液氨泄漏事故后果分析
- 格式:docx
- 大小:4.42 MB
- 文档页数:6
液氨泄漏事故调查报告一、调查背景近日,发生了一起液氨泄漏事故,造成了严重的后果。
本报告旨在对该事故进行全面的调查与分析,以找出事故原因,并提出相应的改善措施,以避免类似事故再次发生。
二、事故概述在XX公司某化工厂,液氨储罐发生泄漏,导致大量液氨释放到空气中,并迅速蔓延至厂区周边。
事故发生后,厂区被迫疏散,造成了工人伤亡和环境污染的严重后果。
三、事故原因分析经过对事故现场和相关数据的调查与分析,我们得出以下结论:1.设备故障:液氨储罐的泄漏是由设备故障引起的。
液氨储罐在过去几个月中未经过维护和检修,导致了设备的老化和损坏。
2.操作失误:在事故发生时,操作人员没有立即采取正确的紧急措施。
他们未能立即发出紧急停工信号,也没有及时启动应急泄漏处理装置。
3.应急预案不完善:公司缺乏完善的应急预案,未能提供明确的操作指导和培训,导致操作人员在事故发生时没有足够的应对经验和知识。
四、改善措施为了防止类似的事故再次发生,我们建议以下改善措施:1.设备维护与检修:公司应建立完善的设备维护与检修计划,定期对液氨储罐进行检查和维护,确保设备的安全运行。
2.操作培训与应急演练:公司应加强操作人员的培训,提高其应对突发事件的能力。
定期组织应急演练,加强应急预案的执行能力。
3.安全意识教育:公司应加强员工的安全意识教育,提高他们对液氨泄漏等危险情况的认识,教育他们正确的紧急处理方法。
4.安全设施升级:公司应考虑对液氨储罐周围的安全设施进行升级,如增加泄漏报警装置和自动关闭阀门等,以减少事故发生的可能性。
五、责任追究与处罚针对本次事故,公司已对相关责任人进行了严肃的问责和处罚。
公司将继续加强对生产安全的管理,并保证类似事故的不再发生。
六、结论液氨泄漏事故的发生给公司和员工带来了巨大的损失。
通过对事故原因的分析和改善措施的提出,相信公司能够从中吸取教训,并采取有效措施,预防类似事故的再次发生。
公司将继续致力于加强安全管理,确保员工和环境的安全。
液氨泄漏原因和燃爆危害分析及从中吸取的事故教训摘要:某公司氮化工艺使用的液氨钢瓶,在使用过程中,钢瓶输出气体阀门接管与连接胶管发生脱落,造成液相气体泄漏,现场人员无法处置,后经消防人员携带空气呼吸器到场才制止了事故的进一步扩大,从而避免了一起重大事故的发生,该起事故虽然未造成大的后果,但事故的性质是严重的,通过对泄漏原因和燃爆危害分析,从中看出事故的具大风险,从而采取切实有效的防范措施,充分吸取事故教训。
关键词:液氨泄漏风险应急处置吸取教训引言:液氨气体大量应用在工业生产中,在实际应用过程中经常发生泄漏、人员中毒、火灾爆炸等事故,一旦发生事故,往往会带来灾难性的后果,如何防范事故的发生,是我们研究的课题,下面就一起发生在公司的液氨泄漏事故进行剖析,找出其中的原因,采取切实有效的防范措施,以防止类似事故的重复发生。
一、事故经过2010年7月24日,某公司氮化使用的液氨气体发生泄漏,现场操作人员试图关闭液氨气瓶阀门,但刚接近泄漏区域,即感到眼睛受到强烈刺激,无法呼吸,因此而无法将仍在漏出液氨气体的气瓶阀门关闭,使得液氨继续向外泄漏,情况万分危急,因为液氨气瓶所处位置是在生产厂房内部,离泄漏点不足10米处便是热处理加热电炉,连续产生明火,一旦泄漏的液氨气体达到爆炸浓度,遇到明火便会发生剧烈爆炸,后果将不勘设想。
