上海市教育考试院命题组专家评析2012年高考上海卷试题
- 格式:doc
- 大小:66.50 KB
- 文档页数:10
2012年上海高考试卷本试卷共7页,满分150分,考试时间120分钟。
全卷包括六大题,第一、二大题为单项选择题,第三大题为多项选择题,第四大题为填空题,第五大题为实验题,第六大题为计算题。
考生注意:1.答卷前,考生务必在试卷和答题卡上用蓝色或黑色的钢笔或圆珠笔填写姓名、准考证号.并将条形码贴在指定的位置上。
2.第一、第二和第三大题的作答必须用2B 铅笔涂在答题纸上相应区域内与试卷题号对应的位置,需要更改时,必须将原选项用橡皮擦去,重新选择。
第四、第五和第六大题的作答必须用蓝色或黑色的钢笔或圆珠笔写在答题纸上与试卷题号对应的位置(作图可用铅笔).3.第30、31、32、33题要求写出必要的文字说明、方程式和重要的演算步骤。
只写出最后答案,而未写出主要演算过程中,不能得分。
有关物理量的数值计算问题,答案中必须明确写出数值和单位。
一.单项选择题.(共16分,每小題2分,每小题只有一个正确选项)1.在光电效应实验中,用单色光照射某种金属表面,有光电子逸出,则光电子的最大初动能取决于入射光的()A , (A )频率 (B )强度(C )照射时间 (D )光子数目 2.下图为红光或紫光通过双缝或单缝所呈现的图样,则( )B ,(A )甲为紫光的干涉图样(B )乙为紫光的干涉图样 (C )丙为红光的干涉图样(D )丁为红光的干涉图样 3.与原子核内部变化有关的现象是( )C , (A )电离现象 (B )光电效应现象(C )天然放射现象 (D )α粒子散射现象4.根据爱因斯坦的“光子说”可知( )B ,(A )“光子说”本质就是牛顿的“微粒说”(B )光的波长越大,光子的能量越小(C )一束单色光的能量可以连续变化(D )只有光子数很多时,光才具有粒子性5.在轧制钢板时需要动态地监测钢板厚度,其检测装置由放射源、探测器等构成,如图所示。
该装置中探测器接收到的是( )D ,(A )X 射线 (B )α射线(C )β射线 (D )γ射线 6.已知两个共点力的合力为50N ,分力F 1的方向与合力F 的方向成30︒角,分力F 2的大小为30N 。
2012年全国普通高等学校招生统一考试上海数学试卷(理)一、填空题(56分): 1.计算:=+-ii13 (i 为虚数单位)。
【解析】复数i ii i i i i i 21242)1)(1()1)(3(13-=-=-+--=+-。
【答案】i 21-2.若集合}012|{>+=x x A ,}2|1||{<-=x x B ,则=B A 。
【解析】集合}21{}012{->=>+=x x x x A ,}31{}21{<<-=<-=x x x x B ,所以}321{<<-=x x B A ,即)3,21(-。
【答案】)3,21(-3.函数1sin cos 2)(-= x xx f 的值域是 。
【解析】函数x x x x f 2sin 212cos sin 2)(--=--=,因为12s i n 1≤≤-x ,所以212s i n 2121≤-≤-x ,232sin 21225-≤--≤-x ,即函数)(x f 的值域为]23,25[--。
【答案】]23,25[--4.若)1,2(-=是直线l 的一个法向量,则l 的倾斜角的大小为 (结果用反三角函数值表示)。
【解析】【 设倾斜角为α,由题意可知,直线的一个方向向量为(1,2),则2tan =α, ∴α=2arctan 。
【答案】2arctan5.在6)2(xx -的二项展开式中,常数项等于 。
【解析】二项展开式的通项为k kk k k k k x C xx C T )2()2(26666661-=-=----+,令026=-k ,得3=k ,所以常数项为160)2(3364-=-=C T 。
【答案】160-6.有一列正方体,棱长组成以1为首项、21为公比的等比数列,体积分别记为 ,,,,n V V V 21,则=+++∞→)(lim 21n n V V V 。
【解析】由题意可知,该列正方体的体积构成以1为首项,81为公比的等比数列, ∴1V +2V +…+n V =811811--n =)811(78n -,∴=+++∞→)(lim 21n n V V V 78。
名师点评2012上海高考语文作文2012上海高考作文要求:根据以下材料,选取一个角度,自拟题目,写一篇不少于800字的文章(不要写成诗歌):人们对自己心灵中闪过的微光,往往会将它舍弃,只因为这是自己的东西。
而从天才的作品中,人们却认出了曾被自己舍弃的微光。
以下为专家对此次高考作文的解读和分析点评:(专家点评一)这篇高考作文题仍然延续了2011年作文的生活哲理性意味,这也是考前我一直跟学生所强调的,注重人性或精神的东西,意料之中!从内容上说,这是一篇很容易读懂的小材料,也没有太多可以发挥的角度,我相信大部分的考生对这则材料的审题应该没有太大的问题。
现在来简单分析一下:对于一则材料,我们首先要搞清楚它里面最重要的东西是什么,也就是“曾被自己舍弃的微光”这句话。
那我们就要从这句话来分析,被自己舍弃的微光是什么,而这些微光却又在天才的作品中的体现,那么我们就不难发现,其中最重要的这些“微光”。
而“这些微光”也就是指我们曾经拥有的品质、精神或灵感被我们所抛弃,在那些成功人士身上却又被发现,所以这篇材料的立意就是:我们善于利用容易被我们所遗忘或抛弃的那一闪念的灵感,或许那就是我们成功的要素之一。
(专家点评二)解读:1.抓住材料中的关键词。
整个材料一共两句话,关键词为“微光”,但是这种“微光”是被我们舍弃了,而在天才作品中我们又发现了原来自我的“微光”。
2.我认为“微光”这个词是一个突破口,什么样的微光是我们自己的东西,而这样的东西又会被我们舍弃呢?我想到了理想(梦想),每个人都会有自己的理想和梦想,但是随着时间的推移,岁月的轮回,很多人都已经把最初的梦想抛到了脑后。
但是在一些天才的优秀作品之中我们看到了关于理想的坚持,只有对于某个理想具有坚定的信念,并为之奋斗的人最终才会成为一个成功者。
(专家点评三)这则作文材料的难度并不大,关键在于把握住材料中的关键部分和限制性条件。
从材料中可以看出,“微光”是材料的中心词,人们对待“微光”的态度多是舍弃。
2012年上海秋季高考试卷评析(发布时间:2012年06月13日 )着眼能力检测强调思辨能力——2012年上海高考语文卷特点2012年上海市高考语文卷命题工作,严格执行“有利于科学选拔人才,促进学生健康发展,维护社会公平”的基本方针,从阅读材料的选择到试题的编制,都力求充分体现高考的选拔功能。
一、选择典型的阅读材料考试材料的选择往往直接决定着语文试卷阅读试题的质量。
今年的5篇阅读材料各有文体代表性,具体有社科文、散文、律诗、史传文和记。
其次阅读材料的题材覆盖了主要人文话题,有指向学术研究规范的重要话题;有指向个体的人生体验;也有指向对自然山水之美的感受与欣赏;还有通过优秀的历史人物思考个人与社会、百姓与国家的关系。
此外,这几篇阅读材料分别呈现出严谨、细致、清晰、朴实、优美等不同的语言风格特征。
二、着眼于阅读能力的检测今年的高考试卷全面落实“考试手册”的“考试目标”,也体现了“课程标准”和《教学基本要求》对高中语文的教学要求。
依然以整体理解能力和分析、鉴赏能力等为检测重点,直接检测对全文的观点、思路、语言等把握的试题所占比例较高,共有6题计21分。
本次考试未直接检测文学文化常识的记忆题,而是将这种检测随文落实,如第15题的几个选项都涉及到文学文化常识,关于咏物诗、律诗等知识的检测都落实在对具体的语言材料的阅读理解中。
三、作文强调思辨能力的检测今年上海高考语文作文是一篇材料作文,向考生提供一则具有思辨性的材料,要求考生写一篇不少于800字文章。
作文材料寓意是:人们对自己心灵闪过的“微光”往往因为没有意识到它的价值而轻易将其舍弃,结果在天才作品中却又发现了自己曾经产生过的闪光的、有价值的念头,说明一个人应当珍视他自己身上有价值的东西,而不是一味地去羡慕别人。
材料作文的思辨性,首先体现为材料的呈现方式。
该材料取自《爱默生集》,文字理性,富有思维张力,体现思辨性材料的特点。
二是材料的内涵。
选取的材料内涵相对趋一,而这种趋一的内涵又具备进行纵向深入思辨的可能性,同时,材料内涵本身具有哲理意味。
2012上海高考数学试题(文科)答案与解析一、填空题(本大题共有14题,满分56分)【点评】本题主要考查行列式的基本运算、三角函数的周期性、二倍角公式.考纲中明确要求掌握二阶行列式的运算性质,属于容易题,难度较小.实用文档实用文档4.若是直线的一个方向向量,则的倾斜角的大小为 (结果用反三角函数值表示).【答案】【解析】设直线的倾斜角为α,则21arctan ,21tan ==αα. 【点评】本题主要考查直线的方向向量、直线的倾斜角与斜率的关系、反三角函数的表示.直线的倾斜角的取值情况一定要注意,属于低档题,难度较小.5.一个高为2的圆柱,底面周长为2π,该圆柱的表面积为 . 【答案】π6【解析】根据该圆柱的底面周长得底面圆的半径为1=r ,所以该圆柱的表面积为:πππππ624222=+=+=r rl S 圆柱表.【点评】本题主要考查空间几何体的表面积公式.审清题意,所求的为圆柱的表面积,不是侧面积,也不是体积,其次,对空间几何体的表面积公式要记准记牢,属于中低档题. 6.方程14230x x +--=的解是 . 【答案】3log 2【解析】根据方程03241=--+x x ,化简得0322)2(2=-⋅-x x ,令()20x t t =>, 则原方程可化为0322=--t t ,解得 3=t 或()舍1-=t ,即3log ,322==x x .所以原方程的解为3log 2 .【点评】本题主要考查指数型方程、指数的运算、指数与对数形式的互化、换元法在求解实用文档数学问题中的运用.本题容易产生增根,要注意取舍,切勿随意处理,导致不必要的错误.本题属于中低档题目,难度适中.7.有一列正方体,棱长组成以1为首项、12为公比的等比数列,体积分别记为12,,...,,...n V V V ,则12lim(...)n n V V V →∞+++= .【答案】78 【解析】由正方体的棱长组成以1为首项,21为公比的等比数列,可知它们的体积则组成了一个以1为首项,81为公比的等比数列,因此,788111)(lim 21=-=+++∞→n n V V V . 【点评】本题主要考查无穷递缩等比数列的极限、等比数列的通项公式、等比数列的定义.考查知识较综合.8.在61x x ⎛⎫- ⎪⎝⎭的二项式展开式中,常数项等于 .【答案】20-【解析】根据所给二项式的构成,构成的常数项只有一项,就是333461C ()20T x x=-=- . 【点评】本题主要考查二项式定理.对于二项式的展开式要清楚,特别注意常数项的构成.属于中档题.9.已知()y f x =是奇函数,若()()2g x f x =+且(1)1g =,则(1)g -= . 【答案】3【解析】因为函数)(x f y =为奇函数,所以有)()(x f x f -=-,即实用文档,1)1(,1)1(,2)1()1(-==+=f g f g 所以,又3212)1()1(,1)1()1(=+=+-=-=-=-f g f f .【点评】本题主要考查函数的奇偶性.在运用此性质解题时要注意:函数)(x f y =为奇函数,所以有)()(x f x f -=-这个条件的运用,平时要加强这方面的训练,本题属于中档题,难度适中.10.满足约束条件22x y +≤的目标函数z y x =-的最小值是 . 【答案】2-【解析】根据题意得到0,0,22;x y x y ≥⎧⎪≥⎨⎪+≤⎩或0,0,22;x y x y ≥⎧⎪≤⎨⎪-≤⎩或0,0,22;x y x y ≤⎧⎪≥⎨⎪-+≤⎩或0,0,2 2.x y x y ≤⎧⎪≤⎨⎪+≥-⎩其可行域为平行四边形ABCD 区域,(包括边界)目标函数可以化成z x y +=,z 的最小值就是该直线在y 轴上截距的最小值,当该直线过点)0,2(A 时,z 有最小值,此时2min -=z .实用文档【点评】本题主要考查线性规划问题,准确画出可行域,找到最优解,分析清楚当该直线过点)0,2(A 时,z 有最小值,此时2min -=z ,这是解题的关键,本题属于中档题,难度适中.11.三位同学参加跳高、跳远、铅球项目的比赛,若每人只选择一个项目,则有且仅有两位同学选择的项目相同的概率是 (结果用最简分数表示). 【答案】32 【解析】一共有27种取法,其中有且只有两个人选择相同的项目的取法共有18种,所以根据古典概型得到此种情况下的概率为32 . 【点评】本题主要考查排列组合概率问题、古典概型.要分清基本事件数和基本事件总数.本题属于中档题.12.在矩形ABCD 中,边AB 、AD 的长分别为2、1,若M 、N 分别是边BC 、CD 上的点,且满足BM CN BCCD=,则AM AN ⋅的取值范围是实用文档【答案】[]4,1【解析】以向量AB 所在直线为x 轴,以向量AD 所在直线为y 轴建立平面直角坐标系,如图所示,因为1,2==AD AB ,所以 (0,0),(2,0),(2,1)(0,1).A B C D 设)20(),1,(),,2(≤≤x x N b M ,根据题意,22x b -=,所以2(,1),(2,).2xAN x AM →→-== 所以123+=•→→x AN AM ()20≤≤x ,所以41231≤+≤x , 即→→≤•≤41AN AM .【点评】本题主要考查平面向量的基本运算、概念、平面向量的数量积的运算律.做题时,要切实注意条件的运用.本题属于中档题,难度适中.13.已知函数()y f x =的图像是折线段ABC ,其中(0,0)A 、1(,1)2B 、(1,0)C ,函数()y xf x =(01x ≤≤)的图像与x 轴围成的图形的面积为 .【答案】41 【解析】根据题意,得到12,02()122,12x x f x x x ⎧≤≤⎪⎪=⎨⎪-+≤⎪⎩,实用文档从而得到⎪⎪⎩⎪⎪⎨⎧≤+-≤≤==121,22210,2)(22x x x x x x xf y 所以围成的面积为41)22(2121221=+-+=⎰⎰dx x x xdx S ,所以围成的图形的面积为41 .