连杆螺栓断裂的主要原因分析.doc
- 格式:doc
- 大小:23.50 KB
- 文档页数:2
风电机组变桨连接螺栓断裂原因分析及预防措施摘要风力发电机叶片是一个纤维增强复合材料制成的薄壳结构。
叶片工作时,根部承受着复杂的剪切、挤压、弯扭载荷组合作用,应力状态复杂易产生结构失效,所以叶片根部连接必须具有足够的强度、刚度、局部稳定性、胶接强度和疲劳断裂强度。
一旦叶根部位出现连接失效问题,叶片与风力机转子轮毂分离,发电机无法正常工作,甚至导致灾难性的质量和安全事故。
因此,对风机叶片连接螺栓状态进行监测成为了必要的手段,某公司针对风电机组变桨连接螺栓断裂情况,对叶片连接螺栓断裂进行了原因分析,并提出预防及监测措施,以确保机组安全稳定运行。
关键词:变桨连接螺栓;疲劳断裂;预紧力0引言风电叶片是风力发电机组捕获风能的核心部件,其工况复杂、工作载荷很大,设计上要求达到安全运行二十年的使用寿命要求。
叶片在运转过程中,同时承受着气动力、重力及离心力等复杂载荷的作用,其中叶片根部连接成为叶片设计中最关键的部分(如图1)。
由于叶根的载荷最大,而且应力状态复杂,承受着复杂的剪切、挤压、弯扭载荷作用,所以叶根连接必须具有足够的机械强度与弯扭刚度。
叶根的受力方式也极为复杂,同时承受拉伸、压缩、扭转及剪切等复杂应力的作用。
叶片根部连接螺栓断裂而导致风电机组运行事故是一种常见的故障模式。
图 1 叶片与轮毂链接示意图1叶片根部连接螺栓断裂的主要故障及根源分析目前,叶根与轮毂链接的的方式主要由三种:“T型螺栓”连接方式,螺栓套筒预埋连接方式,金属制根部连接件连接方式。
在正常工作状态中,叶片叶根螺栓连接是紧连接,承受着交变载荷。
“T 型螺栓”连接( 包含双头螺栓及横向螺母) ,也称“IKEA” 连接,是风机叶片最广泛的螺栓连接结构之一,本文重点考虑“T型螺栓”连接方式。
在叶片根部断面沿叶根节圆均匀分布多组高强度螺栓组,每组螺栓由双头螺杆和交叉螺母组成,叶片根端有两组均匀分布且互相对应螺栓孔和螺母孔,交叉螺母安装在径向螺母孔中,双头螺杆安装在轴向螺栓孔中,双头螺杆一端与交叉螺母连接,另一端伸出断面与主机轮毂连接,从而将叶片与主机联为一体(如图2)。
目录第一章序言 (1)1.1课题研究的目的和意义 (1)1.2课题的分析 (1)1.3研究内容 (2)第二章有限元的基本原理及其应用 (4)2.1有限元分析概述 (4)2.2有限元分析的优缺点 (5)2.2.1有限元法的优点 (5)2.2.2有限元分析的缺点 (6)第三章连杆的工作条件及载荷的确定 (7)3.1.连杆的结构和布置 (7)3.2柴油机一般采用斜连杆的原因 (9)3.3连杆的工作条件及受力 (10)3.4连杆的材料及制造工艺 (11)第四章连杆的建模 (15)4.1SolidWorks软件介绍 (15)4.1.1概述 (15)4.1.2 SolidWorks软件的特点 (16)4.1.3 SolidWorks软件的应用 (17)4.2连杆模型的建立 (17)4.2.1创建连杆的几何模型 (18)4.2.2连杆的力学模型的建立 (32)第五章计算结果及其分析 (40)5.1最大拉伸情况的结果与分析 (40)5.1.1连杆受拉时应力结果 (40)5.1.2连杆受拉时应变结果 (41)5.1.3连杆受拉时位移结果 (43)5.2最大压缩情况的结果与分析 (44)5.2.1连杆受压时应力结果 (44)5.2.2连杆受压时应变结果 (45)5.2.3连杆受压时位移结果 (46)5.3分析总结 (46)引用文献 (49)附录(英文翻译) (51)第一章序言1.1课题研究的目的和意义连杆是发动机中传递动力的重要零件,它把活塞的直线运动转变为曲轴的旋转运动,并将作用在活塞上的力传给曲轴以输出功率。
