RLC串并联谐振-上海交通大学
- 格式:pdf
- 大小:1.60 MB
- 文档页数:27
上海交通大学基本电路理论课程教学小论文(2008-2009第一学期)RLC 并联并联谐振谐振谐振电路电路电路的应用的应用F0503023 丁顺(5050309627)摘要摘要::本论文主要讨论的是并联谐振电路在信号选择中的应用,首先先回顾带通滤波器,然后引入两种信号选择中常用的两种元件。
最后,讨论的是收音机的原理,这是前面所讲的元件的综合应用。
关键词关键词::并联谐振电路 带通滤波器 实际并联谐振电路 调频放大器 天线接收模型前言前言::通过这个学期电路基础的学习,使我对于电路的原理有了更深的理解。
在电路学习中,给我印象最深的是RLC 中的谐振问题,徐雄老师上课说过,可以通过RLC 电路的谐振,实现收音机的选台问题,因此,我专门查找了参考书,来深入了解一下RLC 谐振在信号的选择中的应用。
正文正文::首先,我们先回顾一下上课所讲的带通滤波器,这里我们着重讨论的是并联谐振带通滤波器。
用并联谐振电路构成的带通滤波器如图一所示。
并联谐振电路在谐振时阻抗最大。
因此,图中的电路起分压作用。
在谐振时,振荡电路的阻抗远大于电阻值,所以大部分输入电压加在振荡电路上,在谐振中心频率时输出电压最大。
对高于谐振频率或低于此规律的信号,振荡电路的阻抗逐渐减小,输入电压的大部分加在了R 的两端。
结果,振荡电路两端的输出电压逐渐减小,产生了带通的特性。
理想情况下,此带通滤波器的中心频率就是其谐振频率。
但在实际情况中,要考虑电感所产生的内阻,因此,其中心频率发生变化。
此时电路图二如图所示。
令L X L ω= 1C X Cω=2211111()(()()C W LW L W L C W L W L C W L Z jX R jX R jX R jX j j X R jX R jX X R X =+−+−−=+=++−+将第二项的分子拆开成两个分式,再与首项相加:222211((W L C W L W LR Xj j Z X R X R X =−+++ 由于j 项数值应该相等:图一 并联谐振电路构成的带通滤波器。
rlc并联谐振电路实验报告一、实验目的二、实验原理三、实验器材和仪器四、实验步骤五、实验结果分析六、实验结论一、实验目的本次实验旨在掌握并理解RLC并联谐振电路的基本原理及其特性,通过对电路参数的调整和观察,加深对谐振电路的认识和理解。
二、实验原理1. RLC并联谐振电路的基本原理RLC并联谐振电路由一个电感L、一个电容C和一个固定阻值R组成。
当该电路被接到交流源上时,如果交流源频率等于该电路的共振频率,则该电路会出现共振现象。
此时,整个电路中流动的电流将达到最大值,并且在L和C之间形成一个高阻抗区域。
2. 共振频率计算公式RLC并联谐振电路的共振频率f0可以通过以下公式进行计算:f0 = 1 / (2π√LC)3. 实验器材和仪器本次实验所需器材和仪器如下:- RLC并联谐振电路板- 信号发生器- 示波器- 万用表四、实验步骤1. 连接电路将RLC并联谐振电路板、信号发生器和示波器进行连接。
具体连接方式如下:- 将信号发生器的正极接到电路板上的“+”端口,负极接到“-”端口。
- 将示波器的探头分别接到电路板上的“Vout”和“GND”端口。
2. 测量电路参数使用万用表测量电路板上的电感L、电容C和阻值R,并记录下来。
3. 调节信号发生器频率将信号发生器输出频率调整为从几百Hz开始逐渐增加,直到观察到示波器上出现共振现象为止。
记录下此时的频率f0。
4. 观察示波器曲线观察示波器上的曲线,包括幅度和相位。
通过调整信号发生器频率,观察曲线幅度和相位随着频率变化而变化的情况。
5. 改变电路参数改变电路板上的L、C或R值,再次进行步骤3和4,并记录下观察结果。
