如何得到一条直线的黄金分割点
- 格式:ppt
- 大小:92.00 KB
- 文档页数:1
黄金分割线的画法黄金分割线的画法是一种美学原则,用来划定艺术品或设计的比例和平衡。
它源自于数学中的黄金比例,也称为黄金分割。
黄金分割线可以通过以下步骤进行画法:第一步:准备工作在开始画黄金分割线之前,我们需要准备一些工具。
首先,准备好一张纸和一支笔或铅笔。
纸的大小可以根据需要自由选择。
然后,找一根直尺或其他直线工具,确保其边缘是完全直的。
第二步:确定画布大小在画布上,我们需要确定黄金分割线将被应用的区域。
你可以选择整个画布,也可以只选择其中的一部分。
根据自己的需求和创意,确定一个合适的范围。
第三步:确定黄金分割线的位置在画布上,我们需要确定黄金分割线的位置。
黄金分割线将画布分为两个不同的部分,比例大约为1:0.618,也可以记作a:b=a:(a+b)。
画布上的黄金分割线可以是垂直的、水平的或对角线的。
你可以根据自己的需求和创意来选择合适的位置。
第四步:画出黄金分割线使用直尺或其他直线工具,在画布上画出黄金分割线。
要画出水平的黄金分割线,将直尺的一端放在画布的底部,然后在比例为1:0.618的位置处画一条直线。
要画出垂直的黄金分割线,将直尺的一端放在画布的边缘,然后在比例为1:0.618的位置处画一条直线。
要画出对角线的黄金分割线,可以利用两条垂直的黄金分割线,交叉在画布的中心点。
第五步:应用黄金分割线完成黄金分割线的画法后,我们可以将它应用于艺术作品或设计中。
将元素放置在黄金分割线上,可以帮助实现更好的比例和平衡。
黄金分割线也可以用作指导线,帮助我们在画画或设计时更好地布局。
总结:黄金分割线的画法可以通过准备纸和笔,确定画布大小,确定黄金分割线的位置,使用直尺画出黄金分割线,最后将它应用于艺术作品或设计中。
黄金分割线是一种美学原则,用来划定艺术品或设计的比例和平衡。
它可以帮助我们实现更好的布局和视觉效果。
黄金分割黄金分割概念把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。
其比值是(√5-1)/2,取其前三位数字的近似值是0.618。
由于按此比例设计的造型十分美丽柔和,因此称为黄金分割,也称为中外比。
这是一个十分有趣的数字,我们以0.618来近似,通过简单的计算就可以发现:1÷0.618≈1.618 (1-0.618)÷0.618≈0.618这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。
黄金分割发现关于黄金分割比例的起源大多认为来自毕达哥拉斯,据说在古希腊,有一天毕达哥拉斯走在街上,在经过铁匠铺前他听到铁匠打铁的声音非常好听,于是驻足倾听。
他发现铁匠打铁节奏很有规律,这个声音的比例被毕达哥拉斯用数理的方式表达出来。
被应用在很多领域,后来很多人专门研究过,开普勒称其为“神圣分割”也有人称其为“金法”。
在金字塔建成1000年后才出现毕达哥拉斯定律,可见这很早就存在。
只是不知这个谜底。
编辑本段算路率简介理笔录百算分制胜法规律计策,观测远古的几轮计算,黄金轮算法不一样数字,论发展发现史,由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。
公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。
公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。
中世纪后,黄金分割被披上神秘的外衣,意大利数家帕乔利称中末比为神圣比例,并专门为此著书立说。
德国天文学家开普勒称黄金分割为神圣分割。
到19世纪黄金分割这一名称才逐渐通行。
黄金分割数有许多有趣的性质,人类对它的实际应用也很广泛。
最著名的例子是优选学中的黄金分割法或0.618法,是由美国数学家基弗于1953年首先提出的,70年代在中国推广。
黄金分割法原著 GYS 12-22-2016黄金分割法是个十分有趣的数学问题,也是人们每天要用到和看到的问题。
当前摄影师们也对它很感兴趣。
今天和大家聊一聊它的来历,概念和它的用途。
黄金分割线是一种古老的数学方法。
黄金分割的创始人是古希腊的毕达哥拉斯。
黄金比例分割是指把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。