连杆在工作过程中要承受装配载荷(包括轴瓦过盈及螺栓预紧力)和交变工作载荷(包括气体爆发压力及惯性力)的作用,工作条件比较苛刻。
现代汽车正向着环保节能方向发展,这就要求发动机连杆在满足强度和刚度的基础上,应具有尺寸小、重量轻的特点。
本文通过SolidWorks这个三维制图软件制作连杆的三维模型,然后通过COSMOSWorks软件,对连杆模型进行网格划分、加载和约束的处理,然后再进行计算分析,得出柴油机连杆在受拉和受压的两种工况下的应力、应变等分析结果。
发动机连杆螺栓折断原因分析发动机连杆螺栓折断,极易引起捣缸、烧瓦。
为防止发生事故,在装配时必须严格遵守技术标准和操作规范,在规定的保养周期内检查连杆螺栓的紧固情况,发现松动要用标准力矩拧紧。
发生的原因主要有:1.连杆轴颈与瓦间隙过大,运动中互相撞击,连杆螺栓受较大发动机连杆螺栓折断,极易引起捣缸、烧瓦。
为防止发生事故,在装配时必须严格遵守技术标准和操作规范,在规定的保养周期内检查连杆螺栓的紧固情况,发现松动要用标准力矩拧紧。
发生的原因主要有:
1.连杆轴颈与瓦间隙过大,运动中互相撞击,连杆螺栓受较大力冲击而折断。
2连杆螺栓有内伤未发现,仍继续使用,容易折断。
如发现连杆螺栓有倒扣、秃扣及拔长现象,应及时更换。
3.连杆螺栓拧紧力矩过大,装配应力超限,或拧紧力矩过小,工作中松动,产生敲击,都容易造成连杆螺栓折断。
4.随便用不合格螺栓代替,或连杆螺栓材质不佳,加工粗糙,承受不到标准扭力而变形或产生裂纹,在冲击力作用下产生应力集中而折断。
5.连杆螺栓、螺母的锁紧装置失去作用,工作中松动,也会造成连杆螺栓折断。
6.飞车时未及时采取紧急措施,使连杆螺栓负荷过大而折断。
7.连杆螺栓未按规定扭矩上紧,形成一个紧一个松,松的一个容易折断。
(尔阳)。
浅析灯泡贯流式水轮发电机组导叶连杆断裂原因发布时间:2022-07-15T08:34:15.973Z 来源:《当代电力文化》2022年3月第5期作者:韦宗立阙明贵梁新杰罗家盛[导读] 伴随着社会生活水平的提高,人们对电的需求逐渐加大,电力行业也赢来了发展空间,水电站的出现造福了社会韦宗立阙明贵梁新杰罗家盛广西卓洁电力工程检修有限公司梧州 543000摘要:伴随着社会生活水平的提高,人们对电的需求逐渐加大,电力行业也赢来了发展空间,水电站的出现造福了社会,随着水轮发电机组的发展,其自身的问题逐渐浮现,所以文章介绍了弹簧承载式安全连杆机构的机构、分析导叶连杆断裂的原因,由于水轮发电机组是利用轴向推力来维持旋转速度的,转子高速旋转时便产生离心力。
同时,其在运行过程中受到机械应力等作用,不可避免地使某些零部件出现疲劳等现象,严重情况下将威胁水轮发电机组的安全运行。
关键词:灯泡贯流式水轮机发电机组导叶连杆在水流动的过程中,由于水轮发电机组的技术设计与材料性质等原因或许并不足够满足于实际运行的条件。
而在这种状态下出现的故障是无法被忽略的。
所以本文是为了了解其机理导致出现问题现象,具体对金属构件进行分析并建立起相关理论知识来研究连杆机构失效时存在何种物理因素、具体表现形式及发展规律,为水流过程中导叶连杆断裂提供一定程度上依据。
