冲量动量
- 格式:doc
- 大小:57.51 KB
- 文档页数:3
高中物理冲量与动量公式_动量与冲量公式高中物理冲量与动量公式1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}2.冲量:I=Ft {I:冲量(N s),F:恒力(N),t:力的作用时间(s),方向由F决定}3.动量定理:I=Δp或Ft=mvt–mvo{Δp:动量变化Δp=mvt–mvo,是矢量式}4.动量守恒定律:p前总=p后总或p=p’′也可以是m1v1+m2v2=m1v1′+m2v2′5.弹性碰撞:Δp=0;ΔEk=0 {即系统的动量和动能均守恒}6.非弹性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:损失的动能,EKm:损失的最大动能}7.完全非弹性碰撞Δp=0;ΔEK=ΔEKm {碰后连在一起成一整体}8.物体m1以v1初速度与静止的物体m2发生弹性正碰:v1′=(m1-m2)v1/(m1+m2)v2′=2m1v1/(m1+m2)9.由8得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)10.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失E损=mvo2/2-(M+m)vt2/2=fs相对 {vt:共同速度,f:阻力,s相对子弹相对长木块的位移}注:(1)正碰又叫对心碰撞,速度方向在它们“中心”的连线上;(2)以上表达式除动能外均为矢量运算,在一维情况下可取正方向化为代数运算;(3)系统动量守恒的条件:合外力为零或系统不受外力,则系统动量守恒(碰撞问题、爆炸问题、反冲问题等);(4)碰撞过程(时间极短,发生碰撞的物体构成的系统)视为动量守恒,原子核衰变时动量守恒;(5)爆炸过程视为动量守恒,这时化学能转化为动能,动能增加;(6)其它相关内容:反冲运动、火箭、航天技术的发展和宇宙航行。
动量、冲量和动量定理动量、冲量和动量定理⼀、动量:P =m v 单位:kg.m/s1、瞬时性:动量是指物体在某⼀时刻的动量,计算时应取这⼀时刻的瞬时速度。
动量是描述物体运动状态的物理量,是状态量。
2、⽮量性:动量的⽅向与物体的瞬时速度⽅向相同。
3、相对性:物体的动量与参照物的选择有关,选⽤不同的参照物时,同⼀物体的动量可能不同⼆、动量的变化:(1)、当物体的运动状态由状态1变化到状态2,其末动量mv2与初动量mv1的⽮量差称为动量的变化,即?P= mv2 -mv1,或?P=P2-P1(2)、动量变化的⽮量性:由于动量是⽮量,所以动量的变化也是⽮量。
(3)、动量变化的计算:运算应⽤平⾏四边形定则。
如果在同⼀⽅向上选定正⽅向后,可⽤“+”“-”表⽰⽅向。
例1、两⼩球的质量分别是m1和m2,且m1=2m2,当它们的动能相等时,它们的动量⼤⼩之⽐是1:2例2。
质量为10Kg的物体,当其速率由3m/s变为4m/s时,它的动量变化量Δp的⼤⼩不可能的是……( D )A、10kgm/sB、50kgm/sC、70kgm/sD、90kgm/s三、冲量(⼒对时间的累积效应)I=Ft单位:N?s注:冲量⼤⼩不仅与⼒有关,还与⼒的作⽤时间有关。
变⼒的冲量⼀般不能⽤I=Ft来计算,⽽应根据动量定理,⽤动量的改变量等效代换。
理解:1.⽮量性:恒⼒(或⽅向不变的⼒),冲量⽅向与⼒的⽅向⼀致;变⼒(⽅向改变的⼒),冲量⽅向应与物体动量改变量的⽅向⼀致。
2.过程量:它是⼒对物体的作⽤经历⼀段时间的积累效应。
