒子只有一种选择,根据分步计数原理可得1号球不放入1号盒子的方法有C 13·C 13·C 12·1=18种.故选A. 9.已知F 1,F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点,P 是双曲线C 上一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2的最小内角的大小为30°,则双曲线C 的渐近线方程是( )A.2x ±y =0 B .x ±2y =0 C .2x ±y =0 D .x ±2y =0 答案 A解析 不妨设|PF 1|>|PF 2|,则⎩⎪⎨⎪⎧|PF 1|-|PF 2|=2a ,|PF 1|+|PF 2|=6a ,所以|PF 1|=4a ,|PF 2|=2a ,且|F 1F 2|=2c ,即|PF 2|为最小边,所以∠PF 1F 2=30°,则△PF 1F 2为直角三角形,所以2c =23a ,所以b =2a ,即渐近线方程为y =±2x ,故选A. 10.若x ,y 满足⎩⎪⎨⎪⎧x +y -3≥0,kx -y +3≥0,y ≥0,且z =y -x 的最小值为-12,则k 的值为( )A.12 B .-12 C.14 D .-14 答案 D解析 依题意,易知k ≤-1和k ≥0不符合题意.由⎩⎪⎨⎪⎧kx -y +3=0,y =0得A ⎝ ⎛⎭⎪⎫-3k ,0,结合图形可知,当直线z =y -x 过点A ⎝ ⎛⎭⎪⎫-3k ,0时,z 有最小值,于是有0+3k =-12,k =-14,选D.11.椭圆x 24+y 2=1上存在两点A ,B 关于直线4x -2y -3=0对称,若O 为坐标原点,则|OA→+OB →|=( ) A .1 B. 3 C. 5 D.7 答案 C解析 由题意,直线AB 与直线4x -2y -3=0垂直,设直线AB 的方程为y =-12x +m .由⎩⎪⎨⎪⎧y =-12x +m ,x 24+y 2=1消去y 整理得x 2-2mx +2m 2-2=0,∵直线AB 与椭圆交于两点,∴Δ=(-2m )2-4(2m 2-2)=-4m 2+8>0,解得-2<m < 2.设A (x 1,y 1),B (x 2,y 2),AB 的中点为M (x 0,y 0),则x 1+x 2=2m ,∴x 0=x 1+x 22=m ,y 0=-12x 0+m =m2,∴点M 的坐标为⎝ ⎛⎭⎪⎫m ,m 2.由题意得点M 在直线4x -2y-3=0上,∴4m -2×m 2-3=3m -3=0,解得m =1.∴x 1+x 2=2,y 1+y 2=-12(x 1+x 2)+2m =1,∴OA→+OB →=(2,1),∴|OA →+OB →|= 5.故选C. 12.已知角α的顶点与直角坐标系的原点重合,始边与x 轴的非负半轴重合,终边经过点P (-1,2),则cos2α=________.答案 -35解析 设点P 到原点的距离是r ,由三角函数的定义,得r =5,sin α=2r =25,可得cos2α=1-2sin 2α=1-2×⎝ ⎛⎭⎪⎫252=-35.13.将1,2,3,4,…正整数按如图所示的方式排成三角形数组,则第10行左数第10个数为________.答案 91解析 由三角形数组可推断出,第n 行共有2n -1项,且最后一项为n 2,所以第10行共19项,最后一项为100,左数第10个数是91.14.已知在△ABC 中,B =2A ,∠ACB 的平分线CD 把三角形分成△BCD 和△ACD ,且S △BCD ∶S △ACD =4∶3,则cos A =________.答案 38解析 在△ADC 中,由正弦定理,得AC sin ∠ADC =37AB sin ∠ACD ⇒AC 37AB =sin ∠ADCsin ∠ACD.同理,在△BCD 中,得BC sin ∠BDC =47AB sin ∠BCD ⇒BC 47AB=sin ∠BDCsin ∠BCD,又sin ∠ADC =sin ∠BDC ,sin ∠ACD =sin ∠BCD ,所以AC 37AB =BC 47AB ⇒AC =34BC ,由正弦定理,得sin B =34sin A ,又B =2A ,即sin B =2sin A cos A ,求得cos A =38.。
2020高考仿真模拟卷(五)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U =R ,集合A ={x |(2x -1)(x -3)<0},B ={x |(x -1)(x -4)≤0},则(∁U A )∩B =( )A .[1,3)B .(-∞,1)∪[3,+∞)C .[3,4]D .(-∞,3)∪(4,+∞) 答案 C 解析 因为集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<x <3,B ={x |1≤x ≤4}, 所以∁U A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤12或x ≥3,所以(∁U A )∩B ={x |3≤x ≤4}. 2.在复平面内,复数z =4-7i2+3i (i 是虚数单位),则z 的共轭复数z -在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 答案 B解析 因为z =4-7i 2+3i =(4-7i )(2-3i )13=-13-26i13=-1-2i ,所以z 的共轭复数z -=-1+2i 在复平面内对应的点(-1,2)位于第二象限.3.在△ABC 中,点D 在边AB 上,且BD→=12DA →,设CB →=a ,CA →=b ,则CD →=( )A.13a +23bB.23a +13bC.35a +45bD.45a +35b 答案 B解析 因为BD→=12DA →,CB →=a ,CA →=b ,故CD →=a +BD →=a +13BA →=a +13(b -a )=23a +13b .4.(2019·济南模拟)在平面直角坐标系xOy 中,与双曲线x 24-y 23=1有相同的渐近线,且位于x 轴上的焦点到渐近线的距离为3的双曲线的标准方程为( )A.x 29-y 24=1B.x 28-y 29=1 C.x 212-y 29=1 D.x 216-y 212=1 答案 C解析 与双曲线x 24-y 23=1有相同的渐近线的双曲线的方程可设为x 24-y 23=λ(λ≠0),因为该双曲线的焦点在x 轴上,故λ>0.又焦点(7λ,0)到渐近线y =32x 的距离为3,所以21λ7=3,解得λ=3.所以所求双曲线的标准方程为x 212-y 29=1.5.若正项等比数列{a n }满足a n a n +1=22n (n ∈N *),则a 6-a 5的值是( ) A. 2 B .-16 2 C .2 D .162 答案 D解析 因为a n a n +1=22n(n ∈N *),所以a n +1a n +2=22n +2(n ∈N *),两式作比可得a n +2an=4(n ∈N *),即q 2=4,又a n >0,所以q =2,因为a 1a 2=22=4,所以2a 21=4,所以a 1=2,a 2=22,所以a 6-a 5=(a 2-a 1)q 4=16 2.6.某几何体的三视图如图所示(单位:cm),其俯视图为等边三角形,则该几何体的体积(单位:cm 3)是( )A .4 3 B.1033 C .2 3 D.833 答案 B解析 由三视图还原几何体如图所示,该几何体为直三棱柱截去一个三棱锥H -EFG ,三角形ABC 的面积S =12×2×22-12= 3.∴该几何体的体积V =3×4-13×3×2=1033.7.执行如图所示的程序框图,若输出的结果是59,则判断框中可填入的条件是( )A .i <10?B .i <9?C .i >8?D .i <8? 答案 B解析 由程序框图的功能可得S =1×⎝ ⎛⎭⎪⎫1-122×⎝ ⎛⎭⎪⎫1-132×…×⎣⎢⎡⎦⎥⎤1-1(i +1)2=⎝ ⎛⎭⎪⎫1-12×⎝ ⎛⎭⎪⎫1+12×⎝ ⎛⎭⎪⎫1-13×⎝ ⎛⎭⎪⎫1+13×…×⎝ ⎛⎭⎪⎫1-1i +1⎝ ⎛⎭⎪⎫1+1i +1=12×32×23×43×…×ii +1×i +2i +1=i +22i +2=59,所以i =8,i +1=9,故判断框中可填入i <9?.8.现有大小形状完全相同的4个小球,其中红球有2个,白球与蓝球各1个,将这4个小球排成一排,则中间2个小球不都是红球的概率为( )A.16B.13C.56D.23 答案 C解析 设白球为A ,蓝球为B ,红球为C ,则不同的排列情况为ABCC ,ACBC ,ACCB ,BACC ,BCAC ,BCCA ,CABC ,CACB ,CBCA ,CBAC ,CCAB ,CCBA 共12种情况,其中红球都在中间的有ACCB ,BCCA 两种情况,所以红球都在中间的概率为212=16,故中间两个小球不都是红球的概率为1-16=56.9.(2019·东北三省三校一模)圆周率是圆的周长与直径的比值,一般用希腊字母π表示.早在公元480年左右,南北朝时期的数学家祖冲之就得出精确到小数点后7位的结果,他是世界上第一个把圆周率的数值计算到小数点后第七位的人,这比欧洲早了约1000年.在生活中,我们也可以通过设计下面的实验来估计π的值:从区间[-1,1]内随机抽取200个数,构成100个数对(x ,y ),其中满足不等式y > 1-x 2的数对(x ,y )共有11个,则用随机模拟的方法得到的π的近似值为( )A.7825B.7225C.257D.227 答案 A解析 在平面直角坐标系中作出边长为1的正方形和单位圆,则符合条件的数对表示的点在x 轴上方、正方形内且在圆外的区域,区域面积为2-π2,由几何概型概率公式可得2-π22×2≈11100,解得π≈7825.故选A.10.(2018·全国卷Ⅱ)在长方体ABCD -A 1B 1C 1D 1中,AB =BC =1,AA 1=3,则异面直线AD 1与DB 1所成角的余弦值为( )A.15B.55C.56D.22 答案 B解析 解法一:(平行线法)如图1,取DB 1的中点O 和AB 的中点M ,连接OM ,DM ,则MO ∥AD 1,∠DOM 为异面直线AD 1与DB 1所成的角.依题意得DM 2=DA 2+AM 2=1+⎝ ⎛⎭⎪⎫122=54.OD 2=⎝ ⎛⎭⎪⎫12DB 12=14×(1+1+3)=54,OM 2=⎝ ⎛⎭⎪⎫12AD 12=14×(1+3)=1.∴cos ∠DOM =OD 2+OM 2-DM 22·OD ·OM =54+1-542×52×1=15=55.解法二:(割补法)如图2,在原长方体后面补一个全等的长方体CDEF -C 1D 1E 1F 1,连接DE 1,B 1E 1.∵DE 1∥AD 1,∴∠B 1DE 1就是异面直线AD 1与DB 1所成的角.DE 21=AD 21=4,DB 21=12+12+(3)2=5. B 1E 21=A 1B 21+A 1E 21=1+4=5.∴在△B 1DE 1中,由余弦定理得cos ∠B 1DE 1=DE 21+DB 21-B 1E 212·DE 1·DB 1=4+5-52×2×5=445=55,即异面直线AD 1与DB 1所成角的余弦值为55.11.如图所示,椭圆有这样的光学性质:从椭圆的一个焦点发出的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点.根据椭圆的光学性质解决下题:已知曲线C 的方程为x 2+4y 2=4,其左、右焦点分别是F 1,F 2,直线l 与椭圆C切于点P ,且|PF 1|=1,过点P 且与直线l 垂直的直线l ′与椭圆长轴交于点M ,则|F 1M |∶|F 2M |=()A.2∶ 3 B .1∶ 2 C .1∶3 D .1∶3 答案 C解析 由椭圆的光学性质可知,直线l ′平分∠F 1PF 2, 因为S △PF 1M S △PF 2M =|F 1M ||F 2M |,又S △PF 1M S △PF 2M =12|PF 1||PM |sin ∠F 1PM 12|PF 2||PM |sin ∠F 2PM =|PF 1||PF 2|,故|F 1M ||F 2M |=|PF 1||PF 2|.由|PF 1|=1,|PF 1|+|PF 2|=4,得|PF 2|=3,故|F 1M |∶|F 2M |=1∶3.12.设x 1,x 2分别是函数f (x )=x -a -x 和g (x )=x log a x -1的零点(其中a >1),则x 1+4x 2的取值范围是( )A .[4,+∞)B .(4,+∞)C .[5,+∞)D .(5,+∞) 答案 D解析 令f (x )=x -a -x =0,则1x =a x ,所以x 1是指数函数y =a x (a >1)的图象与y =1x 的图象的交点A 的横坐标,且0<x 1<1,同理可知x 2是对数函数y =log a x (a >1)的图象与y =1x 的图象的交点B 的横坐标.由于y =a x 与y =log a x 互为反函数,从而有x 1=1x 2,所以x 1+4x 2=x 1+4x 1.由y =x +4x 在(0,1)上单调递减,可知x 1+4x 2>1+41=5,故选D.二、填空题:本题共4小题,每小题5分,共20分.13.设某总体是由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取6个个体,选取方法是从随机数表第1行的第3列数字开始从左到右依次选取两个数字,则选出来的第6个个体编号为________.1818 0792 4544 1716 5809 7983 8619...第1行6206 7650 0310 5523 6405 0526 6238 (2)答案 19解析 由题意,从随机数表第1行的第3列数字1开始,从左到右依次选取两个数字的结果为:18,07,17,16,09,19,…,故选出来的第6个个体编号为19.14.(2019·湖南师范大学附中模拟三)若函数f (x )=2sin(ωx +φ)(ω>0,φ>0,0<φ<π)的图象经过点⎝ ⎛⎭⎪⎫π6,2,且相邻两条对称轴间的距离为π2,则f ⎝ ⎛⎭⎪⎫π4的值为________.答案3解析 由题意得2πω=π,∴ω=2,则f (x )=2sin(2x +φ),又函数的图象经过点⎝ ⎛⎭⎪⎫π6,2,则sin ⎝ ⎛⎭⎪⎫π3+φ=1,∵0<φ<π,∴φ=π6,即f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6,则f ⎝ ⎛⎭⎪⎫π4=2sin ⎝ ⎛⎭⎪⎫π2+π6= 3.15.已知抛物线y 2=2px (p >0)的准线方程为x =-2,点P 为抛物线上的一点,则点P 到直线y =x +3的距离的最小值为________.答案 22解析 由题设得抛物线方程为y 2=8x , 设P 点坐标为P (x ,y ), 则点P 到直线y =x +3的距离为 d =|x -y +3|2=|8x -8y +24|82=|y 2-8y +24|82=|(y -4)2+8|82≥22,当且仅当y =4时取最小值22.16.(2019·南宁摸底考试)在数列{a n }中,a 1=-2,a n a n -1=2a n -1-1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1,则数列{a n }的通项公式为a n =________,数列{b n }的前n 项和S n 的最小值为________.答案3n -13n -4-13 解析 由题意知,a n =2-1a n -1(n ≥2,n ∈N *),∴b n =1a n -1=1⎝ ⎛⎭⎪⎫2-1a n -1-1=a n -1a n -1-1=1+1a n -1-1=1+b n -1,即b n -b n -1=1(n ≥2,n ∈N *).又b 1=1a 1-1=-13,∴数列{b n }是以-13为首项,1为公差的等差数列,∴b n =n -43,即1a n -1=n -43,∴a n =3n -13n -4.又b 1=-13<0,b 2=23>0,∴S n 的最小值为S 1=b 1=-13.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(本小题满分12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知A ≠π2,且3sin A cos B +12b sin2A =3sin C .(1)求a 的值;(2)若A =2π3,求△ABC 周长的最大值.解 (1)由3sin A cos B +12b sin2A =3sin C ,得3sin A cos B +b sin A cos A =3sin C ,由正弦定理,得3a cos B +ab cos A =3c ,由余弦定理,得3a ·a 2+c 2-b 22ac +ab ·b 2+c 2-a 22bc =3c ,整理得(b 2+c 2-a 2)(a -3)=0,因为A ≠π2,所以b 2+c 2-a 2≠0,所以a =3.(另解:由sin C =sin(A +B )=sin A cos B +cos A sin B 代入条件变形即可)6分 (2)在△ABC 中,A =2π3,a =3,由余弦定理得,9=b 2+c 2+bc ,因为b 2+c 2+bc =(b +c )2-bc ≥(b +c )2-⎝⎛⎭⎪⎫b +c 22=34(b +c )2,所以34(b +c )2≤9,即(b +c )2≤12,所以b +c ≤23,当且仅当b =c =3时,等号成立.故当b =c =3时,△ABC 周长的最大值为3+2 3.12分18.(2019·黑龙江齐齐哈尔市二模)(本小题满分12分)某县共有户籍人口60万,经统计,该县60岁及以上、百岁以下的人口占比为13.8%,百岁及以上老人15人.现从该县60岁及以上、百岁以下的老人中随机抽取230人,得到如下频数分布表:解他们的生活状况,则80岁及以上老人应抽多少人?(2)从(1)中所抽取的80岁及以上老人中,再随机抽取2人,求抽到90岁及以上老人的概率;(3)该县按省委办公厅、省人民政府办公厅《关于加强新时期老年人优待服务工作的意见》精神,制定如下老年人生活补贴措施,由省、市、县三级财政分级拨款:①本县户籍60岁及以上居民,按城乡居民养老保险实施办法每月领取55元基本养老金;②本县户籍80岁及以上老年人额外享受高龄老人生活补贴. (a)百岁及以上老年人,每人每月发放345元的生活补贴;(b)90岁及以上、百岁以下老年人,每人每月发放200元的生活补贴; (c)80岁及以上、90岁以下老年人,每人每月发放100元的生活补贴. 试估计政府执行此项补贴措施的年度预算.解 (1)样本中70岁及以上老人共105人,其中80岁及以上老人30人,所以应抽取的21人中,80岁及以上老人应抽30×21105=6人.3分(2)在(1)中所抽取的80岁及以上的6位老人中,90岁及以上老人1人,记为A ,其余5人分别记为B ,C ,D ,E ,F ,从中任取2人,基本事件共15个:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),这15个基本事件发生的可能性相等.6分记“抽到90岁及以上老人”为事件M ,则M 包含5个基本事件, 所以P (M )=515=13.8分(3)样本中230人的月预算为230×55+25×100+5×200=16150(元),10分 用样本估计总体,年预算为⎝ ⎛⎭⎪⎫16150×6×105×13.8%230+400×15×12=6984×104(元).所以政府执行此项补贴措施的年度预算为6984万元.12分19.(2019·湖南长沙长郡中学一模)(本小题满分12分)如图,在多边形ABPCD 中(图1),四边形ABCD 为长方形,△BPC 为正三角形,AB =3,BC =32,现以BC 为折痕将△BPC 折起,使点P 在平面ABCD 内的射影恰好在AD 上(图2).(1)证明:PD ⊥平面P AB ;(2)若点E 在线段PB 上,且PE =13PB ,当点Q 在线段AD 上运动时,求三棱锥Q -EBC 的体积.解 (1)证明:过点P 作PO ⊥AD ,垂足为O . 由于点P 在平面ABCD 内的射影恰好在AD 上,∴PO ⊥平面ABCD ,∴PO ⊥AB ,∵四边形ABCD 为矩形,∴AB ⊥AD ,又AD ∩PO =O ,∴AB ⊥平面P AD ,2分∴AB ⊥PD ,AB ⊥P A ,又由AB =3,PB =32,可得P A =3,同理PD =3,又AD =32,∴P A 2+PD 2=AD 2, ∴P A ⊥PD ,且P A ∩AB =A , ∴PD ⊥平面P AB .5分(2)设点E 到底面QBC 的距离为h ,则V Q -EBC =V E -QBC =13S △QBC ×h ,由PE =13PB ,可知BE BP =23,7分∴h PO =23,∵P A ⊥PD ,且P A =PD =3, ∴PO =P A ·PD AD =322,∴h =23×322=2,9分 又S △QBC =12×BC ×AB =12×32×3=922, ∴V Q -EBC =13S △QBC ×h =13×922×2=3.12分20.(本小题满分12分)抛物线y 2=4x 的焦点为F ,过F 的直线交抛物线于A ,B 两点.(1)若点T (-1,0),且直线AT ,BT 的斜率分别为k 1,k 2,求证:k 1+k 2为定值; (2)设A ,B 两点在抛物线的准线上的射影分别为P ,Q ,线段PQ 的中点为R ,求证:AR ∥FQ .证明 (1)设直线AB :my =x -1,A (x 1,y 1),B (x 2,y 2), ⎩⎨⎧ my =x -1,y 2=4x ,可得y 2-4my -4=0,⎩⎨⎧y 1+y 2=4m ,y 1y 2=-4,3分 k 1+k 2=y 1x 1+1+y 2x 2+1=y 1(x 2+1)+y 2(x 1+1)(x 1+1)(x 2+1)=y 1x 2+y 2x 1+(y 1+y 2)(x 1+1)(x 2+1)=y 1(my 2+1)+y 2(my 1+1)+(y 1+y 2)(my 1+1+1)(my 2+1+1)=2my 1y 2+2(y 1+y 2)(my 1+2)(my 2+2)=2m (-4)+2×4m(my 1+2)(my 2+2)=0.6分(2)A (x 1,y 1),P (-1,y 1),Q (-1,y 2),R ⎝ ⎛⎭⎪⎫-1,y 1+y 22,F (1,0), k AR =y 1+y 22-y 1-1-x 1=y 1-y 221+x 1=y 1-y 22(1+x 1),k QF =y 2-0-1-1=-y 22,8分k AR -k QF =y 1-y 22(1+x 1)+y 22=y 1-y 2+y 2(1+x 1)2(1+x 1)=y 1-y 2+y 2(my 1+2)2(1+x 1)=(y 1+y 2)+my 1y 22(1+x 1)=4m +m ×(-4)2(1+x 1)=0,即k AR =k QF ,所以直线AR 与直线FQ 平行.12分21.