这时,操作人员便立即报告了公司领导,公司领导也试图进入现场关闭阀门,无奈根本无法接近,见此情景,公司领导立即拨打总公司消防队电话,并讲明了事态的情况,要求携带空气呼吸器进行救援,三分钟之内,消防队赶到现场,消防队员带上空气呼吸器进入泄漏现场实施关闭阀门作业,但由于对阀门结构不熟悉而失败,便将空气呼吸器由操作人员佩戴进入现场将气瓶阀门关闭,从而制止了液氨气体的进一步泄漏,避免了一起重大爆炸事故的发生。
二、事故的危险性分析液氨气体在危险化学品名录中,被列入高毒物品行列,且属于易燃易爆气体。
其理化特性为:无色气体,有刺激性恶臭味。
液氨泄漏中毒事故后果分析液氨泄漏为液体泄漏,泄漏的液体在空气中蒸发而生成气体。
本项目氨储罐中液氨的贮存压力为2.5MPa ,温度为常温,属加压常温下的液体泄漏,这种液体泄漏时将形成液池,吸收周围热量蒸发扩散,引起中毒。
(1)毒害区估算若液氨罐破裂后,未发生燃爆,会造成大面积的毒害区域。
泄漏后的液氨在沸点下氨蒸汽体积Vg (m 3)为 Vg=273273)(4.220t mg t t WXC +⨯- 式中:W ——为液氨量,100×0.85×603=51255kgt —— 25℃t 0—— -33℃c ——液氨比热(4.6KJ/kg ℃)g ——液氨汽化热(1.37×103KJ/kg )m ——分子量(17) Vg=334.11562273332731037.117)3325(6.4512554.22m =-⨯⨯⨯+⨯⨯⨯ 若液氨罐破裂时,当液氨在空气中的浓度达到c=0.5%时,人吸入5-10min 即致死,那么可致死的有毒气体体积约为:11562.4/0.5=23124.9m 3假设这些有毒气体以半球形向地面扩散,则有毒气体扩散半径为: R=m c Vg 3.220944.2/3(2)从以上计算说明:a 、瞬时泄漏(不超过30s )时,泄漏半径约13.61m (根据泄漏流速而得)。
b 、当氨罐破裂泄漏时空气中氨浓度达到0.5%时吸入5-10min 就会发生人员中毒致亡事故。
c 、氨罐泄漏半径为22.3m ,在此范围内如果5分钟内人员未逃离现场会发生中毒致亡事故。
d 、一般来说,接触毒物时间不会超过30分钟,因为在这段时间内人员完全可以逃离现场或采取保护措施。
4. 高压反应釜发生爆炸事故的预测及后果根据该公司的生产条件,选定物理爆炸模型,模拟计算高压反应釜爆炸产生的能量及伤亡范围,最后对风险程度作出总结,给出建议。
一、爆炸的可能性该公司生产过程中,爆炸为主要危险因素,容易发生爆炸并能造成较严重后果的主要是氨化反应釜、液氨罐等位置。
一、前言液氨作为一种重要的化工原料,广泛应用于化肥、制药、化工等行业。
然而,由于液氨具有高度毒性和易燃性,一旦发生泄漏,将给人们的生命财产安全带来严重威胁。
因此,制定液氨应急预案,对预防和减少液氨事故的发生具有重要意义。
本报告对液氨应急预案进行安全评价,旨在为液氨企业制定有效的应急预案提供参考。
二、液氨事故危害分析1. 毒性危害:液氨在空气中达到一定浓度时,对人体产生毒性作用,可引起呼吸道、眼睛、皮肤等部位刺激,严重时导致中毒甚至死亡。
2. 爆炸危害:液氨在空气中达到一定浓度时,遇火源或高温可发生爆炸,造成人员伤亡和财产损失。
3. 火灾危害:液氨泄漏遇明火或高温,可引发火灾,加剧事故危害。
4. 环境污染:液氨泄漏会污染土壤、水源和大气,对生态环境造成严重影响。
三、液氨应急预案内容1. 组织机构及职责(1)成立液氨事故应急指挥部,负责事故的统一指挥、协调和决策。
(2)设立应急办公室,负责应急物资储备、信息收集、宣传报道等工作。
(3)设立现场指挥部,负责现场救援、事故调查、人员疏散等工作。
2. 预警与报告(1)建立液氨泄漏预警机制,对液氨储存、运输、使用等环节进行严密监控。