取其前三位数字的近似值是0.618。
“黄金分割”公式可以从一个正方形来推导,将正方形底边分成二等分,取中点X,以X为圆心,线段XY为半径作圆,其与底边直线的交点为Z点,这样将正方形延伸为一个比率为5︰8的矩形,(Y’点即为“黄金分割点”), A︰C = B︰A = 5︰8。
幸运的是,35MM 胶片幅面的比率正好非常接近这种5︰8的比率(24︰36 = 5︰7.5)图的右侧又形成一个新的小黄金矩形由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为“中外比"。
这是一个十分有趣的数字,以0.618来近似,通过简单的计算就可以发现: 黄金分割奇妙之处,在于其比例与其倒数是一样的。
例如: 1.618的倒数是0.618。
黄金分割〔Golden Section〕是一种数学上的比例关系。
黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值。
应用时一般取0.618 ,就像圆周率在应用时取3.14一样。
这个数值的作用不但在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计,科学甚至军事等方面也有着不可忽视作用。
这些方面的实例多不胜数,为了认识它只举几个有趣的例子吧:舞台上的报幕员或朗诵家并不是站在舞台的正中央,而是偏在台上一侧,以站在舞台长度的黄金分割点的位置最美观,声音传播的最好。
有趣的是,这个数字在自然界和人们生活中到处可见: 人们的肚脐是人体总长的黄金分割点,人的膝盖是肚脐到脚跟的黄金分割点。
大多数门窗的宽长之比也是0.618…;有些植茎上,两张相邻叶柄的夹角是137度28',这恰好是把圆周分成1:0.618……的两条半径的夹角。
初二数学知识点归纳:黄金分割数1初二数学知识点归纳:黄金分割数1黄金分割数:把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。
其比值是一个无理数,取其前三位数字的近似值是0618。
由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。
黄金分割:黄金分割又称黄金律,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值约为1∶0618或1618∶1,即长段为全段的0618。
0618被公认为最具有审美意义的比例数字。
上述比例是最能引起人的美感的比例,因此被称为黄金分割。
黄金分割线:黄金分割线是一种古老的数学方法。
黄金分割的创始人是古希腊的毕达哥拉斯,他在当时十分有限的科学条下大胆断言:一条线段的某一部分与另一部分之比,如果正好等于另一部分同整个线段的比即0618,那么,这样比例会给人一种美感。
后,这一神奇的比例关系被古希腊著名哲学家、美学家柏拉图誉为“黄金分割律”。
黄金分割线的神奇和魔力,在数学界上还没有明确定论,但它屡屡在实际中发挥着意想不到的作用。
黄金分割线的最基本公式,是将1分割为0.618和0.382,它们有如下一些特点:(1)数列中任一数字都是由前两个数字之和构成。
(2)前一数字与后一数字之比例,趋近于一固定常数,即0.618。
(3)后一数字与前一数字之比例,趋近于1.618。
(4)1.618与0.618互为倒数,其乘积则约等于1。
()任一数字如与前面第二个数字相比,其值趋近于2.618;如与后面第二个数字相比,其值则趋近于0.382。
理顺下,上列奇异数字组合除能反映黄金分割的两个基本比值0.618和0.382以外,尚存在下列两组神秘比值。
即:(1)0.191、0.382、0.、0.618、0.809 (2)1、1.382、1.、1.618、2、2.382、2.618黄金分割点:把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。
初二数学知识点归纳:黄金分割数1初二数学知识点归纳:黄金分割数1黄金分割数:把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。
其比值是一个无理数,取其前三位数字的近似值是0.618。
由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。