与位移⽆关3.绝对性:⼒与时间与参照系的选取⽆关,冲量的⼤⼩、⽅向与参照系的选取⽆关。
例3.质量为m的物体放在⽔平地⾯上,在与⽔平⾯成q⾓的拉⼒F作⽤下由静⽌开始运动,经时间t速度达到v,在这段时间内拉⼒F和重⼒mg冲量⼤⼩分别是(D)A.Ft,0B.Ftcos q,0C.mv,0D.Ft,mgt例4如图所⽰,质量为2kg的物体沿倾⾓为30°⾼为h=5m的光滑斜⾯由静⽌从顶端(2)⽀持⼒的冲量;(3)合外⼒的冲量.(g=10m/s2)下滑到底端的过程中,求:(1)重⼒的冲量;【解析】求某个⼒的冲量时,只有恒⼒才能⽤公式I=F·t,⽽对于变⼒⼀般⽤动量定理求解,此题物体下滑过程中各⼒均为恒⼒,所以只要求出⼒作⽤时间便可⽤I=Ft求解.由⽜顿第⼆定律F=ma得下滑的加速度a=g·sin q=5m/s2.由s=(1/2)at2得下滑时间2S,所以重⼒的冲量IG=mg·t=2×10×2=40N·s.⽀持⼒的冲量IF=F·t=mgcos30°·t=203N·s,合外⼒的冲量IF合=F合·t=mgsin30°·t=20N·s.【解题回顾】某个⼒的冲量与合外⼒的冲量要注意区分.如5-1-2图,物重10N,放在桌⾯上静⽌不动,经历时间10秒钟,重⼒的冲量不是0⽽是I G=G·t=10×10=100N·s.四、动量定理(⽮量式)物体所受合外⼒的冲量等于它的动量的变化。
动量和冲量知识点1.动量的概念动量是物体运动过程中守恒的物理量,它用来描述物体运动的“力量”。
动量的定义公式为:动量 = 质量× 速度。
动量的单位是千克·米/秒(kg·m/s)。
动量的方向与物体运动的方向相同。
2.动量的计算方法当质量不变时,动量的变化可以用公式Δp=mΔv来表示,其中Δp 表示动量的变化量,m表示物体的质量,Δv表示物体速度的变化量。
3.动量守恒定律动量守恒定律是描述相互作用物体的动量变化情况的规律。
它的表述是:当一个系统内部无外力作用时,系统的总动量保持不变。
即p1+p2=p1'+p2',其中p1和p2分别是相互作用物体1和物体2的动量,p1'和p2'分别是相互作用后物体1和物体2的动量。
动量守恒定律适用于质点系、刚体以及碰撞等各种情况。
4.冲量的概念冲量是力在时间上的累积效果,它用来描述物体受到外力作用时的“力量”。
冲量的定义公式为:冲量=力×时间。
冲量的单位是牛·秒(N·s),等于动量的变化。
冲量的方向与力的方向相同。
5.冲量的计算方法冲量的计算可以通过力的积分或者力随时间的变化率进行计算。
当一个物体受到一个持续作用力时,冲量的计算公式为:I = ∫Fdt,其中I 表示冲量,F表示力的大小,dt表示时间的微元。
6.冲量和动量的关系冲量与动量之间存在着简单的数学关系。
根据牛顿第二定律的公式 F = ma 可以得到 F = m(dv/dt),将其代入冲量的定义公式中可以得到冲量与动量的关系I = ∫Fdt = ∫(m(dv/dt))dt = ∫m·dv = m∫dv = mv - mv0。
即冲量等于动量的变化量。
7.动量和冲量的应用-碰撞:碰撞是动量和冲量的典型应用场景。
物体在碰撞过程中,动量发生改变,利用动量守恒定律和冲量的概念可以计算碰撞后物体的运动状态。
-推力计算:当物体受到外力作用时,可以通过计算力在时间上的累积效果来求解物体的速度变化。
冲量与动量定律冲量和动量定律是描述物体运动与相互作用之间关系的重要物理定律。
本文将详细介绍冲量和动量定律的概念、公式及其应用。
一、冲量的概念与计算公式冲量是指力作用在物体上的时间积分,表示物体受到外力作用的效果。