五、实验结果分析在本次实验中,我们成功地制作了一个RLC并联谐振电路,并通过实验观察到了电路的共振现象。
通过调整信号发生器频率,我们成功地找到了该电路的共振频率f0,并观察到了示波器上的曲线幅度和相位随着频率变化而变化的情况。
在改变电路参数后,我们发现电路的共振频率和曲线幅度、相位等特性会发生变化。
实验报告R、L、C串联谐振电路的研究并联谐振电路实验报告实验报告祝金华PB15050984 实验题目:R、L、C串联谐振电路的研究实验目的: 1. 学习用实验方法绘制R、L、C串联电路的幅频特性曲线。
2. 加深理解电路发生谐振的条件、特点,掌握电路品质因数(电路Q值)的物理意义及其测定方法。
实验原理 1. 在图1所示的R、L、C串联电路中,当正弦交流信号源Ui的频率f改变时,电路中的感抗、容抗随之而变,电路中的电流也随f而变。
取电阻R上的电压UO作为响应,当输入电压Ui的幅值维持不变时,在不同频率的信号激励下,测出UO之值,然后以f为横坐标,以UO为纵坐标,绘出光滑的曲线,此即为幅频特性曲线,亦称谐振曲线,如图2所示。
L图 1 图22. 在f=fo=12πLC处,即幅频特性曲线尖峰所在的频率点称为谐振频率。
此时XL=Xc,电路呈纯阻性,电路阻抗的模为最小。
在输入电压Ui为定值时,电路中的电流达到最大值,且与输入电压Ui 同相位。
从理论上讲,此时Ui=UR=UO,UL=Uc=QUi,式中的Q 称为电路的品质因数。
3. 电路品质因数Q值的两种测量方法一是根据公式Q=UC测定,Uc为谐振时电容器C上的电压(电感上的电压无法测量,故Uo不考虑Q=UL测定)。
另一方法是通过测量谐振曲线的通频带宽度△f=f2-f1,再根据QUo=fO求出Q值。
式中fo为谐振频率,f2和f1是失谐时,亦即输出电压的幅度下降到f2-f1最大值的1/2 (=0.707)倍时的上、下频率点。
Q值越大,曲线越尖锐,通频带越窄,电路的选择性越好。
在恒压源供电时,电路的品质因数、选择性与通频带只决定于电路本身的参数,而与信号源无关。
预习思考题1. 根据实验线路板给出的元件参数值,估算电路的谐振频率。
L=30mH fo=2. 改变电路的哪些参数可以使电路发生谐振,电路中R的数值是否影响谐振频率值?改变频率f,电感L,电容C可以使电路发生谐振,电路中R 的数值不会影响谐振频率值。
rlc并联谐振电路谐振条件
(原创实用版)
目录
1.RLC 并联谐振电路的概念
2.RLC 并联谐振电路的谐振条件
3.RLC 并联谐振电路的应用
4.结论
正文
一、RLC 并联谐振电路的概念
RLC 并联谐振电路是由电阻(R)、电感(L)和电容(C)三个元件并联组成的电路。
在这个电路中,当电压与电流的相位角相同时,电路状态达到谐振,这种谐振称为并联谐振或电流谐振。
二、RLC 并联谐振电路的谐振条件
在 RLC 并联电路中,谐振条件为:当电路中的电感(L)、电容(C)和电阻(R)满足一定条件时,电路达到谐振状态。
具体来说,当感纳(B= ωL / ωC)等于电阻(R)时,电路中电流与电压的相位角相同,达到并联谐振状态。
其中,ω表示角频率,B 表示感纳。
三、RLC 并联谐振电路的应用
RLC 并联谐振电路在电子电路中有广泛应用,例如用于测量电缆的交流耐压试验。
通过电感的并联方式,可以提高试验的电流,从而实现试验的目的。
此外,RLC 并联谐振电路在各种具有频率特性的电路网络中也有重要作用。
四、结论
RLC 并联谐振电路是一种特殊的电路,其谐振条件为感纳等于电阻。
这种电路在电子电路和通信领域具有广泛的应用。
RLC 串联电路的谐振【问题提出】同时具有电感、电容两类元件的电路在一定条件下会发生谐振现象。
谐振电路的阻抗、电压于电流以及它们之间的相位差、电路与外界的能力交换等均处于某种特殊状态,因而在实际中有重要的应用,如在放大器、振荡器、滤波器电路中常用作选频等。