黄金分割: 黄金分割又称黄金律,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值约为1∶0.618或1.618∶1,即长段为全段的0.618。
0.618被公认为最具有审美意义的比例数字。
上述比例是最能引起人的美感的比例,因此被称为黄金分割。
黄金分割线: 黄金分割线是一种古老的数学方法。
黄金分割的创始人是古希腊的毕达哥拉斯,他在当时十分有限的科学条件下大胆断言:一条线段的某一部分与另一部分之比,如果正好等于另一部分同整个线段的比即0.618,那么,这样比例会给人一种美感。
后来,这一神奇的比例关系被古希腊著名哲学家、美学家柏拉图誉为“黄金分割律”。
黄金分割线的神奇和魔力,在数学界上还没有明确定论,但它屡屡在实际中发挥着意想不到的作用。
黄金分割线的最基本公式,是将1分割为0.618和0.382,它们有如下一些特点:(1)数列中任一数字都是由前两个数字之和构成。
(2)前一数字与后一数字之比例,趋近于一固定常数,即0.618。
(3)后一数字与前一数字之比例,趋近于1.618。
(4)1.618与0.618互为倒数,其乘积则约等于1。
(5)任一数字如与前面第二个数字相比,其值趋近于2.618;如与后面第二个数字相比,其值则趋近于0.382。
理顺下来,上列奇异数字组合除能反映黄金分割的两个基本比值0.618和0.382以外,尚存在下列两组神秘比值。
即:(1)0.191、0.382、0.5、0.618、0.809 (2)1、1.382、1.5、1.618、2、2.382、2.618 黄金分割点: 把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。
黄金分割(黄金比例)黄金分割是指将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,其比值约为0.618。
这个比例被公认为是最能引起美感的比例,因此被称为黄金分割。
据说在古希腊,有一天毕达哥拉斯走在街上,在经过铁匠铺前他听到铁匠打铁的声音非常好听,于是驻足倾听。
他发现铁匠打铁节奏很有规律,这个声音的比例被毕达哥拉斯用数学的方式表达出来。
[2]外文名golden section提出者毕达哥拉斯提出时间公元前5世纪应用学科数学建筑绘图记载著作《几何原本》数学定义把一条线段分割为两部分,使较大部分与全长的比值等于较小部分与较大的比值,则这个比值即为黄金分割。
其比值是(√5-1):2,近似值为0.618,通常用希腊字母Ф表示这个值。
[1]附:黄金分割数前面的32位为:0.6180339887 4989484820 458683436565特殊的数列设一个数列,它的最前面两个数是1、1,后面的每个数都是它前面的两个数之和。
例如:1,1,2,3,5,8,13,21,34,55,89,144·····这个数列为“斐波那契数列”,这些数被称为“斐波那契数”。
经计算发现相邻两个斐波那契数的比值是随序号的增加而逐渐逼近黄金分割比。
由于斐波那契数都是整数,两个整数相除之商是有理数,而黄金分割是无理数,所以只是不断逼近黄金分割。
[5]黄金三角形所谓黄金三角形是一个等腰三角形,其底与腰的长度比为黄金比值,正是因为其腰与边的比为(√5-1)/2而被称为黄金三角形。
黄金分割三角形是唯一一种可以用5个而不是4个与其本身全等的三角形来生成与其本身相似的三角形的三角形。
由五角形的顶角是36度可得出黄金分割的数值为2sin18度(即2*sin(π/10))。
将一个正五边形的所有对角线连接起来,在五角星中可以找到的所有线段之间的长度关系都是符合黄金分割比的,所产生的五角星里面的所有三角形都是黄金分割三角形。
黄金分割线的画法详解黄金分割线的画法详解黄金分割线其实关于黄金分割,中国也有记载。
虽然没有古希腊早,但它是中国古代数学家独立创造的,后来传入了印度。
经考证,欧洲的黄金分割比例算法是源于中国而经过印度由阿拉伯传入欧洲的,而不是直接从古希腊传入的。
黄金分割线是利用黄金分割比率所作的切线,在行情发生转势后,无论是止跌转升还是止升转跌,以近期走势中重要的高点和低点之间的涨跌额作为计量基数,将原涨跌幅度按0.236、0.382、0.5、0.618、0.809的比例分割为5个黄金点,股价在反转后的走势将可能在这些黄金分割点上遇到暂时的阻力或支撑。
斐波那契数列与黄金分割的关系:相邻两个斐波那契数的比值随序号的增加而逐渐趋于黄金分割比,即f(n)/f(n-1)→0.618……由于斐波那契数都是整数,两个整数相除之间是有理数,所以所得结果只是逐渐逼近黄金分割比这个无理数。