冲量的计算公式如下:I = ∫F·dt其中,I表示冲量,F表示作用在物体上的力,t表示力作用的时间。
二、动量的概念与计算公式动量是物体运动状态的量度,是物体的质量与速度的乘积。
动量的计算公式如下:p = mv其中,p表示动量,m表示物体质量,v表示物体的速度。
三、冲量定律冲量定律是描述力对物体产生效果的物理定律。
根据冲量定律,当物体受到冲量时,其动量的变化量等于冲量,即Δp = I。
这表明,当物体受到外力作用时,它的动量将发生变化。
冲量定律的一种常见应用是描述弹性碰撞过程中的动量变化。
在弹性碰撞中,物体之间发生反弹或折返的情况较为常见。
根据冲量定律,当物体受到碰撞力作用时,其动量的变化量等于碰撞力在时间上的积分。
通过计算碰撞过程中的冲量,可以得到物体在碰撞后的速度和方向等信息。
四、动量定律动量定律是描述物体运动状态变化的物理定律。
根据动量定律,当外力作用于物体时,物体的动量将发生改变。
动量定律可以表达为F = Δp/Δt,其中F表示作用在物体上的力,Δp表示物体动量的变化量,Δt表示时间的变化量。
动量定律的一个重要应用是在解释力的作用过程中物体速度改变的原因。
根据动量定律,当物体受到外力作用时,它的动量将发生变化,从而导致速度的变化。
通过分析力对物体动量的改变,可以推导出物体速度的变化规律。
五、冲量与动量定律的应用举例1. 火箭发射:在火箭发射过程中,燃料喷射产生的冲量会使火箭获得一个巨大的动量,从而推动火箭向上运动。
2. 球类运动:例如足球的射门,球员踢球时给予球一个冲量,改变球的动量,使其向球门飞去。
3. 弹性碰撞:当两个弹性物体碰撞时,根据冲量定律和动量定律可以计算出碰撞后物体的速度和方向变化。
动量和冲量的概念动量和冲量是物理学中两个重要的概念,用以描述物体运动中的力量和效果。
本文将详细介绍这两个概念以及它们的应用。
一、动量的概念动量是描述物体运动状态的物理量,可以简单理解为物体的运动惯性。
动量的大小与物体的质量和速度有关,可以用公式p=mv表示,其中p为动量,m为物体的质量,v为物体的速度。
动量是一个矢量量,具有方向。
当物体的质量增加时,其动量也相应增加;当物体的速度增加时,其动量也相应增加。
例如,一个质量为m的物体以速度v运动,其动量为mv。
二、冲量的概念冲量是指力对物体作用的效果的量度,可以简单理解为物体受到力的变化程度。
冲量的大小与力的大小和作用时间有关,可以用公式J=FΔt表示,其中J为冲量,F为力的大小,Δt为作用时间。
与动量不同,冲量是一个矢量量,具有方向。
当力的大小增加时,冲量也相应增加;当作用时间增加时,冲量也相应增加。
例如,一个力以大小为F在时间Δt内作用于物体上,产生的冲量为FΔt。
三、动量守恒定律动量守恒定律是描述封闭系统中动量守恒的物理定律。
在没有外力作用的情况下,一个封闭系统的总动量保持不变。
即,系统内部物体的动量可以相互转移,但总的动量保持恒定。
动量守恒定律的应用十分广泛。
例如,在碰撞过程中,两个物体之间的动量可以相互转移,但它们的总动量保持不变。
基于这一定律,许多碰撞问题可以得到解释和预测。
四、冲量-动量定理冲量-动量定理是描述力与物体动量关系的物理定律。
根据冲量-动量定理,一个物体所受到的冲量等于该物体动量的变化量。
即,J=Δp,其中J为冲量,Δp为物体动量的变化量。
冲量-动量定理可以应用于计算物体速度的变化、力的大小等问题。
例如,在给定冲量和作用时间的情况下,可以利用冲量-动量定理计算物体的速度变化量。
五、动量和冲量的应用动量和冲量的概念在物理学中有许多重要的应用。