一、概述在灯泡贯流式水轮机中,导水机构是由内、外配水环、活动导叶、控制环、关闭重锤及连杆,拐臂等组成,在水轮发电机组中导水机构传动装置经常用作活动导叶的保护系统。
现在的水轮发电机组基本采用的是弹簧式安全连杆机构作为活动导叶的保护系统,弹簧承载式安全连杆机构是一种造价低,并且在一定的行程范围内可以自动复位的系统。
弹簧承载式安全连杆机构的使用,对于进水口不设进水阀的灯泡贯流式水轮机机型,可以有效地解决在采用通常的剪断销式车杆保护机构时所带来的问题,即剪断销损坏后不易更换及失去控制的活动导叶在水流冲击下摆动而引起的相邻导叶连杆机构损坏。
柴油机连杆螺栓断裂的原因
柴油机连杆螺栓断裂的原因可能有以下几点:
1. 连杆螺栓材质问题:螺栓材质不合格或者存在瑕疵,导致螺栓在工作过程中无法承受正常的载荷。
2. 连杆螺栓过紧或者松动:过紧的螺栓会引起过度应力,而过松的螺栓会导致螺栓在工作过程中受到振动和冲击,加速疲劳损伤。
3. 连杆螺栓使用寿命到期:长期使用后,螺栓会受到疲劳和应力的累积,超过其承载极限后容易发生断裂。
4. 连杆设计和制造不合理:连杆与螺栓的配合尺寸不合适、设计不合理、制造质量差等问题都可能导致螺栓断裂。
5. 柴油机运行工况异常:例如过载、高温、频繁启动等工况可能增加连杆螺栓的负荷,使其易于断裂。
为避免连杆螺栓断裂,建议定期检查和维护柴油机,确保螺栓的紧固力合适,材质和制造质量可靠,以及避免异常的工况和负荷。
高强度螺栓断裂分析曾振鹏(上海交通大学高温材料及高温测试教育部重点实验室,上海200030)摘要:采用断口分析、金相检验和硬度测定等方法,对高强度螺栓断裂原因进行了分析。
断口分析结果表明,断口平坦,呈放射状花样,微观形态主要为准解理花样,表明螺栓的断裂是脆性断裂;同时发现,在断口附近还存在横向内裂纹,内裂纹的断口形态与断裂断口一样。
金相分析表明,材料棒中存在严重的中心碳偏析,而中心碳偏析是引起断裂的主要原因。
关键词:高强度螺栓;准解理;横向内裂纹;中心碳偏析某厂生产的一批规格为M30×160mm的高强度大六角头螺栓,在进行验收试验时发生断裂。
螺栓材料为35CrMoA,采用常规工艺生产,硬度要求为35~39HRC。
1 检验1.1 材料的化学成分用VD25直读光谱仪进行了材料化学成分分析,分析结果(质量分数)列于表1。
从表1可以看出,材料的化学成分符合标准要求。
1.2 硬度测定硬度测定结果列于表2。
由表可见,螺栓材料硬度虽符合技术要求,但已接近上限。
1.3 材料的显微组织(1)在抛光态下,可见材料中含有较严重的夹杂物,其形态、分布见图1。
对照标准[2],夹杂物级别为3~4级。
图1 夹杂物形态及分布状况100×图2 螺栓的显微组织280×4%硝酸酒精溶液侵蚀(2)显微组织见图2。
组织为回火马氏体+粒状贝氏体,并有少量铁素体。
从图2可明显看出,组织中存在严重偏析,出现回火马氏体和粒状贝氏体带,致使显微组织不均匀,而且在回火马氏体带中存在MnS夹杂。
对样品螺纹根部附近的组织进行了观察,未发现脱碳现象。
1.4 断口分析(1)图3a为断口的宏观形貌,断口较平坦,表面呈灰色,有明显的撕裂脊,呈放射状花样,放射线从中心向四周发射。
表明裂纹先在中心形成,然后向外扩展。
当裂纹扩展至整个横截面时,螺栓断裂。
