静定结构总论
- 格式:ppt
- 大小:458.00 KB
- 文档页数:3
第9章静定结构总论9.1 复习笔记本章对静定结构的相关知识进行了归纳总结。
介绍了几何构造分析与受力分析之间的对偶关系,归纳了零载法的详细求解步骤,分析了空间杆件体系的几何构造,阐述了空间杆件体系与平面杆件体系的联系,介绍了静定结构的受力特性,比较了静定结构不同结构形式的优缺点。
一、几何构造分析与受力分析之间的对偶关系几何构造分析与受力分析之间的对偶关系是指“各部件的自由度总数”与“全部约束(包括多余约束)数”之间的相互关系,二者之间的差值为计算自由度W。
根据表9-1-1,体系的W值不同,其静力特性也不同。
表9-1-1 具有不同计算自由度W的结构特性二、零载法(见表9-1-2)表9-1-2 具有不同计算自由度W的结构特性三、空间杆件体系的几何构造分析1.空间结构的概念空间结构是指各杆件轴线不在同一平面内的结构,它分为空间刚架结构和空间桁架结构,这两种空间结构的区别见表9-1-3。
表9-1-3 空间刚架和空间桁架的区别2.空间杆件体系的基本组成规律空间杆件体系有三种组成方式:四个铰连接、一个铰与一个刚体连接、一个刚体与另一个刚体(基础)连接。
不同组成方式的连接方式、限值条件见表9-1-4,此外,表9-1-4还分析了空间杆件体系与平面杆件体系之间的联系。
表9-1-4 空间杆件体系的连接方式3.空间铰接体系的计算自由度W设体系上结点的总数为j,链杆与支杆总数为b。
空间中一个点具有3个自由度,一根链杆或支杆约束结点一个自由度,因此体系多余自由度个数W表示为W=3j-b根据表9-1-1可判断不同W值下结构的静力特性。
四、静定空间刚架1.空间刚架问题当组成刚架的杆件轴线与外荷载不在同一平面内时,这类问题称为空间刚架问题。
2.内力计算空间刚架有3个位移自由度、3个转动自由度,因此杆件截面具有6个内力分量(F N、F Q1、F Q2、M X、M Y、M Z),可由6个平衡方程分别求解,其计算方法与平面刚架体系相同。
静定结构知识点总结一、静定结构的概念静定结构是指在受到外力作用时,结构内部的各点处于静态平衡的结构。
换句话说,静定结构是一个力学模型,它受到有限个外力作用,但是通过构造支反力平衡方程可以唯一确定支座反力的结构。
静定结构的平衡条件可用以下两种方法表示:力平衡方程和力矩平衡方程。
1.力平衡方程对于一个受力作用的物体或结构,力平衡方程是最基本的平衡条件。
力平衡方程描述了作用在结构上的所有外力之和等于零。
力平衡方程的一般形式可以表示为:ΣF=0其中,ΣF表示作用在结构上的所有外力之和。
对于一个静定结构而言,只有n个未知的支反力需要确定,而且力平衡方程可以用来唯一确定这n个未知的支反力。
2.力矩平衡方程力矩平衡方程描述了作用在结构上的所有外力产生的力矩之和等于零。
力矩平衡方程通常表示为:ΣM=0其中,ΣM表示作用在结构上的所有外力产生的力矩之和。
力矩平衡方程可以用来判断结构是否受到扭转力的影响,并且可以用来确定支座的扭矩反力。
二、静定结构的原理静定结构问题是力学中的一个重要问题,其解决原理可以归纳为以下几个方面:1.平衡条件静定结构的平衡条件是基本原理。
在受到外力作用时,结构内部的各点处于静态平衡状态,即结构内力和外力的作用线都经过结构的重心,并且内力满足平衡条件和相互协调条件。
2.叠加原理叠加原理是静定结构分析的基本原理之一。
叠加原理是指一个结构在受到多个外力作用时,结构的响应可以被看作是各个外力单独作用时的响应之和。
这样可以简化分析过程,使问题的解决变得相对容易。
3.位移方法位移方法是一种常用的静定结构分析方法。
它是根据力学平衡条件和结构变形的关系,通过假设结构的位移形式,利用位移与受力的关系来求解结构的反力-位移关系。
常见的位移方法有假设位移法、能量法等。