以下列举几个常见的应用场景:1. 碰撞分析:通过运用动量守恒定律和冲量-动量定理,可以分析和预测碰撞过程中物体的运动状态,从而实现碰撞问题的求解。
动量与冲量的概念动量和冲量是物理学中的两个重要概念,它们描述了物体运动和相互作用的性质。
本文将深入探讨动量和冲量的定义、计算公式以及它们之间的关系。
一、动量的定义与计算公式动量是一个物体运动的特性,它描述了物体在运动过程中的惯性。
一个物体的动量等于其质量与速度的乘积,可以用如下公式表示:动量 (p) = 质量 (m) ×速度 (v)其中,动量的单位是千克·米/秒 (kg·m/s)。
动量的方向与物体运动的方向一致,即与速度的方向相同。
如果物体的速度发生变化,其动量也会相应地改变。
二、冲量的定义与计算公式冲量是物体相互作用的一个量,它描述了物体在与其他物体碰撞或相互作用过程中所受到的力的大小和作用时间的乘积。
冲量可以用如下公式表示:冲量 (I) = 力 (F) ×时间(Δt)其中,冲量的单位是牛·秒 (N·s)。
冲量是一个矢量量,它的方向与作用力的方向相同。
冲量的大小取决于作用力的大小和作用时间的长短。
三、动量守恒定律动量守恒定律是指在一个系统中,当没有外力作用时,系统的总动量保持不变。
这可以用公式表示为:总动量(Σp) = 常量这意味着在一个孤立系统中,物体之间的相互作用不会改变系统的总动量。
四、冲量-动量定理冲量-动量定理是描述物体运动变化的一个原理,它表明物体的动量变化与作用于物体上的冲量成正比。
冲量-动量定理可以用公式表示为:ΣF·Δt = Δp其中,ΣF表示系统中所有作用力的矢量和,Δt表示作用时间,Δp表示物体的动量变化。
根据冲量-动量定理,一个物体所受到的总冲量等于它的动量的变化。
因此,通过改变作用力的大小或作用时间的长短,可以实现对物体动量的改变。
五、动量与冲量的联系与区别动量和冲量是物体运动和相互作用的相关概念,它们之间存在着密切的联系,但又有不同的定义和计算方法。
首先,动量和冲量都是物体运动特性的量度,但动量描述的是物体自身在运动过程中的惯性,而冲量描述的是物体相对其他物体的作用力与作用时间的乘积。
动量和冲量的概念动量和冲量是物理学中的两个重要概念,它们对于研究物体运动的性质和相互作用提供了一个深入的认识。
本文将简要介绍动量和冲量的定义、特性及其应用。
一、动量的定义和特性动量是描述物体运动状态的物理量,它由物体的质量和速度决定。
动量的定义为物体的质量乘以其速度,即动量(p)等于质量(m)乘以速度(v),用数学表达式表示为p = mv。
动量具有以下特性:1. 动量是一个矢量,即具有大小和方向。
它的大小与物体的质量和速度成正比,方向与速度方向相同。
2. 动量与物体的质量成正比,即质量越大,动量越大;质量越小,动量越小。
3. 动量与物体的速度成正比,即速度越大,动量越大;速度越小,动量越小。
4. 动量守恒定律:在一个孤立系统内,当物体之间没有外力作用时,系统的总动量保持不变。
这意味着物体间的相互作用可以引起动量的转移,但总动量的值保持不变。
二、冲量的定义和特性冲量是用来描述物体的运动变化的物理量,它是作用力对物体作用时间的乘积。
冲量的定义为作用力(F)乘以作用时间(Δt),用数学表达式表示为J = FΔt。
冲量具有以下特性:1. 冲量是一个矢量,具有大小和方向。
其大小等于作用力的大小乘以作用时间的大小,方向与作用力的方向相同。
2. 冲量越大,物体的运动变化越大;冲量越小,物体的运动变化越小。
三、动量和冲量的应用1. 对于弹力和碰撞(包括弹性碰撞和非弹性碰撞)等相互作用过程,动量和冲量是研究它们的重要工具。
