表面活性剂的性能测定与评价
- 格式:doc
- 大小:2.35 MB
- 文档页数:12
表面活性剂的介绍与分析方法摘要:近年来,随着石油化工的高速发展,为表面活性剂的合成提供了丰富的原料,是表面活性剂的产量和品种迅速增长,成为国民经济的基础工业之一。
由于表面活性剂具有润湿、乳化、分散、增溶、起泡、消泡、均染、洗涤、抗静电、防腐、杀菌等一系列独特的作用和功能,表面活性剂对改进生产工艺、提高产品质量、降低成本、节约能源、提高生产率、增加附加值等方面发挥了巨大作用,因此有“工业味精”和“工业催化剂”之称。
关键字:表面活性剂;一、简介自然界存在着大量既亲水又亲油的所谓“两亲性”分子。
这类物质通常都具有亲水性链段和亲油性链段两个部分,从而使其具有“两亲”功能。
1930年Freundlich 将加入少量时就能使水的表面张力或者液-液界面张力大为降低的两亲物质称作表面活性剂。
随着人们对这种“两亲”结构物质研究的深入,表面活性剂这一概念从降低表面张力这一表面现象扩展到所有表面性能上,将少量使用即可使表面或界面的一些性质(如乳化、增溶、分散、渗透、润湿)发生显著变化的物质都叫表面活性剂。
近年来,随着石油化工的高速发展,为表面活性剂的合成提供了丰富的原料,是表面活性剂的产量和品种迅速增长,成为国民经济的基础工业之一。
由于表面活性剂具有润湿、乳化、分散、增溶、起泡、消泡、均染、洗涤、抗静电、防腐、杀菌等一系列独特的作用和功能,表面活性剂对改进生产工艺、提高产品质量、降低成本、节约能源、提高生产率、增加附加值等方面发挥了巨大作用,因此有“工业味精”和“工业催化剂”之称。
随着经济和科学技术的发展,表面活性剂的应用领域从日用化学工业扩展到食品、农业、环保、医药、石油加工、采矿等一切生产及技术领域。
值得一提的是,两亲分子的设计赋予表面活性剂新的功能及应用,成为解决许多实际问题的钥匙。
二、特点及分类1常见表面活性剂的种类任一种表面活性剂的分子都是由两种不同性质的基团所组成,非极性的亲油基团和极性的亲水基团。
也就是说,表面活性剂既具有亲水性,又具有亲油性,形成一种所谓“两亲结构”的分子,如图1-1所示。
实验6 表面活性剂CMC值的测定——电导法一、实验目的:1、学习并掌握表面活性剂CMC值的电导测定方法;2、了解表面活性剂的性质与应用;3、学习电导法测定十二烷基硫酸钠的cmc,了解表面活性剂的特性及胶束形成原理;4、掌握DDS-11A型电导率仪和恒温槽的使用方法。
二、实验原理:具有明显“两亲”性质的分子,既含有亲油的足够长的烃基,又含有亲水的极性基团。
由这一类分子组成的物质称为表面活性剂,见图1(a)。
表面活性剂为了使自己成为溶液中的稳定分子,有可能采取的两种途径:一是当它们以低浓度存在于某一体系中时,可被吸附在该体系的表面上,采取极性基团向着水,非极性基团脱离水的表面定向,形成定向排列的单分子膜,从而使表面自由能明显降低,见图1(c);二是在表面活性剂溶液中,当溶液浓度增大到一定值时,表面活性剂离子或分子不但在表面聚集而形成单分子层,而且在溶液本体内部也三三两两的以憎水基相互靠拢,聚在一起形成胶束。
胶束可以成球状、棒状或层状。
形成胶束的最低浓度称为临界胶束浓度(Critical Micelle Concentration, CMC),如图1(b)。
(a) (b) (c)图1CMC是表面活性剂的一种重要量度,CMC越小,则表示这种表面活性剂形成胶束所需浓度越低,达到表面(界面)饱和吸附的浓度越低,只有溶液浓度稍高于CMC时,才能充分发挥表面活性剂的作用。
比如图2的洗涤去污过程。
目前表面活性剂广泛用于石油、纺织、农药、采矿、食品、民用洗涤等各个领域,具有润湿、乳化、洗涤、发泡等重要作用。
图2 表面活性剂的洗涤原理图由于溶液的结构发生改变,表面活性剂溶液的许多物理化学性质(如表面张力,电导.渗透压,浊度,光学性质等)都会随着胶团的出现而发生突变,原则上,这些物理化学性质随浓度的变化都可以用于测定CMC,常用的方法有表面张力法、电导法、染料法等。
本实验采用电导法来测定表面活性剂的CMC值。