(2)发现液氨泄漏事故时,立即向应急指挥部报告,并启动应急预案。
3. 应急响应(1)现场救援:立即组织专业救援队伍,采取有效措施,控制泄漏源,隔离事故区域。
(2)人员疏散:根据事故情况,迅速组织受威胁区域人员疏散,确保人员安全。
(3)医疗救护:对受伤人员实施紧急救治,送往医院进行进一步治疗。
4. 应急处置(1)泄漏控制:采取堵漏、封堵、稀释等措施,降低泄漏量。
(2)事故调查:对事故原因进行调查,查明事故责任。
(3)环境污染治理:对泄漏区域进行环境监测,采取有效措施,减轻环境污染。
5. 应急恢复(1)恢复正常生产:在确保安全的前提下,逐步恢复生产。
(2)总结评估:对事故应急处理过程进行总结评估,完善应急预案。
四、液氨应急预案安全评价1. 有效性评价(1)组织机构及职责:应急预案中组织机构及职责明确,能够确保事故应急工作的顺利进行。
氨泄漏危险性分析及处置氨又称液氨,它是有毒可燃气体,是一种重要的化工原料,在高温、高压和催化剂的作用下,氢和氮直接化合制得。
氨的用途较为广泛,可制作铵盐、硝酸铵和尿素,还可用做冷藏库的制冷剂等等,氨易溶于水,能形成氢氧化铵的碱性溶液,氨在20℃水中的溶解度为34%,1份水能溶700份液氨,氨的水溶液叫氨水。
为运输及储存便利,通常将气态的氨气通过加压或冷却得到液态氨,在生产、储存、运输、使用过程中如发生泄漏、易引起燃烧爆炸或中毒事故,处置不慎,将会造成严重后果。
1 、氨泄漏的危害1.1、易气化扩散氨(NH3)为无色、有刺激性和恶臭味的气体,分子量17.03,气态比重0.59,液态比重0.82,扩散系数0.198,沸点-33.5℃,氨在常温下呈气态,在常温加压1.554MPa或冷却到-33.4℃就可变成液态,液态氨是在高压或低温状态下储存的,发生泄漏时,由液相变为气相,液氨会迅速气化,体积迅速扩大,没有及时气化的液氨以液滴的形式雾化在蒸气中;在泄漏初期,由于液氨的部分蒸发,使得氨蒸气的云团密度高于空气密度,氨气随风飘移,易形成大面积染毒区和燃烧爆炸区,需及时对危害范围内的人员进行疏散,并采取禁绝火源措施。
2002年7月8日,山东某化肥厂一个储存为二十立方液氨储罐,向一辆液氨槽车充装液氨时,由于车载金属软管发生爆裂,液氨迅速扩散,仅几分钟时间,氨气就笼罩了整个厂区,危及到2000名群众的生命安全,该事故造成105人中毒,死亡13人,重伤24人,中度伤员12人。
2013年8月31日,上海宝山区丰翔路1258号翁牌冷藏实业有限公司发生液氨泄漏事故。
截至目前,事故已造成15人死亡、5人重伤、20人轻伤。
1.2 易中毒伤亡氨有毒、有刺激性和恶臭味的气体,容易挥发,氨泄漏至大气中,扩散到一定的范围,易造成急性中毒和灼伤,每立方米空气中最高允许浓度为30 mg/m3,当空气中氨的含量达到0.5-0.6%,30分钟内即可造成人员中毒;氨气侵入人体的主要途径是皮肤、感觉气管、呼吸道和消化道等部位。
2018年10月液氨储罐火灾爆炸及泄漏事故后果的分析评价龙梅(四川省安科技术咨询有限公司,四川成都610041)摘要:氨是较为重要的化工原料,在运输、使用中如果未严格按照相应的流程,则会导致泄漏现象发生,这不仅对周边的环境造成影响,也会导致火灾爆炸的发生。
在本文中主要通过事故树分析法,对液氨储罐火灾爆炸以及泄漏事故进行了分析与研究,找出主要原因,提出相应的改进对策,旨在提高液氨储罐运行的安全性。
关键词:液氨储罐;火灾爆炸;泄漏事故;事故树众所周知,液氨也被称之为液体无水氨,在有机化工产品、化学肥料等方面得到了有效应用,液氨属于乙类易燃、易爆的液体,如果发生泄漏则会导致人员出现中毒死亡,并且遇明火易发生燃烧与爆炸。