本实验中,通过LCR 电路幅频特性的测量,着重研究LC 电路的谐振现象。
【实验装置】(1)谐振时,回路阻抗为一纯电阻,且取得最小值Z=R+R '。
(R '电感线圈的交流等效电阻。
),且信号源的输出电压与输出电流I 同相。
(2)在保持电源电压U 恒定的条件下,0ωω=时,电流有极大值,且UI R=。
I ——f 曲线见P304图28—2,称为LRC 串联电路的幅频特性曲线(或谐振曲线)。
(3)Q 值标志谐振电路性能的好坏,称谐振电路的品质因数。
它定义为001''L CQ R R R R ωω===++谐振时 QU U U C L ==通常, Q>>1,U L 和U C 都远大于信号源输出电压U ,故又称LRC 串联谐振为电压谐振。
Q 值又标志着I ——f 曲线的尖锐程度, Q 值越大,曲线越尖锐,电路的频率选择性越好.。
如图。
实验内容、要求(1) 测量LRC 串联电路的谐振曲线,即I —f 曲线。
➢ 测量电路如上图。
按图连接电路。
➢ 电路元件L 、C 、R 、R '的数值参数选取。
L=0.1H ,C=0.05uf, R=100∩ ➢ 交流电压有效值用晶体管毫伏表进行测量。
➢ 回路电流可通过已知电阻R 上的电压求得。
➢测量过程中回路总电压有效值U 始终保持谐振时的总电压有效值不变。
取U ≡1V 。
CmaxI➢ 首先测量谐振时的频率0f 及R L C U U U 、 、,自拟记录表1【实验数据及分析】表4串联谐振0f 、Q 的实验、理论结果比较表【结论、讨论或体会】通过该实验对LCR电路幅频特性的测量,接触了RX7/1型十进制标准电容箱,ZX32型交流电阻箱、XD2信号发生器、数字万用表等仪器,学习了实验线路设计和参数选用。
RLC串联交流谐振电路实验报告RLC串联交流谐振电路实验报告引言:RLC串联交流谐振电路是电路中常见的一种形式,通过对其进行实验研究,可以更好地理解电路中的谐振现象和相关理论。
本文将介绍我们进行的RLC串联交流谐振电路实验,并对实验结果进行分析和讨论。
实验目的:本次实验的主要目的是研究RLC串联交流谐振电路的特性,包括共振频率、电压相位差、电流幅值等。
通过实验,我们将探索电路中的谐振现象,加深对谐振电路的理解。
实验原理:RLC串联交流谐振电路由电感L、电阻R和电容C组成。
在交流电源的作用下,电路中的电感、电阻和电容会发生相互作用,从而导致电路中的电流和电压发生变化。
当电路达到谐振状态时,电路中的电流幅值最大,电压相位差为零。
实验步骤:1. 首先,我们将电感L、电阻R和电容C按照串联的方式连接起来,形成RLC串联交流谐振电路。
2. 然后,我们将交流电源连接到电路上,并通过示波器观察电路中的电流和电压波形。
3. 调节交流电源的频率,观察电路中的电流和电压的变化情况。
4. 记录不同频率下电流和电压的数值,并计算电压相位差和电流幅值。
5. 根据实验数据,绘制电流和电压随频率变化的图表。
实验结果:通过实验观察和数据记录,我们得到了RLC串联交流谐振电路的一些特性。
首先,我们发现在特定的频率下,电路中的电流幅值最大。
这个频率被称为共振频率,用f0表示。
同时,我们还观察到在共振频率下,电压和电流的相位差为零,即电压和电流完全同相。
除此之外,在共振频率附近,电压和电流的相位差会发生变化,并且电流幅值也会随着频率的变化而变化。
讨论与分析:通过对实验结果的分析,我们可以得出一些结论和认识。
首先,RLC串联交流谐振电路的共振频率与电感、电阻和电容的数值有关。
当电感、电阻和电容的数值发生变化时,共振频率也会相应地发生变化。
其次,电压和电流的相位差为零说明电压和电流在时间上是完全同步的,这是因为在共振频率下,电路中的电感、电阻和电容之间的相互作用达到了平衡状态。