在碰撞过程中,动量守恒定律可以用来解释物体之间的相互作用和运动变化。
2. 动量和冲量也可以用来描述力的大小和方向。
当物体受到外力作用时,根据冲量的定义,可以计算出受力的大小和作用时间。
3. 动量和冲量在运动学、动力学等许多物理问题中具有广泛的应用。
例如,在机械工程中,我们可以利用动量和冲量的原理来研究机械装置的设计和运行。
总结:动量和冲量是物体运动和相互作用研究中的重要概念。
它们能够提供关于物体运动状态和力学相互作用的深入认识,具有广泛的应用价值。
什么是动量和冲量?动量和冲量是物理学中描述物体运动的两个重要概念。
它们在力学、动力学和碰撞等领域中有广泛的应用。
以下是对动量和冲量的详细解释和应用指导:动量的概念:动量是物体运动的量度,它是物体质量和速度的乘积。
动量可以用公式p = mv来计算,其中p表示动量,m表示物体的质量,v表示物体的速度。
动量的单位是千克·米/秒(kg·m/s)。
动量的解释:动量可以通过以下几个方面来解释:1. 运动的数量:动量是物体运动的数量,它与物体的质量和速度相关。
一个质量较大、速度较大的物体具有较大的动量,而一个质量较小、速度较小的物体具有较小的动量。
2. 动量的守恒:根据动量守恒定律,当一个系统内的物体之间没有外力作用时,系统的总动量保持不变。
这意味着一个物体的动量的增加必然伴随着另一个物体的动量的减小。
3. 动量的转移:当一个物体对另一个物体施加力时,它的动量可以转移到另一个物体上。
通过动量的转移,物体可以相互影响,产生运动、变形或其他效应。
冲量的概念:冲量是力作用于物体上的时间积分,它是力对物体的作用效果的量度。
冲量可以用公式J = FΔt来计算,其中J表示冲量,F表示作用力,Δt表示作用时间。
冲量的单位是牛·秒(N·s)。
冲量的解释:冲量可以通过以下几个方面来解释:1. 力的效果:冲量描述了力对物体的作用效果。
当一个力施加在物体上时,在一定时间内产生的效果与冲量有关。
较大的冲量意味着力的作用更强,产生的效果更明显。
2. 动量的变化:根据牛顿第二定律,力是动量变化的原因。
冲量可以看作是力对物体动量的改变量。
较大的冲量意味着物体动量的改变更大。
3. 冲量的时间积分:冲量是力作用时间的积分。
当作用时间较短时,即使力很大,冲量也可能较小。
但如果力持续作用的时间较长,冲量会增大。
动量和冲量的应用:动量和冲量在物理学的各个领域中都有广泛的应用。
以下是一些应用动量和冲量的情况:1. 碰撞分析:动量和冲量在碰撞分析中起着关键作用。
动量和冲量1.动量按定义,物体的质量和速度的乘积叫做动量:p =mv⑴动量是描述物体运动状态的一个状态量,它与时刻相对应。
⑵动量是矢量,它的方向和速度的方向相同。
⑶动量的改变量:Δp=末动量-初动量。
注意方向: 2.冲量按定义,力和力的作用时间的乘积叫做冲量:I =Ft⑴冲量是描述力的时间积累效应的物理量,是过程量,它与时间相对应。
⑵冲量是矢量,它的方向由力的方向决定(不能说和力的方向相同)。
如果力的方向在作用时间内保持不变,那么冲量的方向就和力的方向相同。
⑶高中阶段只要求会用I=Ft 计算恒力的冲量。
对于变力的冲量,高中阶段只能利用动量定理通过物体的动量变化来求。
⑷要注意的是:冲量和功不同。
恒力在一段时间内可能不作功,但一定有冲量。
例1.质量为m 的小球由高为H 的光滑斜面顶端无初速滑到底端过程中,重力、弹力、合力的冲量各是多大?二、动量定理 1.动量定理物体所受合外力的冲量等于物体的动量变化。