图3 断口的宏观形貌图4 断口微观形貌(2)断口的微观形态基本上以准解理花样为主,还有一些二次裂纹,如图4所示。
2021年 第4期 热加工771 序言对于汽车发动机而言,连杆螺栓不仅是将螺栓头部和螺杆联接在一起的紧固件,还是联接连杆大端轴承座与轴承盖使之成一体的重要螺栓。
连杆螺栓不仅受到装配时的预紧力[1],在发动机的运行中还要承受活塞连杆往复运动惯性力和连杆旋转离心力的交变载荷作用,而且在气缸的压缩和做功行程中,还要受到每分钟上千次交变应力的冲击[2]。
各种失效模式的研究和案例也时有报道[3-6],对汽车用断裂螺栓进行失效分析,研究其产生故障的特征、规律及原因,可为汽车的生产、使用或维修中采取有针对性地改进和预防措施提供理论依据,防止同类故障再次发生[7]。
2020年2月,某故障发动机在拆机之后发现其中一缸的进、排气部位缸体被击穿,连杆外露,另有紧固连杆的两根螺栓发生断裂(见图1)。
通过对断裂螺栓进行失效分析,主要包括断口分析、材料鉴定、拧紧工艺排查等方面,对螺栓的整个生命周期环节做了梳理,试图从螺栓的设计、生产检测以及拧紧工艺等方面找出螺栓断裂的原因,并解决连杆螺栓断裂问题。
2 连杆螺栓2.1 化学成分分析断裂螺栓规格为M8×1.0×40-6h ,其强度等级为10.9级,螺栓材料SCM435,是JIS G4035—2003中的一种热轧钢线材,属于低合金结构用钢,主要合金元素是Cr 、Mo 。
表1列出JIS G4035—2003中SCM435化学成分标准要求和断裂螺栓的化学成分分析结果,符合要求。
发动机连杆螺栓断裂失效分析叶枫,陈旺湘,胡志豪,马照龙浙江义利汽车零部件有限公司 浙江义乌 322000摘要:故障发动机被拆解之后发现固定连杆轴瓦的两根螺栓发生了断裂,通过对断裂螺栓进行宏观观察、SEM 显微分析以及对断口附近材料进行材质分析,研究确认连杆螺栓的断裂形式、原因,并提出相关改进措施。
结果表明:连杆螺栓断裂性质属于疲劳断裂,其中一根螺栓是完全疲劳断裂,另一根是部分疲劳和部分剪切断裂。
5.金相组织分别对未断与断裂螺钉和螺母各1件纵向解剖进行金相观察。
图8为试样末浸蚀时的低倍形貌。
a 25×b 50×c 25×图8 螺钉纵剖金相磨面(a、b—螺钉,c—螺母)从图可以清楚地看到,螺钉在牙的侧面存在明显的裂纹,每个牙上裂纹的位置与形态完全一致,将裂纹放大后(图8b)可以明确判断,上述裂纹实际上是螺钉在搓丝过程中形成的折叠。
折叠处(图8b中的A处)的显微硬度为540HV,0.05明显要高于其他部位的渗碳层的硬度,此系A处两面渗碳的结果,这点同时也说明上述裂纹在热处理前业已存在。
另外,对一个断裂的螺钉解剖后发现,在过渡圆角处存在细微裂纹(图9),浸蚀后观察,该裂纹沿晶扩展(图10),这与断口源区扫描电镜下观察到的沿晶断裂特征(图3)完全吻合。
在裂纹周围也未发现非金属夹杂物聚集和沉淀相析出。
图9 断裂螺钉圆角处的裂纹50× 图10 图9裂纹浸蚀后的放大形貌500×螺母牙顶形成双峰(图8C),这也是搓丝工艺不当所形成的。
双峰鞍部形成的不规则尖缺口将对随后的热处理及使用均将产生不利影响。
图11为螺钉渗碳层的低倍形貌及渗层组织,渗碳层为回火屈氏体。
断裂与未断裂螺钉的芯部组织均为板条马氏体,未断螺钉的马氏体板条更粗大些(图12)。
25× 100×图11 螺钉渗碳层形貌及组织a断裂螺钉 b未断螺钉图12 螺钉的芯部组织500×图13为螺母的渗碳层组织,断裂与未断裂螺母的渗碳层组织相同,均系回火屈氏体。