(2019·山东潍坊一模)(本小题满分12分)已知函数f (x )=x ln x -(a +1)x ,g (x )=f (x )-a ⎝ ⎛⎭⎪⎫12x 2-x -1,a ∈R .(1)当x >1时,求f (x )的单调区间;(2)设F (x )=e x +x 3+x ,若x 1,x 2为函数g (x )的两个不同极值点,证明:F (x 1x 22)>F (e 2).解 (1)f ′(x )=1+ln x -a -1=ln x -a ,若a ≤0,x ∈(1,+∞),f ′(x )>0,f (x )单调递增, 若a >0,由ln x -a =0,解得x =e a ,2分 且x ∈(1,e a ),f ′(x )<0,f (x )单调递减, x ∈(e a ,+∞),f ′(x )>0,f (x )单调递增.综上,当a ≤0时,f (x )的单调递增区间为(1,+∞);当a >0时,f (x )的单调递增区间为()e a,+∞,单调递减区间为(1,e a ).5分 (2)证明:F ′(x )=e x +3x 2+1>0,故F (x )在R 上单调递增,即证x 1x 22>e 2,也即证ln x 1+2ln x 2>2,又g (x )=x ln x -ax -x -a 2x 2+ax +a =x ln x -a2x 2-x +a ,g ′(x )=1+ln x -ax -1=ln x -ax ,所以x 1,x 2为方程ln x =ax 的两根,即⎩⎨⎧ln x 1=ax 1, ①ln x 2=ax 2, ②即证ax 1+2ax 2>2,即a (x 1+2x 2)>2, 而①-②得a =ln x 1-ln x 2x 1-x 2,8分即证ln x 1-ln x 2x 1-x 2·(x 1+2x 2)>2,则证ln x 1x 2·x 1+2x 2x 1-x 2>2,变形得ln x 1x 2·x 1x 2+2x 1x 2-1>2,不妨设x 1>x 2,t =x 1x 2>1,即证ln t ·t +2t -1>2,整理得ln t -2(t -1)t +2>0,设h (t )=ln t -2(t -1)t +2,则h ′(t )=1t -6(t +2)2=t 2-2t +4t (t +2)2=(t -1)2+3t (t +2)2>0,∴h (t )在(1,+∞)上单调递增,h (t )>h (1)=0,即结论成立.12分(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 1的方程为x 22+y 2=1,曲线C 2的参数方程为⎩⎨⎧x =cos φ,y =1+sin φ(φ为参数),曲线C 3的方程为y =x tan α⎝ ⎛⎭⎪⎫0<α<π2,x >0,曲线C 3与曲线C 1,C 2分别交于P ,Q 两点.(1)求曲线C 1,C 2的极坐标方程; (2)求|OP |2·|OQ |2的取值范围.解 (1)因为x =ρcos θ,y =ρsin θ,所以曲线C 1的极坐标方程为 ρ2cos 2θ2+ρ2sin 2θ=1,即ρ2=21+sin 2θ,2分由⎩⎨⎧x =cos φ,y =1+sin φ(φ为参数),消去φ, 即得曲线C 2的直角坐标方程为x 2+(y -1)2=1, 将x =ρcos θ,y =ρsin θ,代入化简, 可得曲线C 2的极坐标方程为ρ=2sin θ.5分 (2)曲线C 3的极坐标方程为θ=α⎝ ⎛⎭⎪⎫ρ>0,0<α<π2.6分由(1)得|OP |2=21+sin 2α,|OQ |2=4sin 2α, 即|OP |2·|OQ |2=8sin 2α1+sin 2α=81sin 2α+1,8分因为0<α<π2,所以0<sin α<1, 所以|OP |2·|OQ |2∈(0,4).10分23.(本小题满分10分)选修4-5:不等式选讲 已知函数f (x )=|x -5|-|x +3|. (1)解关于x 的不等式f (x )≥x +1;(2)记函数f (x )的最大值为m ,若a >0,b >0,e a ·e 4b =e 2ab -m ,求ab 的最小值. 解 (1)当x ≤-3时,由5-x +x +3≥x +1,得x ≤7,所以x ≤-3;当-3<x <5时,由5-x -x -3≥x +1,得x ≤13,所以-3<x ≤13;当x ≥5时,由x -5-x -3≥x +1,得x ≤-9,无解.4分综上可知,x ≤13,即不等式f (x )≥x +1的解集为⎝ ⎛⎦⎥⎤-∞,13.5分(2)因为|x -5|-|x +3|≤|x -5-x -3|=8,所以函数f (x )的最大值m =8.6分 因为e a ·e 4b =e 2ab -8,所以a +4b =2ab -8.又a >0,b >0,所以a +4b ≥24ab =4ab ,当且仅当a =4b 时,等号成立,7分所以2ab -8-4ab ≥0,即ab -4-2ab ≥0. 所以有(ab -1)2≥5.8分又ab >0,所以ab ≥1+5或ab ≤1-5(舍去),ab≥6+25,即ab的最小值为6+2 5.10分。
小题强化练(二)一、选择题1.设集合M ={x |x2-x≥0},N ={x |x <2},则M ∩N =( )A.{x |x〈0}ﻩ B.{x |1≤x 〈2}C .{x|x ≤0或1≤x<2}ﻩD.{x |0≤x≤1}2.复数错误!的虚部是( )A.错误!未定义书签。
B.错误!未定义书签。
C.-12D.-错误! 3.∃x ≥0,使2x +x -a ≤0,则实数a 的取值范围是( )A .(1,+∞)B.[1,+∞)C.(-∞,1)ﻩD.(-∞,1]4.设向量a ,b 满足a+b =(3,1),a ·b =1,则|a -b |=( )A .2 ﻩB 。
错误!C .2错误!未定义书签。
D.错误! 5.设数列{a n }为等差数列,a 1=22,S n 为其前n 项和,若S 10=S 13,则公差d =( )A .-2B.-1 C .1ﻩD .26.在错误!未定义书签。
错误!的二项展开式中,x2的系数为( )A。
错误!未定义书签。
B .-错误!C 。
\f (3,8)D.-错误!未定义书签。
7.已知F是抛物线C :y 2=4x 的焦点,抛物线C 的准线与双曲线Г:错误!-错误!未定义书签。
=1(a 〉0,b >0)的两条渐近线交于A,B两点,若△ABF 为等边三角形,则Γ的离心率e =( )A.错误!ﻩB 。
错误!C 。
错误! D.错误!8.将甲、乙等6位同学平均分成正方、反方两组举行辩论赛,则甲、乙被分在不同组中的概率为( )ﻬA 。
错误!未定义书签。
ﻩB.12C。
错误!未定义书签。
ﻩ D.错误!9.若函数f(x)=sin (ωx +φ)错误!未定义书签。
的图象关于点错误!未定义书签。
对称,且f (x )在错误!未定义书签。
上单调递减,则ω=( )A.1ﻩB.2C.3ﻩD .410.已知点P 在圆x 2+y 2=4上,A(-2,0),B(2,0),M为BP 中点,则si n∠BAM 的最大值为( )A。
基础保分强化训练(一)1.设集合A ={x ∈Z |x 2≤1},B ={-1,0,1,2},则A ∩B =( ) A .{-1,1} B .{0} C .{-1,0,1} D .[-1,1]答案 C解析 ∵A ={x ∈Z |x 2≤1}={-1,0,1},B ={-1,0,1,2},∴A ∩B ={-1,0,1}.故选C.2.已知复数z 满足:1+z 1-z =-i(i 是虚数单位),z -是z 的共轭复数,则复数1+z -对应的点位于复平面内的( )A .第一象限B .第二象限C .第三象限D .第四象限 答案 A解析 设z =a +b i(a ,b ∈R ).由已知,得1+a +b i =(1-a -b i)·(-i),整理,得1+a +b +(b -a +1)i =0,所以⎩⎪⎨⎪⎧1+a +b =0,b -a +1=0,解得⎩⎪⎨⎪⎧a =0,b =-1.故z =-i,1+z -=1+i.所以1+z -对应的点位于复平面内第一象限,故选A.3.直线y =3x 被圆C :x 2+y 2-2x =0截得的弦长为( ) A .2 B. 3 C .1 D. 2 答案 C解析 圆C :x 2+y 2-2x =0的圆心为(1,0),半径为1,圆心到直线y =3x 的距离为d =|3|3+1=32,弦长为2×1-⎝⎛⎭⎪⎫322=1,故选C. 4.已知cos ⎝ ⎛⎭⎪⎫α+π2=35,-π2<α<π2,则sin2α的值等于( ) A.1225 B .-1225 C.2425 D .-2425答案 D解析 因为cos ⎝ ⎛⎭⎪⎫α+π2=35,所以sin α=-35,又-π2<α<π2,所以cos α=45,所以sin2α=2sin αcos α=2×⎝ ⎛⎭⎪⎫-35×45=-2425,故选D.5.某地某所高中2019年的高考考生人数是2016年高考考生人数的1.5倍,为了更好地对比该校考生的升学情况,统计了该校2016年和2019年的高考情况,得到如图所示的柱状图:则下列结论正确的是( )A.与2016年相比,2019年一本达线人数减少B.与2016年相比,2019年二本达线人数增加了0.5倍C.与2016年相比,2019年艺体达线人数相同D.与2016年相比,2019年不上线的人数有所增加答案 D解析设2016年该校参加高考的人数为S,则2019年该校参加高考的人数为1.5S,2016年一本达线人数为0.28S,2019年一本达线人数为0.24×1.5S=0.36S,可见一本达线人数增加了,故A错误;2016年二本达线人数为0.32S,2019年二本达线人数为0.4×1.5S=0.6S,显然2019年二本达线人数不是增加了0.5倍,故B错误;2016年和2019年,艺体达线率没变,但是人数是不相同的,故C错误;2016年不上线人数为0.32S,2019年不上线人数为0.28×1.5S=0.42S,不达线人数有所增加.故选D.6.已知等比数列{a n}的各项均为正数,其前n项和为S n,若a2=2,S6-S4=6a4,则a5=( )A.4 B.10 C.16 D.32答案 C解析 设等比数列{a n }的公比为q (q >0),S 6-S 4=a 5+a 6=6a 4,因为a 2=2,所以2q 3+2q 4=12q 2,即q 2+q -6=0,所以q =2,则a 5=2×23=16.7.设D 为△ABC 所在平面内一点,BC →=-4CD →,则AD →=( ) A.14AB →-34AC → B.14AB →+34AC →C.34AB →-14AC →D.34AB →+14AC → 答案 B解析 在△ABC 中,BC →=-4CD →,即-14BC →=CD →,则AD →=AC →+CD →=AC →-14BC →=AC →-14(BA →+AC →)=14AB →+34AC →,故选B. 8.已知函数f (x )=sin x +lg (x 2+1+x ),g (x )=cos x +2x +2-x,若F (x )=f (x )g (x )+2,则F (2019)+F (-2019)=( )A .4B .2C .0D .1 答案 A解析 由题意可知f (x )为奇函数,g (x )为偶函数,且定义域均为R ,所以f (x )g (x )为奇函数,令φ(x )=f (x )·g (x ),则φ(2019)+φ(-2019)=0,因为F (x )=f (x )·g (x )+2=φ(x )+2,所以F (2019)+F (-2019)=φ(2019)+2+φ(-2019)+2=4,故选A.9.设F 1,F 2为椭圆x 29+y 25=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y 轴上,则|PF 2||PF 1|的值为( ) A.514 B.59 C.49 D.513答案 D解析 如图,设线段PF 1的中点为M ,因为O 是F 1F 2的中点,所以OM ∥PF 2,可得PF 2⊥x轴,|PF 2|=b 2a =53,|PF 1|=2a -|PF 2|=133,所以|PF 2||PF 1|=513,故选D.10.已知正方体ABCD -A 1B 1C 1D 1的棱长为1,P 是线段BC 1上一动点,则AP +PD 的最小值为( )A.3- 6B.3- 3C.3+ 3D.3+ 6答案 D解析 根据题意可得正方体如下图,将平面ABC 1D 1和平面DBC 1沿BC 1展开到一个平面内可得下图:由图可知,AP +PD 的最小值为AD ′,因为AB =1,BC 1=BD =DC 1=2,所以∠ABD ′=150°,在△ABD ′中,由余弦定理可得AD ′2=AB 2+BD ′2-2AB ·BD ′·cos150°,代入可得AD ′2=1+2+2×1×2×32=3+6,所以AD ′=3+6,故选D. 11.已知函数f (x )=x 3-9x 2+29x -30,实数m ,n 满足f (m )=-12,f (n )=18,则m +n =( )A .6B .8C .10D .12 答案 A解析 因为三次函数的图象一定是中心对称图形,所以可设其对称中心为(a ,c ),f (x )=x 3-9x 2+29x -30=(x -a )3+b (x -a )+c =x 3-3ax 2+(3a 2+b )x -a 3-ab +c ,所以⎩⎪⎨⎪⎧-3a =-9,3a 2+b =29,-a 3-ab +c =-30,解得⎩⎪⎨⎪⎧a =3,b =2,c =3,所以f (x )的图象关于点(3,3)中心对称.又f (m )=-12,f (n )=18,f (m )+f (n )2=-12+182=3,所以m +n2=3,得m +n =6,故选A.12.运行程序框图,如果输入某个正数n 后,输出的s ∈(20,50),那么n 的值为________.答案 4解析 依次运行框图中的程序,可得, 第一次:s =1+3×0=1,k =2; 第二次:s =1+3×1=4,k =3; 第三次:s =1+3×4=13,k =4; 第四次:s =1+3×13=40,k =5; 第五次:s =1+3×40=121,k =6; …因为输出的s ∈(20,50),所以程序运行完第四次即可满足题意,所以判断框中n 的值为4.13.若x ,y 满足约束条件⎩⎪⎨⎪⎧y ≥x ,x +y ≤1,y ≥-1,则z =2x -y 的最大值是________.答案 12解析 画出约束条件⎩⎪⎨⎪⎧y ≥x ,x +y ≤1,y ≥-1表示的可行域,如图中阴影部分所示,作出直线2x-y =0并平移,数形结合知,当直线经过点A 时,z =2x -y 取得最大值,由⎩⎪⎨⎪⎧x +y =1,y =x ,得⎩⎪⎨⎪⎧x =12,y =12,∴A ⎝ ⎛⎭⎪⎫12,12,故z max =2×12-12=12.14.若x 10-x 5=a 0+a 1(x -1)+a 2(x -1)2+…+a 10(x -1)10,则a 5=________. 答案 251解析 x 10-x 5=[(x -1)+1]10-[(x -1)+1]5,则a 5=C 510-C 05=252-1=251.基础保分强化训练(二)A .[1,+∞)B.⎣⎢⎡⎦⎥⎤12,1 C.⎣⎢⎡⎭⎪⎫23,+∞ D .(1,+∞)答案 A解析 因为A ∩B ≠∅,所以⎩⎪⎨⎪⎧2a -1≥1,2a -1≥12a ,解得a ≥1,故选A.2.若复数z =1+m i1+i 在复平面内对应的点在第四象限,则实数m 的取值范围是( )A .(-1,1)B .(-1,0)C .(1,+∞)D .(-∞,-1)答案 A解析 因为z =1+m i 1+i =(1+m i )(1-i )(1+i )(1-i )=1+m 2+m -12i ,在复平面内对应的点为⎝ ⎛⎭⎪⎫1+m 2,m -12,且在第四象限,所以⎩⎪⎨⎪⎧1+m2>0,m -12<0,解得-1<m <1,故选A.3.设S n 是各项均不为0的等差数列{a n }的前n 项和,且S 13=13S 7,则a 7a 4等于( ) A .1 B .3 C .7 D .13 答案 C解析 因为S n 是各项均不为0的等差数列{a n }的前n 项和,且S 13=13S 7,所以13(a 1+a 13)2=13×7(a 1+a 7)2,即a 7=7a 4,所以a 7a 4=7.故选C.4.如图,网格纸上小正方形的边长为1,粗实线画出的是某简单几何体的三视图,则该几何体的体积为( )A.4π3 B.8π3 C.16π3 D.32π3答案 A解析 由三视图可得该几何体为半圆锥,底面半圆的半径为2,高为2,则其体积V =12×13×π×22×2=4π3,故选A.5.已知i 与j 为互相垂直的单位向量,a =i -2j ,b =i +λj ,且a 与b 的夹角为锐角,则实数λ的取值范围是( )A .(-∞,-2)∪⎝⎛⎭⎪⎫-2,12 B.⎝ ⎛⎭⎪⎫12,+∞C.⎝ ⎛⎭⎪⎫-2,23∪⎝ ⎛⎭⎪⎫23,+∞D.⎝ ⎛⎭⎪⎫-∞,12 答案 A解析 因为i 与j 为互相垂直的单位向量,所以i 2=j 2=1,i ·j =0.又因为a =i -2j ,b =i +λj ,且a 与b 的夹角为锐角,所以a ·b =1-2λ>0,λ<12.但当λ=-2时,a =b ,不满足要求,故满足条件的实数λ的取值范围为(-∞,-2)∪⎝⎛⎭⎪⎫-2,12.故选A.6.若函数f (x )=sin2x +cos2x ,则下列结论正确的是( ) A .函数f (x )的最小正周期为2πB .对任意的x ∈R ,都有f ⎝⎛⎭⎪⎫x -π4+f (-x )=0C .函数f (x )在⎝⎛⎭⎪⎫π2,3π4上是减函数D .函数f (x )的图象关于直线x =-π8对称答案 B解析 函数f (x )=sin2x +cos2x =2sin ⎝ ⎛⎭⎪⎫2x +π4,则函数f (x )的最小正周期为T =2π2=π,故A 错误;f ⎝ ⎛⎭⎪⎫x -π4+f (-x )=2sin ⎝ ⎛⎭⎪⎫2x -π4+2sin ⎝ ⎛⎭⎪⎫-2x +π4=0,故B 正确;令π2+2k π≤2x +π4≤2k π+3π2(k ∈Z ),解得π8+k π≤x ≤k π+5π8(k ∈Z ),当k =0时,函数的单调递减区间为⎣⎢⎡⎦⎥⎤π8,5π8,故C 错误;当x =-π8时,f ⎝ ⎛⎭⎪⎫-π8=0,故D 错误.故选B.7.已知长方体ABCD -A 1B 1C 1D 1中,B 1C ,C 1D 与底面ABCD 所成的角分别为60°和45°,则异面直线B 1C 和C 1D 所成角的余弦值为( )A.64 B.14 C.26 D.36答案 A解析 ∵B 1C 和C 1D 与底面ABCD 所成的角分别为60°和45°,∴∠B 1CB =60°,∠C 1DC =45°.由图可知,B 1C 与C 1D 所成的角,即为A 1D 与C 1D 所成的角,即∠A 1DC 1.令BC =1,则B 1B =AB =3,∴A 1D =2,A 1C 1=2,C 1D = 6.由余弦定理,得cos ∠A 1DC 1=22+(6)2-222×2×6=64.故选A. 8.把标号为1,2,3,4的四个小球分别放入标号为1,2,3,4的四个盒子中,每个盒子只放一个小球,则1号球不放入1号盒子的方法共有( )A .18种B .9种C .6种D .3种 答案 A解析 由于1号球不放入1号盒子,则1号盒子有2,3,4号球三种选择,还剩余三个球可以任意放入2,3,4号盒子中,则2号盒子有三种选择,3号盒子还剩两种选择,4号盒子只有一种选择,根据分步计数原理可得1号球不放入1号盒子的方法有C 13·C 13·C 12·1=18种.故选A.9.已知F 1,F 2是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两个焦点,P 是双曲线C 上一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2的最小内角的大小为30°,则双曲线C 的渐近线方程是( )A.2x ±y =0 B .x ±2y =0 C .2x ±y =0 D .x ±2y =0 答案 A解析 不妨设|PF 1|>|PF 2|,则⎩⎪⎨⎪⎧|PF 1|-|PF 2|=2a ,|PF 1|+|PF 2|=6a ,所以|PF 1|=4a ,|PF 2|=2a ,且|F 1F 2|=2c ,即|PF 2|为最小边,所以∠PF 1F 2=30°,则△PF 1F 2为直角三角形,所以2c =23a ,所以b =2a ,即渐近线方程为y =±2x ,故选A.10.若x ,y 满足⎩⎪⎨⎪⎧x +y -3≥0,kx -y +3≥0,y ≥0,且z =y -x 的最小值为-12,则k 的值为( )A.12 B .-12 C.14 D .-14 答案 D解析 依题意,易知k ≤-1和k ≥0不符合题意.由⎩⎪⎨⎪⎧kx -y +3=0,y =0得A ⎝ ⎛⎭⎪⎫-3k,0,结合图形可知,当直线z =y -x 过点A ⎝ ⎛⎭⎪⎫-3k ,0时,z 有最小值,于是有0+3k =-12,k =-14,选D.11.椭圆x 24+y 2=1上存在两点A ,B 关于直线4x -2y -3=0对称,若O 为坐标原点,则|OA →+OB →|=( )A .1 B. 3 C. 5 D.7 答案 C解析 由题意,直线AB 与直线4x -2y -3=0垂直,设直线AB 的方程为y =-12x +m .由⎩⎪⎨⎪⎧y =-12x +m ,x 24+y 2=1消去y 整理得x 2-2mx +2m 2-2=0,∵直线AB 与椭圆交于两点,∴Δ=(-2m )2-4(2m 2-2)=-4m 2+8>0,解得-2<m < 2.设A (x 1,y 1),B (x 2,y 2),AB 的中点为M (x 0,y 0),则x 1+x 2=2m ,∴x 0=x 1+x 22=m ,y 0=-12x 0+m =m 2,∴点M 的坐标为⎝ ⎛⎭⎪⎫m ,m 2.