【点评】本题主要考查函数的图象与性质,函数的解析式的求解方法、定积分在求解平面图形中的运用.突出体现数形结合思想,本题综合性较强,需要较强的分析问题和解决问题的能力,在以后的练习中加强这方面的训练,本题属于中高档试题,难度较大. 14.已知1()1f x x=+,各项均为正数的数列{}n a 满足11a =,2()n n a f a +=,若20102012a a =,则2011a a +的值是 .【答案】265133+ 【解析】据题x x f +=11)(,并且)(2n n a f a =+,得到n n a a +=+112,11=a ,213=a ,20122010a a =,得到2010201011a a =+,解得2152010-=a (负值舍去).依次往前推得到 2651331120+=+a a . 【点评】本题主要考查数列的概念、组成和性质、同时考查函数的概念.理解条件)(2n n a f a =+是解决问题的关键,本题综合性强,运算量较大,属于中高档试题.二、选择题(本大题共有4题,满分20分)15.若1i 是关于x 的实系数方程20x bx c ++=的一个复数根,则( )A .2,3b c == B.2,1b c ==- C.2,1b c =-=- D.2,3b c =-=实用文档【答案】 D【解析】根据实系数方程的根的特点知1也是该方程的另一个根,所以b i i -==-++22121,即2-=b ,c i i ==+-3)21)(21(,故答案选择D.【点评】本题主要考查实系数方程的根的问题及其性质、复数的代数形式的四则运算.属于中档题,注重对基本知识和基本技巧的考查,复习时要特别注意.16.对于常数m 、n ,“0mn >”是“方程221mx ny +=的曲线是椭圆”的( ) A .充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 【答案】B【解析】方程122=+ny mx 的曲线表示椭圆,常数常数n m ,的取值为0,0,,m n m n >⎧⎪>⎨⎪≠⎩所以,由0mn >得不到程122=+ny mx 的曲线表示椭圆,因而不充分;反过来,根据该曲线表示椭圆,能推出0mn >,因而必要.所以答案选择B.【点评】本题主要考查充分条件和必要条件、充要条件、椭圆的标准方程的理解.根据方程的组成特征,可以知道常数n m ,的取值情况.属于中档题.17.在△ABC 中,若222sin sin sin A B C +<,则△ABC 的形状是( ) A .钝角三角形 B 、.直角三角形 C.锐角三角形 D.不能确定 【答案】 A实用文档【解析】由正弦定理,得,sin 2,sin 2,sin 2C Rc B R b A R a ===代入得到222a b c +<, 由余弦定理的推理得222cos 02a b c C ab+-=<,所以C 为钝角,所以该三角形为钝角三角形.故选择A.【点评】本题主要考查正弦定理及其推理、余弦定理的运用.主要抓住所给式子的结构来选择定理,如果出现了角度的正弦值就选择正弦定理,如果出现角度的余弦值就选择余弦定理.本题属于中档题. 18.若2sin sin (i)777n n S πππ=+++(n N *∈),则在12100,,...,S S S 中,正数的个数是( )A .16 B.72 C.86 D.100 【答案】C【解析】依据正弦函数的周期性,可以找其中等于零或者小于零的项.【点评】本题主要考查正弦函数的图象和性质和间接法解题.解决此类问题需要找到规律,从题目出发可以看出来相邻的14项的和为0,这就是规律,考查综合分析问题和解决问题的能力.三、解答题(本大题共有5题,满分74分)19.(本题满分12分)本题共有2个小题,第1小题满分6分,第2小题满分6分 如图,在三棱锥P ABC -中,PA ⊥底面ABC ,D 是PC 的中点,已知∠BAC =2π,2AB =,23AC =2PA =,求:实用文档(1)三棱锥P ABC -的体积;(2)异面直线BC 与AD 所成的角的大小(结果用反三角函数值表示). 【答案与解析】【点评】本题主要考查直线与直线、直线与平面的位置关系,考查空间想象能力和推理论证能力.综合考查空间中两条异面直线所成的角的求解,同时考查空间几何体的体积公式的运用.本题源于《必修2》立体几何章节复习题,复习时应注重课本,容易出现找错角的情况,要考虑全面,考查空间想象能力,属于中档题.20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分 已知()lg(1)f x x =+.(1)若0(12)()1f x f x <--<,求x 的取值范围;(2)若()g x 是以2为周期的偶函数,且当01x ≤≤时,()()g x f x =,求函数()y g x =实用文档([]1,2x ∈)的反函数. 【答案与解析】【点评】本题主要考查函数的概念、性质等基础知识以及数形结合思想,熟练掌握指数函数、对数函数、幂函数的图象与性质是关键,属于中档题.21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分 海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y 轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰好在失事船正南方向12海里A 处,如图,现假设:①失事船的移动路径可视为抛物线21249y x =;②定位后救援船即刻沿直线匀速前往救援;③救援船出发t 小时后,失事船所在位置的横坐标为7t .(1)当0.5t =时,写出失事船所在位置P 的纵坐标,若此时两船恰好会合,求救援船速度的大小和方向;(2)问救援船的时速至少是多少海里才能追上失事船?【答案与解析】【点评】本题主要考查函数的概念、性质及导数等基础知识.选择恰当的函数模型是解决此类问题的关键,属于中档题.考查灵活运算数形结合、分类讨论的思想方法进行探究、分析与解决问题的能力.属于中档偏上题目,也是近几年高考的热点问题.22.(本题满分16分)本题共有3个小题,第1小题满分5分,第2小题满分5分,第3小题满分6分在平面直角坐标系xOy中,已知双曲线22-=.C x y:21MF=,求点M的坐标;(1)设F是C的左焦点,M是C右支上一点,若22实用文档(2)过C的左焦点作C的两条渐近线的平行线,求这两组平行线围成的平行四边形的面积;(3)设斜率为k(2k<)的直线l交C于P、Q两点,若l与圆221x y+=相切,求证:OP⊥OQ.【答案与解析】实用文档实用文档【点评】本题主要考查双曲线的概念、标准方程、几何性质及其直线与双曲线的关系.特别要注意直线与双曲线的关系问题,在双曲线当中,最特殊的为等轴双曲线,它的离心率为2,它的渐近线为x y ±=,并且相互垂直,这些性质的运用可以大大节省解题时间,本题属于中档题 .23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分对于项数为m 的有穷数列{}n a ,记{}12max ,,...,k k b a a a =(1,2,...,k m =),即k b 为12,,...,k a a a 中的最大值,并称数列{}n b 是{}n a 的控制数列,如1,3,2,5,5的控制数列是1,3,3,5,5.实用文档(1)若各项均为正整数的数列{}n a 的控制数列为2,3,4,5,5,写出所有的{}n a ; (2)设{}n b 是{}n a 的控制数列,满足1k m k a b C -++=(C 为常数,1,2,...,k m =),求证:k k b a =(1,2,...,k m =);(3)设100m =,常数1,12a ⎛⎫∈ ⎪⎝⎭,若(1)22(1)n n n a an n +=--,{}n b 是{}n a 的控制数列,求1122()()b a b a -+-+100100...()b a +-. 【答案与解析】【点评】本题主要考查数列的通项公式、等差、等比数列的基本性质等基础知识,本题属于信息给予题,通过定义“控制”数列,考查考生分析探究及推理论证的能力.综合考查数列的基本运算,数列问题一直是近几年的命题重点内容,应引起足够的重视.实用文档。
2012年上海高考物理试卷评析2012年上海高考物理试卷评析,试卷以2012年上海市考试手册为依据,紧扣课程标准和教材内容,注重对中学物理教学形成良好的导向作用。
物理——关注知识与能力、过程与方法1、试卷的总体情况试卷以2012年上海市考试手册为依据,紧扣课程标准和教材内容,注重对中学物理教学形成良好的导向作用。
以有助于高校选拔新生、有助于中学实施素质教育和对学生创新精神与实践能力的培养为指导思想,在考查学生高中物理基础知识和基本技能的基础上,重点考查了学生的物理思维能力、物理实验能力、综合分析和应用能力。
试卷结构与2010年相同。
总题数为33题,约4900字,阅读量、计算量与去年相当。
试卷注重对基本物理概念、物理思想和物理方法的考查,所涉及的知识点占《考试说明》中所列知识点的72%,试卷估计总体难度为0.69(103.04分),且有一定的梯度。
难度适中的题目(在0.6―0.8之间)共90分(占60%),难度系数大于0.8的题目共34分(占22%),考察学生对基本知识、概念与方法的基础性考题共114分(占76%)。
2、试卷的主要特色试卷重点关注试题与科学、技术、社会、生活等主题的结合,关注新教材体现的教学思想、教学理念、教学方法的特点,把考查知识与能力、过程与方法、情感态度价值观渗透在试卷中。
试卷的单选题考查的知识点分布较广,有力学、静电学、直流电、热学、光学、原子物理。
在思维和分析能力的要求上也略高于去年。
而填空题的难度略低于去年。
今年的实验题仍然注意了对规定实验的考察,并且重点考察了学生是否亲手做过相应的实验,这样做的目的是为了促进在教学过程中对课程标准中规定的教学实验的重视,而非为应付考试而纸上谈兵。
为了对今后中学物理教学有良好的导向作用,进一步重视教材在教学中的重要地位,今年物理试题继续保持了前两年对课本的重视程度。
如第1、2、3、6、8、17、21、26、27、28等题均来源于高中物理试用本教材的内容,其目的是希望高中物理教学或复习不要抛开课本而沉湎于题海之中。
【解读报告作者】姓 名:邵红能工作单位:上海市城市科技学校2012年全国普通高等学校招生统一考试上海 数学试卷(理工农医类)考生注意:1.答卷前,考生务必在答题纸上将姓名、高考准考证号填写清楚,并在规定的区域内贴上条形码.2.本试卷共有23道试题,满分150分.考试时间120分钟.一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1.计算:=+-ii13 (i 为虚数单位).2.若集合}012|{>+=x x A ,}2|1||{<-=x x B ,则=B A .3.函数1sin cos 2)(-= x x x f 的值域是 .4.若)1,2(-=是直线l 的一个法向量,则l 的倾斜角的大小为 (结果用反三角函数值表示).5.在6)2(xx -的二项展开式中,常数项等于 .6.有一列正方体,棱长组成以1为首项、21为公比的等比数列,体积分别记为 ,,,,n V V V 21,则=+++∞→)(lim 21n n V V V .7.已知函数||)(a x e x f -=(a 为常数).若)(x f 在区间),1[+∞上是增函数,则a 的取值范围是 .8.若一个圆锥的侧面展开图是面积为π2的半圆面,则该圆锥的体积为 .9.已知2)(x x f y +=是奇函数,且1)1(=f ,若2)()(+=x f x g ,则=-)1(g .10.如图,在极坐标系中,过点)0,2(M 的直线l 与极轴的夹角6πα=,若将l 的极坐标方程写成)(θρf =的形式,则=)(θf .11.三位同学参加跳高、跳远、铅球项目的比赛,若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是 (结果用最简分数表示).12.在平行四边形ABCD 中,3π=∠A ,边AB 、AD 的长分别为2、1,若M 、N 分别是边BC 、CD ||||CD BC =⋅的取值范围是 .13.已知函数)(x f y =的图象是折线段ABC ,其中)0,0(A 、)5,21(B 、)0,1(C , 函数)(x xf y =(10≤≤x )的图象与x 轴围成的图形的面积为 .14.如图,AD 与BC 是四面体ABCD 中互相垂直的棱,2=BC ,若c AD 2=, 且a CD AC BD AB 2=+=+,其中a 、c 为常数,则四面体ABCD 的体积的最大值是 .二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15.若i 21+是关于x 的实系数方程02=++c bx x 的一个复数根,则( )A .3,2==c b .B .3,2=-=c b .C .1,2-=-=c b .D .1,2-==c b .16.在ABC ∆中,若C B A 222sin sin sin <+,则ABC ∆的形状是( )A .锐角三角形.B .直角三角形.C .钝角三角形.D .不能确定.17.设443211010≤<<<≤x x x x ,5510=x ,随机变量1ξ取值54321x x x x x 、、、、的概率均为2.0,随机变量2ξ取值222221554433221x x x x x x x x x x +++++、、、、的概率也均为2.0,若记21ξξD D 、分别为21ξξ、的方差,则( )A .21ξξD D >.B .21ξξD D =.C .21ξξD D <. D .1ξD 与2ξD 的大小关系与4321x x x x 、、、的取值有关.18.设25sin1πn n a n =,n n a a a S +++= 21,在10021,,,S S S 中,正数的个数是( ) A .25. B .50. C .75. D .100.