断裂螺母与未断裂螺母的芯部组织则完全不同(图14)。
图13 螺母的渗碳层组织250×a 断裂螺母b 未断螺母图14 螺母的芯部组织 500×断裂螺母芯部组织为绌片状珠光体+铁素体,而未断者为板条马氏体。
这与表1中螺母测定的硬度值完全对应。
6.含氢量分析根据螺钉断口形貌特征及延时断裂特征,加之螺钉经酸洗后镀锌,怀疑有渗H2现象[1]。
第十二章柴油机应急处理和运转管理船舶经常在复杂的海域和恶劣的气候下航行,柴油机一旦运行失常,使船舶失去控制将会造成十分严重的后果。
轮机管理人员除了应能对运行中的柴油机进行正确的管理以及维修保养之外,尚需在紧急事故突发之际能正确地进行相应的应急处理,使这在最短时间内恢复其运转以保证船舶航行安全。
下面介绍几种常见故障的应急处理。
第一节封缸运行柴油机运行中若一个或一个以上的气缸发生故障而一时无法修复,此时可采取停止故障气缸运转的措施,即封缸运行。
根据我国船规的规定,六缸以下柴油机应能保证在停掉一个气缸的情况下继续运转;六缸以上应能保证在停掉两个气缸的情况下继续运转。
一、封缸运行的三种情况及措施1.停止该缸供油发火如果有一个气缸发生故障,如喷射系统故障、气阀咬死、气缸漏气等,这些故障只是使气缸不能发火而运动部件尚可运转。
在此情况下,根据柴油机的具体情况可提起喷油泵滚轮,使喷油泵停止工作或打开喷油器的回油阀,使燃油停止喷入气缸。
但要避免关闭喷油泵进〖出〗口阀,造成喷油泵偶件干磨而咬死。
此种封缸亦称减缸运行或停缸运行。
如果是直流二冲程柴油机,在停止喷油的同时还应〖×将排气阀锁定在开启位置,以减少活塞消耗的压缩功。
〗【尽可能将排气阀锁定在关闭位置,以保护十字头轴承,减少不正常振动。
】2.活塞组件拆出,十字头和连杆尚在机内如果是活塞、气缸造成气缸裂纹或损坏而无法修复使用,但连杆和十字头尚能正常工作,则必须拆掉活塞组件(含填料函),并采取下列措施:(1)提起喷油泵滚轮停止泵油;(2)弯流扫气者专用工具封住气缸套排气口,直流扫气者或四冲程柴油机将气阀锁住在正常关闭位置;(3)用专用工具封住活塞杆填料函孔;(4)在十字头上安装专用封盖;(5)封闭活塞冷却系统;(6)拆下气缸起动阀控制空气管并封住;(7)拆下气缸起动阀起动空气管并封住;(8)关闭该缸气缸冷却水的进出口阀;(9)该缸气缸油注油管减至最小;(10)活塞组件拆除后重新安装气缸盖。
发动机连杆螺栓断裂原因分析袁峰;靳宝宏;门菲【摘要】某汽车发动机连杆螺栓在发动机台架耐久试验中发生断裂.通过宏观检验、化学成分分析、扫描电镜分析、金相检验、能谱分析等方法,对螺栓的断裂原因进行了分析.结果表明:该连杆螺栓断裂模式为多源疲劳断裂;裂纹内部存在大量的磷和锌元素,说明在搓丝工序时螺栓已经产生了微小裂纹;在后期的磷化处理中,磷化液渗入微小裂纹中;台架耐久试验过程中裂纹逐步疲劳扩展并导致螺栓断裂.