在近几年全国各地有关氨气泄漏的事故层出不穷,对社会的和谐发展以及人们的生命财产安全有所损害,所以在新时期需要从本质上出发,对火灾爆炸的原因加以分析,并做好定性与定量分析,制定完善的防范措施。
1液氨储罐火灾爆炸与泄漏事故的事故树1.1事故树的分析从整体角度上分析,液氨储罐火灾爆炸事故树也被称之为液氨储罐火灾爆炸故障树分析,简而言之便是将结果作为主要的出发点,将引发爆炸的原因加以探索,并分析各个事件之间所存在的逻辑关系。
在采取事故树分析中需要根据实际的发展情况,针对液氨储罐发生火灾爆炸的各项原因进行层层分析,并且根据工艺流程以及所探寻的规律制定树桩结构图。
1.2液氨储罐火灾爆炸的条件严格意义上分析,只有具备一定的条件才会导致液氨储罐发生火灾爆炸现象,其中第一个条件便是点火源,包括明火、人体静电放电、机械火花、雷电等等,明火涉及到了动火作业以及非作业火源,如工作人员吸烟导致明火等;人体静电放电则是指在整个作业过程中出现静电,或者没有采取相应的防静电措施;机械火花中具有代表性的则是金属之间出现碰撞引发火花;雷击则是防雷接地作用未发挥,导致雷击火花的发生。
第二个条件则是氨气达到了爆炸下限,之所以导致这种现象的原因是因为储罐发生泄漏,气体扩散速度比较慢等。
5.7液氨泄漏重大事故后果预测以储量较大、危险性较大的液氨储罐分析事故后果,1台液氨储罐(20m3)破裂时会发生蒸气爆炸。
当液氨爆炸后若不燃烧,便会造成大面积的毒害区域。
假设有毒液氨的质量W为12056.5kg(一只20m3的贮罐破裂,25℃时液氨的密度为0.602824kg/L),贮罐破裂前容器内温度t为25℃(室温),液氨的平均比热C为4.6kJ/(kg·℃)。
当贮罐破裂时,容器内压力降至大气压,处于过热状态的液氨温度迅速降至标准沸点t0=-33℃,此时全部液体放出的热量为:Q=W·C(t-t0)=12056.5×4.6×(25+33)=3216669kJ假设这些热量全部用于容器内液体的蒸发,氨的汽化热q=1370kJ/kg,则其蒸发量为:W‘=Q/q=3216669/1370=2348kg 氨的分子量M=17,则在沸点下蒸发蒸气的体积为:Vg=(22.4W‘/M)·(273+t0)/273=22.4×2348÷17×(273-33)÷273=2719.9m3氨气泄漏的扩散范围为已知氨气在空气中的浓度达到0.5%时,人吸入5-10min即致死,则Vg体积的氨气产生的令人致死的有毒空气体积为:V=2719.9/0.5%=5439710.4m3假设这些有毒空气以半球形状向地面扩散,则可求出该有毒空气的扩散半径为:R=【V/(0.5×π×4/3)】1/3=137.5m上述计算结果表明:若发生一只液氨贮罐破裂的泄漏事故,中毒危害将波及一定的范围,在离泄漏点的137.5m的半径范围内,人吸入5-10min即可中毒死亡。
根据本项目周边环境的情况,项目周边均为园区预留空地,周边周边1km范围内无大型集中民用居住区、商业中心、学校,也没有车站、码头等公共设施,亦无珍稀保护物种和名胜古迹。
零散居民距离项目储罐区200m范围之外,若液氨贮罐发生泄漏,对周边的居民不会造成影响。