由题意得点M 在直线4x -2y -3=0上,∴4m -2×m 2-3=3m -3=0,解得m =1.∴x 1+x 2=2,y 1+y 2=-12(x 1+x 2)+2m =1,∴OA →+OB →=(2,1),∴|OA→+OB →|= 5.故选C.12.已知角α的顶点与直角坐标系的原点重合,始边与x 轴的非负半轴重合,终边经过点P (-1,2),则cos2α=________.答案 -35解析 设点P 到原点的距离是r ,由三角函数的定义,得r =5,sin α=2r =25,可得cos2α=1-2sin 2α=1-2×⎝ ⎛⎭⎪⎫252=-35.13.将1,2,3,4,…正整数按如图所示的方式排成三角形数组,则第10行左数第10个数为________.答案 91解析 由三角形数组可推断出,第n 行共有2n -1项,且最后一项为n 2,所以第10行共19项,最后一项为100,左数第10个数是91.14.已知在△ABC 中,B =2A ,∠ACB 的平分线CD 把三角形分成△BCD 和△ACD ,且S △BCD ∶S △ACD =4∶3,则cos A =________.答案 38解析 在△ADC 中,由正弦定理,得AC sin ∠ADC =37AB sin ∠ACD ⇒AC 37AB =sin ∠ADCsin ∠ACD.同理,在△BCD中,得BC sin ∠BDC =47AB sin ∠BCD ⇒BC 47AB =sin ∠BDCsin ∠BCD,又sin ∠ADC =sin ∠BDC ,sin ∠ACD =sin ∠BCD ,所以AC 37AB =BC 47AB ⇒AC =34BC ,由正弦定理,得sin B =34sin A ,又B =2A ,即sin B =2sin A cos A ,求得cos A =38.基础保分强化训练(三)1.已知1-i z=(1+i)2(i 为虚数单位),则复数z 的共轭复数为( )A .-12-12iB .-12+12iC.12-12iD.12+12i 答案 B解析 ∵1-i z =(1+i)2,∴z =1-i (1+i )2=1-i 2i =1+i -2=-12-12i ,∴z -=-12+12i.故选B. 2.设命题p :∀x ∈R ,x 3-x 2+1≤0,则p 为( )A .∃x ∈R ,x 3-x 2+1>0 B .∀x ∈R ,x 3-x 2+1>0 C .∃x ∈R ,x 3-x 2+1≤0 D .∀x ∈R ,x 3-x 2+1≥0答案 A解析 ∵命题p :∀x ∈R ,x 3-x 2+1≤0,∴p 为∃x ∈R ,x 3-x 2+1>0.故选A.3.已知集合A ={x ∈Z |x 2-4x <0},B ={x ∈Z |0<log 5x <1},则A ∩B =( ) A .{x |0<x <5} B .{x |1<x <4} C .{2,3} D .{1,2,3,4}答案 C解析 因为A ={x ∈Z |x 2-4x <0},所以A ={1,2,3},因为B ={x ∈Z |0<log 5x <1},所以B ={2,3,4},根据集合交集运算,可得A ∩B ={2,3},所以选C.4.执行如图所示的程序框图,若输出结果为1,则可输入的实数x 的值的个数为( )A .1B .2C .3D .4 答案 B解析 根据题意,该框图的含义是: 当x ≤2时,得到函数y =x 2-1; 当x >2时,得到函数y =log 2x . 因此,若输出的结果为1时,①若x ≤2,得到x 2-1=1,解得x =±2; ②若x >2,得到log 2x =1,解得x =2(舍去).因此,可输入的实数x 的值可能为-2,2,共有2个.故选B.5.已知函数f (x )=cos(x +θ)(0<θ<π)在x =π3时取得最小值,则f (x )在[0,π]上的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤π3,πB.⎣⎢⎡⎦⎥⎤π3,2π3C.⎣⎢⎡⎦⎥⎤0,2π3D.⎣⎢⎡⎦⎥⎤2π3,π 答案 A解析 因为0<θ<π,所以π3<π3+θ<4π3,又f (x )=cos(x +θ)在x =π3时取得最小值,所以π3+θ=π,θ=2π3,所以f (x )=cos ⎝ ⎛⎭⎪⎫x +2π3.由0≤x ≤π,得2π3≤x +2π3≤5π3.由π≤x +2π3≤5π3,得π3≤x ≤π,所以f (x )在[0,π]上的单调递增区间是⎣⎢⎡⎦⎥⎤π3,π,故选A.6.如图所示,在平面直角坐标系内,四边形ABCD 为矩形,且A (-1,1),B (1,1),C (1,0),D (-1,0),曲线y =|x |3过点A 和B ,则在矩形ABCD 内随机取一点M ,则点M 在阴影区域内的概率为( )A.45B.34C.23D.12 答案 B解析 因为当x ≥0时,y =|x |3,即y =x 3,⎠⎛01x 3d x =14x 410=14,所以阴影部分的面积为34×2=32,因为矩形ABCD 的面积为2,所以点M 在阴影区域内的概率为34,故选B. 7.已知某几何体的三视图如图所示,则该几何体的表面积为( )A.272B .27C .27 2D .27 3 答案 D解析 在长、宽、高分别为3,33,33的长方体中,由几何体的三视图得几何体为如图所示的三棱锥C -BAP ,其中底面BAP 是∠BAP =90°的直角三角形,AB =3,AP =33,所以BP =6,又棱CB ⊥平面BAP 且CB =33,所以AC =6,所以该几何体的表面积是12×3×33+12×3×33+12×6×33+12×6×33=273,故选D.8.已知抛物线C :y 2=2px (p >0)的焦点为F ,过F 且倾斜角为120°的直线与抛物线C 交于A ,B 两点,若AF ,BF 的中点在y 轴上的射影分别为M ,N ,且|MN |=43,则抛物线C 的准线方程为( )A .x =-1B .x =-2C .x =-32 D .x =-3答案 D解析 设AF ,FB 的中点分别为D ,E ,则|AB |=2|DE |,由题得|DE |=43sinπ3=8,所以|AB |=16,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2+p =16,∴x 1+x 2=16-p ,联立直线和抛物线的方程得⎩⎪⎨⎪⎧y 2=2px ,y =-3⎝ ⎛⎭⎪⎫x -p 2,∴3x 2-5px +34p 2=0,所以16-p =5p 3,∴p =6,所以抛物线的准线方程为x =-3.故选D.9.在△ABC 中,D 为三角形所在平面内一点,且AD →=13AB →+12AC →,则S △BCD S △ABD=( )A.16B.13C.12D.23 答案 B解析 如图,由题意可知,点D 在平行于AB 边的中位线EF 上且满足DE =13AB ,S △ABD =12S △ABC ,S △ACD =13S △ABC ,∴S △BCD =⎝ ⎛⎭⎪⎫1-12-13S △ABC =16S △ABC ,∴S △BCD S△ABD =13,故选B.10.如图,为了测量某湿地A ,B 两点间的距离,观察者找到在同一直线上的三点C ,D ,E .从D 点测得∠ADC =67.5°,从C 点测得∠ACD =45°,∠BCE =75°,从E 点测得∠BEC =60°.若测得DC =23,CE =2(单位:百米),则A ,B 两点间的距离为( )A. 6 B .2 2 C .3 D .2 3 答案 C解析 根据题意,在△ADC 中,∠ACD =45°,∠ADC =67.5°,DC =23,则∠DAC =180°-45°-67.5°=67.5°,则AC =DC =23,在△BCE 中,∠BCE =75°,∠BEC =60°,CE =2,则∠EBC =180°-75°-60°=45°,则有EC sin ∠EBC=BCsin ∠BEC,变形可得BC =EC ·sin ∠BECsin ∠EBC=2×3222=3,在△ABC 中,AC =23,BC =3,∠ACB =180°-∠ACD -∠BCE=60°,则AB 2=AC 2+BC 2-2AC ·BC ·cos ∠ACB =9,则AB =3.故选C.11.已知直线l 与曲线y =x 3-6x 2+13x -9相交,交点依次为A ,B ,C ,且|AB |=|BC |=5,则直线l 的方程为( )A .y =-2x +3B .y =2x -3C .y =3x -5D .y =-3x +2答案 B解析 设f(x )=x 3-6x 2+13x -9,则f ′(x )=3x 2-12x +13,设g(x )=3x 2-12x +13,则g ′(x )=6x -12,令g ′(x )=0,得x =2,所以曲线y =x 3-6x 2+13x -9的对称中心为(2,1).由|AB |=|BC |可知直线l 经过点(2,1),由⎩⎪⎨⎪⎧y =x 3-6x 2+13x -9,(x -2)2+(y -1)2=5,解得⎩⎪⎨⎪⎧x =1,y =-1或⎩⎪⎨⎪⎧x =3,y =3,因此可得直线l 过点(1,-1),(3,3),(2,1),所以直线l 的方程为y =2x -3.故选B.答案 1解析 由二项式定理的展开式可得C r 10x10-r⎝⎛⎭⎪⎫-a x r13.已知圆C :(x -3)2+(y -4)2=1和两点A (-m ,0),B (m ,0)(m >0),若圆上存在点P ,使得∠APB =90°,则m 的取值范围是________.答案 [4,6]解析 由已知,以AB 为直径的圆与圆C 有公共点,又AB 的中点为原点,则|AB |=2m ,则|m -1|≤(0-3)2+(0-4)2≤m +1,解得4≤m ≤6,即m 的取值范围是[4,6].14.已知四棱锥P -ABCD 的底面为矩形,平面PBC ⊥平面ABCD ,PE ⊥BC 于点E ,EC =1,AB =6,BC =3,PE =2,则四棱锥P -ABCD 的外接球半径为________.答案 2解析 如图,由已知,设三角形PBC 外接圆圆心为O 1,由正弦定理可求出三角形PBC 外接圆半径为102,设F 为BC 边的中点,进而求出O 1F =12,设四棱锥的外接球球心为O ,外接球半径的平方为⎝ ⎛⎭⎪⎫BD 22+O 1F 2=4,所以四棱锥外接球半径为2.基础保分强化训练(四)1.集合A ={x |x 2-a ≤0},B ={x |x <2},若A ⊆B ,则实数a 的取值范围是( ) A .(-∞,4] B .(-∞,4) C .[0,4]D .(0,4)答案 B解析 当a <0时,集合A =∅,满足题意;当a ≥0时,A =[-a ,a ],若A ⊆B ,则a <2,所以0≤a <4,所以a ∈(-∞,4),故选B.2.已知复数z 满足z +|z|=3+i ,则z =( ) A .1-i B .1+i C.43-i D.43+i答案 D解析 设z =a +bi ,其中a ,b ∈R ,由z +|z |=3+i ,得a +b i +a 2+b 2=3+i ,由复数相等可得⎩⎨⎧a +a 2+b 2=3,b =1,解得⎩⎪⎨⎪⎧a =43,b =1,故z =43+i ,故选D.3.已知直线l :y =kx +1与圆O :x 2+y 2=2相交于A ,B 两点,则“k =1”是“∠AOB =120°”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 由题意得圆心(0,0)到直线l :y =kx +1的距离为d =11+k2,若∠AOB =120°,则有11+k2=2×12,得k 2=1即k =±1,若k =1时,则∠AOB =120°,但∠AOB =120°时,k =-1或k =1,故选A.4.将数字1,2,3填入编号为4,5,6的三个方格中,每个方格填上一个数字,则恰有一个方格的编号与所填的数字之差为3的概率是( )A.25B.35C.12D.34 答案 C解析 将数字1,2,3填入编号为4,5,6的三个方格中,其基本事件为(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,2,1),(3,1,2),共有6个,其中恰有一个方格的编号与所填的数字之差为3的事件有(1,3,2),(2,1,3),(3,2,1),所以恰有一个方格的编号与所填的数字之差为3的概率P =36=12.故选C.5.在△ABC 中,M 是BC 的中点,AM =1,点P 在AM 上且满足AP →=2PM →,则PA →·(PB →+PC →)等于( )A .-49B .-43 C.43 D.49答案 A解析 如图,∵AP →=2PM →,∴AP →=PB →+PC →,∴PA →·(PB →+PC →)=-PA →2,∵AM =1且AP →=2PM →,∴|PA →|=23,∴PA →·(PB →+PC →)=-49,故选A.6.下列函数中,既是奇函数又在(-∞,+∞)上单调递增的是( ) A .y =sin x B .y =|x |C .y =-x 3D .y =ln (x 2+1+x )答案 D解析 sin x 不是单调递增函数,可知A 错误;|-x |=|x |,则函数y =|x |为偶函数,可知B 错误;y =-x 3在(-∞,+∞)上单调递减,可知C 错误;ln ((-x )2+1-x )=ln1x 2+1+x=-ln (x 2+1+x ),则y =ln (x 2+1+x )为奇函数;当x ≥0时,x 2+1+x 单调递增,由复合函数单调性可知y =ln (x 2+1+x ) 在[0,+∞)上单调递增,根据奇函数对称性,可知在(-∞,+∞)上单调递增,则D 正确.故选D.7.一个几何体的三视图如图所示,图中的三个正方形的边长均为2,则该几何体的体积为( )A .8-2π3B .4-π3C .8-π3D .4-2π3答案 A解析 由三视图可得该几何体的直观图如图所示,该几何体是一个棱长为2的正方体上、下各挖去一个底面半径为1,高为1的圆锥后剩余的部分,其体积为23-2×13×π×12×1=8-2π3.故选A.8.已知平面区域Ω1:⎩⎪⎨⎪⎧2x -y +2≥0,x +y ≤0,y +2≥0,Ω2:x 2+y 2≤9,则点P (x ,y )∈Ω1是P (x ,y )∈Ω2的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件答案 A解析 平面区域Ω2:x 2+y 2≤9,表示圆以及内部部分; Ω1:⎩⎪⎨⎪⎧2x -y +2≥0,x +y ≤0,y +2≥0的可行域如图三角形区域:则点P (x ,y )∈Ω1是P (x ,y )∈Ω2的充分不必要条件.故选A.9.若ω>0,函数y =cos ⎝ ⎛⎭⎪⎫ωx +π3的图象向右平移π3个单位长度后与函数y =sin ωx 的图象重合,则ω的最小值为( )A.112 B.52 C.12 D.32答案 B解析 函数y =cos ⎝⎛⎭⎪⎫ωx +π3的图象向右平移π3个单位长度后,所得函数图象对应的解析式为y =cos ⎣⎢⎡⎦⎥⎤ω⎝ ⎛⎭⎪⎫x -π3+π3=cos ⎝ ⎛⎭⎪⎫ωx -ωπ3+π3,其图象与函数y =sin ωx =cos ⎝ ⎛⎭⎪⎫ωx -π2+2k π,k ∈Z 的图象重合,∴-π2+2k π=-ωπ3+π3,k ∈Z ,∴ω=-6k +52,k ∈Z ,又ω>0,∴ω的最小值为52,故选B.10.设a =log 43,b =log 52,c =log 85,则( ) A .a <b <c B .b <c <a C .b <a <c D .c <a <b 答案 B解析 ∵a =log 43=log 6427=lg 27lg 64,c =log 85=log 6425=lg 25lg 64,∴log 43>log 85,即a >c ,∵2<5,5>8,∴c =log 85>log 88=12,b =log 52<log 55=12,∴log 85>log 52,即c >b ,∴log 43>log 85>log 52, 即a >c >b .故选B.11.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过原点的直线与双曲线C 交于A ,B 两点,若∠AF 2B =60°,△ABF 2的面积为3a 2,则双曲线的渐近线方程为( )A .y =±12xB .y =±2xC .y =±33x D .y =±3x答案 D解析 根据题意,连接AF 1,BF 1,AF 2,BF 2得四边形AF 2BF 1为平行四边形,几何关系如图所示,设|AF 2|=x ,则|BF 1|=x ,|BF 2|=x +2a ,△ABF 2的面积为3a 2,∠AF 2B =60°,则由三角形面积公式可得3a 2=12x ·(x +2a )·32,化简得x 2+2ax -4a 2=0,解得x =(5-1)a ,x =(-5-1)a (舍去).所以|BF 2|=(5+1)a .在△BF 1F 2中,|F 1F 2|=2c ,由余弦定理可得|F 1F 2|2=|BF 1|2+|BF 2|2-2|BF 1|·|BF 2|·cos120°,即(2c )2=(5-1)2a 2+(5+1)2a 2-2(5-1)a ·(5+1)a cos120°,化简可得c 2=4a 2,由双曲线中c 2=a 2+b 2,可得b 2=3a 2,即b a=±3,所以渐近线方程为y =±3x ,所以选D.12.已知函数f (x )=⎩⎪⎨⎪⎧e x,x <0,ln x ,x >0,则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫1e =________.答案 1e解析 ∵f ⎝ ⎛⎭⎪⎫1e =ln 1e =-1,∴f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫1e =f (-1)=e -1=1e .13.如图,航空测量组的飞机航线和山顶在同一铅直平面内,已知飞机的飞行高度为10000 m ,速度为50 m/s.某一时刻飞机看山顶的俯角为15°,经过420 s 后看山顶的俯角为45°,则山顶的海拔高度为________ m .(取2=1.4,3=1.7)答案 2650解析 如图,作CD 垂直于AB 的延长线于点D ,由题意知∠A =15°,∠DBC =45°,∴∠ACB =30°,AB =50×420=21000.又在△ABC 中,BCsin ∠A =AB sin ∠ACB ,∴BC =2100012×sin15°=10500(6-2).∵CD ⊥AD ,∴CD =BC ·sin∠DBC =10500×(6-2)×22=10500×(3-1)=7350.故山顶的海拔高度h =10000-7350=2650(m).14.将数列{a n }中的所有项按每一行比上一行多1项的规则排成如下数阵:记数阵中的第1列数a 1,a 2,a 4,…构成的数列为{b n },S n 为数列{b n }的前n 项和.若S n=2b n -1,则a 56=________.答案 1024解析 当n ≥2时,∵S n =2b n -1,∴S n -1=2b n -1-1,∴b n =2b n -2b n -1,∴b n =2b n -1(n ≥2且n ∈N *),∵b 1=2b 1-1,∴b 1=1,∴数列{b n }是首项为1,公比为2的等比数列,∴b n =2n -1.设a 1,a 2,a 4,a 7,a 11,…的下标1,2,4,7,11,…构成数列{c n },则c 2-c 1=1,c 3-c 2=2,c 4-c 3=3,c 5-c 4=4,…,c n -c n -1=n -1,累加得,c n -c 1=1+2+3+4+…+(n -1),∴c n =n (n -1)2+1,由c n =n (n -1)2+1=56,得n =11,∴a 56=b 11=210=1024.基础保分强化训练(五)答案 D 解析2.在复平面内,表示复数z =1+2i1-i 的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 答案 B解析 由复数除法运算,可得z =1+2i 1-i =(1+2i )(1+i )(1-i )(1+i )=-1+3i 2=-12+32i ,所以在复平面内对应点的坐标为⎝ ⎛⎭⎪⎫-12,32,即位于第二象限,所以选B.3.已知F 1,F 2为椭圆C :x 2a 2+y 24=1(a >2)的左、右焦点,若椭圆C 上存在四个不同点P 满足△PF 1F 2的面积为43,则椭圆C 的离心率的取值范围为( )A.⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫12,1C.⎝ ⎛⎭⎪⎫0,32D.⎝ ⎛⎭⎪⎫32,1答案 D解析 设P (x 0,y 0),S △PF 1F 2=12|F 1F 2|·|y 0|=c |y 0|=43,则|y 0|=43c =43a 2-4,若存在四个不同点P 满足S △PF 1F 2=43,则0<|y 0|<2,即0<43a 2-4<2,解得a >4,e =a 2-4a =1-4a 2∈⎝ ⎛⎭⎪⎫32,1,故选D. 4.设a ,b 为实数,则“a 2b <1”是“b <1a2”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件答案 B解析 当b <1a 2成立时,a 2>0,从而ba 2<1一定成立.当a =0时,a 2b <1不能得到b <1a2,所以“a 2b <1”是“b <1a2”的必要不充分条件.5.执行如图所示的程序框图,设输出的数据构成的集合为A ,从集合A 中任取一个元素a ,则函数y =x a,x ∈[0,+∞)是增函数的概率为( )A.47B.45C.35D.34 答案 C解析 执行程序框图,x =-3,y =3;x =-2,y =0;x =-1,y =-1;x =0,y =0;x =1,y =3;x =2,y =8;x =3,y =15;x =4,退出循环.则集合A 中的元素有-1,0,3,8,15,共5个,若函数y =x a,x ∈[0,+∞)为增函数,则a>0,所以所求的概率为35.6.已知数列{a n },{b n }满足b n =log 3a n ,n ∈N *,其中{b n }是等差数列,且a 1a 2019=3,则b 1+b 2+b 3+…+b 2019=( )A .2020B .1010 C.20194 D.20192答案 D解析 由于b n =log 3a n ,所以b 1+b 2019=log 3a 1+log 3a 2019=log 3(a 1a 2019)=1,因为{b n }是等差数列,故b 1+b 2+b 3+…+b 2019=b 1+b 20192×2019=20192,故选D.7.