既I =Δp注意:⑴一定是合力的冲量。
或是分力的冲量的矢量求和。
绝对不是代数和。
⑵动量定理的表达式是矢量式。
在一维的情况下,各个矢量必须以同一个规定的方向为正。
注意,这里合力也是有正负的,和速度方向一样。
例2. 以初速度v 0平抛出一个质量为m 的物体,抛出后t 秒内物体的动量变化是多少?2.利用动量定理定性地解释一些现象例3. 鸡蛋从同一高度自由下落,第一次落在地板上,鸡蛋被打破;第二次落在泡沫塑料垫上,没有被打破。
这是为什么? 3.利用动量定理进行定量计算利用动量定理解题,必须按照以下几个步骤进行: ⑴明确研究对象和研究过程。
⑵进行受力分析。
⑶规定正方向。
⑷写出研究对象的初、末动量和合外力的冲量(或各外力在各个阶段的冲量的矢量和)。
⑸根据动量定理列式求解。
例5. 质量为m 的小球,从沙坑上方自由下落,经过时间t 1到达沙坑表面,又经过时间t 2停在沙坑里。
求:⑴沙对小球的平均阻力F ;⑵小球在沙坑里下落过程所受的总冲量I 。
高二物理公式:冲量与动量
高二物理公式:冲量与动量
高二物理公式:冲量与动量
1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}
2.动量定理:I=Δp或Ft=mvt–mvo
{Δp:动量变化Δp=mvt–mvo,是矢量式}
3.动量守恒定律:p前总=p后总或p=p’´也可以是m1v1+m2v2=m1v1´+m2v2´
4.冲量:I=Ft {I:冲量(N•s),F:恒力(N),t:力的作用时间(s),方向由F决定}
5.弹性碰撞:Δp=0;ΔEk=0 {即系统的动量和动能均守恒}
6.非弹性碰撞
Δp=0;0<ΔEK<ΔEKm {ΔEK:损失的动能,EKm:损失的最大动能}
7.完全非弹性碰撞Δp=0;ΔEK=ΔEKm {碰后连在一起成一整体}
8.物体m1以v1初速度与静止的物体m2发生弹性正碰:
v1´=(m1-m2)v1/(m1+m2)
v2´=2m1v1/(m1+m2)
9.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失。
冲量定理和动量定理一、引言在物理学中,冲量定理和动量定理是两个重要的概念。
它们描述了物体运动时所受到的力和其产生的效果。
本文将详细介绍这两个定理。
二、冲量定理1. 定义冲量是力在时间上的积分,表示力作用于物体上所产生的效果。
冲量定理指出,一个物体所受到的总冲量等于该物体动量的变化量。
2. 公式设一个物体质量为m,初速度为v1,末速度为v2,则该物体所受到的总冲量FΔt等于mv2-mv1。
3. 应用冲量定理可用于解释许多现象,如汽车撞击、弹球反弹等。
在汽车撞击中,当两辆车相撞时,它们之间会产生巨大的力,并且会发生能量转换。
根据冲量定理可以计算出这些力和能量。
三、动量定理1. 定义动量是一个物体运动状态的描述,表示物体质心运动状态的大小和方向。
动量定理指出,在没有外力作用时,一个系统内所有物体总动量不变。
2. 公式设一个系统内有n个物体,第i个物体质量为mi,速度为vi,则该系统总动量为p=Σmi*vi。
3. 应用动量定理可用于解释许多现象,如弹性碰撞、爆炸等。
在弹性碰撞中,两个物体相互碰撞后会发生反弹,而它们之间的动量总和在碰撞前后不变。
根据动量定理可以计算出这些物体的速度。
四、冲量定理与动量定理的联系和区别1. 联系冲量定理和动量定理都描述了物体运动时所受到的力和其产生的效果。
它们都涉及到物体的质量、速度以及力的作用时间。