在溶液中对电导有贡献的主要是带长链烷基的表面活性剂离子和相应的反离子,而胶束的贡献则极为微小。
表面活性剂HLB值与浊点的分析测定与计算表面活性剂之所以能得到广泛的应用就是因为它的两亲性,其两亲性的相对大小称为HLB 值,是选择和应用表面活性剂的一个重要参考因素,有关表面活性剂HLB 值的分析和计算已有不少报道,但缺乏完整系统的资料,特别是不同方法的适用性尚未见综合分析比较, 不利于表面活性剂的开发应用, 作者对有关资料进行了归纳整理, 并对有关分析测试和相应的计算方法及其应用范围进行了分析。
1 乳化法乳化法的原理是用表面活性剂来乳化油相介质时, 当表面活性剂的HLB 值与油相介质所需的HLB 值相同时, 生成的乳液稳定性最好。
对于一般的水性表面活性剂, 可以使用松节油( 所需HLB 值为16) 和棉籽油( 所需HLB 值为6) 配制一系列需要不同HLB 值的油相,每15 份油相中加入 5 份待测表面活性剂,然后加入80份水,搅拌乳化,其中稳定性最好的试样中油相所需的HLB值就是表面活性剂的HLB 值。
对于油性表面活性剂,可以固定油相为棉籽油,用另外一种水溶性较大的表面活性剂如司盘60( 所需HLB 值为14.9) 与待测表面活性剂配制成不同比例的系列复合乳化剂, 根据上述相同的方法。
也可测出表面活性剂的HLB 值。
在应用乳化法时要注意以下两个方面的问题: 一混合表面活性剂的HLB 值的计算,现在基本上都采用重量加和法,是一种粗略的算法;二是当待测表面活性剂的乳化力较强时,测得的HLB 值是一个范围。
一般的表面活性剂都可以采用乳化法测出HLB 值。
对于特殊新型结构的表面活性剂,采用乳化法也可以得到可靠的结果,此法的缺点是比较繁琐、费时。
2 浊点法/浊数法浊点法的原理是聚氧乙烯醚型非离子表面活性剂的HLB 值与它的水溶液发生混浊的温度之间有一定的关系, 通过测定浊点可以得知它的HLB 值。
浊点测定时可将1% 左右的表面活性剂水溶液置于大试管中,液面高50mm, 在甘油浴中边搅拌边缓慢加热,当溶液透明度降低而变混浊时,试管内的温度就是表面活性剂的浊点。
竭诚为您提供优质文档/双击可除表面活性剂的性能测试实验报告篇一:表面活性剂性能与测试方法表面活性剂性能与测试方法1表面活性剂主要包括三方面的性能表征:产物结垢表征(或叫产品分析,用来验证合成的是否为目的产物)、产品表面化学性能测定(用以了解产物的结构和性质具有重要意义)、产品应用性能测定(实际应用效果)1.1产物结构表征:红外、质谱(分析相对分子质量)、x射线衍射光谱、扫描电镜、固体核磁共振、差示扫描量热法、透射电镜、动态光散射、等离子体发射光谱(元素分析)、酸碱滴定;1.2产品表面化学性能测定:表面张力、临界胶束浓度、胶束聚集数、c20(表面张力作图可得)、krafft点、胶束尺寸及分布、胶束形态、电导率、分散力、增溶能力、耐硬水能力、亲水和亲油的平均值、润湿作用测定(接触角法)、溶液的流变性(和粘度有关系)和动态变频扫描测定;1.2.1性能测试方法1.2.1.1表面张力表面张力的测试方法包括:吊环法、拉起液模法、最大气泡法、线圈法、滴体积法;采用bZY-A型自动表面张力仪,用拉起液膜法测定溶液的表面张力,温度为(20〒0.2)℃,溶液配制后静置30min,使表面活性剂溶液达到平衡,测量时铂金板应充分被溶液润湿。
表面张力数据为测量3次的平均值。
1.2.1.2电导率的测量用二次蒸馏水配置一系列不同浓度的gemini表面活性剂的水溶液,于超级恒温槽恒温(25℃)静置分散均匀,用DDs-11A型电导率仪分别测量其电导率,以电导率对浓度作图,曲线的转折点所对应的浓度即为表面活性剂的临界胶束浓度cmc。
1.2.1.3临界胶束浓度(可通过电导率或者表面张力,均是采用作图法)作表面张力(γ)-浓度对数(lgc)曲线,曲线上转折点的相应浓度即是表面活性剂的临界胶束浓度(cmc)。
1.2.1.4胶束聚集数以芘(py)为荧光探针物质(p),二苯甲酮(DpK)为猝灭剂(Q),对样品在浓度为10倍的cmc胶束聚集数(nm)进行测定。