已知F 是双曲线E :x 2a 2-y 2b2=1(a >0,b >0)的左焦点,过点F 且倾斜角为30°的直线与曲线E 的两条渐近线依次交于A ,B 两点,若A 是线段FB 的中点,且C 是线段AB 的中点,则直线OC 的斜率为( )A .- 3 B. 3 C .-3 3 D .3 3 答案 D解析 由题意知,双曲线渐近线为y =±ba x ,设直线方程为y =33(x +c ),由⎩⎪⎨⎪⎧y =33(x +c ),y =-b a x ,得y A =c 3+a b.同理可得y B =c 3-a b,∵A 是FB 的中点,∴y B =2y A ⇒b=3a ⇒c =a 2+b 2=2a ,∴y A =32a ,y B =3a ⇒x A =-12a ,x B =a ,∴x C =x A +x B 2=a 4,y C =y A +y B2=334a ,∴k OC =y Cx C=33,故选D. 8.某几何体的三视图如图所示,则该几何体的体积为( )A.332 B .2 3 C.532D .3 3 答案 C解析 依题意,如图所示,题中的几何体是从正三棱柱ABC -A 1B 1C 1中截去一个三棱锥B -A 1B 1E (其中点E 是B 1C 1的中点)后剩余的部分,其中正三棱柱ABC -A 1B 1C 1的高为3,底面是一个边长为2的正三角形,因此该几何体的体积为⎝ ⎛⎭⎪⎫34×22×3-13×⎝ ⎛⎭⎪⎫12×34×22×3=532,故选C.9.已知四面体ABCD 中,平面ABD ⊥平面BCD ,△ABD 是边长为2的等边三角形,BD =DC ,BD ⊥DC ,则异面直线AC 与BD 所成角的余弦值为( )A.24 B.23 C.12 D.34答案 A解析 根据题意画出图形如图所示.∵平面ABD ⊥平面BCD ,平面ABD ∩平面BCD =BD ,BD ⊥DC ,∴DC ⊥平面ABD ,以过点D 且与平面BCD 垂直的直线为z 轴建立空间直角坐标系Dxyz ,则D (0,0,0),B (2,0,0),C (0,2,0),A (1,0,3),∴DB →=(2,0,0),AC →=(-1,2,-3),∴cos 〈DB →,AC →〉=DB →·AC →|DB →||AC →|=-22×22=-24,∴异面直线AC 与BD 所成角的余弦值为24.故选A.10.函数f (x )=sin x2ex 的大致图象是( )答案 A 解析11.在△ABC 中,内角A ,B ,C 所对应的边分别为a ,b ,c ,∠ABC =60°,∠ABC 的平分线交AC 于点D ,且BD =3,则a +2c 的最小值为( )A .4B .5C .2+2 2D .3+2 2答案 D解析 根据题意,S △ABC =12ac sin B =34ac ,因为∠ABC 的平分线交AC 于点D ,且BD =3,所以S △ABD =12BD ·c ·sin∠ABD =34c ,S △CBD =12BD ·a ·sin∠CBD =34a ,而S △ABC =S △ABD +S △CBD ,所以34ac =34c +34a ,化简得ac =c +a ,即1a +1c =1,则a +2c =(a +2c )⎝ ⎛⎭⎪⎫1a +1c =3+a c +2c a ≥3+2a c ·2ca≥3+22,当且仅当a =2c =2+1时取等号,即最小值为3+22,故选D.12.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线3x +4y +4=0与圆C 相切,则圆C 的标准方程为________.答案 (x -2)2+y 2=4解析 设圆心坐标为(a,0),半径为R ,则圆的方程为(x -a )2+y 2=4,圆心与切点连线必垂直于切线,根据点到直线的距离公式,得d =R =2=|3a +4×0+4|32+42,解得a =2或a =-143⎝ ⎛⎭⎪⎫因圆心在x 轴的正半轴,a =-143不符合,舍去,所以圆C 的标准方程为(x -2)2+y 2=4.13.若函数f (x )=⎩⎪⎨⎪⎧2x+1,x ≥0,mx +m -1,x <0在(-∞,+∞)上单调递增,则m 的取值范围是________.答案 (0,3]解析 ∵函数f (x )=⎩⎪⎨⎪⎧2x+1,x ≥0,mx +m -1,x <0在(-∞,+∞)上单调递增,∴函数y =mx +m-1在区间(-∞,0)上为增函数,∴⎩⎪⎨⎪⎧m >0,m -1≤20+1=2,解得0<m ≤3,∴实数m 的取值范围是(0,3].14.如图所示,阴影部分由函数f (x )=sin πx 的图象与x 轴围成,向正方形中投掷一点,该点落在阴影区域的概率为________.答案2π解析基础保分强化训练(六)1.学校先举办了一次田径运动会,某班共有8名同学参赛,又举办了一次球类运动会,这个班有12名同学参赛,两次运动会都参赛的有3人.两次运动会中,这个班总共的参赛人数为( )A .20B .17C .14D .23 答案 B解析 因为参加田径运动会的有8名同学,参加球类运动会的有12名同学,两次运动会都参加的有3人,所以两次运动会中,这个班总共的参赛人数为8+12-3=17.2.已知集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x -2x -3<0,N ={x |log 12(x -2)≥1},则M∩N=( ) A.⎣⎢⎡⎭⎪⎫52,3 B.⎝ ⎛⎦⎥⎤2,52 C.⎣⎢⎡⎦⎥⎤2,52 D.⎝ ⎛⎭⎪⎫52,3答案 B解析 M =(2,3),N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪0<x -2≤12=⎝ ⎛⎦⎥⎤2,52,所以M ∩N =⎝ ⎛⎦⎥⎤2,52,选B.3.已知向量a ,b 的夹角为60°,|a |=2,|b |=4,则(a -b )·b =( ) A .-16 B .-13 C .-12 D .-10 答案 C解析 ∵向量a ,b 的夹角为60°,|a |=2,|b |=4,∴a ·b =|a ||b |·cos60°=2×4×12=4,∴(a -b )·b =a ·b -b 2=4-16=-12.故选C.4.刘徽是一个伟大的数学家,他的杰作《九章算术法》和《海岛算经》是中国宝贵的数学遗产,他所提出的割圆术可以估算圆周率π,理论上能把π的值计算到任意精度.割圆术的第一步是求圆的内接正六边形的面积.若在圆内随机取一点,则此点取自该圆内接正六边形的概率是( )A.334π B.332π C.12π D.14π答案 B解析 如图,在单位圆中作其内接正六边形,则所求概率P =S 六边形S 圆=34×12×6π×12=332π.5.设{a n }是首项为正数的等比数列,公比为q ,则“q <0”是“对任意的正整数n ,a 2n -1+a 2n <0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 B解析 a 1>0,a 2n -1+a 2n =a 1q 2n -2(1+q )<0⇒1+q <0⇒q <-1⇒q <0,而a 1>0,q <0,取q =-12,此时a 2n -1+a 2n =a 1q 2n -2(1+q )>0.故“q <0”是“对任意的正整数n ,a 2n -1+a 2n <0”的必要不充分条件.6.执行如图的程序框图,已知输出的s ∈[0,4].若输入的t ∈[m ,n ],则实数n -m 的最大值为( )A .1B .2C .3D .4 答案 D解析 由题意可知s =⎩⎪⎨⎪⎧3t (t <1),4t -t 2(t ≥1),画出该函数的草图.由图可知,若s ∈[0,4],则(n -m )max =4-0=4.故选D.7.在复平面内,复数z =a +b i(a ∈R ,b ∈R )对应向量OZ →(O 为坐标原点),设|OZ →|=r ,以射线Ox 为始边,OZ 为终边旋转的角为θ,则z =r (cos θ+isin θ),法国数学家棣莫弗发现棣莫弗定理:z 1=r 1(cos θ1+isin θ1),z 2=r 2(cos θ2+isin θ2),则z 1z 2=r 1r 2[cos(θ1+θ2)+isin(θ1+θ2)],由棣莫弗定理导出了复数乘方公式:[r (cos θ+isin θ)]n=r n(cos n θ+isin n θ),则⎝ ⎛⎭⎪⎫12+32i 5=( )A.12-32i B .-12-32iC.12+32i D .-12+32i答案 A解析 由题意得复数z =12+32i 可化为z =cos π3+isin π3,所以⎝ ⎛⎭⎪⎫12+32i 5=⎝ ⎛⎭⎪⎫cos π3+isin π35=cos 5π3+isin 5π3=12-32i.故选A. 8.已知圆锥的母线长为6,母线与轴的夹角为30°,则此圆锥的体积为( ) A .27π B .93π C .9π D .33π 答案 B解析 由题意可知,底面半径r =6sin30°=3,圆锥的高h =6cos30°=33,所以圆锥的体积V =13πr 2·h =93π,故选B.9.若sin ⎝ ⎛⎭⎪⎫α+π4=45,α∈⎝ ⎛⎭⎪⎫π4,π2,则cos α=( ) A .-210 B .-25 C.25 D.210答案 D解析 由题意可得α+π4∈⎝ ⎛⎭⎪⎫π2,3π4,所以cos ⎝ ⎛⎭⎪⎫α+π4=- 1-sin 2⎝⎛⎭⎪⎫α+π4=-35,结合两角差的余弦公式有cos α=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α+π4-π4=cos ⎝ ⎛⎭⎪⎫α+π4cos π4+sin ⎝ ⎛⎭⎪⎫α+π4sin π4=210.故选D.10.已知四边形ABCD 为矩形,且AB =2BC ,点E ,F 在平面ABCD 内的射影分别为B ,D ,且BE =DF ,若△ABE 的面积为4,若A ,B ,C ,D ,E ,F 这六个点都在球O 的表面上,则球O 的表面积的最小值为( )A .32πB .25πC .52πD .85π 答案 D解析 设AB =2a ,BE =b ,则BC =a ,所以△ABE 的面积为12×2ab =4,即ab =4,由图形可观察出A ,B ,C ,D ,E ,F 这六个点所在的多面体可以通过补形为长方体,如图所示,则球O 的表面积为S =4π·⎝ ⎛⎭⎪⎫4a 2+a 2+b 222=4π·5a 2+b 24≥25ab π=85π,当且仅当b =5a且ab =4时,等号成立,故选D.11.一项针对都市熟男(三线以上城市,30~50岁男性)消费水平的调查显示,对于最近一年内是否购买过以下七类高价商品,全体被调查者,以及其中包括的1980年及以后出生(80后)的被调查者、1980年以前出生(80前)的被调查者回答“是”的比例分别如下:根据表格中数据判断,以下分析错误的是( ) A .都市熟男购买比例最高的高价商品是电子产品 B .从整体上看,80后购买高价商品的意愿高于80前 C .80前超过3成一年内从未购买过表格中七类高价商品 D .被调查的都市熟男中80后人数与80前人数的比例大约为2∶1 答案 D解析 从表中的数据可得都市熟男购买电子产品的比例为56.9%,为最高值,所以A 正确;从表中后两列的数据可看出,前6项的比例均是80后的意愿高于80前的意愿,所以B 正确;从表中的最后一列可看出,80前一年内从未购买过表格中七类高价商品的比例为32.1%,超过3成,所以C 正确;根据表中数据不能得到被调查的都市熟男中80后人数与80前人数的比例,所以D 不正确.故选D.12.设n 为正整数,⎝⎛⎭⎪⎫x -2x3n的展开式中仅有第5项的二项式系数最大,则展开式中的常数项为________.答案 112解析 依题意得,n =8,所以展开式的通项T r +1=C r 8x8-r·⎝⎛⎭⎪⎫-2x 3r =C r 8x 8-4r (-2)r,令8-4r =0,解得r =2,所以展开式中的常数项为T 3=C 28(-2)2=112.13.已知一个袋子中装有4个红球和2个白球,假设每一个球被摸到的可能性是相等的,若从袋子中摸出3个球,记摸到的白球的个数为ξ,则ξ=1的概率是________;随机变量ξ的期望是________.答案 351解析 根据题意知ξ=0,1,2,P (ξ=0)=C 34C 36=15;P (ξ=1)=C 24C 12C 36=35;P (ξ=2)=C 22C 14C 36=15;所以E (ξ)=0×15+1×35+2×15=1.14.已知过抛物线C :y 2=2px (p >0)的焦点F 的直线l 交抛物线于A ,B 两点,过点A 作AA 1⊥y 轴,垂足为A 1,连接A 1B 交x 轴于点C ,若当|AB |长度最小时,四边形AA 1CF 的面积为6,则p =________.答案 4解析 因为当|AB |长度最小时,AB ⊥x 轴,垂足为F ,且|AF |=|BF |=p ,△BFC 与△BAA 1相似,且相似比为1∶2,因为四边形AA 1CF 的面积为6,所以S △AA 1B =8,又因为S △AA 1B =12×p2×2p ,所以p =4.。
普通高等学校2020年招生全国统一考试临考冲刺卷(五)理科数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知命题:12p x -<<,2:log 1q x <,则p 是q 成立的( )条件. A .充分不必要 B .必要不充分C .既不充分有不必要D .充要【答案】B【解析】2:log 102q x x <⇒<<,因为()()0,21,2⊂-,所以p 是q 成立的必要不充分条件,选B .2.已知复数11i z a =+,232i z =+,a ∈R ,i 是虚数单位,若12z z ⋅是实数,则a =( ) A .23-B .13-C .13D .23【答案】A【解析】复数11i z a =+,232i z =+,()()()()121i 32i 32i 3i 23223i z z a a a a a ⋅=++=++-=-++.若12z z ⋅是实数,则230a +=,解得23a =-.故选A . 3.下列函数中既是偶函数又在()0,+∞上单调递增的函数是( )A .()22x x f x -=-B .()21f x x =-C .()12log f x x = D .()sin f x x x =【答案】B【解析】A 是奇函数,故不满足条件;B 是偶函数,且在()0,+∞上单调递增,故满足条件;C 是偶函数,在()0,+∞上单调递减,不满足条件;D 是偶函数但是在()0,+∞上不单调.故答案为B .4.已知变量x ,y 之间满足线性相关关系 1.31ˆy x =-,且x ,y 之间的相关数据如下表所示:x1 2 3 4 y0.1m3.14则m =( ) A .0.8 B .1.8C .0.6D .1.6【答案】B【解析】由题意, 2.5x =,代入线性回归方程为 1.31ˆyx =-,可得 2.25y =, 0.1 3.144 2.25m ∴+++=⨯, 1.8m ∴=,故选B .5.若变量x ,y 满足约束条件00340x y x y x y +⎧⎪-⎨⎪+-⎩≥≥≤,则32x y +的最大值是( )A .0B .2C .5D .6【答案】C【解析】绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知:目标函数在点()1,1A 处取得最大值,max 3231215z x y =+=⨯+⨯=.本题选C .6.已知等差数列{}n a 的公差和首项都不为0,且124a a a 、、成等比数列,则1143a a a +=( ) A .2 B .3C .5D .7【答案】C【解析】由124a a a 、、成等比数列得2214a a a =,()()21113a d a a d ∴+=+,21d a d ∴=,0d ≠,1d a ∴=,1141113111315523a a a a d a a a d a +++===+,选C . 7.我国古代数学名著《孙子算经》中有如下问题:“今有三女,长女五日一归,中女四日一归,少女三日一归.问:三女何日相会?”意思是:“一家出嫁的三个女儿中,大女儿每五天回一次娘家,二女儿每四天回一次娘家,小女儿每三天回一次娘家.三个女儿从娘家同一天走后,至少再隔多少天三人再次相会?”假如回娘家当天均回夫家,若当地风俗正月初二都要回娘家,则从正月初三算起的一百天内,有女儿回娘家的天数有( ) A .58 B .59C .60D .61【答案】C【解析】小女儿、二女儿和大女儿回娘家的天数分别是33,25,20,小女儿和二女儿、小女儿和大女儿、二女儿和大女儿回娘家的天数分别是8,6,5,三个女儿同时回娘家的天数是1,所以有女儿在娘家的天数是:33+25+20-(8+6+5)+1=60. 故选C .8.如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该多面体的表面积为( )A .24223+B .22243+C .263+D .842+【答案】A【解析】由三视图可知,该多面体是如图所示的三棱锥P ABC -,其中三棱锥的高为2,底面为等腰直角三角形,直角边长为2,表面积为222222324223ABC PBC PAC PAB S S S S S =+++=+++=++△△△△,故选A .9.已知函数()[](]2sin ,π,01,0,1x x f x x x ⎧∈-⎪=⎨-∈⎪⎩,则()1πf x dx -=⎰( )A .2π+B .π2C .π22-+D .π24-【答案】D 【解析】()112ππsin 1f x dx xdx x dx --=+-⎰⎰⎰,00ππsin cos |2xdx x --=-=-⎰,1201x dx -⎰的几何意义是以原点为圆心,半径为1的圆的面积的14,故12011π4x dx -=⎰,()1ππ24f x dx -∴=-⎰,故选D . 10.已知A ,B 是函数2xy =的图象上的相异两点,若点A ,B 到直线12y =的距离相等,则点A ,B 的横坐标之和的取值范围是( ) A .(),1-∞- B .(),2-∞-C .()1,-+∞D .()2,-+∞【答案】B【解析】设(),2a A a ,(),2b B b ,则112222ab -=-,因为a b ≠,所以221a b +=,由基本不等式有2222a b a b++>,故221a b+<,所以2a b +<-,选B .11.在三棱锥A BCD -中,1AB AC ==,2DB DC ==,3AD BC ==,则三棱锥A BCD -的外接球的表面积为( )A .πB .4πC .7πD .9π【答案】C【解析】该三棱锥的图象如图所示,由1AB AC ==,2DB DC ==,3AD BC ==,可得AB AD ⊥,AC AD ⊥,易证AD ⊥平面ABC .在ABC △中,由余弦定理可得2221cos 22AB AC BC BAC AB AC +-∠==⋅,即120BAC ∠=︒, 以AC 为x 轴,以AD 为z 轴建立如图所示的坐标系,则()000A ,,,1302B ⎛⎫- ⎪ ⎪⎝⎭,,()100C ,,,(003D ,,设三棱锥A BCD -的外接球球心为(),,M x y z , 则()(222222222222131322x y z x y z x y z x y z ⎛⎛⎫++=++-+=-++=++ ⎪ ⎝⎭⎝⎭, 解得:12x =,3y =3z =,∴外接球的半径为2227r x y z =++=,∴外接球的表面积为24π7πS r ==,故选C .12.在等腰梯形ABCD 中//AB CD ,且2AB =,1AD =,2CD x =,其中()0,1x ∈,以A ,B 为焦点且过点D 的双曲线的离心率为1e ,以C ,D 为焦点且过点A 的椭圆的离心率为2e ,若对任意()0,1x ∈都有不等式()2128e e t +<恒成立,则t 的最大值为( )A .74B .38C .58 D .54【答案】C【解析】如图,过D 作DE AB ⊥交AB 于E ,则1AE x =-,1EB x =+,所以22DE x x =-14DB x =+,所以12141e x =+-,2141141x e x +-==++,所以1221412141x e e x +-+=++-,令1412x t +-=,则121e e t t +=+,因510,2t ⎛⎫-∈ ⎪ ⎪⎝⎭,故125e e +>,所以58t ≤,选C .第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.△ABC 内角A ,B ,C 的对边分别为a ,b ,c ,若2cos 2c B a b =+,则C ∠=_________. 【答案】120︒【解析】∵2cos 2c B a b =+,∴222222a c b c a b ac +-⨯=+,即222a b c ab +-=-, ∴2221cos 22a b c C ab +-==-,∴120C =︒. 14.阅读如图的程序框图,运行相应的程序,输出的结果为__________.【答案】138【解析】由题设中提供的算法流程图中的算法程序可知:当1x =,1y =时,220z x y =+=<,1x =,2y =,运算程序依次继续:320z x y =+=<,2x =,3y =;520z x y =+=<,3x =,5y =;820z x y =+=<,5x =,8y =;1320z x y =+=<,8x =,13y =;2120z x y =+=>,138y x =运算程序结束,输出138,应填答案138. 15.在ABC △中,22CA CB ==,1CA CB ⋅=-,O 是ABC △的外心,若CO xCA yCB =+,则x y +=______________. 【答案】136【解析】由题意可得:120CAB ∠=︒,2CA =,1CB =,则:()24CO CA xCA yCB CA xCA yCB CA x y ⋅=+⋅=+⋅=-, ()2CO CB xCA yCB CB xCA CB yCB x y ⋅=+⋅=⋅+=-+,如图所示,作OE BC E ⊥=,OD AC D ⊥=, 则2122CO CA CA ⋅==,21122CO CB CB ⋅==, 综上有:4212x y x y -=⎧⎪⎨-+=⎪⎩,求解方程组可得:5643x y ⎧=⎪⎪⎨⎪=⎪⎩,故136x y +=.16.