2. 区别冲量定理描述了力在时间上的积分,并且仅适用于短时间内作用力产生的效果。
而动量定理则描述了物体运动状态的变化,并且适用于长时间内没有外力作用时物体运动状态不变化。
五、结论冲量定理和动量定理是重要的物理学概念,它们可以帮助我们解释许多现象,并且可以应用于许多领域,如工程、机械等。
通过本文对这两个概念进行详细介绍,我们可以更深入地理解物体运动时所受到的力和其产生的效果。
冲量动量的公式在我们学习物理的奇妙世界里,冲量和动量可是一对相当重要的“小伙伴”。
冲量动量的公式就像是打开它们神秘之门的钥匙。
冲量的公式是I = F × Δt ,这里的 I 表示冲量,F 就是作用力,而Δt 则是作用时间。
想象一下,你用力去推一个静止的箱子,你用的力越大,推的时间越长,这个箱子所受到的冲量就越大。
动量的公式是 p = mv ,其中 p 代表动量,m 是物体的质量,v 是物体的速度。
比如说一辆飞驰的汽车,它的质量越大,速度越快,那么它的动量也就越大。
还记得有一次,我在公园里看到一个小朋友在玩滑板车。
他从一个小斜坡上冲下来,速度越来越快。
这时候他想要停下来,就用脚用力地摩擦地面。
在这个过程中,他的脚与地面之间产生的摩擦力,以及摩擦力作用的时间,就形成了冲量。
而滑板车本身的质量和速度,就决定了它的动量。
咱们再深入聊聊冲量和动量的关系。
冲量等于动量的变化量,这用公式表示就是I = Δp 。
这就好像是在说,冲量是改变物体动量的“小能手”。
比如说,在一场足球比赛中,守门员要把飞来的足球接住。
足球飞来的时候具有一定的动量,当守门员用手去接球时,他施加的力和接球的时间形成的冲量,让足球的动量发生了改变,最终足球停了下来。
在实际生活中,冲量动量的公式有着广泛的应用。
比如在交通事故的分析中,通过车辆的质量、速度以及碰撞时间等信息,利用冲量动量的公式,就可以帮助交警判断事故的严重程度和责任归属。
还有在工业生产中,一些机械的碰撞、冲击过程,也需要运用到冲量动量的公式来进行设计和优化,以确保生产的安全和高效。
学习冲量动量的公式,不仅能让我们更好地理解这个世界的运行规律,还能帮助我们解决很多实际问题。
就像我们在生活中遇到的各种力和运动的情况,都可以从冲量动量的角度去思考和分析。
所以呀,小伙伴们,可别小瞧了这冲量动量的公式,它们可是物理学中的宝贝,能让我们更加聪明地看待周围的世界,探索更多的未知呢!。
高三物理一轮复习教学案动量冲量动量定理
一、知识梳理
1.动量P= ,它的方向与方向相同,选择不同的参照物,同一运动物体的动量可能。
系统的动量是指系统内各物体动量的和。
2.冲量I= ,冲量不仅由力决定还由力的作用决定,对于具有恒定方向的力来说,冲量的方向与力的方向,对于作用时间内方向变化的力来说冲量的方向与相应时间内动量的变化量的方向一致。
3.动量是状态量,冲量是量。
4.动量定理的内容:。
二、例题精讲
例1.如图所示,质量为2kg的物体沿倾角为30°高为5m的光滑斜面由静止从顶端下滑到底端的过程中求:(1)重力的冲量(2)支持力的冲量(3)合外力的冲量
例2.某消防队员从一平台上跳下,下落2m后双脚触地,接着他用双腿弯曲的方法缓冲,使自身重心又下降了0.5m。
在着地过程中,对他双脚的平均作用力估计为( )
A.自身所受重力的2倍
B.自身所受重力的5倍
C.自身所受重力的8倍
D.自身所受重力的10倍
例3.把重物G压在纸带上,用一水平力缓缓拉动纸带,重物跟着一起运动;若迅速拉动纸带,纸带将会从重物下面抽出,解释这些现象的正确说法:( )
A.在缓缓拉动纸带时,重物和纸带间的摩擦力大
B.在迅速拉动时,纸带给重物的摩擦力小