4.变形协调条件变形协调条件是指结构在受力作用下的变形满足一定的条件。
在静定结构问题中,结构的变形必须满足变形协调条件,即结构的变形必须使得结构满足平衡条件,不会产生过度的变形。
静定结构的认识总结水利水电工程1班谢宇宁 201130200364 19 10月18日一、静定结构的特性1、几何组成特性:几何特征为无多余约束几何不变,是实际结构的基础。
2、静力特性:凡只需要利用静力平衡条件就能计算出结构的全部支座反力和杆件内力的结构。
二、静定结构的常用形式及其特征1、单跨静定梁类型:简支梁、伸臂梁、悬臂梁内力计算:截面法。
在梁的横截面上,一般有三个内力分量:轴力(拉为正)、剪力(以使隔离体顺时针转动为正)、弯矩(上,下,左,右侧受拉)(注:为计算方便,选简单隔离体进行计算;一般假设截面上的内力为正)内力图绘制:利用微分关系dFsdx =−q(x)、dMdx=Fs、d2Mdx2=−q(x)2、多跨静定梁定义:多跨静定梁是将若干根短梁彼此用铰相连,组成几何不变的静定结构。
多跨静定梁的组成及传力特征:多跨静定梁由基本部分和附属部分组成.基本部分:结构中不依赖于其它部分而独立与大地形成几何不变的部分。
附属部分:结构中依赖基本部分的支承才能保持几何不变的部分。
多跨静定梁具有的特征:1)组成顺序:先基本部分,后附属部分;2)传力顺序:先附属部分,后基本部分。
多跨静定梁的荷载特点:1)多跨静定梁无轴力。
2)附属梁向基本梁只传递竖向力。
3)基本部分荷载作用不影响附属部分。
多跨静定梁内力计算:1)计算时,先附属,后基本梁。
(注:力作用在基本梁附属梁不受力;力作用在附属梁上,基本梁及附属梁都受力。
)2)计算步骤:a.画出多跨静定梁的层次图;b.分解多个单个梁,分别计算支座反力;c.画出梁的内力图;d.将内力图连接起来,即可得到多跨静定梁的内力图。
3、静定平面刚架静定平面刚架的几何组成及特点:1)刚架是由若干直杆,部分或全部用刚结点连结而成的几何不变体系2)刚结点处的各杆端不能发生相对移动和相对转动,刚结点处能承受和传递力和弯矩。
3)刚架中的内力分布较均匀、合理,并能削减弯矩的峰值。
静定平面刚架的分类:单体刚架(联合结构)、三铰刚架(三铰结构)、复合刚架(主从结构)静定刚架支座反力的计算:1)解题顺序与结构组装顺序相反,即后组装的部分先力学分析。
第四章静定结构总论
§4-1 隔离体方法及其截取顺序的优选
1、隔离体的形式、约束力及独立平衡方程
(1)隔离体的形式:结点,杆件,刚片等(结构中的任一部分)(2)约束力的类型:链杆,铰结,刚结,各种支座。
(3)隔离体的独立平衡方程数:等于隔离体的自由度数。
2、计算的简化和隔离体截取顺序的优选
(1)尽量避免解联立方程;
(2)掌握结构受力特点(零杆,二力杆,对称性等)。
(3)注意计算顺序(先附属,后基本;先链杆,后梁式杆)。
§4-2 几何构造分析与受力分析之间的对偶关系
1、从计算自由度W的力学含义和几何含义看对偶关系
几何含义:各部件自由度总和与全部约束数总和之差。
力学含义:各部件的平衡方程总数与未知力总数之差。
结论:
(1)若W>0,则平衡方程数大于未知力个数。
一般方程无解。
(从几何构造分析:对应于几何可变体系)
(2)若W<0,则平衡方程数小于未知力个数。
若有解,解答无穷多种,即体系若能平衡,则必定为超静定的(有多余约束几何
不变体系)
(3)若W=0,平衡方程数等于未知力个数。
1)系数行列式不为零,方程有解,且唯一(无多余约束几何不变体系)
2)系数行列式为零,方程一般无解,在特殊荷载下有无穷多解。
(几何可变,有多余约束)
W的静定特性与几何特性具有对偶关系:在一般荷载下平衡方程组有解对应于体系几何不变,无解对应于几何可变。
平衡方程只有唯一解对应于体系无多余约束,有无穷多解对应于有多余约束。