三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分)本题共有2个小题,第1小题满分6分,第2小题满分6分.如图,在四棱锥ABCD P -中,底面ABCD 是矩形,⊥PA 底面ABCD ,E 是PC 的中点,已知2=AB ,22=AD ,2=PA ,求: (1)三角形PCD 的面积;(2)异面直线BC 与AE 所成的角的大小.20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.已知函数)1lg()(+=x x f .(1)若1)()21(0<--<x f x f ,求x 的取值范围;(2)若)(x g 是以2为周期的偶函数,且当10≤≤x 时,有)()(x f x g =,求函数)(x g y =(]2,1[∈x )的反函数.21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y 轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰好在失事船正南方向12海里A 处,如图.现假设:①失事船的移动路径可视为抛物线24912x y =;②定位后救援船即刻沿直线匀速前往救援;③救援船出发t 小时后,失事船所在位置的横坐标为t 7. (1)当5.0=t 时,写出失事船所在位置P 的纵坐标.若此时两船恰好会合,求 救援船速度的大小和方向;(2)问救援船的时速至少是多少海里才能追上失事船?22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第2小题满分6分.在平面直角坐标系xOy 中,已知双曲线1C :1222=-y x .(1)过1C 的左顶点引1C 的一条渐进线的平行线,求该直线与另一条渐进线及x 轴围成的三角形的面积;(2)设斜率为1的直线l 交1C 于P 、Q 两点,若l 与圆122=+y x 相切,求证:OQ OP ⊥;(3)设椭圆2C :1422=+y x ,若M 、N 分别是1C 、2C 上的动点,且ON OM ⊥,求证:O 到直线MN 的距离是定值.23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第2小题满分8分.对于数集}1{21n x x x X ,,,, -=,其中n x x x <<<< 210,2≥n ,定义向量集},),,(|{X t X s t s Y ∈∈==,若对任意Y a ∈1,存在Y a ∈2,使得021=⋅a a ,则称X 具有性质P .例如}2,1,1{-具有性质P .(1)若2>x ,且},2,1,1{x -具有性质P ,求x 的值;(2)若X 具有性质P ,求证:X ∈1,且当1>n x 时,11=x ;(3)若X 具有性质P ,且11=x 、q x =2(q 为常数),求有穷数列n x x x ,,, 21的通项公式.2012年全国普通高等学校招生统一考试上海 数学试卷(理工农医类)答案要点及解析一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1.计算:=+-ii13 (i 为虚数单位). 【解析】复数i ii i i i i i 21242)1)(1()1)(3(13-=-=-+--=+-. 故答案为i 21-.2.若集合}012|{>+=x x A ,}2|1||{<-=x x B ,则=B A .【解析】集合}21{}012{->=>+=x x x x A ,}31{}21{<<-=<-=x x x x B ,所以}321{<<-=x x B A ,即)3,21(-. 故答案为)3,21(-. 3.函数1sin cos 2)(-= x xx f 的值域是 .【解析】函数x x x x f 2sin 212cos sin 2)(--=--=,因为12sin 1≤≤-x ,所以212sin 2121≤-≤-x ,232sin 21225-≤--≤-x ,即函数)(x f 的值域为]23,25[--. 故答案为]23,25[--.4.若)1,2(-=n 是直线l 的一个法向量,则l 的倾斜角的大小为 (结果用反三角函数值表示).【解析】 设倾斜角为α,由题意可知,直线的一个方向向量为(1,2),则2tan =α, ∴α=2arctan . 故答案为2arctan .5.在6)2(xx -的二项展开式中,常数项等于 . 【解析】二项展开式的通项为k kk k k kk x C xx C T )2()2(26666661-=-=----+,令026=-k ,得3=k ,所以常数项为160)2(3364-=-=C T .故答案为160-.6.有一列正方体,棱长组成以1为首项、21为公比的等比数列,体积分别记为 ,,,,n V V V 21,则=+++∞→)(lim 21n n V V V .【解析】由题意可知,该列正方体的体积构成以1为首项,81为公比的等比数列, ∴1V +2V +…+n V =811811--n =)811(78n -,∴=+++∞→)(lim 21n n V V V 78. 故答案为78.7.已知函数||)(a x e x f -=(a 为常数).若)(x f 在区间),1[+∞上是增函数,则a 的取值范围是 .【解析】令a x t -=,则a x t -=在区间),[+∞a 上单调递增,而te y =为增函数,所以要是函数ax e x f -=)(在),1[+∞单调递增,则有1≤a ,所以a 的取值范围是]1,(-∞.故答案为]1,(-∞.8.若一个圆锥的侧面展开图是面积为π2的半圆面,则该圆锥的体积为 .【解析】因为半圆面的面积为ππ2212=l ,所以42=l ,即2=l ,即圆锥的母线为2=l ,底面圆的周长πππ22==l r ,所以圆锥的底面半径1=r ,所以圆锥的高322=-=r l h ,所以圆锥的体积为πππ33331313=⨯=h r . 故答案为π33. 9.已知2)(x x f y +=是奇函数,且1)1(=f ,若2)()(+=x f x g ,则=-)1(g . 【解析】因为2)(x x f y +=为奇函数,所以22)()(x x f x x f --=+-,所以22)()(x x f x f --=-,32)1()1(=+=f g ,所以1)1(22)1(2)1()1(-=-=+--=+-=-f f f g . 故答案为1-.10.如图,在极坐标系中,过点)0,2(M 的直线l 与极轴的夹角6πα=, 若将l 的极坐标方程写成)(θρf =的形式,则=)(θf .【解析】设直线上的任一点为P ),(θρ,因为6π=∠PAB ,所以θπ-=∠6OPA , 根据正弦定理得OPAOAOAP OP ∠=∠sin sin , 即)6sin(2)6sin(θπππρ-=-,即)6sin(1)6sin(6sin2θπθππρ-=-=.故答案为)6sin(1θπρ-=.11.三位同学参加跳高、跳远、铅球项目的比赛,若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是 (结果用最简分数表示).【解析】三位同学从三个项目选其中两个项目有27232323=C C C 中,若有且仅有两人选择的项目完成相同,则有18122323=C C C ,所以有且仅有两人选择的项目完成相同的概率为322718=. 故答案为32. 12.在平行四边形ABCD 中,3π=∠A ,边AB 、AD 的长分别为2、1,若M 、N 分别是边BC 、CD 上的点,且满足||||CD CN BC BM =,则AN AM ⋅的取值范围是 .【解析】设CDCN BCBM==λ(0≤λ≤1),则BM λ==λ,)1(λ-==)1(λ-,则AN AM ⋅=))((DN AD BM AB ++=])1()[(λλ-++ =⋅+2)1(λ-+2λ+⋅-)1(λ, 又∵⋅=2×1×3cosπ=1,2=4,2=1,∴AM ⋅=6)1(5222++-=+--λλλ,∵0≤λ≤1,∴2≤AM ⋅≤5,即⋅的取值范围是[2,5]. 故答案为[2,5].13.已知函数)(x f y =的图象是折线段ABC ,其中)0,0(A 、)5,21(B 、)0,1(C , 函数)(x xf y =(10≤≤x )的图象与x 轴围成的图形的面积为 .【解析】当210≤≤x ,线段AB 的方程为x y 10=,当121≤<x 时. 线段BC 方程为121150--=--x y , 整理得1010+-=x y ,即函数⎪⎪⎩⎪⎪⎨⎧≤<+-≤≤==121,1010210,10)(x x x x x f y , 所以⎪⎪⎩⎪⎪⎨⎧≤<+-≤≤==121,1010210,10)(22x x x x x x xf y ,函数与x 轴围成的图形面积为dx x x dx x )1010(102121212+-=+⎰⎰12123213)5310(310x x x +-+=45=. 故答案为45. 14.如图,AD 与BC 是四面体ABCD 中互相垂直的棱,2=BC ,若c AD 2=,且a CD AC BD AB 2=+=+,其中a 、c 为常数,则四面体ABCD 的体积的最 大值是 .【解析】过点A 做AE ⊥BC ,垂足为E ,连接DE ,由AD ⊥BC 可知,BC ⊥平面ADE , 所以BC S V V V ADE ADE C ADE B ⋅=+=--31=ADE S 32, 当AB=BD=AC=DC=a 时,四面体ABCD 的体积最大.过E 做EF ⊥DA ,垂足为点F ,已知EA=ED ,所以△ADE 为等腰三角形,所以点E 为AD 的中点,又12222-=-=a BE AB AE ,∴EF=12222--=-c a AF AE ,∴ADE S =EF AD ⋅21=122--c a c , ∴四面体ABCD 体积的最大值=max V ADE S 32=13222--c a c .故答案为13222--c a c .二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15.若i 21+是关于x 的实系数方程02=++c bx x 的一个复数根,则( )A .3,2==c b B .3,2=-=c b C .1,2-=-=c b D .1,2-==c b 【解析】因为i 21+是实系数方程的一个复数根,所以i 21-也是方程的根,则b i i -==-++22121,c i i ==-+3)21)(21(,所以解得2-=b ,3=c .故答案选B .16.在ABC ∆中,若C B A 222sin sin sin <+,则ABC ∆的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定 【解析】根据正弦定理可知由C B A 222sin sin sin <+,可知222c b a <+,在三角形中02cos 222<-+=abc b a C ,所以C 为钝角,三角形为钝角三角形.故答案选C .17.设443211010≤<<<≤x x x x ,5510=x ,随机变量1ξ取值54321x x x x x 、、、、的概率均为2.0,随机变量2ξ取值222221554433221x x x x x x x x x x +++++、、、、的概率也均为2.0,若记21ξξD D 、分别为21ξξ、的方差,则( )A .21ξξD D >B .21ξξD D =C .21ξξD D < D .1ξD 与2ξD 的大小关系与4321x x x x 、、、的取值有关 【解析】由题意可知21ξξE E =,又由题意可知,1ξ的波动性较大,从而有21ξξD D >. 注意:本题也可利用特殊值法. 故答案选A . 18.设25sin1πn n a n =,n n a a a S +++= 21,在10021,,,S S S 中,正数的个数是( ) A .25 B .50 C .75 D .100【解析】当1≤n ≤24时,n a >0,当26≤n ≤49时,n a <0,但其绝对值要小于1≤n ≤24时相应的值,当51≤n ≤74时,n a >0,当76≤n ≤99时,n a <0,但其绝对值要小于51≤n ≤74时相应的值,∴当1≤n ≤100时,均有n S >0. 故答案选D .三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分)本题共有2个小题,第1小题满分6分,第2小题满分6分.如图,在四棱锥ABCD P -中,底面ABCD 是矩形,⊥PA 底面ABCD ,E 是PC 的中点,已知2=AB ,22=AD ,2=PA ,求: (1)三角形PCD 的面积;(2)异面直线BC 与AE 所成的角的大小.【解析】(1)∵PA ⊥底面ABCD ,∴PA ⊥CD , 又∵CD ⊥AD ,∴CD ⊥平面PAD , ∴CD ⊥PD , 又∵32)22(222=+=PD ,CD=2,∴△PCD 的面积为3232221=⨯⨯. (2)解法一:取PB 的中点F ,连接EF,AF, 则EF ∥BC ,∴∠AEF(或其补角)是异面直线 BC 与AE 所成的角.在△ADF 中,EF=2、AF=2,AE=2, ∴△AEF 是等腰直角三角形, ∴∠AEF=4π, ∴异面直线BC 与AE 所成的角大小为4π. 解法二:如图所示,建立空间直角坐标系, 则B(2,0,0),C(2,22,0),E(1,2,1),∴AE =(1,2,1),BC =(0,22,0), 设AE 与BC 的夹角为θ,则ACAE AC AE =θcos =222224=⨯,, 又∵0<θ≤2π,∴θ=4π.20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.已知函数)1lg()(+=x x f .(1)若1)()21(0<--<x f x f ,求x 的取值范围;(2)若)(x g 是以2为周期的偶函数,且当10≤≤x 时,有)()(x f x g =,求函数)(x g y =(]2,1[∈x )的反函数.