已知函数()f x 满足()()2f x f x =,且当[)1,2x ∈时()ln f x x =.若在区间[)1,4内,函数()()2g x f x ax =-有两个不同零点,则a 的范围为__________. 【答案】ln 20,8⎡⎫⎪⎢⎣⎭【解析】()()2f x f x =,()2x f x f ⎛⎫∴= ⎪⎝⎭,当[)2,4x ∈时,[)1,22x ∈;()ln ln ln 222x x f x f x ⎛⎫===- ⎪⎝⎭,故函数()[)[)ln ,12ln ln 2,24x x f x x x ⎧∈⎪=⎨-∈⎪⎩,,,作函数()f x 与2y ax =的图象如下,过点()4,ln 2时,ln 224a =,ln 28a ∴=,ln ln 2y x =-,1y x '=;故ln ln 21x x x-=2e >4x =,故实数a 的取值范围是ln 20,8⎡⎫⎪⎢⎣⎭.三、解答题:解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23为选考题,考生根据要求作答. (一)必考题:60分,每个试题12分. 17.已知在ABC △中,2B A C =+,且2c a =. (1)求角A ,B ,C 的大小;(2)设数列{}n a 满足2cos n n a nC =,前n 项和为n S ,若20n S =,求n 的值. 【答案】(1)π6A =,π3B =,π2C =;(2)4n =或5n =. 【解析】(1)由已知2B A C =+,又πA B C ++=,所以π3B =.又由2c a =, 所以2222π42cos33b a a a a a =+-⋅=,所以222c a b =+, 所以ABC △为直角三角形,π2C =,πππ236A =-=.(2)0,π2cos 2cos22,n nn n n n a nC n ⎧⎪===⎨⎪⎩为奇数为偶数. 所以()22224221241224020202143kk kn k k S S S ++--===++++⋅⋅⋅++==-,*k ∈N ,由2224203k n S +-==,得22264k +=,所以226k +=,所以2k =,所以4n =或5n =. 18.某学校为了解高三复习效果,从高三第一学期期中考试成绩中随机抽取50名考生的数学成绩,分成6组制成频率分布直方图如图所示:(1)求m 的值;并且计算这50名同学数学成绩的样本平均数x ;(2)该学校为制定下阶段的复习计划,从成绩在[]130,150的同学中选出3位作为代表进行座谈,记成绩在[]140,150的同学人数位ξ,写出ξ的分布列,并求出期望. 【答案】(1)0.008m =,121.8x =;(2)见解析.【解析】(1)由题()0.0040.0120.0240.040.012101m +++++⨯=,解得0.008m =,950.004101050.012101150.024101250.0410x =⨯⨯+⨯⨯+⨯⨯+⨯⨯+ 1350.012101450.00810121.8⨯⨯+⨯⨯=.(2)成绩在[)130,140的同学人数为6,成绩在[)140,150人数为4,()0346310C C 10C 6P ξ===,()1246310C C 11C 2P ξ===,()2146310C C 32C 10P ξ===,()3046310C C 13C 30P ξ===;所以ξ的分布列为:()1131601236210305E ξ=⨯+⨯+⨯+⨯=.19.如图,多面体ABCDEF 中,ABCD 是正方形,CDEF 是梯形,//EF CD ,12EF CD =,DE ⊥平面ABCD 且DE DA =,M N 、分别为棱AE BF 、的中点.(1)求证:平面DMN ⊥平面ABFE ;(2)求平面DMN 和平面BCF 所成锐二面角的余弦值. 【答案】(1)见解析;(210. 【解析】(1)∵//EF CD ,ABCD 是正方形,∴//EF AB ,∵M N 、分别为棱AE BF 、的中点,∴//MN AB , ∵DE ⊥平面ABCD ,∴DE AB ⊥,∵AB AD ⊥,AD DE D =,∴AB ⊥平面ADE ,∴AB AE ⊥,从而MN AE ⊥, ∵DE DA =,M 是AE 中点,∴DM AE ⊥, ∵MNDM M =,∴AE ⊥平面DMN ,又AE ⊂平面ABFE ,∴平面DMN ⊥平面ABFE .(2)由已知,DA ,DC ,DE 两两垂直,如图,建立空间直角坐标系D xyz -, 设2AD =,则()2,0,0A ,()0,0,2E ,()2,2,0B ,()0,2,0C ,()0,1,2F , ∴()2,0,0CB =,()0,1,2CF =-,设平面BCF 的一个法向量为(),,n x y z ,由00n CB n CF ⎧⋅=⎪⎨⋅=⎪⎩得2020x y z =⎧⎨-+=⎩,令2y =,则()0,2,1n =,由(1)可知AE ⊥平面DMN ,∴平面DMN 的一个法向量为()2,0,2AE =-,设平面DMN 和平面BCF 所成锐二面角为θ,则10cos cos<>10n AE θ=⋅=, 所以,平面DMN 和平面BCF 10.20.已知椭圆1C :22221x y a b+= (0)a b >>的离心率为63,焦距为42,抛物线2C :22x py =(0)p >的焦点F 是椭圆1C 的顶点.(1)求1C 与2C 的标准方程;(2)1C 上不同于F 的两点P ,Q 满足0FP FQ ⋅=,且直线PQ 与2C 相切,求FPQ △的面积.【答案】(1)221124x y +=,28x y =;(2183. 【解析】(1)设椭圆1C 的焦距为2c ,依题意有242c =,6c a =, 解得23a =2b =,故椭圆1C 的标准方程为221124x y +=. 又抛物线2C :22(0)x py p =>开口向上,故F 是椭圆1C 的上顶点,()0,2F ∴,4p ∴=,故抛物线2C 的标准方程为28x y =.(2)显然,直线PQ 的斜率存在.设直线PQ 的方程为y kx m =+,设()11,P x y ,()22,Q x y ,则()11,2FP x y =-,()22,2FQ x y =-,()121212240FP FQ x x y y y y ∴⋅=+-++=,即()()()22121212440k x x km k x x m m ++-++-+=()*,y 整理得,()()2223163120**k x kmx m +++-=. 依题意1x ,2x ,是方程()**的两根,2214412480k m ∆=-+>,122631km x x k -∴+=+,212231231m x x k -⋅=+, 将12x x +和12x x ⋅代入()*得220m m --=,解得1m =-,(2m =不合题意,应舍去) 联立218y kx x y=-⎧⎨=⎩,消去y 整理得,2880x kx -+=, 令264320k '∆=-=,解得212k =. 经检验,212k =,1m =-符合要求.21.已知函数()2ln f x x x =-. (1)求函数()f x 在点()()1,1f 处的切线方程;(2)在函数()2ln f x x x =-的图象上是否存在两点,使以这两点为切点的切线互相垂直,且切点的横坐标都在区间1,12⎡⎤⎢⎥⎣⎦上.若存在,求出这两点的坐标,若不存在,请说明理由. 【答案】(1)y x =;(2()1,1. 【解析】(1)∵()11f =,∴()1211f '=-=, 故所求切线方程为()111y x -=⨯-即y x =.(2)设所求两点为()11,x y ,()22,x y ,1x 12x x <,由题意:121211221x x x x ⎛⎫⎛⎫-⋅-=- ⎪ ⎪⎝⎭⎝⎭,1,12⎡⎤⎢⎥⎣⎦上单调递增,又12x x <,∴()()12f x f x ''<,∴ 解得:112x =,(11x =-舍),21x =,(212x =-舍)()1,1即为所求. (二)选考题(共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做第一题计分)22.在平面直角坐标系xOy 中,直线1lt 为参数),直线2l 的参数m 为参数),设直线1l 与2l 的交点为P ,当k 变化时点P 的轨迹为曲线1C . (1)求出曲线1C 的普通方程;(2)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线2C的极坐标方程为Q 为曲线1C 的动点,求点Q 到直线2C 的距离的最小值. 【答案】(1)1C 的普通方程为()22103x y y +=≠;(2)d的最小值为 【解析】(1)将1l ,2l 的参数方程转化为普通方程;(1:l y k x =,①)21:3l y x k =,②①×②消k 可得:213y +=, 因为0k ≠,所以0y ≠,所以1C 的普通方程为()22103x y y +=≠. (2)直线2C 的直角坐标方程为:80x y +-=.由(1)知曲线1C 与直线2C 无公共点,由于1Ca 为参数,πa k ≠,k ∈Z ), 所以曲线1C80x y +-=的距离为:d的最小值为 23(1)当2a= (2M ,若11,32M ⎡⎤⊆⎢⎥⎣⎦,求实数a 的取值范围. 【答案】(1){|0x x ≤或1}x ≥;(2)14,23⎡⎤-⎢⎥⎣⎦. 【解析】(1)当2a =时,原不等式可化为3123x x -++-≥,解得0x ≤,所以0x ≤; ②当23x <<时,原不等式可化为3123x x -+-≥,解得1x ≥,所以12x <≤. ③当2x ≥时,原不等式可化为3123x x --+≥,解得1x ≥,所以2x ≥, 综上所述,当2a =时,不等式的解集为{|0x x ≤或1}x ≥.(211,32⎡⎤⎢⎥⎣⎦恒成立,即11a x a -+≤≤,所以a 的取值范围是14,23⎡⎤-⎢⎥⎣⎦.。
考点五程序框图一、选择题1.(2019·全国卷Ⅰ)如图是求12+12+12的程序框图,图中空白框中应填入() A.A=12+AB.A=2+1AC.A=11+2AD.A=1+12A答案A解析对于选项A,A=12+A.当k=1时,A=12+12,当k=2时,A=12+12+12,故A正确;经验证选项B,C,D均不符合题意.故选A.2.(2019·湖北八校第二次联考)如图程序中,输入x=ln 2,y=log32,z=12,则输出的结果为()A.x B.y C.z D.无法确定答案A解析图中程序的功能是输出x,y,z的最大值,因为ln 3>1,所以y=log32=ln 2ln 3<ln 2=x,x=ln 2>ln e=12=z,所以输出x.3.(2019·全国卷Ⅲ)执行如图所示的程序框图,如果输入的为0.01,则输出s的值等于()A.2-124B.2-125C.2-126D.2-127答案C解析=0.01,x=1,s=0,s=0+1=1,x=12,x<不成立;s=1+12,x=14,x<不成立;s=1+12+14,x=18,x<不成立;s=1+12+14+18,x=116,x<不成立;s=1+12+14+18+116,x=132,x<不成立;s=1+12+14+18+116+132,x=164,x<不成立;s=1+12+14+18+116+132+164,x=1128,x<成立,此时输出s=2-126.故选C.4.(2019·山东临沂三模)秦九韶,中国古代数学家,对中国数学乃至世界数学的发展做出了杰出贡献.他所创立的秦几韶算法,直到今天,仍是多项式求值比较先进的算法.用秦九韶算法将f(x)=2019x2018+2018x2017+2017x2016+…+2x+1化为f(x)=(…((2019x+2018)x+2017)x+…+2)x+1再进行运算,计算f(x0)的值时,设计了如图所示的程序框图,则在◇和▭中可分别填入()A.n≥2和S=Sx0+n B.n≥2和S=Sx0+n-1C.n≥1和S=Sx0+n D.n≥1和S=Sx0+n-1答案C解析由题意可知,当n=1时程序循环过程应该继续进行,n=0时程序跳出循环,故判断框中应填入n≥1,由秦九韶算法的递推关系可知矩形框中应填入的递推关系式为S=Sx0+n,故选C.5.(2019·河南八市重点高中联考)相传黄帝时代,在制定乐律时,用“三分损益”的方法得到不同的竹管,吹出不同的音调.“三分损益”包含“三分损一”和“三分益一”,用现代数学的方法解释如下,“三分损一”是在原来的长度减去一分,即变为原来的三分之二;“三分益一”是在原来的长度增加一分,即变为原来的三分之四,如图的程序是与“三分损益”结合的计算过程,若输入的x 的值为1,输出的x的值为()A.6481 B.3227 C.89 D.1627答案B解析由题意,执行循环结构的程序框图,可得第1次循环:x=23,i=2,不满足判断条件;第2次循环:x=89,i=3,不满足判断条件;第3次循环:x=3227,i=4,满足判断条件,输出结果3227,故选B.6.(2019·辽宁丹东质量测试(一))计算机在数据处理时使用的是二进制,例如十进制数1,2,3,4的二进制数分别表示为1,10,11,100,二进制数…dcba化为十进制数的公式为…dcba=a·20+b·21+c·22+d·23+…,例如二进制数11等于十进制数1·20+1·21=3,又如二进制数101等于十进制数1·20+0·21+1·22=5,如图是某同学设计的将二进制数11111化为十进制数的程序框图,则判断框内应填入的条件是()A.i>4 B.i≤4 C.i>5 D.i≤5答案B解析在将二进制数11111化为十进制数的程序中循环次数由循环变量i决定,∵11111共有5位,因此要循环4次才能完成整个转换过程,∴退出循环的条件根据程序框图和答案选项,应设为i≤4,故选B.7.(2019·黑龙江哈尔滨三中二模)我国古代名著《庄子·天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截取一半,永远都截不完.现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取20天后所剩木棍的长度(单位:尺),则①②③处可分别填入的是()A.i<20,S=S-1i,i=2iB.i≤20,S=S-1i,i=2iC .i <20,S =S 2,i =i +1D .i ≤20,S =S 2,i =i +1答案 D解析 根据题意可知,截取1天后S =12,所以满足S =S 2,不满足S =S -1i ,故排除A ,B ;由框图可知,计算截取20天后的剩余时,有S =S 2,且i =21,所以循环条件应该是i ≤20.故选D.8.(2019·湖北重点中学高三起点考试)美索不达米亚平原是人类文明的发祥地之一.美索不达米亚人善于计算,他们创造了优良的计数系统,其中开平方算法是最具有代表性的.程序框图如图所示,若输入a ,n ,ξ的值分别为8,2,0.5,每次运算都精确到小数点后两位,则输出的结果为( )A .2.81B .2.82C .2.83D .2.84答案 D解析 输入a =8,n =2,ξ=0.5,m =82=4,n =4+22=3,|4-3|=1>0.5;m=83≈2.67,n ≈2.67+32≈2.84,|2.67-2.84|=0.17<0.5,输出的结果为2.84.二、填空题9.执行如图所示的程序框图,若输出的结果为12,则输入的实数x的值是________.答案2解析因为输出的结果为12,所以有⎩⎪⎨⎪⎧log2x=12,x>1或⎩⎪⎨⎪⎧x-1=12,x≤1.解得x= 2.所以输入的实数x的值为 2.10.(2019·辽宁沈阳育才学校八模)我国古代名著《九章算术》用“更相减损术”求两个正整数的最大公约数是一个伟大创举.这个伟大创举与古希腊的算法——“辗转相除法”实质一样.如图的程序框图即源于“辗转相除法”,当输入a =288,b=123时,输出的a=________.答案3解析解法一:按照程序框图运行程序,输入:a=288,b=123,则r=42,a=123,b=42,不满足r=0,循环;则r=39,a=42,b=39,不满足r=0,循环;则r=3,a=39,b=3,不满足r=0,循环;则r=0,a=3,b=0,满足r=0,输出a=3.解法二:程序框图的功能为“辗转相除法”求解两个正整数的最大公约数,因为288与123的最大公约数为3,所以a=3.11.(2019·安徽A10联盟最后一卷)《九章算术》中有如下问题:“今有牛、羊、马食人苗,苗主责之粟五斗,羊主曰:‘我羊食半马.’马主曰:‘我马食半牛.’今欲衰偿之,问各出几何?”翻译为:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我羊所吃的禾苗只有马的一半.”马主人说“我马吃的禾苗只有牛的一半”打算按此比率偿还,问:牛、马、羊的主人各应赔偿多少粟?已知1斗=10升,针对这一问题,设计程序框图如图所示,若输出k的值为2,则m=________.答案50 7解析运行该程序,第一次循环,S=50-m,k=1;第二次循环,S=50-3m,k=2;第三次循环,S=50-7m,此时要输出k的值,则50-7m=0,解得m=50 7.12.(2019·湖北七校联盟期末)设a是一个各位数字都不是0且没有重复数字的三位数,将组成a的3个数字按从小到大排成的三位数记为I(a),按从大到小排成的三位数记为D(a)(例如a=746,则I(a)=467,D(a)=764),阅读如图所示的程序框图,运行相应的程序,若输入的a为123,则输出的b为________.答案495解析由程序框图,知第一次循环a=123,b=321-123=198;第二次循环a=198,b=981-189=792;第三次循环a=792,b=972-279=693;第四次循环a=693,b=963-369=594;第五次循环a=594,b=954-459=495;第六次循环a=495,b=954-459=495,满足条件a=b,跳出循环体,输出495.一、选择题1.(2019·湖南衡阳三模)著名的“3n+1猜想”是对任何一个正整数进行规定的变换,最终都会变成 1.如图的程序框图示意了“3n+1”猜想,则输出的n为()A.5 B.6 C.7 D.8答案B解析a=10是偶数,a=5,n=1,a>1,a=5是奇数,a=16,n=2,a>1,a=16是偶数,a=8,n=3,a>1,a=8是偶数,a=4,n=4,a>1,a=4是偶数,a=2,n=5,a>1,a=2是偶数,a=1,n=6,a≤1成立,输出n=6,故选B.2.(2019·福建高三检测)程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作.它问世后不久便风行宇内,成为明清之际研习数学者必读的教材,而且传到朝鲜、日本及东南亚地区,对推动汉字文化圈的数学发展起了重要的作用.卷八中第33问是:“今有三角果一垛,底阔每面七个,问该若干?”如图是解决该问题的程序框图.执行该程序框图,求得该垛果子的总数S为()A.120 B.84 C.56 D.28答案B解析i=0,n=0,S=0;i=1,n=1,S=1,i≥7,否;i=2,n=3,S=1+3,i≥7,否;i=3,n=6,S=1+3+6,i≥7,否;i=4,n=10,S=1+3+6+10,i≥7,否;…i=7,n=28,S=1+3+6+10+15+21+28,i≥7,是;输出S=84.3.(2019·湖南长沙高三统考)若正整数N除以正整数m后的余数为r,则记为N=r(mod m),例如10=2(mod 4).如图所示程序框图的算法源于我国古代数学名著《孙子算经》中的“中国剩余定理”,则执行该程序框图输出的i等于()A.3 B.9 C.27 D.81答案C解析第一次执行循环体,得i=3,N=14,此时14=2(mod 3),但14≠1(mod 7).第二次执行循环体,得i=9,N=23,此时23=2(mod 3),但23≠1(mod 7).第三次执行循环体,得i=27,N=50,此时50=2(mod 3),且50=1(mod 7),退出循环,所以输出i的值为27,故选C.4.(2019·江西九校重点中学协作体第一次联考)《九章算术》是中国古代数学专著,其中的“更相减损术”可以用来求两个数的最大公约数,即“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也,以等数约之.”翻译成现代语言如下:第一步,任意给定两个正整数,判断它们是否都是偶数,若是,用2约简;若不是,执行第二步;第二步,以较大的数减去较小的数,接着把所得的差与较小的数比较,并以大数减小数,继续这个操作,直到所得的数相等,则这个数(等数)或这个数与约简的数的乘积就是所求的最大公约数.现给出更相减损术的程序图如图所示,如果输入的a=114,b=30,则输出的n为()A.3 B.6 C.7 D.8答案C解析∵a=114,b=30,满足a,b都是偶数,则a=a2=57,b=b2=15,k=2;不满足a,b都是偶数,且不满足a=b,满足a>b,则a=57-15=42,n=1,不满足a=b,满足a>b,则a=42-15=27,n=2,不满足a=b,满足a>b,则a=27-15=12,n=3,不满足a=b,不满足a>b,则c=12,a=15,b=12,则a=15-12=3,n=4,不满足a=b,不满足a>b,则c=3,a=12,b=3,则a=12-3=9,n=5,不满足a=b,满足a>b,则a=9-3=6,n=6,不满足a=b,满足a>b,则a=6-3=3,n=7,满足a=b,结束循环,输出n=7,故选C.5.(2019·江西新八校第二次联考)如图所示的程序框图所实现的功能是()A.输入a的值,计算(a-1)×32021+1B.输入a的值,计算(a-1)×32020+1C.输入a的值,计算(a-1)×32019+1D.输入a的值,计算(a-1)×32018+1答案B解析由程序框图,可知a1=a,a n+1=3a n-2,由i的初值为1,末值为2019,可知,此递推公式共执行了2019+1=2020次,又由a n+1=3a n-2,得a n+1-1=3(a n-1),得a n-1=(a-1)×3n-1,即a n=(a-1)×3n-1+1,故a2021=(a-1)×32021-1+1=(a-1)×32020+1,故选B.6.(2019·四川泸州第二次质量诊断)某班共有50名学生,其数学学业水平考试成绩记作a i(i=1,2,3,…,50),若成绩不低于60分为合格,则如图所示的程序框图的功能是()A.