%A connecting rod bolt of an engine fractured during the durability bench test of the engine.The fracture reasons of the bolt were analyzed through macroscopic inspection,chemical composition analysis,scanning electron microscopy analysis,metallographic inspection,energy spectrum analysis and so on.The results show that:the fracture mode of the connecting rod bolt was multi-source fatigue fracture;there were plenty of elements of phosphorus and zinc inside cracks,which indicated that the cracks had been produced in thread rolling process;the phosphatizing liquid infiltrated into the micro cracks during the following phosphatizing treatment,and the fatigue cracks gradually expanded and led to the fracture of the bolt during the durability bench test.【期刊名称】《理化检验-物理分册》【年(卷),期】2017(053)011【总页数】4页(P833-836)【关键词】发动机;连杆;螺栓;断裂;磷化;多源疲劳【作者】袁峰;靳宝宏;门菲【作者单位】泛亚汽车技术中心有限公司,上海 201201;泛亚汽车技术中心有限公司,上海 201201;泛亚汽车技术中心有限公司,上海 201201【正文语种】中文【中图分类】TG115.2众所周知,对于汽车发动机来说,连杆螺栓与缸盖螺栓、曲轴皮带轮螺栓、飞轮螺栓和曲轴轴承盖螺栓并称为5大关键螺栓。
柴油机连杆螺栓断裂的原因、检查及上紧注意事项1. 连杆螺栓材质不合适,强度不足造成断裂。
2. 连杆螺栓松动会引起断裂。
3. 连杆螺栓过紧会造成断裂。
4. 连杆螺栓安装不正确,导致应力不均衡,从而断裂。
5. 连杆螺栓出现缺陷或裂纹,也会导致断裂。
6. 油润滑不良会导致连杆螺栓断裂。
7. 连杆螺栓的工作环境温度过高或过低,都会增加断裂的风险。
8. 连杆螺栓的紧固力度不均衡会导致断裂。
9. 连杆螺栓的使用寿命超过了设计要求,也会引发断裂。
10. 连杆螺栓过度疲劳,也会导致断裂。
11. 不适当的振动会导致连杆螺栓断裂。
12. 连杆螺栓的松紧程度不匹配会导致断裂。
13. 连杆螺栓的制造质量问题会导致断裂。
14. 连杆螺栓的表面处理不当会增加断裂的风险。
15. 连杆螺栓的拧紧力矩不当会导致断裂。
16. 连杆螺栓过度变形会导致断裂。
17. 连杆螺栓受到外力冲击会导致断裂。
18. 连杆螺栓的老化和腐蚀会增加断裂的可能性。
19. 连杆螺栓的设计缺陷会导致断裂。
20. 连杆螺栓的槽孔不正常会导致断裂。
21. 连杆螺栓的使用过程中,过度超负荷会增加断裂的风险。
22. 辅助零部件(如螺母、垫圈等)的使用不当会造成连杆螺栓断裂。
23. 连杆螺栓的锈蚀会导致断裂。
24. 连杆螺栓的紧固扭力不均匀会导致断裂。
25. 连杆螺栓的锥度不正确会增加断裂的风险。
26. 连杆螺栓上存在悬浮颗粒物,会增加断裂的可能性。
27. 连杆螺栓的螺纹磨损会导致断裂。