【解析】(1)由⎩⎨⎧>+>-01022x x ,得11<<-x .由1lg )1lg()22lg(0122<=+--<+-x x x x 得101122<<+-x x .因为01>+x ,所以1010221+<-<+x x x ,3132<<-x .由⎩⎨⎧<<-<<-313211x x 得3132<<-x . (2)当x ∈[1,2]时,2-x ∈[0,1],因此)3lg()2()2()2()(x x f x g x g x g y -=-=-=-==.由单调性可得]2lg ,0[∈y .因为yx 103-=,所以所求反函数是xy 103-=,]2lg ,0[∈x .21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y 轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰好在失事船正南方向12海里A 处,如图.现假设:①失事船的移动路径可视为抛物线24912x y =;②定位后救援船即刻沿直线匀速前往救援;③救援船出发t 小时后,失事船所在位置的横坐标为t 7. (1)当5.0=t 时,写出失事船所在位置P 的纵坐标.若此时两船恰好会合,求 救援船速度的大小和方向;(2)问救援船的时速至少是多少海里才能追上失事船?【解析】(1)5.0=t 时,P 的横坐标x P =277=t ,代入抛物线方程24912x y =中,得P 的纵坐标y P =3. 由|AP |=2949,得救援船速度的大小为949海里/时.由tan ∠OAP =30712327=+,得∠OAP =arctan 307,故救援船速度的方向为北偏东arctan 307弧度.(2)设救援船的时速为v 海里,经过t 小时追上失事船,此时位置为)12,7(2t t . 由222)1212()7(++=t t vt ,整理得337)(1442122++=t t v . 因为2212≥+t t ,当且仅当t =1时等号成立,所以22253372144=+⨯≥v ,即25≥v .因此,救援船的时速至少是25海里才能追上失事船.22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第2小题满分6分.在平面直角坐标系xOy 中,已知双曲线1C :1222=-y x .(1)过1C 的左顶点引1C 的一条渐进线的平行线,求该直线与另一条渐进线及x 轴围成的三角形的面积;(2)设斜率为1的直线l 交1C 于P 、Q 两点,若l 与圆122=+y x 相切,求证:OQ OP ⊥;(3)设椭圆2C :1422=+y x ,若M 、N 分别是1C 、2C 上的动点,且ON OM ⊥,求证:O 到直线MN 的距离是定值.【解析】(1)双曲线1:21212=-y C x ,左顶点)0,(22-A ,渐近线方程:x y 2±=.过点A 与渐近线x y 2=平行的直线方程为)(222+=x y ,即12+=x y . 解方程组⎩⎨⎧+=-=122x y x y ,得⎪⎩⎪⎨⎧=-=2142y x .所以所求三角形的面积1为8221||||==y OA S .(2)设直线PQ 的方程是b x y +=.因直线与已知圆相切, 故12||=b ,即22=b .由⎩⎨⎧=-+=1222y x b x y ,得01222=---b bx x . 设P (x 1, y 1)、Q (x 2, y 2),则⎩⎨⎧--==+1222121b x x bx x .(lb ylfx ) 又2,所以221212121)(2b x x b x x y y x x OQ OP +++=+=⋅022)1(2222=-=+⋅+--=b b b b b ,故OP ⊥OQ .(3)当直线ON 垂直于x 轴时, |ON |=1,|OM |=22,则O 到直线MN 的距离为33.当直线ON 不垂直于x 轴时,设直线ON 的方程为kx y =(显然22||>k ),则直线OM 的方程为x y k1-=. 由⎩⎨⎧=+=1422y x kx y ,得⎪⎩⎪⎨⎧==++22242412k k k y x ,所以22412||k k ON ++=.同理121222||-+=k k OM . 设O 到直线MN 的距离为d ,因为22222||||)|||(|ON OM d ON OM =+, 所以3133||1||1122222==+=++k k ON OM d ,即d =33.综上,O 到直线MN 的距离是定值.23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第2小题满分8分.对于数集}1{21n x x x X ,,,, -=,其中n x x x <<<< 210,2≥n ,定义向量集},),,(|{X t X s t s a a Y ∈∈==,若对任意Y a ∈1,存在Y a ∈2,使得021=⋅a a ,则称X 具有性质P .例如}2,1,1{-具有性质P .(1)若2>x ,且},2,1,1{x -具有性质P ,求x 的值;(2)若X 具有性质P ,求证:X ∈1,且当1>n x 时,11=x ;(3)若X 具有性质P ,且11=x 、q x =2(q 为常数),求有穷数列n x x x ,,, 21的通项公式.【解析】(1)选取)2,(1x a =,Y 中与1a 垂直的元素必有形式),1(b -,所以x =2b ,从而x =4. (2)证明:取Y x x a ∈=),(111.设Y t s a ∈=),(2满足021=⋅a a .由0)(1=+x t s 得0=+t s ,所以s 、t 异号.因为-1是X 中唯一的负数,所以s 、t 中之一为-1,另一为1,故1∈X .假设1=k x ,其中n k <<1,则n x x <<<101.选取Y x x a n ∈=),(11,并设Y t s a ∈=),(2满足021=⋅a a ,即01=+n tx sx ,则s 、t 异号,从而s 、t 之中恰有一个为-1.若s =-1,则2,矛盾;若t =-1,则n n x s sx x ≤<=1,矛盾.所以x 1=1.(3)[解法一]猜测1-=i i q x ,i =1, 2, …, n .记},,,1,1{2k k x x A -=,k =2, 3, …, n .先证明:若1+k A 具有性质P ,则k A 也具有性质P.任取),(1t s a =,s 、t ∈k A .当s 、t 中出现-1时,显然有2a 满足021=⋅a a ;当1-≠s 且1-≠t 时,s 、t ≥1.因为1+k A 具有性质P ,所以有),(112t s a =,1s 、1t ∈1+k A ,使得021=⋅a a ,从而1s 和1t 中有一个是-1,不妨设1s =-1. 假设1t ∈1+k A 且1t ∉k A ,则11+=k x t .由0),1(),(1=-⋅+k x t s ,得11++≥=k k x tx s ,与s ∈k A 矛盾.所以1t ∈k A .从而k A 也具有性质P.现用数学归纳法证明:1-=i i q x ,i =1, 2, …, n .当n =2时,结论显然成立;假设n=k 时,},,,1,1{2k k x x A -=有性质P ,则1-=i i q x ,i =1, 2, …, k ;当n=k +1时,若},,,,1,1{121++-=k k k x x x A 有性质P ,则},,,1,1{2k k x x A -=也有性质P ,所以},,,,1,1{111+-+-=k k k x q q A .取),(11q x a k +=,并设),(2t s a =满足021=⋅a a ,即01=++qt s x k .由此可得s 与t中有且只有一个为-1.若1-=t ,则1,不可能;所以1-=s ,kk k q q q qt x =⋅≤=-+11,又11-+>k k q x ,所以k k q x =+1.综上所述,1-=i i q x 1-=i i q x ,i =1, 2, …, n .[解法二]设),(111t s a =,),(222t s a =,则021=⋅a a 等价于2211st t s -=.记|}|||,,|{t s X t X s B ts >∈∈=,则数集X 具有性质P 当且仅当数集B 关于原点对称. 注意到-1是X 中的唯一负数,},,,{)0,(32n x x x B ---=-∞ 共有n -1个数,所以),0(∞+ B 也只有n -1个数.由于1221x x x x x x x x n n n n n n<<<<-- ,已有n -1个数,对以下三角数阵1221x x x x x x x x n n n n n n <<<<--113121x x x x x x n n n n n -----<<<……12x x注意到,12111x x x x x x n n >>>- 所以,12211x x x x x x n n n n ===--- 从而数列的通项公式为n k q xx x x k k k ,,2,1,11121 ==⎪⎪⎭⎫ ⎝⎛=--.2012年全国普通高等学校招生统一考试上海 数学试卷(文史类)考生注意:1.答卷前,考生务必在答题纸上将姓名、高考准考证号填写清楚,并在规定的区域内贴上条形码.2.本试卷共有23道试题,满分150分.考试时间120分钟.一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1、计算:31ii-=+ (i 为虚数单位)2、若集合{}210A x x =->,{}1B x x =<,则A B ⋂=3、函数sin 2()1cos x f x x=-的最小正周期是4、若(2,1)d =是直线l 的一个方向向量,则l 的倾斜角的大小为 (结果用反三角函数值表示)5、一个高为2的圆柱,底面周长为2π,该圆柱的表面积为6、方程14230xx +--=的解是7、有一列正方体,棱长组成以1为首项、12为公比的等比数列,体积分别记为12,,...,,...n V V V ,则12lim(...)n n V V V →∞+++=8、在61x x ⎛⎫- ⎪⎝⎭的二项式展开式中,常数项等于9、已知()y f x =是奇函数,若()()2g x f x =+且(1)1g =,则(1)g -=10、满足约束条件22x y +≤的目标函数z y x =-的最小值是11、三位同学参加跳高、跳远、铅球项目的比赛,若每人只选择一个项目,则有且仅有两位同学选择的项目相同的概率是 (结果用最简分数表示)12、在矩形ABCD 中,边AB 、AD 的长分别为2、1,若M 、N 分别是边BC 、CD 上的点,且满足BM CN BCCD=,则AM AN ⋅的取值范围是13、已知函数()y f x =的图像是折线段ABC ,其中(0,0)A 、1(,1)2B 、(1,0)C ,函数()y xf x =(01x ≤≤)的图像与x 轴围成的图形的面积为14、已知1()1f x x =+,各项均为正数的数列{}n a 满足11a =,2()n n a f a +=, 若20102012a a =,则2011a a +的值是二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15、若1+i 是关于x 的实系数方程20x bx c ++=的一个复数根,则( )A 、2,3b c ==B 、2,1b c ==-C 、2,1b c =-=-D 、2,3b c =-=16、对于常数m 、n ,“0mn >”是“方程221mx ny +=的曲线是椭圆”的( ) A 、充分不必要条件 B 、必要不充分条件 C 、充分必要条件 D 、既不充分也不必要条件17、在△ABC 中,若222sin sin sin A B C +<,则△ABC 的形状是( ) A 、钝角三角形 B 、直角三角形 C 、锐角三角形 D 、不能确定18、若2sin sin (i)777n n S πππ=+++(n N *∈),则在12100,,...,S S S 中,正数的个数是( )A 、16B 、72C 、86D 、100三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分)本题共有2个小题,第1小题满分6分,第2小题满分6分. 如图,在三棱锥P ABC -中,PA ⊥底面ABC ,D 是PC 的中点,已知∠BAC =2π,2AB =,23AC =,2PA =,求:(1)三棱锥P ABC -的体积(2)异面直线BC 与AD 所成的角的大小(结果用反三角函数值表示)20、(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. 已知()lg(1)f x x =+(1)若0(12)()1f x f x <--<,求x 的取值范围(2)若()g x 是以2为周期的偶函数,且当01x ≤≤时,()()g x f x =,求函数()y g x =([]1,2x ∈)的反函数21、(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y 轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰好在失事船正南方向12海里A 处,如图,现假设:①失事船的移动路径可视为抛物线21249y x =;②定位后救援船即刻沿直线匀速前往救援;③救援船出发t 小时后,失事船所在位置的横坐标为7t(1)当0.5t =时,写出失事船所在位置P 的纵坐标,若此时两船恰好会合,求救援船速度的大小和方向(2)问救援船的时速至少是多少海里才能追上失事船?22、(本题满分16分)本题共有3个小题,第1小题满分5分,第2小题满分5分,第3小题满分6分.在平面直角坐标系xOy 中,已知双曲线22:21C x y -=(1)设F 是C 的左焦点,M 是C 右支上一点,若MF =M 的坐标; (2)过C 的左焦点作C 的两条渐近线的平行线,求这两组平行线围成的平行四边形的面积;(3)设斜率为k (k <)的直线l 交C 于P 、Q 两点,若l 与圆221x y +=相切,求证:OP ⊥OQ .23、(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.