求该班学生数学学业水平考试的不合格人数B.求该班学生数学学业水平考试的不合格率C.求该班学生数学学业水平考试的合格人数D.求该班学生数学学业水平考试的合格率答案D解析执行程序框图,可知输入50个学生成绩a i,k表示该班学生数学成绩为该班学生数学学业水平考试的合格合格的人数,程序结束时i=51,输出的ki-1率,故选D.7.如果每对兔子(一雄一雌)每月能生殖一对小兔子(也是一雄一雌,下同),且每对小兔子刚出生的前两个月没有生育能力,但从出生后的第三个月开始便能每月生一对小兔子.假定这些兔子都不发生死亡现象,现有一对刚出生的兔子,那么从这对兔子刚出生开始,到第十个月会有多少对兔子呢?同学A据此建立了一个数列模型,设F(0)=0,第n个月兔子的对数为F(n),由此得到F(1)=1,F(2)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*).如图是同学B根据同学A的数列模型设计的程序框图,求该数列的前10项和,则在空白框内分别填入的语句是()A.P=M;n≤9? B.N=P;n≤9?C.P=M;n≤10? D.N=P;n≤10?答案B解析F(1)=1,F(2)=1,F(3)=2,F(4)=3,F(5)=5,F(6)=8,F(7)=13,F(8)=21,F(9)=34,F(10)=55,输出的S=F(0)+F(1)+F(2)+…+F(10).由程序框图可知,当n=2时,S=0+1,P=0+1=1,S=1+1,M=1,N=1;当n =3时,S=0+1+1+2,则处理框内应填入“N=P”,排除A,C;又最终输出S 时,n=10,所以判断框内应填入“n≤9?”,故选B.8.(2019·河北邯郸一模)我国古代数学名著《九章算术》里有一道关于买田的问题:“今有善田一亩,价三百;恶田七亩,价五百.今并买一顷,价钱一万.问善、恶田各几何?”其意思为:“今有好田1亩价值300钱;坏田7亩价值500钱.今合买好、坏田1顷,价值10000钱.问好、坏田各有多少亩?”已知1顷为100亩,现有下列四个程序框图,其中S 的单位为钱,则输出的x ,y 分别为此题中好、坏田的亩数的是( )答案 B解析 由题意得,田的价值S =300x +5007y ,可排除C ,亩数x +y =100.由⎩⎨⎧ 300x +5007y =10000,x +y =100,解得⎩⎪⎨⎪⎧x =12.5,y =87.5,若初始变量x =0.5,则累加变量x =x +3满足题意,故选B. 二、填空题9.(2019·湘赣十四校第一次联考)执行如图所示的程序框图,则输出n 的值为________.答案23解析当n=7时,可知n=2×7+1=15,又i=1+1=2<3,循环;当n=15时,可知n=15-4=11,又i=2+1=3,循环;当n=11时,可知n=2×11+1=23,又i=3+1=4>3,输出n,则n=23.10.(2019·广西南宁第一次适应性考试)元朝著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经三处,没了壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示.若将“没了壶中酒”改为“剩余原壶中13的酒量”,即输出值是输入值的13,则输入的x=________.答案21 23解析 i =1时,x =2x -1;i =2时,x =2(2x -1)-1=4x -3;i =3时,x =2(4x-3)-1=8x -7;i =4时,退出循环.此时,8x -7=13x ,解得x =2123.11.公元263年左右,我国数学家刘徽发现,当圆内接多边形的边数无限增加时,多边形的面积可无限逼近圆的面积,由此创立了割圆术,利用割圆术刘徽得到了圆周率精确到小数点后面两位的近似值 3.14,这就是著名的徽率.如图是利用刘徽的割圆术设计的程序框图,则输出的n 值为________.(参考数据:3≈1.732,sin15°≈0.2588,sin7.5°≈0.1305)答案 24解析 由程序框图,n ,S 值依次为:n =6,S ≈2.598;n =12,S =3;n =24,S ≈3.1056,此时满足S ≥3.10,输出n =24.12.(2019·山东德州一模)在《九章算术》中记载着一道关于“持金出关”的题目,大意是:“在古代出关要交税.一天,某人拿钱若干出关,第1关交所拿钱数的12,第2关交所剩钱数的13,第3关交所剩钱数的14,…”.现以这则故事中蕴含的数学思想,设计如图所示的程序框图,则运行此程序,输出n 的值为________.答案6解析n=1,a=72,S=0,S<60,是;S=0+11×2×72=36,n=2,S<60,是;S=36+12×3×72=48,n=3,S<60,是;S=48+13×4×72=54,n=4,S<60,是;S=54+14×5×72=57.6,n=5,S<60,是;S=57.6+15×6×72=60,n=6,S<60,否;输出n=6.。
必备五 解题技法增分技法一 特例法在解填空题时,可以取一个(或一些)特殊数值(或特殊位置、特殊函数、特殊点、特殊方程、特殊数列、特殊图形等)来确定其结果,这种方法称为特例法.特例法由于只需对特殊值、特殊情形进行检验,省去了推理论证及烦琐演算的过程,提高了解题的速度.特例法是考试中解答选择题和填空题时经常用到的一种方法,应用得当会有事半功倍的效果. 典型例题例1 (1)在△ABC 中,角A,B,C 所对的边分别为a,b,c.若a,b,c 成等差数列,则cosA+cosC 1+cosAcosC= .(2)AD,BE 是△ABC 的中线,若|AD ⃗⃗⃗⃗⃗ |=|BE ⃗⃗⃗⃗⃗ |=1,且AD ⃗⃗⃗⃗⃗ 与BE ⃗⃗⃗⃗⃗ 的夹角为120°,则AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ = . 答案 (1)45 (2)23解析 (1)利用特例法,令a=3,b=4,c=5,则△ABC 为直角三角形,cos A=45,cos C=0,从而所求值为45.(2)易知等边三角形为符合题意的△ABC 的一个特例,则|AB|=2√33,∴AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =|AB ⃗⃗⃗⃗⃗ ||AC⃗⃗⃗⃗⃗ |cos 60°=23.【方法归纳】当填空题已知条件中含有某些不确定的量,但填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,可以将题中变化的不定量选取一些符合条件的恰当特殊值进行处理.跟踪集训1.求值:cos2a+cos2(a+120°)+cos2(a+240°)=.2.已知m,n是直线,α,β,γ是平面,给出下列命题:①若α⊥γ,β⊥γ,则α∥β;②若n⊥α,n⊥β,则α∥β;③若α内不共线的三点到β的距离都相等,则α∥β;④若n⊄α,m⊄α,且n∥β,m∥β,则α∥β;⑤若m,n为异面直线,n⊄α,n∥β,m⊄β,m∥α,则α∥β.其中正确的命题是.(把你认为正确的命题序号都填上)3.如图,点P为椭圆x225+y29=1上第一象限内的任意一点,过椭圆的右顶点A、上顶点B分别作y轴、x轴的平行线,它们相交于点C,过点P引BC,AC的平行线,分别交AC于点N,交BC于点M,交AB于D,E两点,记矩形PMCN的面积为S1,三角形PDE的面积为S2,则S1∶S2=.技法二图解法典型例题例2(1)直线y=x+m与曲线x=√1-y2有且仅有一个公共点,则m的取值范围是.(2)(2019天津文改编,8,5分)已知函数f(x)={2√x,0≤x≤1,1x,x>1.若关于x的方程f(x)=-14x+a(a∈R)恰有两个互异的实数解,则a的取值范围为.答案(1)-1<m≤1或m=-√2(2)[54,94]∪{1}解析 (1)作出曲线x=√1-y 2,如图所示.由图形可得,当直线y=x+m 在b 和c 之间(不含b,含c)变化时,满足题意,同时,当直线y=x+m 在a 的位置时也满足题意,所以m 的取值范围是-1<m ≤1或m=-√2.(2)本题以分段函数和方程的解的个数为背景,考查函数图象的画法及应用.画出函数y=f(x)的图象,如图.方程f(x)=-14x+a 的解的个数,即为函数y=f(x)的图象与直线l:y=-14x+a 的公共点的个数. 当直线l 经过点A 时,有2=-14×1+a,a=94; 当直线l 经过点B 时,有1=-14×1+a,a=54.由图可知,a ∈[54,94]时,函数y=f(x)的图象与l 恰有两个交点. 另外,当直线l 与曲线y=1x ,x>1相切时,恰有两个公共点,此时a>0. 联立{y =1x ,y =-14x +a,得1x =-14x+a, 即14x 2-ax+1=0,由Δ=a 2-4×14×1=0,得a=1(舍去负根). 综上,a ∈[54,94]∪{1}.一题多解 令g(x)=f(x)+14x={2√x +x4(0≤x ≤1),1x+x 4(x >1),当0≤x ≤1时,g(x)=2√x +x4为增函数,其值域为[0,94];当x>1时,g(x)=1x +x4,对g(x)求导得g'(x)=-1x 2+14,令g '(x)=0,得x=2,当x ∈(1,2)时,g'(x)<0,g(x)单调递减,当x ∈(2,+∞)时,g'(x)>0,g(x)单调递增,∴当x=2时,g(x)min =g(2)=1,函数g(x)的简图如图所示:方程f(x)=-14x+a 恰有两个互异的实数解,即函数y=g(x)的图象与直线y=a 有两个不同的交点,由图可知54≤a ≤94或a=1满足条件.易错警示 本题入手时,容易分段研究方程2√x =-14x+a(0≤x ≤1)与1x =-14x+a(x>1)的解,陷入相对复杂的运算过程.利用数形结合时,容易在区间的端点处出现误判.【方法归纳】图解法实质上是数形结合思想在解题中的应用,利用图形的直观性并结合所学知识可直接得到相应的结论,这也是高考命题的热点.准确运用此法的关键是正确把握各种式子与几何图形中的变量之间的对应关系,利用几何图形中的相关结论求出结果. 跟踪集训4.(2019泰州期末)在平面直角坐标系xOy 中,过圆C 1:(x-k)2+(y+k-4)2=1上任一点P 作圆C 2:x 2+y 2=1的一条切线,切点为Q,则当线段PQ 的长最小时,k= .5.向量OC ⃗⃗⃗⃗⃗ =(2,2),OB ⃗⃗⃗⃗⃗ =(2,0),CA ⃗⃗⃗⃗⃗ =(√2cos α,√2sin α),则向量OA ⃗⃗⃗⃗⃗ ,CB ⃗⃗⃗⃗⃗ 的夹角β的取值范围是 .6.(2019南通、如皋二模)定义min{a,b}={a,a ≤b,b,a >b.已知函数f(x)=e x -1m ,g(x)=(x-1)(mx+2m 2-m-1),若h(x)=min{f(x),g(x)}恰好有3个零点,则实数m 的取值范围是 . 技法三 等价转化法通过“化复杂为简单、化陌生为熟悉”将问题等价转化成便于解决的问题,从而得到正确的结果.典型例题例3 对任意的|m|≤2,函数f(x)=mx 2-2x+1-m 恒负,则x 的取值范围为 .答案 (√7-12,√3+12) 解析 对任意的|m|≤2,有mx 2-2x+1-m<0恒成立,等价于|m|≤2时,(x 2-1)m-2x+1<0恒成立.设g(m)=(x 2-1)m-2x+1,则原问题转化为g(m)<0在[-2,2]上恒成立,则{g(-2)<0,g(2)<0,即{2x 2+2x -3>0,2x 2-2x -1<0,解得√7-12<x<√3+12.从而实数x 的取值范围是(√7-12,√3+12). 【方法归纳】在处理多元的数学问题时,我们可以选取其中的常量(或参数),将其看做“主元”,通过构造函数进行求解.运用转化方法解题,要注意转化的方向性,使转化的目的明确,使解题思路自然流畅,此外还要注意转化前后的等价性.跟踪集训7.无论k 为何实数,直线y=kx+1与曲线x 2+y 2-2ax+a 2-2a-4=0恒有交点,则实数a 的取值范围是 .8.如图,在棱长为2的正方体ABCD-A 1B 1C 1D 1中,点E,F 分别是AB,CD 的中点,点G 是EF 上的动点,记△A 1B 1G,△C 1D 1G 的面积分别为S 1,S 2,则S 1+S 2的最小值为 .技法四 待定系数法待定系数法是为确定变量间的函数关系,设出未知数,然后根据所给条件确定这些未知数的一种方法,其理论依据是多项式恒等.多项式f(x)≡g(x)的充要条件是:对于一个任意的a 值,都有f(a)≡g(a);或者两个多项式各同类项的系数对应相等. 典型例题例4 已知圆M 的方程为x 2+(y-2)2=1,直线l 的方程为x-2y=0,点P 在直线l 上,过P 点作圆M 的切线PA,PB,切点为A,B.(1)若P 点的坐标为(2,1),过P 作直线与圆M 交于C,D 两点,当CD=√2时,求直线CD 的方程; (2)求证:经过A,P,M 三点的圆必过定点,并求出所有定点的坐标.解析 (1)易知直线CD 的斜率k 存在,设直线CD 的方程为y-1=k(x-2),即kx-y+1-2k=0.由题知圆心M(0,2)到直线CD 的距离为√22,所以√22=√2,k=-1或k=-17,故所求直线CD 的方程为x+y-3=0或x+7y-9=0.(2)证明:设P(2m,m),则MP的中点Q(m,m2+1).因为PA是圆M的切线,所以经过A,P,M三点的圆是以Q为圆心,MQ为半径的圆,故其方程为(x-m)2+(y-m2-1)2=m2+(m2-1)2,化简得x2+y2-2y-m(2x+y-2)=0,此式是关于m的恒等式,故{x2+y2-2y=0,2x+y-2=0,解得{x=0,y=2或{x=45,y=25.所以经过A,P,M三点的圆必过定点(0,2)或(45,25).【方法归纳】待定系数法解题的基本步骤:第一步:确定含有待定系数的式子;第二步:根据恒等的条件,列出一组含待定系数的方程;第三步:解方程(组)或者消去待定系数,得到结果.跟踪集训9.已知二次函数f(x)的图象与x轴的两交点坐标为(2,0),(5,0),且f(0)=10,则f(x)的解析式为.10.已知椭圆C的中心在原点,焦点在x轴上,其离心率为√53,短轴的端点是B1,B2,点M(2,0)是x轴上的一定点,且MB1⊥MB2.(1)求椭圆C的方程;(2)设过点M且斜率不为0的直线交椭圆C于A,B两点.试问x轴上是否存在定点P,使直线PA 与PB的斜率互为相反数?若存在,求出点P的坐标;若不存在,说明理由.技法五换元法换元法又称辅助元素法、变量代换法.通过引入新的变量,可以把分散的条件联系起来,使隐含的条件显露出来,或者变为熟悉的形式,简化计算或证明.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,使非标准型问题标准化、复杂问题简单化.换元法经常用于三角函数的化简求值、复合函数解析式的求解等.典型例题例5 已知函数f(x)=x 2,g(x)=aln x+bx(a>0).设G(x)=f(x)+2-g(x)有两个零点x 1,x 2,且x 1,x 0,x 2成等差数列,试探究G'(x 0)的符号.解析 因为G(x)=x 2+2-aln x-bx 有两个零点x 1,x 2,所以{x 12+2-aln x 1-bx 1=0,x 22+2-aln x 2-bx 2=0,两式相减得x 22-x 12-a(ln x 2-ln x 1)-b(x 2-x 1)=0,即x 2+x 1-b=a(ln x 2-ln x 1)x 2-x 1,于是G'(x 0)=2x 0-ax 0-b=(x 1+x 2-b)-2ax1+x 2=a(ln x 2-ln x 1)x 2-x 1-2ax1+x 2=ax 2-x 1[ln x2x 1-2(x 2-x 1)x 1+x 2]=ax 2-x 1[ln x 2x 1-2(x2x 1-1)1+x 2x 1]. ①当0<x 1<x 2时,令x2x 1=t,则t>1,且G'(x 0)=ax2-x 1[lnt -2(t -1)1+t].设u(t)=ln t-2(t -1)1+t (t>1),则u'(t)=1t -4(1+t)2=(1-t)2t(1+t)2>0, 则u(t)=ln t-2(t -1)1+t在(1,+∞)上为增函数,而u(1)=0,所以u(t)>0,即ln t-2(t -1)1+t>0.又因为a>0,x 2-x 1>0,所以G'(x 0)>0.②当0<x2<x1时,同理可得,G'(x0)>0.综上所述,G'(x0)的符号为正.【方法归纳】本题涉及两个变量x1,x2,在解题时利用换元法简化过程,然后构造函数,再利用导数法,结合看成一个整体,用变量t去代替它,从而达到化二元为函数单调性进行符号的判断.本题把式子x2x1一元的目的,同时使本来零乱、分散的问题得到简化.这种技巧在解题时非常重要,需要灵活运用.跟踪集训11.若f(ln x)=3x+4,则f(x)的表达式为.的解为.12.已知函数f(x)=4x,g(x)=2x,则方程f(x)+f(-x)-2g(x)-2g(-x)=22913.y=sin xcos x+sin x+cos x的最大值是.技法六构造法用构造法解题的关键是由条件和结论的特殊性构造数学模型,从而简化推导与运算过程.构造法是建立在观察联想、分析综合的基础上的,首先应观察题目,观察已知条件形式上的特点,然后联想、类比已学过的知识及各种数学结构、数学模型,深刻了解问题及问题的背景(几何背景、代数背景),通过构造几何、函数、向量等具体的数学模型快速解题.典型例题例6在四面体ABCD中,若AB=CD=√13,AC=BD=5,AD=BC=2√5,则该四面体的体积V=.答案8解析 构造如图所示的长方体,并且满足AB=CD=√13,AC=BD=5,AD=BC=2√5.设AP=p,AQ=q,AR=r,则p 2+q 2=AB 2=13,r 2+p 2=AD 2=20,q 2+r 2=AC 2=25. 由上述三式得p 2+q 2+r 2=29,于是r=4,q=3,p=2. 故V=V长方体-4V C-AQB =2×3×4-4×13×4×12×2×3=8. 【方法归纳】构造法实质上是转化与化归思想在解题中的应用,需要根据已知条件和所要解决的问题确定构造的方向.一般通过构造新的函数、不等式或数列等模型将问题转化为熟悉的问题.在立体几何中,补形构造是最常用的解题技巧.通过补形可以将一般几何体的有关问题放在特殊的几何体中求解,如将三棱锥补成长方体等. 跟踪集训14.设函数f(x)=ln x+mx ,m ∈R ,若对任意b>a>0,f(b)-f(a)b -a<1恒成立,则m 的取值范围为 .15.(2018南通高三第二次调研)已知a 为常数,函数f(x)=√2√2的最小值为-23,则a 的所有值为 . 技法七 逆向思维法解数学问题时,一般总是从正面入手进行思考.但时常会遇到从正面入手较复杂或不易解决的情况,这时若灵活运用逆向思维来分析解题,则能使问题得到非常简捷的解决,起到事半功倍之效. 典型例题例7 已知二次函数f(x)=4x 2-2(p-2)x-2p 2-p+1,在区间[-1,1]内至少存在一个数c,使f(c)>0,则实数p 的取值范围是 .答案 (-3,32)解析 若f(x)在[-1,1]上不存在使f(c)>0的数c,则f(x)在[-1,1]内小于等于0,又Δ=36p 2≥0,故f(-1)≤0且f(1)≤0,因此若要满足题意,则只需f(-1)>0或f(1)>0即可,由f(1)>0,得2p 2+3p-9<0,即-3<p<32;由f(-1)>0,得2p 2-p-1<0,即-12<p<1.故所求实数p 的取值范围是(-3,32).【方法归纳】直接利用二次函数在区间[-1,1]上的图象特征求至少存在一个实数c,使f(c)>0,这个问题似乎无从下手,困难较大.若用逆向思维利用补集思想求解,则很直观简捷. 跟踪集训16.已知集合A={x|x 2-4mx+2m+6=0},B={x|x<0},若A ∩B ≠⌀,则实数m 的取值范围是 . 技法八 分离参数法分离参数法是求解不等式有解、恒成立问题常用的方法,通过分离参数将问题转化为相应函数的最值或范围问题,从而避免对参数进行分类讨论的烦琐过程.该方法也适用于含参方程有解、无解等问题.但要注意该方法仅适用于分离参数后能求出相应函数的最值或值域的情况.典型例题例8已知函数f(x)=e x(3x-2),g(x)=a(x-2),其中a,x∈R.(1)求过点(2,0)和函数y=f(x)图象相切的直线方程;(2)若对任意x∈R,有f(x)≥g(x)恒成立,求a的取值范围;(3)若存在唯一的整数x0,使得f(x0)<g(x0),求a的取值范围.解析(1)设切点为(x0,y0),f'(x)=e x(3x+1),则切线斜率为e x0(3x0+1),所以切线方程为y-y0=e x0(3x0+1)(x-x0),因为切线过点(2,0),所以-e x0(3x0-2)=e x0(3x0+1)(2-x0),化简得3x02-8x0=0,解得x0=0或x0=83,当x0=0时,切线方程为y=x-2,当x0=83时,切线方程为y=9e83x-18e83.(2)由题意,对任意x∈R有e x(3x-2)≥a(x-2)恒成立,①当x∈(-∞,2)时,a≥e x(3x-2)x-2⇒a≥[ex(3x-2)x-2]max,令F(x)=e x(3x-2)x-2,则F'(x)=e x(3x2-8x)(x-2)2,令F'(x)=0,得x=0,x(-∞,0)0(0,2)F'(x)+0-F(x)单调递增极大值单调递减F max(x)=F(0)=1,故此时a≥1,②当x=2时,恒成立,故此时a∈R.③当x∈(2,+∞)时,a≤e x(3x-2)x-2⇒a≤[ex(3x-2)x-2]min,令F'(x)=0⇒x=83,x(2,83)8(83,+∞)F'(x)-0+F(x)单调递减极小值单调递增F min(x)=F(83)=9e83,故此时a≤9e83.综上,1≤a≤9e83.(3)因为f(x)<g(x),即e x(3x-2)<a(x-2),由(2)知a∈(-∞,1)∪(9e83,+∞),令F(x)=e x(3x-2)x-2,则x (-∞,0) 0 (0,2) (2,83) 83(83,+∞) F'(x)+--+F(x)单调递增极大值单调递减单调递减极小值单调递增当x ∈(-∞,2)时,存在唯一的整数x 0使得f(x 0)<g(x 0),等价于存在唯一的整数x 0使得a<e x (3x -2)x -2成立,因为F(0)=1最大,F(-1)=53e ,F(1)=-e,所以当a<53e 时,至少有两个整数成立, 所以a ∈[53e ,1).