28. 连杆螺栓在使用过程中发生过热会增加断裂的风险。
29. 连杆螺栓在安装过程中受到强力冲击会导致断裂。
30. 连杆螺栓在低温环境下工作会增加断裂的可能性。
31. 连杆螺栓的未经过适当的热处理也会导致断裂。
32. 连杆螺栓表面涂层不均匀会增加断裂的风险。
33. 连杆螺栓的安装不规范会导致断裂。
34. 连杆螺栓的设计尺寸不合适会增加断裂的可能性。
35. 连杆螺栓在使用过程中受到频繁的振动会导致断裂。
超高强度螺栓断裂失效分析摘要:螺栓作为重要的紧固件,其失效事故较多,危害极大。
其中,螺栓氢脆断裂是一种常见的失效模式。
由于氢脆主要与批次问题有关,因此危害更大。
螺纹连接是发动机部件之间最常用的连接,约占发动机连接的70%。
螺栓的应力特性决定了它是发动机的薄弱部分。
因此,连杆螺栓的失效分析和预防非常重要。
对超高强度螺栓的断裂失效进行了分析。
关键词:超高强度螺栓;断裂破坏;氢脆超高强度螺栓是经过铆接和焊接而发展起来的一种钢结构连接形式。
它具有结构简单、可拆卸、承载力大、抗疲劳、安全等优点。
因此,高强螺栓连接已发展成为工程安装的主要手段。
1例分析某轴承上使用了某种类型的高强度螺栓,其强度要求非常高。
经过5个月的生产检验合格后,发现部分螺栓螺纹处相继断裂。
该类高强螺栓为铰孔螺栓(螺纹长95mm),材质为35CrMnSiA钢,规格为M56,螺纹长235mm,强度要求符合gb/t3077-1999。
制造工艺如下:坯料电渣重熔→预处理→超声波探伤→粗加工(单边余量3~5mm)→淬火和回火处理(950℃淬火、630℃回火)→半精加工→淬火热处理(淬火温度900℃,310℃回火)→机械性能检查→完成→磁粉探伤(含螺纹)→表面油漆保护→装配目前,无损检测方法无法检测出螺栓内部0.2mm以下的微裂纹。
通过金相检验、氢含量检验和断口扫描电镜分析,对断裂的螺栓和未断裂的随机试样进行了检验,并分析了断裂原因。
2实验方法和结果2.1受试者。
试验对象为2个此类螺栓,包括断裂的铰制螺栓和1个相应的相同类型的未断裂螺栓。
2.2外观检查。
目测第一螺纹段铰制螺栓断口齐平,无塑性变形,断口垂直于轴线,为一次性脆性断裂。
断口附近有明显的腐蚀痕迹。
2.3化学成分分析。
对两个螺栓样品的化学成分进行了测试和分析。
结果表明,两个螺栓的化学成分均符合标准。
2.4氢含量检测。
对断裂铰孔螺栓和未断裂铰孔螺栓的光杆边缘、r/2和芯部进行了氢含量检测。
断裂和未断裂螺栓的光杆边缘和芯部的检测结果基本相同,r/2处的检测结果差异较大,分别为2.0×10-6和0.6×10-62.5断裂分析。
连杆断裂的原因有很多,以下是一些主要的原因:
1.连杆螺栓预紧力不足或拧紧力矩过大:这可能导致连杆螺栓屈服变形,预紧力减小,进而在工作过程中受力变小,造成连杆断裂。
此外,如果连杆螺栓使用时间过长,磨损严重,或者在冲击载荷作用下松动、断裂,也可能导致连杆断裂。
2.发动机气缸进水:当水进入缸内并在高温下迅速形成水合气体,使得缸内无法形成可燃混合物,可能导致连杆受到的压力急剧增加,弯曲变形直至断裂。
3.发动机燃油喷射系统异常:如果发动机某个气缸的喷油器持续喷射燃油,可能引发启动困难、怠速抖动、排气管冒黑烟、动力下降等现象,进而导致连杆断裂。
4.连杆和曲轴被锁定:这通常是由于发动机润滑不良造成的。
可以通过检查发动机内部零件的磨损情况来判断。