液氨泄漏事故后果分析seek; pursue; go/search/hanker after; crave; court; woo; go/run after液氨泄漏事故后果分析液氨钢瓶泄漏的氨将全部挥发成气态氨,下面分析泄漏的气态氨对周边区域的影响.1事故情况下泄漏量估算对于液体氨的泄漏,假定泄漏口直径为1cm,液氨钢瓶压力为3MPa,环境温度为20℃.泄漏口面积为:A=7.85×10-5m 2.泄漏量ρρ)(20P p A C Q d -=式中:Q ——液体泄漏速度,kg/s ; Cd ——液体泄漏系数; A ——裂口面积,m 2;ρ——泄漏液体密度,kg/m 3;ρ液氨=1070kg/m 3; p ——容器内介质压力,Pa ; p 0——环境压力,Pa ;液体氨从泄漏口喷出后全部闪蒸.因此,氨气体挥发速率4.02kg/s. 液氨钢瓶泄漏达到爆炸下限所需时间液氨爆炸下限%V/V :15.7,经计算其爆炸下限质量浓度为119.2g/m 3,布满200m 3液氨分解区空间体积约为200m 3的密闭空间内达到爆炸下限的氨气的量为:23.84kg.根据蒸发速度,达到爆炸下限所需要时间为:23.84/4.02=5.93s根据上述计算过程,计算液氨泄漏挥发达到爆炸下限所需要时间汇总见下表:表F3-22液氨泄漏达到爆炸下限所需时间计算表液氨钢瓶泄漏达到短时间接触限值所需时间液氨人短时间接触容许浓度30mg/m 3,布满200m 3的密闭空间内达到短时间接触限值的氨气的量为:6g. 3、具有爆炸性化学品的作业场所出现爆炸、火灾事故造成人员伤亡的范围 本专篇选取液氨为例,计算液氨钢瓶发生爆炸事故造成人员伤亡的范围. 气体的TNT 当量W TNT 及爆炸总能量E 为: W TNT =αW f Q f /Q TNT式中:W TNT ——可燃气体蒸汽云的TNT 当量,kg ;α——可燃气体蒸气云的TNT当量系数统计平均值为0.04 W f ——蒸气云爆炸燃烧掉的总质量,kg ; Q f ——可燃气体的燃烧热,氨1.88×104KJ/kg ; Q TNT ——TNT 的爆炸热,KJ/kg.Q TNT 为4520KJ/kg可燃气体的爆炸总能量为: E=1.8αWQ式中,E 为可燃气体的爆炸总能量,KJ ;1.8为地面爆炸系数. 1可燃气体的TNT 当量及爆炸总能量E假定有一只液氨钢瓶中有50%的液氨泄漏,发生蒸汽云爆炸,计算过程如下: W TNT =αWQ/Q TNT =0.04×125×50%×1.88×104/4520=10.4kg E=1.8αWQ=1.8×0.04×125×50%×1.88×104=8.46×104kJ 2死亡区域计算 L 死=13.6×W TNT /10000.37=13.6×10.4/10000.37=2.5m伤亡范围S=3.14×2.52=19.63m2附表9-15 液氨储罐泄漏事故预测后果分析根据氨的毒理特性,人暴露于大于3500mg/m3浓度下会立即死亡,暴露于553mg/m3浓度下可发生强烈的刺激症状.在本次计算假定的泄漏情况下,在极小的范围内会造成人员死亡现象.在静风情况下87.1m范围内,有风情况下429.9m范围内,会超过553mg/m3的要求,在该范围内人员接触可发生强烈刺激症状,长时间接触会产生不适,可见在假定液氨储罐发生泄漏的情况下,429.9m范围内对人体影响较大.距离本工程氨储罐最近的南屏乡双桥村6组居民点3已列入搬迁计划,超过了在假定液氨储罐发生泄漏情况下的较重影响范围内,在事故状态下居民可能感受到刺激症状,但不会有生命危险,且影响时间较短,应及时疏散人员.。
液氨泄漏危害与安全防控探讨液氨是一种常用的工业气体,常用于制冷、冷藏和化工过程中。
液氨泄漏可能导致严重的危害,包括人员伤亡、环境污染和财产损失。
对液氨的安全防控至关重要。
液氨泄漏的危害主要包括以下几个方面:1. 人员伤亡:液氨泄漏会迅速转化为氨气,氨气具有刺激性和腐蚀性,对人体呼吸道和眼睛有严重损害。