股市中我们运用黄金分割比来判断其纵坐标,以确定更为精准的支撑线、压力线位置,从而在已经掌握横坐标时间轴的前提下,选对正确的介入点和出场点,实现时间和空间的完美结合。
在学习黄金分割线的画法之前,有两点是必须掌握的:一,记住若干个黄金比例数字,如0.191、0.382、0.5、0.618、0.809、1.191、1.382、1.618、1.809、2、2.618等,其中0.382、0.618、1.382、1.618最为重要,股价极容易在由这四个数产生的黄金分割线处产生支撑或压力。
二,找到一个点。
这个点是上升行情结束并调头向下的最高点,或者是下降行情结束并调头向上的最低点。
当然,这里所指的高点和低点都是在一定的范围内,是局部的。
只要我们能够确认一个趋势(无论是上升还是下跌)已经结束或暂时结束,则这个趋势的转折点就可以作为黄金分割的起点,该点一经选定,就可以画黄金分割线了。
黄金分割线的画法有两种:上涨黄金分割线画法:如果股价正处于见底回升的阶段,以此低点为基点,用鼠标左键点击此低点,并按住鼠标左键不放,拖动鼠标使边线对齐相应的高点,即回溯这一下跌波段的峰顶,松开鼠标左键系统即生成向上反弹上档压力位的黄金分割线。
黄金分割黄金分割线是一种古老的数学方法。
黄金分割的创始人是古希腊的毕达哥拉斯,他在当时十分有限的科学条件下大胆断言:一条线段的某一部分与另一部分之比,如果正好等于另一部分同整个线段的比即0.618,那么,这样比例会给人一种美感。
后来,这一神奇的比例关系被古希腊著名哲学家、美学家柏拉图誉为“黄金分割律”。
黄金分割线的神奇和魔力,在数学界上还没有明确定论,但它屡屡在实际中发挥着意想不到的作用。
目录编辑本段简介把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。
其比值是[5^(黄金分割线1/2)-1]/2,取其前三位数字的近似值是0.618。
由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。
这是一个十分有趣的数字,我们以0.618来近似,通过简单的计算就可以发现: 1/0.618=1.618(1-0.618)/0.618=0.618 这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。
黄金分割是指一条直线(或矩形)被分割成两个不同的部分,分割点(或线)将较大的部分与较小的部分分割成一定的比例(如图1 )。
具体的比例公式是:AC/BC=AB/AC(AC为长边,BC为短边),其比值约为1.618∶1或1∶0.618。
AC/BC=1.618 例如矩形ABCD AB = 2;AD=1;BD=√5;(AD+DB)/AB=(1+√5)/2=1.618[1]编辑本段由来数学家法布兰斯在13世纪写了一本书,关于一些奇异数字的组合。
这些奇异数字的组合是1、1、2、3、5、8、13、21、34、55、89、144、233┅┅ 任何一个数字都是前面两数字的总和 2=1+1、3=2+1、5=3+2、8=5+3┅┅,如此类推。
有人说这些数字是他从研究金字塔所得出。
金字塔和上列奇异数字息息相关。
金字塔的几何形状有五个面,八个边,总数为十三个层面。
黄金分割的正确计算方法黄金分割是一个古老的数学方法。
对它的各种神奇的作用和魔力,数学上至今还没有明确的解释,只是发现它屡屡在实际中发挥我们意想不到的作用。
数学家法布兰斯在13世纪写了一本书,关于一些奇异数字的组合。
这些奇异数字的组合是1、1、2、3、5、8、13、21、34、55、89、144、 233┅┅任何一个数字都是前面两数字的总和 2=1+1、3=2+1、5=3+2、8=5+3┅┅,如此类推。
有人说这些数字是他从研究金字塔所得出。
金字塔和上列奇异数字息息相关。
金字塔的几何形状有五个面,八个边,总数为十三个层面。
由任何一边看入去,都可以看到三个层面。
金字塔的长度为5813寸(5-8-13),而高底和底面百分比率是0. 618,那即是上述神秘数字的任何两个连续的比率,譬如55/89=0.618,89/144=0.618,144/233=0.618。
另外,一个金字塔五角塔的任何一边长度都等于这个五角型对角线(Diagonal)的0.618。
还有,底部四个边的总数是36524.22寸,这个数字等于光年的一百倍!这组数字十分有趣。