如果曲轴、气缸、活塞或凸轮轴等部件的磨损超过标准,就可能导致连杆断裂。
5.咬缸:如果活塞环折断、咬死,或活塞与气缸壁间隙过小,以及冷却不良等原因,都会引起活塞咬死在气缸中。
一旦发生咬缸,此缸连杆的运动就会受阻,而其他缸仍在运动,使其受到超出原承受几倍的拉力,即有可能导致连杆杆身被拉弯或拉断。
6.异物掉入活塞顶:在装配柴油机的过程中,若安装喷油器的孔保护不当,致使小螺栓或垫圈等异物掉入活塞顶上,如不及时排除,就可能在柴油机工作时捣坏活塞并顶弯连杆杆身。
7.材质问题、加工缺陷及热处理工艺问题:这些问题也可能导致连杆螺栓在发动机运行中出现断裂。
以上只是一些可能的原因,实际情况可能更为复杂。
在出现连杆断裂的情况时,建议寻求专业人员的帮助进行详细的检查和诊断。
连杆螺栓断裂的主要原因分析
通过对47起船用柴油机事故的调查和处理,我们知道在整个柴油机损坏事故中,有25起事故(连杆衬套和曲轴衬套),占发动机损坏事故的53.1%,11起机体断裂事故,占事故的23.4%,5起自然事故(机器根本无法检查),占事故的10.8%,4起曲轴断裂事故,占事故的8.5%,1起缸套断裂事故,占事故的2.1%从11起机身断裂事故来看,虽然断裂的连杆螺栓在整机损坏事故中并不占很大比例,但事故后果极其严重,甚至导致整机报废。
为此,笔者根据多年来几台柴油机连杆螺栓断裂的主要原因谈了自己的看法:
1.安装过程中螺栓扭矩过大
由于连杆螺栓由细螺纹制成,且杆长,因此当螺母拧紧至其正确的拧紧程序时,如果用额外的力拧紧,仍可将其拉出。
因此,由于心理素质差,操作人员往往害怕螺栓松动。
用扭矩仪扳手拧紧不稳定螺栓规定的扭矩。
相反,他们根据经验使用大扳手来施加力。
有时,他们将螺栓拧半圈,以赶上螺母的螺栓孔,导致螺栓承受过大的拉伸应力并产生拉伸变形。
2.安装前对螺栓的技术检查不够
为了识别螺栓的质量,从单方面的宏观检查来看,使用没有任何问题的螺栓是不安全的。
相反,应该仔细检查螺栓的每一个细节。
螺栓的质量和是否可以重复使用必须满足以下条件:(1)对拆卸和重新组装的螺栓进行磁探伤。
在没有仪器检查的情况下,螺栓还应确保表面
没有裂纹、斑点和凹坑。
(2)由于螺栓采用细螺纹,螺纹表面应无凹痕、毛刺和划痕。
螺栓的配合面应确保所需的:度平滑度。
(3)螺栓拉伸变形的测量方法可用千卡或专用样板测量。
从螺栓支撑面到尾部的长度也可以通过标准螺栓进行检查。
一般情况下,超过0.2%的变形长度应更换。
(4)测量螺栓是否有裂纹的一种简单方法是用绳子提起螺栓,用锤子轻轻敲打,听清楚程序,辨别好坏。
根据对螺栓断裂事故的调查,大多数都是由于忽视上述原因造成的。
3.产品质量不合格。
连杆螺栓看起来很简单,但在技术和材料上更为严格。
通常使用优质碳钢或合金钢(根据高、中、低速柴油机选择)。
在实践中,许多制造商经常生产相同类型的柴油发动机。
用户使用附近的材料,以减少道路。
对于装配好的螺栓,在达到使用极限之前就会出现问题,甚至导致机器损坏事故。
4.轮岗管理人员的专业素质并不太难。
当主机正常运行时,无法识别螺栓的质量。
螺栓损坏或断裂时,会发出异常的异常噪音。
对于有经验的工程师,将采取紧急措施把事故消灭在萌芽状态。
然而,几起事故也证实,当一些值班人员听到主机发出异常噪音时,他们无法采取果断措施。
相反,他们在主引擎周围徘徊,四处张望。
他们无能为力。
当他们感到问题发生并导致事故时,还不算太晚。