高浓度的氨气会导致窒息和化学灼伤,甚至致命。
2. 环境污染:氨气是一种可溶于水的气体,泄漏后会很快蒸发和扩散到周围环境,对土壤、水源和生态系统造成污染。
氨气还会与大气中的氧气反应产生一氧化氮,进一步对环境造成影响。
3. 财产损失:液氨泄漏会引起火灾和爆炸风险,对周围设备和建筑物造成损害。
泄漏的液氨还会导致生产中断和设备故障,给企业带来经济损失。
为了安全防控液氨泄漏的危害,需要采取以下措施:1. 建立液氨泄漏的安全管理体系,包括责任分工、紧急响应预案和定期演练。
制定详细的工作程序和操作规范,确保人员能够迅速、正确地应对液氨泄漏事件。
2. 安装监测设备,及时监测液氨的压力、温度和泄漏情况。
可以使用气体探测器、温度传感器和压力监测仪等设备,实时监控液氨系统的运行状态,一旦发现异常立即采取措施。
3. 加强液氨储存和运输的安全管理,确保储罐、管道和阀门的完整性和稳定性。
定期进行检修和维护,避免设备老化和损坏导致泄漏。
4. 提供相关人员的安全培训和教育,使他们了解液氨的危害性和应急处理方法。
特别是涉及液氨操作的工作人员,需要具备相关证书和经验,能够熟练操作并正确应对突发事件。
5. 配备必要的个人防护装备,包括呼吸器、护目镜、防护服等。
在液氨泄漏事故中,紧急处理人员需要佩戴适当的个人防护装备,防止受到氨气和腐蚀性物质的伤害。
液氨泄漏的危害性很高,需要采取一系列的安全防控措施来降低事故发生的概率和减少危害。
这包括建立管理体系、安装监测设备、加强储运管理、提供安全培训和配备个人防护装备等。
只有全面提高安全意识和防控能力,才能确保液氨泄漏事件的控制和减少相关风险。
液氨泄漏事故案例分析2002年7月8日凌晨2时09分,XXX发生液氨泄漏事故,共泄漏液氨约20.1吨,造成死亡13人,重度中毒24人,直接经济损失约72.62万元。
事故经过:一辆个体液氨罐车在XXX液氨库区灌装场地进行液氨灌装。
到凌晨2点左右,液氨连接导管突然破裂,大量液氨泄漏。
驾驶员吩咐押运员关闭灌装区西侧约64m处的紧急切断阀,自己迅速赶到罐车尾部,对罐车的紧急切断装置采取关闭措施,一边与厂值班人员联系并电话报警。
事故原因分析:经省政府调查组调查初步分析,发生事故的原因有以下四个方面:1.液相连接导管破裂是造成事故的直接原因。
初步查明,液相连接导管供货单位是河北省无生产许可证的一家镇办企业。
从发生事故前的记录看,液相连接导管的工作压力、温度及使用期限均未超出规定范围,是在正常使用条件下发生的破裂,这是造成这起事故的直接原因。
2.液氨罐车上的紧急切断装置失灵是液氨泄漏扩大的主要原因。
虽然驾驶员对罐车上的紧急切断阀采取了紧急切断措施,但由于该装置失灵,致使罐车上液氨倒流泄漏,导致事故的进一步扩大。
3.液氨罐区与周围居民区防护间距不符合规范要求,是导致事故伤亡扩大的重要原因。
根据《小型氨肥厂卫生防护标准》(GB-89)和当地气象条件,卫生防护距离要求为1000m,而实际最近距离不足25m,远远低于规范要求。
4.安全管理制度和责任制不落实是发生事故的重要原因。
企业在采购液相连接导管时,没有遵守规章制度,没有严格把关,导致购买了无证厂家生产的产品,给安全生产带来了严重隐患。
企业制定的《液氨充装安全管理规定》要求检查液氨罐车的相关证件是否齐全、合格,不合格者拒绝充装。
但该液氨罐车未办理《危险品运输许可证》,手续不全。
规定还要求检查液氨罐车的安全设施,符合规定才能充装。
但企业提供不出该车的充装安全许可证。