对于项数为m 的有穷数列{}n a ,记{}12max ,,...,k k b a a a =(1,2,...,k m =),即k b 为12,,...,k a a a 中的最大值,并称数列{}n b 是{}n a 的控制数列,如1,3,2,5,5的控制数列是1,3,3,5,5.(1)若各项均为正整数的数列{}n a 的控制数列为2,3,4,5,5,写出所有的{}n a (2)设{}n b 是{}n a 的控制数列,满足1k m k a b C -++=(C 为常数,1,2,...,k m =),求证:k k b a =(1,2,...,k m =)(3)设100m =,常数1,12a ⎛⎫∈ ⎪⎝⎭,若(1)22(1)n n n a an n +=--,{}n b 是{}n a 的控制数列,求1122()()b a b a -+-+100100...()b a +-.2012年全国普通高等学校招生统一考试上海 数学试卷(文史类)答案要点及解析一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1、计算:31ii-=+ (i 为虚数单位) 【解析】复数i ii i i i i i 21242)1)(1()1)(3(13-=-=-+--=+-. 故答案为i 21-.2、若集合{}210A x x =->,{}1B x x =<,则A B ⋂=【解析】集合}21{}012{>=>-=x x x x A ,}11{}1{<<-=<=x x x x B ,所以}121{<<=x xB A ,即)1,21(. 故答案为)1,21(. 3、函数sin 2()1cos x f x x=-的最小正周期是【解析】函数x x x x f 2sin 212)2(cos sin )(+=--=,周期ππ==22T ,即函数)(x f 的周期为π. 故答案为π.4、若(2,1)d =是直线l 的一个方向向量,则l 的倾斜角的大小为 (结果用反三角函数值表示).【解析】因为直线的方向向量为),1(2)21,1(2)1,2(k ==,即直线的斜率21=k ,即21tan =α,所以直线的倾斜角21arctan =α. 故答案为21arctan .5、一个高为2的圆柱,底面周长为2π,该圆柱的表面积为【解析】底面圆的周长ππ22=r ,所以圆柱的底面半径1=r ,所以圆柱的侧面积为π4 两个底面积为ππ222=r .,所以圆柱的表面积为π6. 故答案为π6. 6、方程14230xx +--=的解是【解析】原方程可化为0322)2(2=-⋅-xx ,解得32=x,或12-=x (舍去),∴3log 2=x . 故答案为3log 2.7、有一列正方体,棱长组成以1为首项、12为公比的等比数列,体积分别记为12,,...,,...n V V V ,则12lim(...)n n V V V →∞+++=【解析】由题意可知,该列正方体的体积构成以1为首项,81为公比的等比数列, ∴1V +2V +…+n V =811811--n =)811(78n -,∴=+++∞→)(lim 21n n V V V 78.故答案为78.8、在61x x ⎛⎫- ⎪⎝⎭的二项式展开式中,常数项等于【解析】r rrr xx C T )1(661-=-+=r r r x C 266)1(--,令r 26-=0,得r =3.故常数项为336)1(-C =-20.故答案为-20.9、已知()y f x =是奇函数,若()()2g x f x =+且(1)1g =,则(1)g -= 【解析】由12)1()1(=+=f g ,得1)1(-=f ,所以32)1(2)1()1(=+-=+-=-f f g . 故答案为3.10、满足约束条件22x y +≤的目标函数z y x =-的最小值是【解析】作出约束条件表示的平面区域可知,当2=x ,0=y 时,目标函数取最小值,为-2.故答案为-2.11、三位同学参加跳高、跳远、铅球项目的比赛,若每人只选择一个项目,则有且仅有两位同学选择的项目相同的概率是 (结果用最简分数表示).【解析】三位同学从三个项目选其中两个项目有27232323=C C C 中,若有且仅有两人选择的项目完成相同,则有18122323=C C C ,所以有且仅有两人选择的项目完成相同的概率为322718=. 故答案为32. 12、在矩形ABCD 中,边AB 、AD 的长分别为2、1,若M 、N 分别是边BC 、CD 上的点,且满足BM CN BCCD=,则AM AN ⋅的取值范围是【解析】==λ(0≤λ≤1),则BM λ==λ,DC DN )1(λ-==AB )1(λ-,则AM ⋅=))((++=])1()[(AB AD AD AB λλ-++ =AD AB ⋅+2)1(AB λ-+2AD λ+AB AD ⋅-)1(λ, 又∵⋅=0, ∴AM ⋅=λ34-,∵0≤λ≤1,∴1≤AM ⋅≤4,即⋅的取值范围是[1,4]. 故答案为[1,4].13、已知函数()y f x =的图像是折线段ABC ,其中(0,0)A 、1(,1)2B 、(1,0)C ,函数()y xf x =(01x ≤≤)的图像与x 轴围成的图形的面积为【解析】⎪⎩⎪⎨⎧+-=,22,2)(x x x f ,121,210≤<≤≤x x ,∴⎪⎩⎪⎨⎧+-=,22,222x x x y ,121,210≤<≤≤x x∴围成的面积⎰⎰+-+=12122102)22(2dx x x dx x S =213310x +12123)5310(x x +-=41. 故答案为41. 14、已知1()1f x x =+,各项均为正数的数列{}n a 满足11a =,2()n n a f a +=, 若20102012a a =,则2011a a +的值是【解析】由题意得,213=a ,325=a ,…,13811=a , ∵20122010a a =,且.n a >0,∴2512010+-=a ,易得2010a =2008a =…=24a =22a =24a =.20a , ∴.20a +11a =251+-+138=265133+.故答案为265133+. 二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15、若1+i 是关于x 的实系数方程20x bx c ++=的一个复数根,则( )A 、2,3b c ==B 、2,1b c ==-C 、2,1b c =-=-D 、2,3b c =-= 【解析】因为i 21+是实系数方程的一个复数根,所以i 21-也是方程的根,则b i i -==-++22121,c i i ==-+3)21)(21(,所以解得2-=b ,3=c ,选D.故答案选D.16、对于常数m 、n ,“0mn >”是“方程221mx ny +=的曲线是椭圆”的( ) A 、充分不必要条件 B 、必要不充分条件 C 、充分必要条件 D 、既不充分也不必要条件 【解析】∵mn >0,∴⎩⎨⎧>>,0,0n m 或⎩⎨⎧<<,0,0n m .方程22ny mx +=1表示的曲线是椭圆,则一定有⎩⎨⎧>>,0,0n m 故“mn >0”是“方程22ny mx +=1表示的是椭圆”的必要不充分条件. 故答案选B .17、在△ABC 中,若222sin sin sin A B C +<,则△ABC 的形状是( ) A 、钝角三角形 B 、直角三角形 C 、锐角三角形 D 、不能确定【解析】根据正弦定理可知由C B A 222sin sin sin <+,可知222c b a <+,在三角形中02cos 222<-+=abc b a C ,所以C 为钝角,三角形为钝角三角形,选A.故答案选A . 18、若2sin sin (i)777n n S πππ=+++(n N *∈),则在12100,,...,S S S 中,正数的个数是( )A 、16B 、72C 、86D 、100【解析】由题意可知,1413S S ==2827S S ==4241S S ==…=9897S S ==0,共14个,其余均为正数,故共有100-14=86个正数. 故答案选C .三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分)本题共有2个小题,第1小题满分6分,第2小题满分6分. 如图,在三棱锥P ABC -中,PA ⊥底面ABC ,D 是PC 的中点,已知∠BAC =2π,2AB =,AC =2PA =,求:(1)三棱锥P ABC -的体积(2)异面直线BC 与AD 所成的角的大小(结果用反三角函数值表示)【解析】(1)3232221=⨯⨯=∆ABC S , 三棱锥P -ABC 的体积为3343131232=⨯⨯=⨯=∆PA S V ABC .(2)取PB 的中点E ,连接DE 、AE ,则ED ∥BC ,所以∠ADE (或其补角)是异面直线 BC 与AD 所成的角.在三角形ADE 中,DE=2,AE=2,AD=2, 4322222222cos ==∠⨯⨯-+ADE ,所以∠ADE =43arccos . 因此,异面直线BC 与AD 所成的角的大小是43arccos . 12分20、(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. 已知()lg(1)f x x =+(1)若0(12)()1f x f x <--<,求x 的取值范围(2)若()g x 是以2为周期的偶函数,且当01x ≤≤时,()()g x f x =,求函数()y g x =([]1,2x ∈)的反函数 【解析】 (1)由⎩⎨⎧>+>-01022x x ,得11<<-x .由1lg )1lg()22lg(0122<=+--<+-x x x x 得101122<<+-x x .因为01>+x ,所以1010221+<-<+x x x ,3132<<-x .PA BCDE由⎩⎨⎧<<-<<-313211x x 得3132<<-x . (2)当x ∈[1,2]时,2-x ∈[0,1],因此)3lg()2()2()2()(x x f x g x g x g y -=-=-=-==.由单调性可得]2lg ,0[∈y .因为yx 103-=,所以所求反函数是xy 103-=,]2lg ,0[∈x .21、(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y 轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰好在失事船正南方向12海里A 处,如图,现假设:①失事船的移动路径可视为抛物线21249y x =;②定位后救援船即刻沿直线匀速前往救援;③救援船出发t 小时后,失事船所在位置的横坐标为7t(1)当0.5t =时,写出失事船所在位置P 的纵坐标,若此时两船恰好会合,求救援船速度的大小和方向(2)问救援船的时速至少是多少海里才能追上失事船?【解析】(1)5.0=t 时,P 的横坐标x P =277=t ,代入抛物线方程24912x y =中,得P 的纵坐标y P =3. ……2分 由|AP |=2949,得救援船速度的大小为949海里/时.由tan ∠OAP =30712327=+,得∠OAP =arctan 307,故救援船速度的方向为北偏东arctan 307弧度.(2)设救援船的时速为v 海里,经过t 小时追上失事船,此时位置为)12,7(2t t . 由222)1212()7(++=t t vt ,整理得337)(1442122++=t t v .……10分 因为2212≥+t t ,当且仅当t =1时等号成立,所以22253372144=+⨯≥v ,即25≥v .因此,救援船的时速至少是25海里才能追上失事船. ……14分22、(本题满分16分)本题共有3个小题,第1小题满分5分,第2小题满分5分,第3小题满分6分.在平面直角坐标系xOy 中,已知双曲线22:21C x y -=(1)设F 是C 的左焦点,M 是C右支上一点,若MF =M 的坐标; (2)过C 的左焦点作C 的两条渐近线的平行线,求这两组平行线围成的平行四边形的面积;(3)设斜率为k(k <)的直线l 交C 于P 、Q 两点,若l 与圆221x y +=相切,求证:OP ⊥OQ . 【解析】(1)双曲线1:2212=-y C x ,左焦点)0,(26-F .设),(y x M ,则22222262)3()(||+=++=x y x MF , 由M 是右支上一点,知22≥x ,所以223||22=+=x MF ,得26=x .所以)2,(26±M .(2)左顶点)0,(22-A ,渐近线方程:x y 2±=.过A 与渐近线x y 2=平行的直线方程为:)(222+=x y ,即12+=x y .解方程组⎩⎨⎧+=-=122x y x y ,得⎪⎩⎪⎨⎧=-=2142y x .所求平行四边形的面积为42||||==y OA S .(3)设直线PQ 的方程是b kx y +=.因直线与已知圆相切,故11||2=+k b ,即122+=k b (*).由⎩⎨⎧=-+=1222y x b kx y ,得012)2(222=----b kbx x k . 设P (x 1, y 1)、Q (x 2, y 2),则⎪⎩⎪⎨⎧==+----22221212221k b k kbx x x x . ))((2121b kx b kx y y ++=,所以2212122121)()1(b x x kb x x k y y x x OQ OP ++++=+=⋅22222222221222)1)(1(k k b k b k k b k --+-----+=+.由(*)知0=⋅,所以OP ⊥OQ .23、(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.对于项数为m 的有穷数列{}n a ,记{}12max ,,...,k k b a a a =(1,2,...,k m =),即k b 为12,,...,k a a a 中的最大值,并称数列{}n b 是{}n a 的控制数列,如1,3,2,5,5的控制数列是1,3,3,5,5(1)若各项均为正整数的数列{}n a 的控制数列为2,3,4,5,5,写出所有的{}n a (2)设{}n b 是{}n a 的控制数列,满足1k m k a b C -++=(C 为常数,1,2,...,k m =),求证:k k b a =(1,2,...,k m =)(3)设100m =,常数1,12a ⎛⎫∈ ⎪⎝⎭,若(1)22(1)n n n a an n +=--,{}n b 是{}n a 的控制数列,求1122()()b a b a -+-+100100...()b a +-。