0.618的倒数是1.618。
譬如14/89=1.168、233/144=1.168,而0.618×1.168=就等于1。
另外有人研究过向日葵,发现向日葵花有89个花辫,55个朝一方,34个朝向另一方。
神秘?不错,这组数字就叫做神秘数字。
而0.618,1.618就叫做黄金分割率(Golden Section)。
在这里,我们将说明如何得到黄金分割线,并根据它们指导下一步的买卖股票的操作。
黄金分割线分为两种:单点的黄金分割线和两点黄金分割线. 以下就是方法:画单点有两个因素(一是黄金数字,二是最高或最低点)画黄金分割线的第一步是记住若干个特殊的数字: 0.191 0.382 0.618 0.809 最为重要,股价极容易在由这4个数产生的黄金分割线处产生支撑和压力。
第二步是找到一个点。
八年级数学知识点:黄金分割数黄金分割数:把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。
其比值是一个无理数,取其前三位数字的近似值是0.618。
由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。
黄金分割:黄金分割又称黄金律,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值约为1∶0.618或1.618∶1,即长段为全段的0.618。
0.618被公认为最具有审美意义的比例数字。
上述比例是最能引起人的美感的比例,因此被称为黄金分割。
黄金分割线:黄金分割线是一种古老的数学方法。
黄金分割的创始人是古希腊的毕达哥拉斯,他在当时十分有限的科学条件下大胆断言:一条线段的某一部分与另一部分之比,如果正好等于另一部分同整个线段的比即0.618,那么,这样比例会给人一种美感。
后来,这一神奇的比例关系被古希腊著名哲学家、美学家柏拉图誉为“黄金分割律”。
黄金分割线的神奇和魔力,在数学界上还没有明确定论,但它屡屡在实际中发挥着意想不到的作用。
黄金分割线的最基本公式,是将1分割为0.618和0.382,它们有如下一些特点:(1)数列中任一数字都是由前两个数字之和构成。
(2)前一数字与后一数字之比例,趋近于一固定常数,即0.618。
(3)后一数字与前一数字之比例,趋近于1.618。
(4)1.618与0.618互为倒数,其乘积则约等于1。
(5)任一数字如与前面第二个数字相比,其值趋近于2.618;如与后面第二个数字相比,其值则趋近于0.382。
理顺下来,上列奇异数字组合除能反映黄金分割的两个基本比值0.618和0.382以外,尚存在下列两组神秘比值。
即: (1)0.191、0.382、0.5、0.618、0.809 (2)1、1.382、1.5、1.618、2、2.382、2.618黄金分割点:把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。
黄金分割是一个古老的数学方法。
对它的各种神奇的作用和魔力,数学上至今还没有明确的解释,只是发现它屡屡在实际中发挥我们意想不到的作用。
数学家法布兰斯在13世纪写了一本书,关于一些奇异数字的组合。
这些奇异数字的组合是1、1、2、3、5、8、13、21、34、55、89、144、233┅┅ 任何一个数字都是前面两数字的总和 2=1+1、3=2+1、5=3+2、8=5+3┅┅,如此类推。
有人说这些数字是他从研究金字塔所得出。
金字塔和上列奇异数字息息相关。
金字塔的几何形状有五个面,八个边,总数为十三个层面。
由任何一边看入去,都可以看到三个层面。
金字塔的长度为5813寸(5-8-13),而高底和底面百分比率是0. 618,那即是上述神秘数字的任何两个连续的比率,譬如55/89=0.618,89/144=0.618,144/233=0.618。
另外,一个金字塔五角塔的任何一边长度都等于这个五角型对角线(Diagonal)的0.618。
还有,底部四个边的总数是36524.22寸,这个数字等于光年的一百倍!这组数字十分有趣。
0.618的倒数是1.618。
譬如14/89=1.168、233/144=1.168,而0.618×1.168=就等于1。
另外有人研究过向日葵,发现向日葵花有89个花辫,55个朝一方,34个朝向另一方。
神秘?不错,这组数字就叫做神秘数字。
而0.618,1.618就叫做黄金分割率(Golden Section)。