由此可见,企业虽然有《规定》,但未严格执行,安全制度不落实,这是事故发生的重要原因。
有关部门在项目审批和城建规划上监督不力,危险化学品安全管理方面存在漏洞,措施不到位,未能及时督促企业解决安全生产中存在的突出问题,致使同类事故在辖区内重复发生。
液氨泄漏事故后果分析 Hessen was revised in January 2021
液氨泄漏事故后果分析
液氨钢瓶泄漏的氨将全部挥发成气态氨,下面分析泄漏的气态氨对周边区域的影响。
(1)事故情况下泄漏量估算
对于液体氨的泄漏,假定泄漏口直径为1cm ,液氨钢瓶压力为3MPa ,环境温度为20℃。
泄漏口面积为:A=×10-5m 2。
泄漏量
ρ
ρ
)
(20P p A C Q d -=
式中:Q ——液体泄漏速度,kg/s ; Cd ——液体泄漏系数; A ——裂口面积,m 2;
ρ——泄漏液体密度,kg/m 3;ρ液氨=1070kg/m 3; p ——容器内介质压力,Pa ; p 0——环境压力,Pa ;
液体氨从泄漏口喷出后全部闪蒸。
因此,氨气体挥发速率s 。
液氨钢瓶泄漏达到爆炸下限所需时间
液氨爆炸下限%(V/V):,经计算其爆炸下限质量浓度为 m 3,布满200m 3(液氨分解区空间体积约为200m 3)的密闭空间内达到爆炸下限的氨气的量为:。
根据蒸发速度,达到爆炸下限所需要时间为:=
根据上述计算过程,计算液氨泄漏挥发达到爆炸下限所需要时间汇总见下表:
表F3-22 液氨泄漏达到爆炸下限所需时间计算表
液氨钢瓶泄漏达到短时间接触限值所需时间
液氨人短时间接触容许浓度30mg/ m3,布满200m3的密闭空间内达到短时间接触限值的氨气的量为:6g。
3、具有爆炸性化学品的作业场所出现爆炸、火灾事故造成人员伤亡的范围
本专篇选取液氨为例,计算液氨钢瓶发生爆炸事故造成人员伤亡的范围。
气体的TNT当量W TNT及爆炸总能量E为:
W TNT=αW f Q f/Q TNT
式中:W TNT——可燃气体蒸汽云的TNT当量,kg;
α——可燃气体蒸气云的TNT当量系数(统计平均值为
W f——蒸气云爆炸燃烧掉的总质量,kg;
Q f——可燃气体的燃烧热,氨×104KJ/ kg;
Q TNT——TNT的爆炸热,KJ/kg。
Q TNT为4520 KJ/kg
可燃气体的爆炸总能量为:
E=αWQ
式中,E为可燃气体的爆炸总能量,KJ;为地面爆炸系数。
(1)可燃气体的TNT当量及爆炸总能量E
假定有一只液氨钢瓶中有50%的液氨泄漏,发生蒸汽云爆炸,计算过程如下:
W TNT=αWQ/Q TNT=×125×50%××104/4520=10.4kg
E=αWQ=××125×50%××104=×104kJ
(2)死亡区域计算
L死=×(W TNT/1000)
=×1000)
=2.5m
伤亡范围S=×=
附表9-15 液氨储罐泄漏事故预测后果分析
根据氨的毒理特性,人暴露于大于3500mg/m3浓度下会立即死亡,暴露于553mg/m3浓度下可发生强烈的刺激症状。
在本次计算假定的泄漏情况下,在极小的范围内会造成人员死亡现象。
在静风情况下87.1m范围内,有风情况下429.9m范围内,会超过553mg/m3的要求,在该范围内人员接触可发生强烈刺激症状,长时间接触会产生不适,可见在假定液氨储罐发生泄漏的情况下,429.9m范围内对人
体影响较大。
距离本工程氨储罐最近的南屏乡双桥村6组居民点3(已列入搬迁计划),超过了在假定液氨储罐发生泄漏情况下的较重影响范围内,在事故状态下居民可能感受到刺激症状,但不会有生命危险,且影响时间较短,应及时疏散人员。