2012·上海卷(数学理科)1.[2012·上海卷] 计算:3-i1+i=________(i 为虚数单位).1.1-2i [解析] 考查复数的除法运算,是基础题,复数的除法运算实质就是分母实数化运算.原式=(3-i )(1-i )1-i 2=1-2i.2.[2012·上海卷] 若集合A ={x |2x +1>0},B ={x ||x -1|<2},则A ∩B =________. 2.⎝ ⎛⎭⎪⎫-12,3 [解析] 考查集合的交集运算和解绝对值不等式,解此题的关键是解绝对值不等式,再利用数轴求解.解得集合A =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x >-12,集合B ={x |-1<x <3},求得A ∩B =⎝ ⎛⎭⎪⎫-12,3.3.[2012·上海卷] 函数f (x )=⎪⎪⎪⎪⎪⎪2 cos x sin x -1的值域是________. 3.⎣⎢⎡⎦⎥⎤-52,-32 [解析] 考查二阶矩阵和三角函数的值域,以矩阵为载体,实为考查三角函数的值域,易错点是三角函数的化简.f (x )=-2-sin x cos x =-2-12sin2x ,又-1≤sin2x ≤1,所以f (x )=-2-12sin2x 的值域为⎣⎢⎡⎦⎥⎤-52,-32.4.[2012·上海卷] 若=(-2,1)是直线l 的一个法向量,则l 的倾斜角的大小为________(结果用反三角函数值表示).4.arctan2 [解析] 考查直线的法向量和倾斜角,关键是求出直线的斜率. 由已知可得直线的斜率k ×1-2=-1,∴k =2,k =tan α,所以直线的倾斜角α=arctan2.5.[2012·上海卷] 在⎝ ⎛⎭⎪⎫x -2x 6的二项展开式中,常数项等于________.5.-160 [解析] 考查二项式定理,主要是二项式的通项公式的运用.由通项公式得T r +1=C r 6x 6-r ⎝ ⎛⎭⎪⎫-2x r =(-2)r C r 6x 6-2r,令6-2r =0,解得r =3,所以是第4项为常数项,T 4=(-2)3C 36=-160.6.[2012·上海卷] 有一列正方体,棱长组成以1为首项12为公比的等比数列,体积分别记为V 1,V 2,…,V n ,…,则lim n →∞(V 1+V 2+…+V n )=________.6.87 [解析] 考查等比数列和无穷递缩等比数列的极限,此题只要掌握极限公式即可解决,是简单题型.由已知可知V 1,V 2,V 3,…构成新的等比数列,首项V 1=1,公比q =18,由极限公式得lim n →∞(V 1+V 2+…+V n )=11-18=87.7.[2012·上海卷] 已知函数f (x )=e |x -a |(a 为常数).若f (x )在区间[1,+∞)上是增函数,则a 的取值范围是________.7.(-∞,1] [解析] 考查复合函数的单调性,实为求参数a 的取值范围. 令t =||x -a ,又e>1,函数f (x )在[1,+∞)上是增函数,只需函数t =||x -a 在[1,+∞)上是增函数,所以参数a ≤1.8.[2012·上海卷] 若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为________.8.33π [解析] 考查扇形的弧长和面积公式,以及圆锥的体积公式,关键是求出圆锥的半径和高.由已知可得圆锥的母线长l =2,底面圆的周长2πr =πl =2π,所以底面半径r =1,由此得圆锥的高h =l 2-r 2=3,由圆锥的体积公式得V =13πr 2h =33π.9.[2012·上海卷] 已知y =f (x )+x 2是奇函数,且f (1)=1.若g (x )=f (x )+2,则g (-1)=________.9.-1 [解析] 考查函数的奇偶性和转化思想,此题的关键是利用y =f (x )+x 2为奇函数.已知函数y =f (x )+x 2为奇函数,则f (-1)+(-1)2=-[f (1)+1]=-2,解得f (-1)=-3,所以g (-1)=f (-1)+2=-3+2=-1.10.[2012·上海卷] 如图1-1所示,在极坐标系中,过点M (2,0)的直线l 与极轴的夹角α=π6,若将l 的极坐标方程写成ρ=f (θ)的形式,则f (θ)=________.图1-110.1sin ⎝ ⎛⎭⎪⎫π6-θ [解析] 考查极坐标方程,关键是写出直线的极坐标方程,再按要求化简.由已知得直线方程为y =(x -2)tan π6,化简得x -3y -2=0,转化为极坐标方程为: ρcos θ-3ρsin θ-2=0,解得ρ=2cos θ-3sin θ=1sin ⎝ ⎛⎭⎪⎫π6-θ,所以 f (θ)=1sin ⎝ ⎛⎭⎪⎫π6-θ.11.[2012·上海卷] 三位同学参加跳高跳远铅球项目的比赛.若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是________(结果用最简分数表示).11.23 [解析] 考查古典概率和排列问题,关键是把情况分析清楚,不要漏掉或者重复情况.所有的可能情况有C 23C 23C 23,满足条件有且仅有两人选择的项目完全相同的情况有 C 23C 23C 12,由古典概率公式得P =C 23C 23C 12C 23C 23C 23=23.12.[2012·上海卷] 在平行四边形ABCD 中,∠A =π3,边ABAD 的长分别为21.若MN 分别是边BCCD 上的点,且满足|BM →||BC→|=|CN →||CD →|,则AM →·AN→的取值范围是________.12.[2,5] [解析] 令BM →=nBC →(0≤n ≤1),则DN →=(1-n )DC →,在平行四边形ABCD中,AM→=AB →+nAD →, AN →=AD →+(1-n )AB →,所以AM →·AN →=(AB →+nAD →)·[AD→+(1-n )AB →] =-n 2-2n +5,而函数f (n )=-n 2-2n +5在[0,1]上是单调递减的,其值域为[2,5], 所以AM →·AN →的取值范围是[2,5].13.[2012·上海卷] 已知函数y =f (x )的图像是折线段ABC ,其中A (0,0)B ⎝ ⎛⎭⎪⎫12,5C (1,0).函数y =xf (x )(0≤x ≤1)的图像与x 轴围成的图形的面积为________.13.54 [解析] 考查分段函数和用定积分求曲边形的面积,考查学生分类讨论思想和转化思想.由已知可得函数的解析式y =xf (x )=⎩⎪⎨⎪⎧10x 2,x ∈⎣⎢⎡⎦⎥⎤0,12,10x -10x 2,x ∈⎝ ⎛⎦⎥⎤12,1, 曲线与x 轴围成区域的面积,可用定积分表示S =∫120(10x 2 )d x +⎠⎛112(10x -10x 2)d x = 54.图1-214.[2012·上海卷] 如图1-2所示,AD与BC是四面体ABCD中互相垂直的棱,BC=2,若AD=2c,且AB+BD=AC+CD=2a,其中ac为常数,则四面体ABCD的体积的最大值是________.14.23c a2-c2-1[解析] 以空间四面体为载体,考查几何体的体积和代数式的最值问题,以及转化思想,解此题的关键是求出侧面三角形ABD的高的最大值.作BE垂直AD于E,连接CE,则CE也垂直AD,且BE=CE,所以四面体ABCD 的体积V=13S△BCE·AD=23c BE2-1,在三角形ABD中,AB+BD=2a,AD=2c,所以AD边上的高BE等于以AD为焦点,长轴为2a的椭圆上的点到x轴的距离,其最大值刚好在点在短轴端点的时候得到,即BE≤a2-c2,所以V=23c BE2-1≤23c a2-c2-1.15.[2012·上海卷] 若1+2i是关于x的实系数方程x2+bx+c=0的一个复数根,则()A.b=2,c=3 B.b=-2,c=3C.b=-2,c=-1 D.b=2,c=-115.B[解析] 考查复数的概念和一元二次方程,可利用方程的两根是共轭复数解题.由韦达定理可知:-b=(1+2i)+(1-2i)=2,∴b=-2,c=(1+2i)(1-2i)=1+2=3,∴c=3,所以选B.此题还可以直接把复数根1+2i代入方程中,利用复数相等求解.16.[2012·上海卷] 在△ABC中,若sin2A+sin2B<sin2C,则△ABC的形状是() A.锐角三角形B.直角三角形C.钝角三角形D.不能确定16.C[解析] 考查正弦定理和判断三角形的形状,考查考生的转化思想,关键是利用正弦定理,把角转化边,再利用边之间的关系,判断三角形的形状.由正弦定理可把不等式转化为a 2+b 2<c 2,cos C =a 2+b 2-c 22ab <0,所以三角形为钝角三角形.故选C.17.[2012·上海卷] 设10≤x 1<x 2<x 3<x 4≤104,x 5=105.随机变量ξ1取值x 1x 2x 3x 4x 5的概率均为0.2,随机变量ξ2取值x 1+x 22x 2+x 32x 3+x 42x 4+x 52x 5+x 12的概率也均为0.2.若记Dξ1Dξ2分别为ξ1ξ2的方差,则( )A .Dξ1>Dξ2B .Dξ1=Dξ2C .Dξ1<Dξ2D .Dξ1与Dξ2的大小关系与x 1x 2x 3x 4的取值有关17.A [解析] 考查样本估计总体的平均数和方差,主要是对方差概念的理解,利用基本不等式求解.由已知可知两个变量的平均数相等,Dξ1=15[(x -x 1)2+…+(x -x 5)2]=15(x 21+x 22+x 23+x 24+x 25)-x 2, Dξ2=15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x -x 1+x 222+…+⎝ ⎛⎭⎪⎫x -x 5+x 122= 15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x 1+x 222+…+⎝ ⎛⎭⎪⎫x 5+x 122-x 2 <15(x 21+x 22+x 23+x 24+x 25)-x 2,所以Dξ1>Dξ2.18.[2012·上海卷] 设a n =1n sin n π25,S n =a 1+a 2+…+a n ,在S 1,S 2,…,S 100中,正数的个数是( )A .25B .50C .75D .10018.D [解析] 考查数列求和和转化思想,关键是发现数列为振幅越来越小的摆动数列.令b n =sin n π25,周期为50,前n 项和记作:T n =b 1+b 2+…+b n ,根据三角函数图象的对称性,可知T 1,T 2,…,T 49均大于0,只有两个T 50=0,T 100=0,数列a n =1n sin n π25为振幅越来越小的摆动数列,||a n ≤||b n ,只有当n =1,50,100时相等,故S 1,S 2,…,S 100中正数个数为100.图1-319.[2012·上海卷] 如图1-3所示,在四棱锥P -ABCD 中,底面ABCD 是矩形,P A ⊥底面ABCD .E 是PC 的中点,已知AB =2,AD =22,P A =2,求:(1)三角形PCD 的面积;(2)异面直线BC 与AE 所成的角的大小.19.解:(1)因为P A ⊥底面ABCD ,所以P A ⊥CD . 又AD ⊥CD ,所以CD ⊥平面P AD . 从而CD ⊥PD .因为PD =22+(22)2=23,CD =2. 所以三角形PCD 的面积为12×2×23=2 3.(2)解法一:如图所示,建立空间直角坐标系,则B (2,0,0),C (2,22,0),E (1,2,1).AE→=(1,2,1),BC →=(0,22,0), 设AE→与BC →的夹角为θ,则cos θ=AE →·BC →|AE →||BC →|=42×22=22,∴θ=π4.由此知,异面直线BC 与AE 所成的角的大小是π4.解法二:取PB 中点F ,连接EF AF ,则EF ∥BC ,从而∠AEF (或其补角)是异面直线BC 与AE 所成的角.在△AEF 中,由EF =2AF =2AE =2知△AEF 是等腰直角三角形, 所以∠AEF =π4.因此,异面直线BC 与AE 所成的角的大小是π4.20.[2012·上海卷] 已知函数f (x )=lg(x +1). (1)若0<f (1-2x )-f (x )<1,求x 的取值范围;(2)若g (x )是以2为周期的偶函数,且当0≤x ≤1时,有g (x )=f (x ),求函数y =g (x )(x ∈[1,2])的反函数.20.解:(1)由⎩⎨⎧2-2x >0,x +1>0,得-1<x <1.由0<lg(2-2x )-lg(x +1)=lg 2-2x x +1<1得1<2-2xx +1<10.因为x +1>0,所以x +1<2-2x <10x +10, -23<x <13, 由⎩⎪⎨⎪⎧-1<x <1,-23<x <13得-23<x <13.(2)g (x )是以2为周期的偶函数, 当x ∈[1,2]时,2-x ∈[0,1],因此y =g (x )=g (x -2)=g (2-x )=f (2-x )=lg(3-x ). 由单调性可得y ∈[0,lg2].因为x =3-10y ,所以所求反函数是y =3-10x ,x ∈[0,lg2].图1-421.