2021| 02基础研究当代化工研究Modern Chemical R esearch ^表面活性剂洗漆剂的成分及性能研究*丁小龙祝緩緩(湖北大学知行学院生物与化学工程学院湖北430000)摘要:随着社会的发展和科学技术水平的不断提升,较之改革开放初期,我国的卫生条件以及生活质量都得到了显著的提高,而卫生条 件得到改善的背后,洗漆剂无疑是立下了汗马功劳的。
通过对表面活性剂洗济剂的成分和性能研究,我们将知道表面活性剂在生活中的广 泛应用的原因,并确保其高效性、安全性和可靠性。
关健词:表面活性剂;成分;应用性能中图分类号:TQ文献标识码:AResearch on Composition and Properties of Surfactant DetergentDing Xiaolong,Zhu Yuanyuan*(School of Biological and Chemical Engineering,Zhixing College,Hubei University,Hubei,430000) Abstract: With the development ofsociety and the continuous improvementof s cience and technology level, compared w ith the initial s tage of reform and o pening up, China's s anitary conditions and q uality of l ife have been significantly improved. Behind the improvement ofsanitary c onditions, detergents have undoubtedly made great contributions. Through studying the composition and p erformance of s urfactant detergent, we will know the reason why surfactant is widely used in our life, and ensure its high efficiency, safety and reliability.Key words:surfactant;composition^ application p erformance身处21世纪的今天,我们在市场上能搜寻到的洗涤剂 品种更加丰富性能也更加全面,表面活性剂洗涤剂更是在其 中举足轻重。
表面活性剂性能及相关参数影响因素1.表面活性剂的HLB值与应用关系表面活性剂分子是同时具有亲水基和亲油基的两亲分子,不同类型的表面活性剂的亲水基和亲油基是不同的,其亲水亲油性便不同。
表面活性剂的亲水性可以用亲水亲油平衡值(hydrophile and lipophile balance ,values,HLB)来衡量,HLB 值是表示表面活性剂亲水性大小的相对数值,HLB值越大,则亲水性越强;HLB 值越小,则亲水性越弱,亲油性越强。
表面活性剂的HLB值直接影响到它的性质和应用。
在应用时,根据不同的应用领域、应用对象选择具有不同HLB值的表面活性剂。
例如,在乳化和去污方面,按照油或污的极性、温度的不同选择合适HLB值的表面活性剂。
下表列出了具有不同HLB值表面活性剂的适用场合。
表面活性剂的HLB值与应用关系不同类型的表面活性剂,HLB值可能不同,根据应用的需要,可以通过改变表面活性剂的分子结构得到不同HLB值的产品。
对于离子型表面活性剂,可以通过亲油基碳数的增减或亲水基的种类的变化来调节HLB值;对于非离子型表面活性剂,则可以采取一定亲油基上连接的环氧乙烷链长或经基数目的增减来细微地调节HLB值。
表面活性剂的HLB值可以由计算得到,也可以测定得出。
常见的表面活性剂的HLB值可以从有关手册或著作中查得。
2.表面活性剂溶解性与温度的关系离子型表面活性剂低温时在水中的溶解度一般较小。