当x ∈(2,+∞)时,存在唯一的整数x 0使得f(x 0)<g(x 0), 等价于存在唯一的整数x 0使得a>e x (3x -2)x -2成立,因为F (83)=9e 83最小,且F(3)=7e 3,F(4)=5e 4,所以当a>5e 4时,至少有两个整数成立, 所以当a ≤7e 3时,没有整数成立,所以a ∈(7e 3,5e 4], 综上,a ∈[53e ,1)∪(7e 3,5e 4]. 【方法归纳】对于求不等式成立时参数范围的问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的不等式,另一端是一个区间上的具体的函数.但要注意分离参数法不是万能的,如果分离参数后,得出的函数解析式较为复杂,性质很难研究,那么就不要使用分离参数法.跟踪集训17.若不等式2xln x ≥-x 2+ax-3恒成立,则实数a 的取值范围为 .18.已知函数f(x)=13x 3-x 2-3x+43,直线l:9x+2y+c=0,当x ∈[-2,2]时,函数f(x)的图象恒在直线l 下方,则c 的取值范围是 . 技法九 整体代换法整体代换法是根据式子的结构特征,在求值过程中,直接将多个数之和的表达式或多项式当成一个整体来处理,从而建立已知和所求之间的关系或方程进行求解的方法.利用该种方法求值,可以避免烦琐的计算.该方法适用于等差、等比数列中连续几项和的有关计算. 典型例题例9 在等比数列{a n }中,公比q=2,前87项和S 87=140,则a 3+a 6+a 9+…+a 87= .答案 80解析 设b 1=a 1+a 4+a 7+…+a 85,b 2=a 2+a 5+a 8+…+a 86,b 3=a 3+a 6+a 9+…+a 87, 因为b 1q=b 2,b 2q=b 3,且b 1+b 2+b 3=140, 所以b 1(1+q+q 2)=140,而1+q+q 2=7, 所以b 1=20,则b 3=q 2b 1=4×20=80. 【方法归纳】整体代换法求值的关键是准确把握代数式的结构特征,确定已知和所求之间的关系. 跟踪集训19.设等差数列{a n}的前n项和为S n,若a2a4a6a8=120,且1a4a6a8+1a2a6a8+1a2a4a8+1a2a4a6=760,则S9的值为.20.在正项等比数列{a n}中,a4+a3-2a2-2a1=6,则a5+a6的最小值为.技法十判别式法判别式法就是利用一元二次方程ax2+bx+c=0(a≠0)有解的充要条件(判别式Δ=b2-4ac≥0)求解.典型例题例10已知α,β,γ为任意三角形的三个内角,求证:x2+y2+z2≥2xycosα+2yzcosβ+2zxcosγ.证明设f(x)=x2+y2+z2-(2xycosα+2yzcosβ+2zxcosγ)=x2-2(ycosα+zcosγ)x+y2+z2-2yzcosβ,因为Δ=4(ycosα+zcosγ)2-4(y2+z2-2yzcosβ)=-4(ysinα-zsinγ)2≤0,所以f(x)≥0,即x2+y2+z2≥2xycosα+2yzcosβ+2zxcosγ.【方法归纳】判别式是方程、函数和不等式之间联系的重要工具,是不等式之间相互转化的重要桥梁,运用判别式法证明不等式有两种途径:(1)构造一元二次方程,然后利用Δ≥0来证明;(2)构造恒大于(或小于)零的一元二次函数,然后利用Δ≤0来证明.跟踪集训21.函数y=2x 2+4x -7x 2+2x+3的值域为 .22.设a 1,d 为实数,首项为a 1,公差为d 的等差数列{a n }的前n 项和为S n ,满足S 5S 6+15=0,则d 的取值范围是 .23.给定两个长度为1的平面向量OA ⃗⃗⃗⃗⃗ 和OB ⃗⃗⃗⃗⃗ ,它们的夹角为120°.如图所示,点C 在以O 为圆心的AB ⏜上运动,若OC ⃗⃗⃗⃗⃗ =x OA ⃗⃗⃗⃗⃗ +y OB⃗⃗⃗⃗⃗ ,其中x,y ∈R ,则x+y 的最大值是 .技法十一 归纳法归纳法的过程可概括为从具体问 题出发观察、分析、比较、联想归纳、类比提出结论发现与猜想的结论都要经过进一步严格证明. 典型例题例11 (2018江苏沭阳调研)观察下列式子:1+122<32,1+122+132<53,1+122+132+142<74,……,据其中规律,可以猜想出:1+12+13+14+…+110< .答案1910解析 由已知中的不等式:1+122<32=2×2-12,1+122+132<53=2×3-13,1+122+132+142<74=2×4-14,……,我们可以推断出:不等式右边分式的分母与左边最后一项分母的底数相等,分子是分母的2倍减1,即1+122+132+142+…+1n2<2n-1n,∴1+122+132+142+…+1102<2×10-110=1910,故答案为1910.【方法归纳】归纳问题的常见类型及解题策略(1)与数字有关的等式的推理.观察数字特点,找出等式左右两侧的规律及符号可解.(2)与不等式有关的推理.观察每个不等式的特点,注意是纵向看,找到规律后可解.(3)与数列有关的推理.通常是先求出几个特殊项,采用不完全归纳法,找出数列的项与项数的关系,列出即可.(4)与图形变化有关的推理.合理利用特殊图形归纳推理得出结论,并用赋值检验法验证其真伪性.跟踪集训24.(2018江苏如皋调研)已知函数f0(x)=xe x ,设f n+1(x)为f n(x)的导函数,f1(x)=[f0(x)]'=1-xe x,f2(x)=[f1(x)]'=x-2e x,……,根据以上结果,推断f2017(x)=.25.某种平面分形图如图所示,一级分形图是由一点出发的三条线段,长度均为1,两两夹角为120°组成的;二级分形图是在一级分形图的每条线段的末端再生成两条长度为原来的13的线段,且这两条线段与原线段两两夹角为120°;……,依此规律得到n级分形图.(1)n级分形图中共有条线段;(2)n级分形图中所有线段长度之和为.技法十二等积转化法等积转化法是通过变换几何体的底面,利用几何体(主要是三棱锥)体积的不同表达形式求解相关问题的方法.其主要用于立体几何中求解点到面的距离.典型例题例12如图,在四棱锥P-ABCD中,侧面PAD是边长为2的正三角形,且与底面垂直,底面ABCD是∠ABC=60°的菱形,M为PC的中点.(1)求证:PC⊥AD;(2)求点D到平面PAM的距离.解析(1)证明:如图,取AD的中点O,连接OP,OC,AC,△PAD,△ACD 均为正三角形,所以OC ⊥AD,OP ⊥AD. 又OC ∩OP=O,所以AD ⊥平面POC, 又PC ⊂平面POC,所以PC ⊥AD.(2)点D 到平面PAM 的距离即点D 到平面PAC 的距离,由(1)可知,PO ⊥AD,又平面PAD ⊥平面ABCD,平面PAD ∩平面ABCD=AD,PO ⊂平面PAD,所以PO ⊥平面ABCD,即PO 为三棱锥P-ACD 的高.在Rt △POC 中,PO=OC=√3,PC=√6,在△PAC 中,PA=AC=2,PC=√6,边PC 上的高AM=√PA 2-PM 2=√22-(√62)2=√102, 所以△PAC 的面积S △PAC =12PC ·AM=12×√6×√102=√152. 设点D 到平面PAC 的距离为h,因为V D-PAC =V P-ACD , 所以13S △PAC ·h=13S △ACD ·PO, 又S △ACD =12×2×√3=√3,所以13×√152×h=13×√3×√3,解得h=2√155. 故点D 到平面PAM 的距离为2√155. 【方法归纳】等积变换法求解点到平面的距离,关键是选择合适的底面,选择的底面应具备两个特征:一是底面的形状规则,面积可求;二是底面上的高比较明显,即线面垂直比较明显. 跟踪集训26.如图所示,四边形ABCD是正方形,PA⊥平面ABCD,E,F分别是AC,PC的中点,PA=2,AB=1,则三棱锥C-PED的体积为.27.如图所示,已知正方形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,AB=AD=1CD=1.2(1)当点M为ED的中点时,求证:AM∥平面BEC;(2)求点D到平面BEC的距离.答案精解精析技法一 特例法跟踪集训 1.答案32解析 题目中“求值”二字暗示答案为一定值,于是不妨令a=0°,得结果为32. 2.答案 ②解析 依题意可取特殊模型正方体AC 1(如图),在正方体AC 1中逐一判断各命题,易得正确的命题是②.3.答案 1解析 不妨取点P (4,95),则可计算S 1=(3-95)×(5-4)=65,易求得PD=2,PE=65,所以S 2=12×2×65=65,所以S 1∶S 2=1.技法二 图解法跟踪集训 4.答案 2解析 如图,因为PQ 为圆C 2的切线,所以PQ ⊥C 2Q,由勾股定理,得|PQ|=√|PC 2|2-1,要使|PQ|最小,则|PC 2|最小,显然当点P 为C 1C 2与圆C 1的交点时,|PC 2|最小, 此时,|PC 2|=|C 1C 2|-1,|C 1C 2|=√k 2+(-k +4)2=√2(k -2)2+8≥2√2. 当k=2时,|C 1C 2|最小,同时|PQ|最小. 5.答案 105°≤β≤165° 解析 不妨令O 为坐标原点. ∵OB⃗⃗⃗⃗⃗ =(2,0),OC ⃗⃗⃗⃗⃗ =(2,2), ∴B(2,0),C(2,2),∵CA ⃗⃗⃗⃗⃗ =(√2cos α,√2sin α),∴|CA⃗⃗⃗⃗⃗ |=√2,∴点A 在以点C 为圆心,√2为半径的圆上.∴当OA 与圆C 相切时,向量OA ⃗⃗⃗⃗⃗ 与向量CB⃗⃗⃗⃗⃗ 的夹角β取得最大值或最小值.设切点分别为点A和点A',连接OC,OA,OA',如图,则OC=2√2,AC⊥OA,∵sin∠AOC=ACOC =1 2 ,∴∠AOC=∠A'OC=30°,∴∠AOB=∠A'Oy=15°,∴当切点为点A时,向量OA⃗⃗⃗⃗⃗ 与向量CB⃗⃗⃗⃗⃗ 的夹角β取得最小值15°+90°=105°,当切点为点A'时,向量OA⃗⃗⃗⃗⃗ 与向量CB⃗⃗⃗⃗⃗ 的夹角β取得最大值180°-15°=165°.故答案为105°≤β≤165°.6.答案(1e ,√22)∪(√22,1)解析当m<0时,f(x)=e x-1m的图象在x轴上方,无零点, g(x)=(x-1)(mx+2m2-m-1)至多有2个零点,与题意不符.当m>0时,f(x)=e x-1m 的零点为x=ln1m=-ln m,g(x)=(x-1)(mx+2m2-m-1)的零点为x1=1,x2=1+1m-2m.(1)若1+1m -2m>1,则有0<m<√22,画出两函数图象如图.由图可知,要有3个零点,需满足-ln m<1,即ln1m <ln e,即m>1e,所以1e<m<√22.(2)若1+1m -2m<1,则有m>√22,画出两函数图象如图.由图可知,要有3个零点,需满足-ln m<1+1m -2m,即1+1m-2m+ln m>0,令φ(m)=1+1m-2m+ln m,求导得φ'(m)=-1m2-2+1m=-2m2+m-1m2,对于函数k(m)=-2m2+m-1,Δ=1-8=-7<0,所以k(m)<0恒成立,即φ'(m)<0恒成立,所以函数φ(m)=1+1m -2m+ln m在(√22,+∞)上是减函数,又φ(1)=0,所以当m∈(√22,1)时,φ(m)>0,所以√22<m<1.综上可知,实数m的取值范围是(1e ,√22)∪(√22,1).技法三等价转化法跟踪集训7.答案[-1,3]解析题设条件等价于点(0,1)在圆内或圆上,即等价于点(0,1)到圆心(a,0)的距离小于或等于圆的半径,即√a2+1≤√2a+4,解得-1≤a≤3.8.答案 2√5解析 设EG=x,则FG=2-x,0≤x ≤2, 则S 1+S 2=12×2√x 2+4+12×2√(2-x)2+4 =√(x -0)2+(0-2)2+√(x -2)2+(0-2)2,在平面直角坐标系中,它表示x 轴上的点P(x,0)到M(0,2)与N(2,2)两点的距离之和,而点M 关于x 轴的对称点为M'(0,-2),且当P 在直线M'N 上时,PM+PN 最小,为2√5,则S 1+S 2的最小值为2√5.技法四 待定系数法跟踪集训9.答案 f(x)=x 2-7x+10解析 设二次函数f(x)=ax 2+bx+c(a ≠0).∵二次函数f(x)的图象与x 轴的两交点坐标为(2,0),(5,0),且f(0)=10, ∴{4a +2b +c =0,25a +5b +c =0,c =10,∴{a =1,b =-7,c =10,∴f(x)=x 2-7x+10.10.解析 (1)设椭圆的标准方程为x 2a 2+y 2b 2=1(a>b>0), ∴MB 1⃗⃗⃗⃗⃗⃗⃗⃗ =(-2,b),MB 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-2,-b), ∵MB 1⃗⃗⃗⃗⃗⃗⃗⃗ ⊥MB 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,∴MB 1⃗⃗⃗⃗⃗⃗⃗⃗ ·MB 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,解得b 2=4, 又e=√a 2-b 2a=√1-b 2a 2=√53,解得a 2=9,故椭圆的标准方程为x 29+y 24=1. (2)存在.假设存在满足条件的定点P,其坐标为(t,0),由题意可设直线AB 的方程为x=my+2,代入x 29+y 24=1, 整理得(4m 2+9)y 2+16my-20=0, ∴y 1+y 2=-16m 4m 2+9,y 1·y 2=-204m 2+9. 设A(x 1,y 1),B(x 2,y 2),∵PA,PB 所在直线斜率分别为k PA =y 1x 1-t ,k PB =y2x 2-t, ∴k PA +k PB =0⇔y 1(x 2-t)+y 2(x 1-t)=0⇔2my 1y 2+(2-t)(y 1+y 2)=0⇔-40m-16m(2-t)=0. 上式对任意m ∈R 恒成立,其充要条件为-40m-16m(2-t)=0,解得t=92.故存在满足条件的定点P,其坐标为(92,0).技法五 换元法跟踪集训11.答案 f(x)=3e x +4解析 令ln x=t,则x=e t , f(t)=3e t +4,即f(x)=3e x +4.12.答案 x=log 23或x=log 213解析 由f(x)+f(-x)-2g(x)-2g(-x)=229,得4x +4-x -2(2x +2-x )=229,令t=2x +2-x ,则4x +4-x =t 2-2,故原方程可化为9t 2-18t-40=0,解得t=103或t=-43(舍去),则2x +2-x =103,即2x +12x =103, 解得2x =3或2x =13, 所以x=log 23或x=log 213. 13.答案12+√2解析 设sin x+cos x=t,则t ∈[-√2,√2],则y=t 22+t-12=12(t+1)2-1,当t=√2时,y 取最大值,y max =12+√2.技法六 构造法跟踪集训 14.答案 [14,+∞) 解析 对于任意的b>a>0,f(b)-f(a)b -a<1恒成立,等价于f(b)-b<f(a)-a 恒成立,设h(x)=f(x)-x=ln x+mx -x(x>0),则h(b)<h(a),所以h(x)在(0,+∞)上单调递减,所以h'(x)=1x -mx -1≤0在(0,+∞)上恒成立,所以m ≥-x 2+x=-(x -12)2+14(x>0),所以m ≥14,即实数m 的取值范围为[14,+∞). 15.答案 4,14解析 构造平面向量的数量积. 由函数解析式可得a>0,a ≠1,f(x)=x √a -x 2+x √1-x 2a -1,令m =(x,√1-x 2),n =(√a -x 2,x),则|m |=1,|n |=√a ,设m ,n 的夹角是α,α∈[0,π],则x √a -x 2+x √1-x 2=m ·n =√a cos α∈[-√a ,√a ],当0<a<1时, f(x)min =√aa -1=-23,解得a=14,适合;当a>1时, f(x)min =-√aa -1=-23,解得a=4,适合,故a 的值为4或14.技法七 逆向思维法跟踪集训 16.答案 (-∞,-1] 解析 若A ∩B=⌀,则①当A=⌀时,有Δ=(-4m)2-4(2m+6)<0,解得-1<m<32;②当A ≠⌀时,方程x 2-4mx+2m+6=0的两根x 1,x 2均为非负数,则{(-4m)2-4(2m +6)≥0,x 1+x 2=4m ≥0,x 1·x 2=2m +6≥0,解得m ≥32,则当A ∩B=⌀时,m>-1,故所求实数m 的取值范围为(-∞,-1].技法八 分离参数法跟踪集训 17.答案 (-∞,4]解析 已知条件可转化为a ≤2ln x+x+3x 恒成立. 设f(x)=2ln x+x+3x ,则f '(x)=(x+3)(x -1)x 2(x>0).当x ∈(0,1)时, f '(x)<0,函数f(x)单调递减;当x ∈(1,+∞)时, f '(x)>0,函数f(x)单调递增,所以f(x)min =f(1)=4,所以a ≤4.18.答案 (-∞,-6)解析 根据题意知13x 3-x 2-3x+43<-92x-c 2在x ∈[-2,2]上恒成立,则-c 2>13x 3-x 2+32x+43, 设g(x)=13x 3-x 2+32x+43,则g'(x)=x 2-2x+32,因为g'(x)>0恒成立,所以g(x)在[-2,2]上单调递增,所以g(x)max =g(2)=3,则c<-6.技法九 整体代换法跟踪集训19.答案632 解析1a 4a 6a 8+1a 2a 6a 8+1a 2a 4a 8+1a 2a 4a 6 =a 2120+a 4120+a 6120+a 8120=760,则2(a 2+a 8)=14,即a 2+a 8=7,所以S 9=9(a 2+a 8)2=632.20.答案 48解析 设正项等比数列的公比为q,q>0,则a 4+a 3-2a 2-2a 1=(a 2+a 1)(q 2-2)=6, 则a 2+a 1=6q 2-2>0,q 2>0,a 5+a 6=(a 2+a 1)q 4=6q 4q 2-2=6(q 2-2)+24q 2-2+24≥12√(q 2-2)·4q 2-2+24=48,当且仅当q=2时取等号,故a 5+a 6的最小值是48.技法十 判别式法跟踪集训21.答案 [-92,2)解析 已知函数式可变形为yx 2+2yx+3y=2x 2+4x-7,即(y-2)x 2+2(y-2)x+3y+7=0, 当y ≠2时,将上式视为关于x 的一元二次方程,∵x ∈R ,∴Δ≥0,即[2(y-2)]2-4(y-2)(3y+7)≥0,整理得2y 2+5y-18≤0,因式分解得2(y-2)(y +92)≤0,解得-92≤y<2(也可以依据二次函数y=2x 2+5x-18在x 轴下方的图象求解).当y=2时,3×2+7≠0,不符合题意,应舍去.故函数的值域为[-92,2).22.答案 (-∞,-2√2]∪[2√2,+∞)解析 因为S 5S 6+15=0,所以(5a 1+10d)(6a 1+15d)+15=0,化简得2a 12+9da 1+10d 2+1=0.因为a 1∈R ,所以Δ=81d 2-8(10d 2+1)≥0,得d ≥2√2或d ≤-2√2.23.答案 2解析 因为OC ⃗⃗⃗⃗⃗ 2=(x OA ⃗⃗⃗⃗⃗ +y OB⃗⃗⃗⃗⃗ )2,所以x 2+y 2-xy=1.(*) 记x+y=t,则x=t-y,代入(*),得(t-y)2+y 2-(t-y)y=1,化简得3y 2-3ty+t 2-1=0,因为Δ=(-3t)2-12(t 2-1)≥0,所以t 2≤4,所以x+y 的最大值是2.技法十一 归纳法跟踪集训24.答案 2 017-xe解析 f 3(x)=[f 2(x)]'=1×e x -(x -2)e x (e x )2=3-xe x ⇒f n (x)=(-1)n-1n -x e x ⇒f 2 017(x)=(-1)2 017-12 017-x e x =2 017-x e x . 25.答案 (1)3·2n -3 (2)9-9·(23)n解析 (1)由题图知,一级分形图中有3=3×2-3条线段,二级分形图中有9=3×22-3条线段,三级分形图中有21=3×23-3条线段,按此规律得n 级分形图中的线段条数为3·2n -3.(2)∵分形图的每条线段的末端出发再生成两条长度为原来13的线段,∴n 级分形图中第n 级的(最短的)所有线段的长度和为3·(23)n -1(n ∈N *),∴n 级分形图中所有线段的长度之和为3·(23)0+3·(23)1+…+3·(23)n -1=3·1-(23)n1-23=9-9·(23)n .技法十二 等积转化法跟踪集训26.答案 16解析 ∵PA ⊥平面ABCD,∴PA 是三棱锥P-CED 的高.∵四边形ABCD 是正方形,E 是AC 的中点,∴△CED 是等腰直角三角形.∵AB=1,∴CE=ED=√22,∴S △CED =12CE ·ED=12×√22×√22=14. ∴V C-PED =V P-CED =13·S △CED ·PA=13×14×2=16.27.解析 (1)证明:如图,取EC 的中点N,连接MN,BN. 在△EDC 中,M,N 分别为ED,EC 的中点,所以MN ∥CD,且MN=12CD.又AB ∥CD,AB=12CD,所以MN∥AB,且MN=AB.所以四边形ABNM为平行四边形,所以BN∥AM.因为BN⊂平面BEC,且AM⊄平面BEC,所以AM∥平面BEC.(2)如图,连接BD.在正方形ADEF中,ED⊥AD,因为平面ADEF⊥平面ABCD,且平面ADEF∩平面ABCD=AD,所以ED⊥平面ABCD,而BC⊂平面ABCD,所以ED⊥BC.在直角梯形ABCD中,AB=AD=1,CD=2,可得BC=√2.在△BCD中,BD=BC=√2,CD=2,所以BD2+BC2=CD2,所以BC⊥BD.又DE∩DB=D,所以BC⊥平面EDB.又BE⊂平面EDB,所以BC⊥BE.设点D到平面BEC的距离为d,由V D-BEC=V E-BCD,得13S △BEC ·d=13S △BCD ·ED, 即S △BEC ·d=S △BCD ·ED. 在△EDB 中,BE=√DE 2+DB 2=√3, 所以S △BEC =12·BE ·BC=12×√3×√2=√62, 又S △BCD =12·BD ·BC=12×√2×√2=1, 所以√62d=1×1,得d=√63,于是点D 到平面BEC 的距离为√63.。