C.在缓缓拉动时,纸带给重物的冲量大
D.在迅速拉动时,纸带给重物的冲量小
三、随堂练习
1.质量为m的钢球自高处落下,以速率v1碰地,竖直向上弹回,碰撞时间极短,离地的速率为v2,在碰撞过程中,钢球受到的冲量的方向和大小为()
A.向下m(v1 - v2)B.向下m(v1 + v2)
C.向上m(v1 - v2)D.向上m(v1 +v2)
2.玻璃茶杯从同一高度掉下,落在水泥地上易碎,落在海绵垫上不易碎,这是因为茶杯与水泥地撞击过程中()
A.茶杯动量较大
B.茶杯动量变化较大
C.茶杯所受冲量较大
D.茶杯动量变化率较大
3.质量为1.0kg的小球从高20m处自由下落到软垫上反弹后上升的最大高度为5.0m,小球与软垫接触时间为 1.0s,不计空气阻力,设g=10m/s2,则在接触时间内小球受到合外力的冲量大小为( )
A.10N ·s B.20 N ·s C.30 N ·s D.40 N ·s
四、巩固提高
1.在下列用动量定理对几种物理现象的解释中,错误的是()
A.在码头上装橡皮轮胎,是为了减小渡船靠岸时受到的冲量
B.用力快拉可抽出压在重物下折纸带,是因为拉得越快重物受到的冲量就越小
C.车中的人推不动车子,是因为车所受外力冲量为零
D.从越高的地方跳下,落地时越危险,是因为落地时受冲量越大
2.试通过估算,说明鸟类对飞机飞行的威胁,设飞鸟的质量m=1kg,身长50cm,飞机的飞行速度为v=500m/s,鸟与飞机相撞时,冲击力约为()
A .104N
B .105N
C .106N
D .107N
3.某人身系弹性绳自高空p 点自由下落,图中的a 点是弹性绳的原长位置,c 是人所到达的最低点,b 是人静止地悬吊着时的平衡位置,不计空气阻力,则下列说法中正确的是( )
A .从p 至c 过程中重力的冲量大于弹性绳弹力的冲量
B .从p 至c 过程中重力所做的功等于人克服弹力所做的功
C .从p 至b 过程中人速度不断增大
D .从a 到c 过程中加速度方向保持不变
4.放在水平桌面上的物体质量为m ,用一个F 牛的水平推力推它t 秒钟,物体始终不动,那在t 秒内,推力对物体的冲量应为 ( )
A .0
B .F ·t
C .mg ·t
D .无法计算
5.如图所示,分别 用两个恒力F 1和F 2,先后两次将质量为m 物体从静止开始,沿着同一个粗糙的固定斜面由底端推到顶端,第一次力的方向沿斜面向上,第二次力的方向沿水平向右,两次所用时间相同。
在这两个过程中 ( )
A .F 1和F 2所做的功相同
B .物体机械能变化相同
C .F 1和F 2对物体的冲量大小相同
D .物体动量变化相同
6.如图所示,质量m=2kg 的物体放在长L=3.0m 、高h=0.8m 的水平台面的左端,物块与台面间的动摩擦力因数μ=0.15。
今给物块一个水平向右的恒力F 使物块从台面右端滑出后做平抛运动,已知该水平恒力F 对物块的冲量I=12.0N·s ,物块离开台面后只受重力作用,求:(1)物块作平抛运动的初速度随恒力的作用时间变化的规律;
(2)物块落地点到台面右端的水平距离的取值范围。
7.长为L 的轻绳一端第于固定点O ,另一端系质量为m 的小球,将小球从O 点正下方L/4处,以一定初速度水平向右抛出,经一定时间绳被拉直以后,小球将以O 为支点在竖直平面内摆动,已知绳子刚被拉直时,绳与竖直线成60°角,如图所示,求:
(1)小球水平抛出时的初速度v 0
(2)在绳被拉紧的瞬间,支点O 受到的冲量I (3)小球摆到最低点时,绳所受拉力T
a
· p a b c
·
·
·。