在这里,我们将说明如何得到黄金分割线,并根据它们指导下一步的买卖股票的操作。
黄金分割线分为两种:单点的黄金分割线和两点黄金分割线.以下就是方法:画单点有两个因素(一是黄金数字,二是最高或最低点)画黄金分割线的第一步是记住若干个特殊的数字:0.191 0.382 0.618 0.809最为重要,股价极容易在由这4个数产生的黄金分割线处产生支撑和压力。
第二步是找到一个点。
这个点是上升行情结束,调头向下的最高点,或者是下降行情结束,调头向上的最低点。
黄金分割(一)、主要知识点: 1.黄金分割的定义在线段AB 上,点C 把线段AB 分成两条线段AC 和BC ,如果ACBCAB AC =,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比.其中215-=AB AC ≈0.618. ABC推导黄金比过程。
设AB=1,AC=x ,则BC=1-x ,所以xxx -=11,即x x -=12,用配方法解得x=215-≈0.618 . 注意:(1)一条线段有2个黄金分割点。
(2)较长线段较短线段原线段较长线段黄金比==(3)宽与长的比等于黄金比的矩形称为黄金矩形 (4)黄金分割点把线段分成一长一短,则较长线段较短线段原线段较长线段=,即:点C 是线段AB 的黄金分割点:①若AC>BC,则ACBCAB AC = ;②若AC<BC,则BCACAB BC = . 2.如何作一条线段的黄金分割点. 如图,已知线段AB ,按照如下方法作图:(1)经过点B 作BD ⊥AB ,使BD=21AB. (2)连接AD ,在DA 上截取DE=DB.(3)在AB 上截取AC=AE.则点C 为线段AB 的黄金分割点.作图原理:可设AB=1,,则BD=21,则由勾股定理可知25=AD .可进一步求出AE, AC.从而解决问题。
3.比例的基本性质:如果a b cd =,那么ad=bc ,逆命题也成立。
4.合比性质:如果a b c d =,那么a b b c d d +=+;如果a b c d =,那么a b b c dd -=-。
5.等比性质:如果a b c d ==……=mn(b +d +……+n ≠0);那么,a c m b d n ab ++++++=(二)、典型习题: 一、选择题1.等边三角形的一边与这边上的高的比是_________. A .3∶2 B .3∶1 C .2∶3 D .1∶32.下列各组中的四条线段成比例的是_________. A .a =2,b =3,c =2,d =3 B .a =4,b =6,c =5,d =10 C .a =2,b =5,c =23,d =15 D .a =2,b =3,c =4,d =13.已知线段a 、b 、c 、d 满足ab =cd ,把它改写成比例式,错误的是_________. A .a ∶d =c ∶b B .a ∶b =c ∶dC .d ∶a =b ∶cD .a ∶c =d ∶b4.若ac =bd ,则下列各式一定成立的是_________.A .d c b a =B .c c b d d a +=+C .c d b a =22D .dacd ab =5.已知点M 将线段AB 黄金分割(AM >BM ),则下列各式中不正确的是_________.A .AM ∶BM =AB ∶AM B .AM =215-AB C .BM =215-AB D .AM ≈0.618AB 二、填空题6.在1∶500000的地图上,A 、B 两地的距离是64 cm ,则这两地间的实际距离是________.7.正方形ABCD 的一边与其对角线的比等于________. 8.若2x -5y =0,则y ∶x =________,xyx +=________. 9.若53=-b b a ,则b a=________. 10.若AE ACAD AB =,且AB =12,AC =3,AD =5,则AE =________. 三、解答题 11.已知342=+x y x ,求y x .12.在同一时刻物高与影长成比例,如果一古塔在地面上的影长为50 m ,同时高为1.5 m 的测杆的影长为2.5 m ,那么古塔的高是多少?13.在△ABC 中,D 是BC 上一点,若AB =15 cm ,AC =10 cm ,且BD ∶DC =AB ∶AC ,BD -DC =2 cm ,求B C .14.如果一个矩形ABCD (AB <BC )中,215-=BC AB ≈0.618,那么这个矩形称为黄金矩形,黄金矩形给人以美感.在黄金矩形ABCD 内作正方形CDEF ,得到一个小矩形ABFE (如图1),请问矩形ABFE 是否是黄金矩形?请说明你的结论的正确性.分式(一)、主要知识点: 1.分式的定义分母中含有字母的式子叫做分式,成立的条件:分母不为0 。