如果增加表面活性剂在水溶液中的浓度,达到饱和状态,表面活性剂便会从水中析出。
但是,如果加热水溶液,溶解度将会增大,当达到一定的温度时,表面活性剂在水中的溶解度会突然增大。
这个使表面活性剂在水中的溶解度突然增大的温度点叫克拉夫特点(Krafft point),也称为临界溶解温度。
这个温度相当于水和固体表面活性剂的溶点,故临界溶解温度为各种离子型表面活性剂的特征常数,并随烃链的增长而增加。
而非离子型表面活性剂(特别是聚乙二醇型)与离子型表面活性剂正好相反,在低温时易与水混溶,将其溶液加热,达到某一温度时,表面活性剂会析出、分层,透明的溶液会突然变浑浊,这一析出、分层并发生浑浊的温度点叫该表面活性剂的浊点(cloud point)。
生物表面活性剂的标准和检测方法目录欧洲前言 (3)引言 (4)1 范围 (6)2 参考规范 (6)3 专业术语和定义 (6)4 表面活性剂概述 (7)5 性能 (7)5.1 一般性能 (7)5.2 技术性能指标 (8)5.2.1 化学组成 (8)5.2.2 溶解度 (8)5.2.3 表/界面张力 (8)5.2.4 发泡性能 (8)5.2.5 湿润性 (8)5.2.6 乳化性能 (9)6 健康、安全和环境要求 (9)7 与化学品或表活相关的其他欧盟法规 (9)7.1概论 (9)7.2表面活性剂的分类 (10)7.3分析方法 (11)8可持续性 (11)9 降解性 (11)10 声明和产品标签 (12)欧洲前言这份文档由法国标准协会组织的技术委员会CEN/TC 276“表面活性剂”秘书处编制。
本文档目前已经递交投票。
本文档已被欧洲委员会和欧洲自由贸易协会授权给欧洲标准化委员会(CEN)。
本文档已被授权给欧盟委员会寄至欧洲标准化委员会以用于生物基产品溶剂和表面活性剂的欧洲标准发展。
引言生物基材料已经在表面活性剂生产上应用了数千年。
例如,人类所使用的第一种表面活性剂,就是完全基于生物性的肥皂。
随着二十世纪初现代表面活性剂的出现,以石油化工为主的原材料也成为人们关注的热点。
他们提供了更广泛的意义上调整表面活性剂各种应用性能的机会。
在过去的几十年中,出现了新的生物基表面活性剂原料。
对生物基产品潜在利益兴趣增加的原因与化石资源的消耗和气候变化相关。
由于对生物基产品在能源应用方面不同于食品、饲料以及生物生物质的关注,意识到对生物基产品通用标准的需求,欧洲委员会发布了M/492命令,从而由CEN/TC 411开发了一系列的标准。
CEN/TC 411“生物基产品”的标准在以下方面提供一个共同的基础:—常用术语—生物基含量测定—生命周期评价(LCA)—可持续性方面的问题—申报工具。
重要的是要了解是“生物基产品”涵盖了什么以及如何使用。
表面活性剂乳化力测试与评价实验报告
实验名称:表面活性剂乳化力测试与评价
实验目的:通过测试表面活性剂的乳化能力,并根据实验结果评价其乳化性能。
实验原理:表面活性剂具有一定的乳化能力,即能将油性物质分散在水中形成乳液。
乳化实验中通过测定表面活性剂在一定条件下与油相的最大乳化比例,来评价其乳化能力。
实验仪器与材料:
1. 表面活性剂试样
2. 精密天平
3. 稀释烧杯
4. 油相液体(石油油、棕榈油等)
5. 搅拌机
6. 离心机
实验步骤:
1. 向稀释烧杯中加入表面活性剂试样,精确称量并记录。
2. 向试管中加入一定量的油相液体,精确称量并记录。
3. 向试管中加入一定量的水相液体,精确称量并记录。
4. 将试管置于搅拌器中,以一定的搅拌速度搅拌一定时间。
5. 将试管离心一定时间,待油相和水相分离后,记录试管中油相液体的质量。
6. 计算表面活性剂乳化比例,并根据实验结果评价表面活性剂的乳化能力。
实验结果与分析:
将每组实验数据代入公式计算得到表面活性剂的乳化比例,通过比较各个表面活性剂的乳化比例来评价其乳化能力。
根据实验结果可见,不同表面活性剂的乳化能力不同,评价结果可根据实验需求进行调整。
实验结论:
通过本次实验,可以测试不同表面活性剂的乳化性能,并通过评价结果来选择适合的表面活性剂用于乳液制备等领域。
同时,实验结果也为相关研究提供了参考和依据。