姓名,年级:时间:考前强化练5解答题组合练A1.(2019辽宁葫芦岛高三二模,文17)已知数列{a n}是公比为q的正项等比数列,{b n}是公差d为负数的等差数列,满足1a2−1a3=da1,b1+b2+b3=21,b1b2b3=315。
(1)求数列{a n}的公比q与数列{b n}的通项公式;(2)求数列{|b n|}的前10项和S10。
2.设正项数列{a n}的前n项和S n满足2√S n=a n+1。
(1)求数列{a n}的通项公式;(2)设b n=1a n·a n+1,数列{b n}的前n项和为T n,求T n的取值范围。
3.(2019河北衡水高三一模,20)已知椭圆C:x2a2+y2b2=1(a>b〉1)离心率为√32,直线x=1被椭圆截得的弦长为√3。
(1)求椭圆方程;(2)设直线y=kx+m交椭圆C于A,B两点,且线段AB的中点M在直线x=1上,求证:线段AB的中垂线恒过定点。
4.如图,直三棱柱ABC-A1B1C1中,CC1=4,AB=BC=2,AC=2√2,点M是棱AA1上不同于A,A1的动点.(1)证明:BC⊥B1M;(2)若∠CMB1=90°,判断点M的位置并求出此时平面MB1C把此棱柱分成的两部分几何体的体积之比.5。
(2019天津南开高三一模,文)已知椭圆C:x2a2+y2b2=1(a〉b>0)的离心率为√63,两焦点与短轴的一个端点的连线构成的三角形面积为√2.(1)求椭圆C的方程;(2)设与圆O:x2+y2=34相切的直线l交椭圆C于A,B两点(O为坐标原点),求△AOB 面积的最大值.6。
已知抛物线C1:x2=y,圆C2:x2+(y-4)2=1的圆心为点M.(1)求点M到抛物线C1的准线的距离;(2)已知点P是抛物线C1上一点(异于原点),过点P作圆C2的两条切线,交抛物线C1于A,B两点,若过M,P两点的直线l垂直于AB,求直线l的方程。
考前强化练7 解答题组合练C1.(2019河北枣强中学高三模拟,文17)已知函数f (x )=√32sin 2x-cos 2x-12.(1)求f (x )的最小正周期;(2)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且c=√3,f (C )=0,若sin B=2sin A ,求a ,b 的值.2.已知数列{a n }中,a 1=1,其前n 项的和为S n ,且满足a n =2S S22SS -1(n ≥2).(1)求证:数列{1S S}是等差数列;(2)证明:当n ≥2时,S 1+12S 2+13S 3+ (1)S n <32.3.(2019辽宁葫芦岛高三二模,理18)如图,在多面体ABCDEF中,平面ADEF⊥平面ABCD.四边形ADEF 为正方形,四边形ABCD为梯形,且AD∥BC,△ABD是边长为1的等边三角形,M为线段BD中点,BC=3.(1)求证:AF⊥BD;(2)求直线MF与平面CDE所成角的正弦值;的值;若不存在,请说明理由. (3)线段BD上是否存在点N,使得直线CE∥平面AFN?若存在,求SSSS4.(2019山东淄博部分学校高三三模,理19)已知正方形的边长为4,E,F分别为AD,BC的中点,以EF 为棱将正方形ABCD折成如图所示的60°的二面角,点M在线段AB上.(1)若M为AB的中点,连直线MF,由A,D,E三点所确定平面的交点为O,试确定点O的位置,并证明直线OD∥平面EMC;(2)是否存在点M,使得直线DE与平面EMC所成的角为60°;若存在,求此时二面角M-EC-F的余弦值,若不存在,说明理由.5.已知椭圆C:S2S2+S2S2=1(a>b>0)的左、右焦点与其短轴的一个端点是正三角形的三个顶点,点D(1,32)在椭圆C上,直线l:y=kx+m与椭圆C相交于A,P两点,与x轴、y轴分别相交于点N和M,且|PM|=|MN|,点Q是点P关于x轴的对称点,QM的延长线交椭圆于点B,过点A,B分别作x轴的垂线,垂足分别为A1,B1.(1)求椭圆C的方程.(2)是否存在直线l,使得点N平分线段A1B1?若存在,求出直线l的方程,若不存在,请说明理由.6.(2019四川泸州高三二模,文20)已知抛物线C:y2=2px(p>0)的焦点为F,点P(1,a)在此抛物线上,|PF|=2,不过原点的直线l与抛物线C交于A,B两点,以AB为直径的圆M过坐标原点.(1)求抛物线C的方程;(2)证明:直线l恒过定点;(3)若线段AB中点的纵坐标为2,求此时直线l和圆M的方程.参考答案考前强化练7 解答题组合练C1.解(1)f (x )=√32sin2x-cos 2x-12=√32sin2x-1+cos2S2−12=√32sin2x-12cos2x-1=sin 2x-π6-1.所以函数f (x )的最小正周期为π.(2)由f (C )=0,得sin 2C-π6=1.因为0<C<π,所以-π6<2C-π6<11π6,所以2C-π6=π2,C=π3.又sin B=2sin A ,由正弦定理得SS =2.①由余弦定理,得c 2=a 2+b 2-2ab cos π3,即a 2+b 2-ab=3. ②由①②解得a=1,b=2.2.解(1)当n ≥2时,S n -S n-1=2S S22SS -1,S n-1-S n =2S n S n-1,1S S−1S S -1=2,从而{1S S}构成以1为首项,2为公差的等差数列.(2)由(1)可知,1S S=1S 1+(n-1)×2=2n-1,∴S n =12S -1,∴当n ≥2时,1S S n =1S (2S -1)<1S (2S -2)=121S -1−1S , 从而S 1+12S 2+13S 3+…+1S S n <1+121-12+12−13+…+1S -1−1S =32−12S <32. 3.(1)证明因为ADEF 为正方形, 所以AF ⊥AD.又因为平面ADEF ⊥平面ABCD ,且平面ADEF ∩平面ABCD=AD , 所以AF ⊥平面ABCD. 所以AF ⊥BD.(2)解取AD 中点O ,EF 中点K ,连接OB ,OK.在△ABD 中,OB ⊥OD ,在正方形ADEF 中,OK ⊥OD , 又平面ADEF ⊥平面ABCD ,故OB ⊥平面ADEF ,进而OB ⊥OK ,即OB ,OD ,OK 两两垂直,分别以SS ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,SS ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,SS ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系(如图).于是,B√32,0,0,D 0,12,0,C√32,3,0,E 0,12,1,M√34,14,0,F 0,-12,1,所以SS ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-√34,-34,1,SS ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-√32,-52,0,SS ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(0,0,1). 设平面CDE 的一个法向量为n =(x ,y ,z ),则{SS ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·S =0,SS ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·S =0,即{-√32·S -52·S =0,S =0,令x=-5,则y=√3,则n =(-5,√3,0). 设直线MF 与平面CDE 所成角为θ,sin θ=|cos <SS ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,n >|=|SS ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·S ||SS ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||S |=√314. (3)解要使直线CE ∥平面AFN ,只需AN ∥CD ,设SS ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =SSS ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,λ∈[0,1],设N (x n ,y n ,z n ),则x n -√32,y n ,z n =λ-√32,12,0,得x n =√32−√32S ,y n =12S ,z n =0,N √32−√32S ,12S ,0,所以SS ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =√32−√32S ,12S +12,0.又SS ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-√32,-52,0,由SS ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ∥SS ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,得√32-√32S -√32=12S +12-52,解得λ=23∈[0,1].所以线段BD上存在点N,使得直线CE∥平面AFN,且SSSS =23.4.解(1)因为直线MF⊂平面ABFE,故点O在平面ABFE内也在平面ADE内,所以点O在平面ABFE与平面ADE的交线EA上,如图所示.因为AO∥BF,M为AB的中点,所以△OAM≌△FBM.所以OM=MF,AO=BF.所以点O在EA的延长线上,且AO=2.连接DF,交EC于点N,因为四边形CDEF为矩形,所以N是EC的中点.连接MN,因为MN为△DOF的中位线,所以MN∥OD.又因为MN⊂平面EMC,所以直线OD∥平面EMC.(2)由已知可得,EF⊥AE,EF⊥DE,所以EF⊥平面ADE,所以平面ABFE⊥平面ODE,取AE的中点H为坐标原点,建立如图所示的空间直角坐标系,所以E(-1,0,0),D(0,0,√3),C(0,4,√3),F(-1,4,0),所以SS ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(1,0,√3),SS ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(1,4,√3), 设M (1,t ,0)(0≤t ≤4),则SS ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(2,t ,0). 设平面EMC 的法向量m =(x ,y ,z ),则{S ·SS ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0S ·SS ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0⇒{2S +SS =0,S +4S +√3S =0,取y=-2,则x=t ,z=√3,所以m =t ,-2,8-S √3.DE 与平面EMC 所成的角为60°,所以2√S 2+4+(8-S )23=√32. 所以√3√=√32. 所以t 2-4t+3=0,解得t=1或t=3.所以存在点M ,使得直线DE 与平面EMC 所成的角为60°.取ED 的中点Q ,则SS ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 为平面CEF 的法向量,因为Q -12,0,√32,所以SS ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =32,0,-√32,m =t ,-2,8-S √3,设二面角M-EC-F 的大小为θ,所以|cos θ|=|SS ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·S ||SS ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |·|S |=√3×√S 2+4+(8-S )23=√.因为当t=2时,cos θ=0,平面EMC ⊥平面CDEF ,所以当t=1时,θ为钝角,所以cos θ=-14.当t=3时,θ为锐角,所以cos θ=14.5.解(1)由题意得{S =√3S ,1S2+94S2=1,S 2=S 2+S 2,解得a 2=4,b 2=3,故椭圆C 的方程为S 24+S 23=1.(2)假设存在这样的直线l :y=kx+m ,∴M (0,m ),N (-SS ,0), ∵|PM|=|MN|,∴P (SS ,2S ),Q (SS ,-2S ), ∴直线QM 的方程为y=-3kx+m.设A (x 1,y 1),由{S =SS +S ,S 24+S 23=1,得(3+4k 2)x 2+8kmx+4(m 2-3)=0,∴x 1+S S =-8SS3+4S 2,∴x 1=-3S (1+4S 2)S (3+4S 2).设B (x 2,y 2),由{S =-3SS +S ,S 24+S 23=1,得(3+36k 2)x 2-24kmx+4(m 2-3)=0,∴x 2+S S =8SS1+12S 2,∴x 2=-S (1+4S 2)S (1+12S 2). ∵点N 平分线段A 1B 1,∴x 1+x 2=-2SS ,∴-3S (1+4S 2)S (3+4S 2)−S (1+4S 2)S (1+12S 2)=-2SS ,∴k=±12,∴P (±2m ,2m ),∴4S 24+4S 23=1,解得m=±√217, ∵|m|=√217<b=√3,∴Δ>0,符合题意,∴直线l 的方程为y=±12x±√217. 6.(1)解抛物线C :y 2=2px (p>0),其准线方程为x=-S2,∵点P (1,a )在此抛物线上,|PF|=2,∴点P 到准线的距离等于|PF|,即1+S2=2,得p=2, ∴所求抛物线方程为y 2=4x.(2)证明①当直线l 斜率存在时,设直线l 的方程为y=kx+m ,易知k ≠0,m ≠0.联立方程组得{S 2=4S ,S =SS +S ,从而可得方程k 2x 2+(2km-4)x+m 2=0,由题意可知Δ=(2km-4)2-4k 2m 2>0,设A (x 1,y 1),B (x 2,y 2),x 1+x 2=4-2SSS 2,x 1x 2=S 2S 2,所以y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2=4SS . 因为以AB 为直径的圆M 过坐标原点, 所以SS ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·SS ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,即x 1x 2+y 1y 2=0,所以S 2S 2+4SS=0,所以m=-4k.所以直线l 的方程为y=kx-4k ,即y=k (x-4),所以直线l 恒过定点(4,0).②当直线l 的斜率不存在时,易求得点A ,B 坐标分别为(4,4),(4,-4),直线l 也过点(4,0).综合①②可知,直线l 恒过定点(4,0).(3)解由题意可知直线l 斜率存在,设线段AB 中点坐标为(x 0,2),由(2)中所得x 1+x 2=4-2SSS 2,x 1x 2=S 2S2,则y 1+y 2=k (x 1-4)+k (x 2-4)=k (x 1+x 2)-8k=4S ,所以{2+4S 2S 2=S 0,2S=2,解得{S =1,S 0=6,所以直线l 的方程为y=x-4.因为线段AB 中点坐标为(6,2),即为圆M 的圆心坐标. 设圆M :(x-6)2+(y-2)2=r 2.将点(0,0)代入,得r 2=40, 所以圆M 的方程为(x-6)2+(y-2)2=40.。
考前强化练5 解答题组合练(A)
1.已知数列{a n}是等差数列,且a1,a2(a1<a2)分别为方程x2-6x+5=0的两根.
(1)求数列{a n}的前n项和S n;
(2)在(1)中,设b n=,求证:当c=-时,数列{b n}是等差数列.
2.(2018河北唐山一模,理17)已知数列{a n}为单调递增数列,S n为其前n项和,2S n=+n.
(1)求{a n}的通项公式;
(2)若b n=,T n为数列{b n}的前n项和,证明:T n<.
3.已知五边形ABCDE是由直角梯形ABCD和等腰直角三角形ADE构成,如图所示,AB⊥AD,AE⊥DE,AB∥CD,且AB=2CD=2DE=4,将五边形ABCDE沿着AD折起,且使平面ABCD⊥平面ADE.
(1)若M为DE中点,边BC上是否存在一点N,使得MN∥平面ABE?若存在,求的值;若不存在,说明理由;
(2)求二面角A-BE-C的平面角的余弦值.
4.
(2018河南六市联考一,理19)如图,在四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,O为AC与BD的交点,E为PB上任意一点.
(1)证明:平面EAC⊥平面PBD;
(2)若PD∥平面EAC,并且二面角B-AE-C的大小为45°,求PD∶AD的值.
5.(2018山东济南二模,理20)在平面直角坐标系xOy中,抛物线C:x2=2py(p>0),斜率为
k(k≠0)的直线l经过C的焦点,且与C交于A,B两点满足=-.
(1)求抛物线C的方程;
(2)已知线段AB的垂直平分线与抛物线C交于M,N两点,R为线段MN的中点,记点R到直线AB 的距离为d,若,求k的值.
6.已知抛物线C1:x2=y,圆C2:x2+(y-4)2=1的圆心为点M.
(1)求点M到抛物线C1的准线的距离;
(2)已知点P是抛物线C1上一点(异于原点),过点P作圆C2的两条切线,交抛物线C1于A,B两点,若过M,P两点的直线l垂直于AB,求直线l的方程.
参考答案
考前强化练5解答题组合练(A)
1.(1)解解方程x2-6x+5=0得其两根分别为1和5,∵a1,a2(a1<a2)分别为方程x2-6x+5=0的两根,∴a1=1,a2=5,
∴等差数列{a n}的公差为4,
∴S n=n·1+4=2n2-n.
(2)证明当c=-时,b n==2n,∴b n+1-b n=2(n+1)-2n=2,∴{b n}是以2为首项,公差为2的等差数列.
2.(1)解当n=1时,2S1=2a1=+1,所以(a1-1)2=0,即a1=1,
又{a n}为单调递增数列,所以a n≥1.
由2S n=+n得2S n+1=+n+1,
所以2S n+1-2S n=+1,
整理得2a n+1=+1,
所以=(a n+1-1)2.
所以a n=a n+1-1,即a n+1-a n=1,
所以{a n}是以1为首项,1为公差的等差数列,所以a n=n.
(2)证明b n=,
所以
T n=++…+=
3.(1)证明取BC中点为N,AD中点为P,连接MN,NP,MP.∵MP∥AE,AE⊂平面ABE,MP⊄平面ABE,∴MP∥平面ABE,同理NP∥平面ABE.又MP∩NP=P,∴MN∥平面ABE.∴边AB上存在这样的点N,
且
(2)解以A为原点,以AD为y轴,以AB为z轴建立空间直角坐标系.
则A(0,0,0),B(0,0,4),C(0,2,2),D(0,2,0),E(,0).
∵DE⊥AE,DE⊥AB,
∴DE⊥平面ABE.
∴平面ABE的一个法向量为=(,-,0).设平面BCE的一个法向量为n=(x,y,z),
=(0,2,-2),=(,-4),
令y=1,则x=3,z=,
∴n=(3,1,),
∴cos<,n>=,∴由图知二面角A-BE-C的平面角的余弦
值为-
4.(1)证明∵PD⊥平面ABCD,∴PD⊥AC.
又ABCD是菱形,
∴BD⊥AC,故AC⊥平面PBD,
∴平面EAC⊥平面PBD,
(2)解连接OE,因为PD∥平面EAC,
所以PD∥OE,所以OE⊥平面ABCD,
又O是BD的中点,故此时E为PB的中点,以O为坐标原点,射线OA,OB,OE分别为x,y,z
轴建立空间直角坐标系,
设OB=m,OE=h,则OA=m,
A(m,0,0),B(0,m,0),E(0,0,h),
向量n1=(0,1,0)为平面AEC的一个法向量,设平面ABE的一个法向量为n2=(x,y,z),则
n2=0且n2=0,
即取x=1,则y=,z=,则n2=1,.
∴cos 45°=|cos<n1,n2>|=,
解得,故PD∶AD=(2h)∶(2m)=h∶m=2.
5.解 (1)由已知,l的方程为y=kx+,设A(x1,y1),B(x2,y2),由得:x2-2pkx-p2=0,(*)
x1x2=-p2,y1y2=,
=x1x2+y1y2=-p2+=-,由已知得:-=-,p=1, ∴抛物线方程C:x2=2y.
(2)由第(1)题知,p=1,C:x2=2y,l:y=kx+,方程(*)即:x2-2kx-1=0,x1+x2=2k,x1x2=-1.
设AB的中点D(x0,y0),则x0=(x1+x2)=k,y0=kx0+=k2+,
所以AB的中垂线MN的方程:y-k2+=-(x-k),即x+y-k2-=0.
将MN的方程与C:x2=2y联立得:x2+x-2k2-3=0,设M(x3,y3),N(x4,y4),则
R.
=-,
=-+k2++k2+
R点到AB:kx-y+=0的距离d=
|AB|=|x1-x2|
=
==2(1+k2),
所以,由已知得:,得k=±1.
6.解 (1)由题意可知,抛物线的准线方程为y=-,所以圆心M(0,4)到准线的距离是
(2)设P(x0,),A(x1,),B(x2,),由题意得x0≠0,x0≠±1,x1≠x2.
设过点P的圆C2的切线方程为y-=k(x-x0),即y=kx-kx0+
则=1,即(-1)k2+2x0(4-)k+(-4)2-1=0.
设PA,PB的斜率为k1,k2(k1≠k2),则k1,k2是上述方程的两根,所以
k1+k2=,k1k2=
将①代入y=x2,得x2-kx+kx0-=0,由于x0是此方程的根,故x1=k1-x0,x2=k2-x0,
所以k AB==x1+x2=k1+k2-2x0=-2x0,k MP=
由MP⊥AB,得k AB·k MP=-2x0=-1,解得,
即点P的坐标为±,所以直线l的方程为y=±x+4.。