[2012·上海卷] 海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y 轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰好在失事船正南方向12海里A 处,如图1-4.现假设:①失事船的移动路径可视为抛物线y =1249x 2;②定位后救援船即刻沿直线匀速前往救援;③救援船出发t 小时后,失事船所在位置的横坐标为7t .(1)当t =0.5时,写出失事船所在位置P 的纵坐标.若此时两船恰好会合,求救援船速度的大小和方向;(2)问救援船的时速至少是多少海里才能追上失事船?21.解:(1)t =0.5时,P 的横坐标x P =7t =72,代入抛物线方程y =1249x 2,得P 的纵坐标y P =3.由|AP |=9492,得救援船速度的大小为949海里/时.由tan ∠OAP =730,得∠OAP =arctan 730,故救援船速度的方向为北偏东arctan 730弧度.(2)设救援船的时速为v 海里,经过t 小时追上失事船,此时位置为(7t,12t 2). 由v t =(7t )2+(12t 2+12)2, 整理得v 2=144⎝ ⎛⎭⎪⎫t 2+1t 2+337.因为t 2+1t 2≥2,当且仅当t =1时等号成立.所以v 2≥144×2+337=252,即v ≥25.因此,救援船的时速至少是25海里才能追上失事船.22.[2012·上海卷] 在平面直角坐标系xOy 中,已知双曲线C 1:2x 2-y 2=1. (1)过C 1的左顶点引C 1的一条渐近线的平行线,求该直线与另一条渐近线及x 轴围成的三角形的面积;(2)设斜率为1的直线l 交C 1于PQ 两点.若l 与圆x 2+y 2=1相切,求证:OP ⊥OQ ; (3)设椭圆C 2:4x 2+y 2=1,若MN 分别是C 1C 2上的动点,且OM ⊥ON ,求证:O 到直线MN 的距离是定值.22.解:(1)双曲线C 1:x 212-y 2=1,左顶点A ⎝ ⎛⎭⎪⎫-22,0,渐近线方程:y =±2x .过点A 与渐近线y =2x 平行的直线方程为y =2⎝ ⎛⎭⎪⎫x +22,即y =2x +1.解方程组⎩⎨⎧y =-2x ,y =2x +1得⎩⎪⎨⎪⎧x =-24,y =12.所以所求三角形的面积为S =12|OA ||y |=28.(2)设直线PQ 的方程是y =x +b ,因直线PQ 与已知圆相切, 故|b |2=1,即b 2=2. 由⎩⎨⎧y =x +b ,2x 2-y 2=1,得x 2-2bx -b 2-1=0. 设P (x 1,y 1)Q (x 2,y 2),则⎩⎨⎧x 1+x 2=2b ,x 1x 2=-1-b 2.又y 1y 2=(x 1+b )(x 2+b ),所以OP →·OQ →=x 1x 2+y 1y 2=2x 1x 2+b (x 1+x 2)+b 2 =2(-1-b 2)+2b 2+b 2=b 2-2=0. 故OP ⊥OQ .(3)当直线ON 垂直于x 轴时,|ON |=1,|OM |=22,则O 到直线MN 的距离为33.当直线ON 不垂直于x 轴时,设直线ON 的方程为y =kx ⎝⎛⎭⎪⎫显然|k |>22, 则直线OM 的方程为y =-1k x .由⎩⎨⎧ y =kx ,4x 2+y 2=1得⎩⎪⎨⎪⎧ x 2=14+k 2,y 2=k 24+k 2,所以|ON |2=1+k 24+k 2. 同理|OM |2=1+k 22k 2-1, 设O 到直线MN 的距离为d ,因为(|OM |2+|ON |2)d 2=|OM |2|ON |2.所以1d 2=1|OM |2+1|ON |2=3k 2+3k 2+1=3,即d =33. 综上,O 到直线MN 的距离是定值.23.[2012·上海卷] 对于数集X ={-1,x 1,x 2,…,x n },其中0<x 1<x 2<…<x n ,n ≥2,定义向量集Y ={|=(s ,t ),s ∈X ,t ∈X },若对任意1∈Y ,存在2∈Y ,使得1·2=0,则称X 具有性质,例如{-1,1,2}具有性质.(1)若x >2,且{-1,1,2,x }具有性质,求x 的值;(2)若X 具有性质,求证:1∈X ,且当x n >1时,x 1=1;(3)若X 具有性质,且x 1=1x 2=q (q 为常数),求有穷数列x 1,x 2,…,x n 的通项公式.23.解:(1)选取1=(x,2),Y 中与1垂直的元素必有形式(-1,b ),所以x =2b ,从而x =4.(2)证明:取1=(x 1,x 1)∈Y ,设2=(s ,t )∈Y ,满足1·2=0.由(s +t )x 1=0得s +t =0,所以s ,t 异号.因为-1是X 中唯一的负数,所以s ,t 之中一个为-1,另一个为1,故1∈X . 假设x k =1,其中1<k <n ,则0<x 1<1<x n .选取1=(x 1,x n )∈Y ,并设2=(s ,t )∈Y 满足1·2=0,即sx 1+tx n =0, 则s ,t 异号,从而s ,t 之中恰有一个为-1.若s =-1,则x 1=tx n >t >x 1,矛盾;若t =-1,则x n =sx 1<s ≤x n ,矛盾.所以x 1=1.(3)设1=(s 1,t 1),2=(s 2,t 2),则1·2=0等价于s 1t 1=-t 2s 2, 记B =⎩⎨⎧ s t |}s ∈X ,t ∈X ,|s |>|t |,则数集X 具有性质当且仅当数集B 关于原点对称. 注意到-1是X 中的唯一负数,B ∩(-∞,0)={-x 2,-x 3,…,-x n }共有n -1个数,所以B ∩(0,+∞)也只有n -1个数.由于x n x n -1<x n x n -2<…<x n x 2<x n x 1,已有n -1个数,对以下三角数阵 x n x n -1<x n x n -2<…<x n x 2<x n x 1, x n -1x n -2<x n -1x n -3<…<x n -1x 1, …x 2x 1.注意到x n x 1>x n -1x 1>…>x 2x 1,所以x n x n -1=x n -1x n -2=…=x 2x 1,从而数列的通项为x k =x 1⎝ ⎛⎭⎪⎫x 2x 1k -1=q k -1,k =1,2,…,n .。
2012年上海高考作文题27.根据以下材料,选取一个角度,自拟题目,写一篇不少于800字的文章(不要写成诗歌)。
人们对自己心灵中闪过的微光,往往会将它舍弃,只因为这是自己的东西。
而从天才的作品中,人们却认出了曾被自己舍弃的微光。
蓦然回首,莫要放手王国维在《人间词话》里把治学的最高境界比作“蓦然回首,那人却在灯火阑珊处”。
爱因斯坦也说过:“百分之一的灵感比百分之九十九的汗水更重要。
”东西方学者的共识告诉我们,灵感这一人们心灵中闪过的微光是多么珍贵和重要。
(引用中西方学者对微光进行界定)然而,当今社会,人们总是在抱怨灵感的缺失,尤其是所谓“搞文艺”的,精品着实不多。
真是这样吗?灵感这一微光,真的只在天才心中闪过吗?我以为不然。
谁没有悲苦孤独地走在寂寂的荷塘,看那出水很高的荷叶下奶白色的水?谁没有在英雄的事迹中沉浸陶醉,大张双臂感受伟大的“停顿”?谁没有见过向日葵那金黄的色调?凡此种种一闪即逝的共鸣,休说专业者,我辈凡人皆有。
可为何只有天才的大家才为我们留下了一篇《荷塘月色》、一首《英雄》、一幅《向日葵》?(所读的书,为我所用。
积累颇丰。
)对自己心灵中闪过的微光,人们往往会将它轻易舍弃,只因为这是自己的东西,而从天才的作品中,人们又认出了曾被自己舍弃的微光。
(巧妙地插入题目,又是为我所用)如今这种情况更多见,究其根本,原因有三:一是“标准化”时代里,不允许有“异端”,“权威”、“专家”、“大师”层出不穷,他们把持了话语权,制订出条条框框的“标准”压抑了灵感,阻断了普通人成才的途径;二是“全球化”时代里人们的从众心理被无限放大,当个人被置于全球这一更大的“集合”下,汹涌澎湃的“群众心理”和“集体无意识”将灵感扑灭,将平庸之作炒作成“精品”;三是商业化大潮将一切文化产品搞得像批量生产的肉鸡、奶粉一样。
(这才叫分析!)不错,标准的普及有助于界定,但真正的灵感、天才决不限于标准。
卢梭的观点不为当时主流社会所接受,他在痛苦徘徊后醒悟:“我凭什么怀疑自己全部由思考与理智得出的结论呢?”百年后他的灵柩进入先贤祠,棺木上写“此处安息着自然和真理之人”。
2012年普通高等学校招生全国统一考试(上海卷)地理试卷(文科使用)本试卷共10页,满分150分,考试时间120分钟。
全卷包括两大题,第一大题为选择题:第二大题为综合分析题,包括共同部分和选择部分。
考生注意:1.答卷前,务必在答题纸上用钢笔或圆珠笔清楚填写姓名、准考证号,并将核对后的条形码贴在指定位置上。
2.答案必须全部涂或写在答题纸上。
所有考生应完成第一大题和第二大题的共同部分。
第二大题选择部分分为A、B两组,两组试题分值相同,A组对应于考试手册中“任选模块一”,B组对应于“任选模块二”,考生须任选一组答题,如果考生应答了两组试题,只对A组的应答进行评分。
一、选择题(共50分,每小题2分。
每小题只有一个正确答案)(一)“祖国的宝岛,我可爱的家乡......辽阔的海域无尽的宝藏......”1. 黄岩岛是我国的固有领土。
右图中,表示黄岩岛的是A. 甲岛B. 乙岛C. 丙岛D. 丁岛2. 2012年5月,我国首座深水钻井平台在南海首钻成功,其重要意义在于①宣示我国对南海的主权②行使对钻井平台周边我国海域的管辖权③解决我国目前石油对外依存度过高的问题④标志我国能够独立进行深海油气资源开发A. ①②③B. ①②④C. ①③④D. ②③④(二)上海宝钢为实施“走出去”战略,将在韩国京畿道投资新建钢材加工配送中心,提供汽车板材仓储、剪切、配送等服务。
3. 宝钢实施“走出去”战略的主要目的是A.保护环境B.扩大市场C.降低运费D.输出技术4. 为提高在国际钢铁市场上的竞争力,宝钢可以采取的措施有①降低钢铁生产能耗②建立境外铁矿石基地③加大产品研发投入④提高进口燃料比重A. ①②③B.②③④C. ①③④D. ①②④(三)太阳黑子活动的变化会对地球的气候产生明显影响。
下图显示北半球部分高纬度地区太阳黑子活动与年均降水量的关系。
5. 图中所示的34个测站分布范围主要在A. 亚洲B. 亚洲和欧洲C. 亚洲和北美洲D. 欧洲和北美洲6. 观测显示,所测地区年平均降水量A. 随太阳黑子活动的增强而增大B. 随太阳黑子活动的增强而减小C. 变化周期与太阳黑子活动周期吻合D. 变化周期与太阳黑子活动周期无关(四)板块运动造就了地球表面高低起伏的基本形态。
沪上专家点评2012上海高考作文题高考阅卷专家:以开放的心态对待每一篇作文“今年的作文题目非常有新意,可以避免考生套题。
”多年参与高考作文阅卷的专家分析道,在往年的高考作文阅卷中,发现很多考生习惯套作文。
和往年的作文题目相比较,今年的作文题有很多限制,但是,材料作文的角度也非常多,会给一些习惯套作文的学生带来一定的困难。
“看到这个作文题,很多中学语文教师、专家都会说,可以从天才的很多思想来源于普通人这一角度展开,也可以写人要提高自己的自信心去阐述,甚至可以对天才与普通人之间的关系加以论证。
”这位专家分析道,高考阅卷时,阅卷教师都不会预设主题,以开放的心态对待每一篇作文,再多的预设都无法涵盖材料中的思想。
其实,这个材料作文的角度是不能穷尽的,考生的思维也是非常丰富的。
考生根据材料可以正面写,也可以从反面的角度展开:如中国传统文化过度强调谦虚,过于崇拜名人和天才,对此,考生也可以进行质疑。
复旦附中语文特级教师黄玉峰:作文有很多角度可写“这篇作文有很多角度可以写,如善于发现自我,看到自我的价值,不要自卑,其实,每个人的悟性就在自己脚下,每个人都应意识到自我价值。
”复旦附中语文特级教师黄玉峰认为,此外,还可以从这个角度写,认知自我是难的,不管是顿悟还是渐悟,都需要人生的经历,生活的积累,长期的思考,都应该关照我心。
最后,可以从珍惜的角度写,珍惜自己的生命,珍视和重视自己的思考,独立的精神和自由的思想。
华师大一附中特级教师李支舜:要自己充满自信并善于发现自己华师大一附中特级教师李支舜点评说,“微光”是指代性内容。
今年的题目很开放,和以往的作文题一脉相承,和“跨过一道槛”有共通之处。
题目中有辩证的地方:等到别人成功了,自己才意识到“微光”的宝贵,说明自己不够自信,对人生的领悟不足,而宝贵的财富就在身边。
因此,我们要善于发现自己、肯定自己。
考生可以谈人生,也可以谈民族,谈文化。
比如,近代以来儒家文化被我们忽略,但在日本、韩国、新加坡却发扬光大,韩国推出“端午祭”,我们却只能干着急。
2012年全国普通高等学校招生统一考试上海数学试卷(文史类)一、填空题(本大题共有14题,满分56分)3、函数sin 2()1cos x f x x=-的最小正周期是4、若(2,1)d =是直线l 的一个方向向量,则l 的倾斜角的大小为 (结果用反三角函数值表示)8、在61x x ⎛⎫- ⎪⎝⎭的二项式展开式中,常数项等于9、已知()y f x =是奇函数,若()()2g x f x =+且(1)1g =,则(1)g -=二、选择题(本大题共有4题,满分20分)17、在△ABC 中,若222sin sin sin A B C +<,则△ABC 的形状是( ) A 、钝角三角形 B 、直角三角形 C 、锐角三角形 D 、不能确定 18、若2sin sin (i)777n n S πππ=+++(n N *∈),则在12100,,...,S S S 中,正数的个数是( )A 、16B 、72C 、86D 、100 三、解答题(本大题共有5题,满分74分)20、(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分 已知()lg(1)f x x =+(1)若0(12)()1f x f x <--<,求x 的取值范围(2)若()g x 是以2为周期的偶函数,且当01x ≤≤时,()()g x f x =,求函数()y g x =([]1,2x ∈)的反函数2012年全国普通高等学校招生统一考试上海数学试卷(文史类)【试卷总评】本试卷遵循考纲的要求,保持了近几年的命题风格,注重基础检测,深化能力立意,突出思维考查。
试卷覆盖了高中数学的主干内容,在题型、题量、难度等方面保持了相对稳定,重视对数学思想方法的考查,着重考查了思维能力、运算能力、空间想象能力、实践能力和创新意识,体现了“多考点想,少考点算”的命题理念。
试题能较好地检测考生的数学素养和进入高等学校继续学习的潜能,有利于高校选拔新生,有利于中学实施素质教育,有利于向新课程高考过渡。
2012年上海市高考物理试卷分析一、试卷综述1、总体评价(1)难度相比上一年有所上升(裸分平均分为:94分),区分度大,学生整体反应偏难,试题较前两年来的有些较大的变化,特别是计算题的设计。
(2)数学能力和读题能力考查充分体现,此外,也充分考查了学生在紧张的考试中的心理调节能力。
(3)动力学和磁学知识比重加大,试题充分的考查了平常解题思路及细节,这在实验题中充分体现,这就要求我们在平常的教学中学生实验要尽可能的都让学生动手做一遍,做演示实验时,老师一定要演示给学生看,并能做一些必要的引伸和拓展。
(4)总体来说,2012年的物理试卷题目设计和位置排布还是比较合理的。
在选择和填空里都有那么一两道中等偏难题,计算量适中,充分考査了学生运用物理规律解决问题的能力。
2、试题结构试题结构一览表3、知识点分布(个部分知识点所占的比例)二、试题详解如下:1.在光电效应实验中,用单色光照射某种金属表面,有光电子逸出,则光电子的最大初动能取决于入射光的( )(A )频率 (B )强度 (C )照射时间 (D )光子数目【测试目标】基本概念掌握 【考查内容】光电效应 【难度】易 【预计得分】2分【评析】根据爱因斯坦的光电效应方程:光电子的最大初动能只与入射光的频率在关,与其它无关。
而光照强度,照射时间及光子数目与逸出的光电子数量的关。
2.下图为红光或紫光通过双缝或单缝所呈现的图样,则( )(A )甲为紫光的干涉图样 (B )乙为紫光的干涉图样 (C )丙为红光的干涉图样 (D )丁为红光的干涉图样【测试目标】图片观察和分析能力【考查内容】考查物理光学,光的干涉、衍射和波谱 【难度系数】易CE h hνλ==212h W mv ν-=(A )(B )(C ) (D )【预计得分】2分【评析】当单色光通过双缝时形成的干涉图样为等间距的,而通过单缝时的图案是中间宽两边窄的衍射图样,因此甲、乙为干涉图案;而丙、丁为衍射图案。
2012年上海高考试卷分析
一、高考数学试卷分析(理)
1、考试总分:150分;
2、考试时间:120分钟(2个小时)
3、题型设置:填空题14题*4=56分;选择题4题*5=20;解答题5题,共74分;
4、考察内容有:
填空题:复数、集合、三角函数、二项式、极值、指数函数、立体几何、函数性质、极坐标、概率、向量积、函数及方程
选择题:复数、三角函数、方差、数列
解答题:立体几何、函数、圆锥曲线、双曲线、集合
二、高考数学试卷分析(文科)
1、考试总分:150分;
2、考试时间:120分钟(2小时)
3、题型设置:填空题14题*4=56分;选择题4题*5=20;解答题5题,共74分;
4、考察内容有:
填空题:复数、集合、三角函数、二项式、极值、指数函数、立体几何、函数性质、极坐标、概率、向量积、函数及方程
选择题:复数、三角函数、方差、数列
解答题:立体几何、函数、圆锥曲线、双曲线、数列
【数学考查的能力】
1、数学基本知识和基本技能
2、逻辑思维能力
3、运算能力
4、空间想象能力
5、分析问题与解决问题的能力
6、数学探究与创新能力。
上海市教育考试院命题组专家评析2012年高考上海卷试题着眼能力检测强调思辨能力——2012年上海高考语文卷特点2012年上海市高考语文卷命题工作,严格执行“有利于科学选拔人才,促进学生健康发展,维护社会公平”的基本方针,从阅读材料的选择到试题的编制,都力求充分体现高考的选拔功能。
一、选择典型的阅读材料考试材料的选择往往直接决定着语文试卷阅读试题的质量。
今年的5篇阅读材料各有文体代表性,具体有社科文、散文、律诗、史传文和记。
其次阅读材料的题材覆盖了主要人文话题,有指向学术研究规范的重要话题;有指向个体的人生体验;也有指向对自然山水之美的感受与欣赏;还有通过优秀的历史人物思考个人与社会、百姓与国家的关系。
此外,这几篇阅读材料分别呈现出严谨、细致、清晰、朴实、优美等不同的语言风格特征。
二、着眼于阅读能力的检测今年的高考试卷全面落实“考试手册”的“考试目标”,也体现了“课程标准”和《教学基本要求》对高中语文的教学要求。
依然以整体理解能力和分析、鉴赏能力等为检测重点,直接检测对全文的观点、思路、语言等把握的试题所占比例较高,共有6题计21分。
本次考试未直接检测文学文化常识的记忆题,而是将这种检测随文落实,如第15题的几个选项都涉及到文学文化常识,关于咏物诗、律诗等知识的检测都落实在对具体的语言材料的阅读理解中。
三、作文强调思辨能力的检测今年上海高考语文作文是一篇材料作文,向考生提供一则具有思辨性的材料,要求考生写一篇不少于800字文章。
作文材料寓意是:人们对自己心灵闪过的“微光”往往因为没有意识到它的价值而轻易将其舍弃,结果在天才作品中却又发现了自己曾经产生过的闪光的、有价值的念头,说明一个人应当珍视他自己身上有价值的东西,而不是一味地去羡慕别人。
材料作文的思辨性,首先体现为材料的呈现方式。
该材料取自《爱默生集》,文字理性,富有思维张力,体现思辨性材料的特点。
二是材料的内涵。
选取的材料内涵相对趋一,而这种趋一的内涵又具备进行纵向深入思辨的可能性,同时,材料内涵本身具有哲理意味。
当然,考虑到高考参加人数众多,命题在开放与限制之间寻平衡:对材料可以从多角度切入,比如对微光的理解、天才和普通人的区别、坚持自我等等,但最后这些切入点的指向应当还是收拢于对“自我”的思考。
三是材料的思辨性在考生作文中的体现。
考生正处在人生成长的关键时期,对自我的价值是什么、如何塑造自我、我愿意有怎样的“自我”等问题的思考,不仅对他们的成长是重要的,也较贴近他们的思维能力和实际生活。
也只有这样,思辨能力才能真正在考生的作文中得到体现,才能在评卷时得到测量,才能真正实现作文的测量目标。
这条材料,一般比较合适用议论文的形式写,也可以用记叙文的形式写,将对相关问题的思辨通过记叙具体的人物和事体表现出来,也可以切合题意,所以文体的适应性也比较恰当。
培养数学能力推进素质教育——2012年上海高考数学卷特点2012年上海高考数学卷的试题,重点考查高中数学的基础知识与基本技能。
试题的设计本着有利于推进素质教育、有利于不同类型的高校选拔新生、有利于培养学生创新和实践能力的原则来进行。
整卷的计算量不大,总体难度适宜。
试卷鼓励考生理解数学概念的本质,提高分析问题的能力。
数学是科学的基础,内容深刻而抽象。
本年度的数学试题立足于数学学科的特点,鼓励中学数学教学在课程标准的范围内,对一些概念进行必要的分析和拓展,希望同学们认识到数学的重要性,同时也可以体会到数学的趣味性。
试卷对教材所涉及的知识点覆盖面较大,考查考生对数学基本知识和方法的掌握程度,大多数试题的难度与同学们平常练习的难度相当。
有些试题考查学生对基本方法的洞察,如第13题;有些试题融合了不同的知识点,如理科第14题;有些试题涉及概念本质的理解,如理科第17题;有些试题有一定的数学背景,但解答并不难,如文科第14题;个别试题有一定难度,如理科第23题的第3小题。
试题弱化了对计算器的依赖。
计算器的使用大大方便了我们的日常学习和生活,但技术是一把双刃剑。
计算器的主要功能是数值计算,不能因为有了计算器而弱化数学的学习。
考生对一些有实际背景的问题的理解可能存在较大差异。
命题组本着公平的原则,多方考虑,力求通过不同小题的设问,取得平衡。
试卷体现了文、理科考生在考查内容、要求以及认知能力上的区别。
尽管有些题目背景一样,但在设问要求上明显体现了对文、理科考生不同的能力要求。
理科考题相对侧重于抽象思维能力的考查,而文科考题相对侧重于直观理解能力的考查。
加强基础知识教学、反对题海战术是命题组的一个愿景。
我们在设计有一定难度的考题上力求创新。
不可否认的是做大量试题有助于提高解题水平,但过多的重复劳动可能会扼杀同学们对数学的兴趣和创造力。
如何在做一定量的数学试题和提高学习兴趣之间寻找一个平衡点,是我们数学教育工作者的义务,也是命题的一个重要考量之处。
针对流行于考生中的一些“捷径”方法,例如“排除法”,“特殊值法”等,命题组进行过研究,认为数学教学不应当成为“捷径”教学。
我们在设计试题时,充分考虑到这一点。
题材多样注重能力题目灵活——2012年上海高考英语卷特点2012年高考英语卷的特点主要表现如下:1. 语篇题材、体裁多样,语言地道,有利于全面真实地测试考生的语言能力2012年高考英语卷所用素材均取材于英美人真实的生活场景,所用语言地道真实,使考试所用语言和以英语为母语的人们的日常生活、工作的语言相一致,从而能更真实地测试出考生语言能力。
在试题的选材上力求内容新颖,信息量大,主题涉及广,以求全面考核考生的语言能力。
考卷中语篇的主题包含了教育、心理、健康、语言学习、人与自然等诸多领域;体裁包括故事、广告、报道、研究报告等等不同的文体,使擅长于阅读不同题材或体裁的考生均有展现自己能力的机会。
2. 难点分布合理,体现考核的公平性今年的高考英语试卷除注意难题和容易题的比例,以及各语篇之间的坡度外,还特别注意难点的分布。
除语法继续坚持对“基础、常见、实用”的语言知识的考核原则外,其它大题都有一、二个较难的题目。
把难题分散到各大题,让能力发展不均衡的考生,不因为某一方面的缺陷而大量失分;同时也为在听、说、读、写方面有不同特长的考生提供了展示自己能力的地方,有助于实现考核的公平性原则。
3. 注重语言运用能力的考核,有利于素质教育2012年高考英语卷十分注重语言运用能力的考核。
如阅读的第二篇文章介绍的是如何使用悉尼公交的一种乘车证的广告材料。
每个到悉尼的旅游者都能拿到这样的广告材料,但要能购买、使用这种乘车证,首先要看懂广告。
今年的试卷选用这类材料是希望考生能把平时学到知识运用到现实生活中去,做到如课程标准所要求的那样,能用英语做事。
今年完形填空所要选择单词的词义并不生僻,但考生必须在读懂全文或段落主要内容的基础上才能选出正确答案。
这样的试题旨在引导考生重视理解语篇的主要意思和在语篇中综合运用词汇的能力,逐渐改变考生只关注孤立的词义,而忽视文章对词义影响的学习方法。
此外,今年的词汇题也强调在理解文章基础上,综合运用词汇知识的能力。
4. 写作题目灵活,给予考生充分的发挥余地2012年的作文要求考生根据两幅图片写一篇日记。
图片上画的是一个小女孩的两堂不同的绘画课,题目的要求是描述这两幅画,并谈谈自己的感想。
考生既可以从兴趣对学习重要性的角度去描写这两堂绘画课,也可以从培养创造性这一视角阐述自己的感想。
题目虽提出了文章的一个大框架,但并没规定一定要怎么写,这给考生留下很大的想象空间,为考生展示自己写作的能力提供了用武之地。
总而言之,2012年英语卷在考察语言知识的基础上,适应语言测试的潮流,也注重考核语言的运用和交际能力;通过丰富的考核内容,为不同水平的考生提供了发挥的平台,全卷视野开阔,有一定的深度和广度。
试卷的难度总体与近年持平,保持中等偏易。
追求精致保持稳定——2012年上海高考政治卷特点2012年上海高考政治试卷可以用两个关键词概括:精致与稳定。
课程立意、命题思路、试卷结构、难度和区分度保持相对稳定,而设问、材料选题、材料组织、答案和评分量表等具有明显的精致化倾向。
在稳定中追求精致化,以精致化促进稳定,“稳定与精致”使考试能够更加有利于考生正常发挥,有利于学科健康成长,有利于高校选拔人才。
一、材料选题精致化与课程立意稳定体现政治课是德育显性课程,因此高考政治承载着宣传党的路线、方针、政策,培育人文精神的功能。
这一功能的发挥有赖于试题的选题。
综观整卷可以发现,大多数试题材料选题落于微观层面,题材生动,可读性强,贴近学生,如第37题虚拟一名网友表达对微博的种种看法,行文中借助一定网络语汇以增添情景真实性;第34题以“曹冲秤象”为例,并以连环画的形式呈现一种问题解决的创新程序。
另外,第33题涉及鱼精蛋白注射液短缺问题、第32题分析上海市政府扶持实体书店、第26题描述了一则著名的投资理财对比实验、第20题提供一组两会热点话题调查数据、第11题要求考生选择“居民闲暇时间效用”调查问卷的内容等,这些试题选题微小,但依然渗透主流价值观,意在引导教学更加关注具体的、可以激发学生学习兴趣的社会现象。
二、材料组织精致化与命题思路稳定高考政治坚持立足书本、关注现实、体现能力的命题思路。
这一思路表明,能力考查主要建立在材料分析基础上。
从整卷看,今年考查识记教材内容的试题只有3题,共6分,而大部分试题考查的思维过程都以材料为分析对象,因此,今年试卷文字和图表阅读量都略有增加,但试题命制中注意到了材料组织与考查能力的匹配问题,去芜存精,力求没有冗余干扰信息。
如单项选择题第21题材料引自毛泽东《实践论》,虽然有142字,但作为考查“运用哲学知识归纳材料实质”能力所需要的文本,阅读量并不为过,该试题的命制为选择题考查向较高层次能力迈出重要一步。
再如简答题第34题,要求考生解释连环画中包含的科学思维方法和联系的观点,试题答案并不复杂,而能否把握材料全部要素以及要素之间的关系,是区分不同水平考生能力差异的关键。
三、设问、答案精致化与试卷结构稳定整卷内容分布、题型构成和测量目标权重等总体上保持稳定,但设问和答案都呈现精致小巧的特点。
今年试题设问有三个特点,(1)向思维深处延伸设问。
论述题“我国如何在立法过程中确保法律充分体现人民群众的共同意愿”,从“是什么”、“为什么”的概念和原理间的逻辑演绎,延伸到“怎么样”的政治生活实践层面;(2)以具体知识点切入设问。
如第33(1)题要求考生从“市场供应”的角度展开完整的逻辑推导过程,第33(2)题要求考生从“宏观调控”的角度由果推因,而第32(2)要求考生借助于“国家职能”知识推测政府扶持实体书店的目的;(3)选择设问指向清楚。
大部分选择题不再使用“表明”、“体现”等,而以半开放句式设问,并使用与试题考查的能力相一致的动词。