黄金分割线的画法和使用方法黄金分割线的画法和使用方法如下:画法如下:1、首先是找到分析软件的画线功能将其点击;2、在画线工具栏中点击黄金分割选项;3、如果股价正处见底回升的阶段,以此低点为基点,用鼠标左键点击此低点,并按住鼠标左键不放,拖动鼠标使边线对齐相应的高点,即回溯这一下跌波段的峰顶,松开鼠标左键系统即生成向上反弹上档压力位的黄金分割线。
例如:以2004年9月13日1259低点为基点,2004年4月1783高点为峰顶所作的黄金分割线,1259点展开的反攻恰好在黄金分割线遇阻回落。
如果股价正处于见顶回落的阶段,以此高点为基点,用鼠标左键点击此高点,并按住鼠标左键不放,拖动鼠标使边线对齐相应的低点,即回溯这一上涨波段的谷底,松开鼠标左键系统即生成黄金分割线。
例如:以2003年3月1529高点为基点,2003年1月1311低点为谷底所作的黄金分割线,其中1311- 1529的0.382回调位为1445点,而大盘正好在1447点企稳并展开新一轮上攻。
使用方法:用一个基点的上升或下降行情的使用方法在上升行情时,我们关心上涨到什么位置将遇到压力。
黄金分割线提供的位置是基点价位乘上特殊数字。
假设,基点价格为10元,则:10.00=10×1.000 13.82=10×1.382 15=10×1.500 16.18=10×1.618 20.00=10×2.000 26.18=10×2.618这几个价位可能成为未来的压力位。
其中16.18、26.18成为压力线的可能性最大。
超过20的那几条很少用到。
如果处在活跃程度很高、股价上下波动较为剧烈的市场,这个方法容易出现错误。
同理,在下降行情时,我们极为关心下落将在什么位置获得支撑。
黄金分割提供的是如下几个价位,它们是由这次上涨的最高价位分别乘上上面所列特殊数字中的几个,假设,基点是10元,则:8.09=10×0.809 6.18=10×0.618 5=10×0.5 3.82=10×0.382 1.91=10×0.191。
黄金分割线的作图比较简单,画法如下:1、首先是找到分析软件的画线功能将其点击;2、在画线工具拦中点击黄金分割选项;3、如果股价正处见底回升的阶段,以此低点为基点,用鼠标左键点击此低点,并按住鼠标左键不放,拖动鼠标使边线对齐相应的高点,即回溯这一下跌波段的峰顶,松开鼠标左键系统即生成向上反弹上档压力位的黄金分割线。
例如:以2004年9月13日1259低点为基点,2004年4月1783高点为峰顶所作的黄金分割线,12 59点展开的反攻恰好在黄金分割线遇阻回落。
如果股价正处于见顶回落的阶段,以此高点为基点,用鼠标左键点击此高点,并按住鼠标左键不放,拖动鼠标使边线对齐相应的低点,即回溯这一上涨波段的谷底,松开鼠标左键系统即生成黄金分割线。
例如:以2003年3月1529高点为基点,2 003年1月1311低点为谷底所作的黄金分割线,其中1311- 1529的0.382回调位为1445点,而大盘正好在1447点企稳并展开新一轮上攻。
实际操作中还需注意:1、黄金分割线中最重要的两条线为0.382、0.618,在反弹中0.382为弱势反弹位、0.618为强势反弹位,在回调中0.382为强势回调位、0.618为弱势回调位。
* 黄金分割论**黄金分割数据经常被分析师做为分析和预测的工具,却很少被一般的投资者用来做操盘指导。
因为它好象让人感觉很虚,并且总是事后诸葛亮。
其实,只要充分理解了黄金分割理论的含义,探索出一套巧妙的运用方法,你总可以先人一步走在前面。
黄金分割运用的要点:一、分割计算以一波行情的底到顶做为区间。
不同区间反映的结果表达不同级别的行情。
二、一波上升行情,如果回调到强势区间调整并站稳,就会继续上升,目标是再出新高,但高点将受趋势线压制。
强势区的站稳是指走出一个整理形态,在这个整理形态完成时不破位为稳。
、一波上升行情,如果下跌到强势区间以下整理,则继续下跌的成数较大,因为,在强势区位下方整理时60单位线已经转向并压制着价格了。
黄金分割点的推导公式
黄金分割点是一个数学概念,它表示一个线段被分割成两个部分,使得较长部分与整体的比值等于较短部分与较长部分的比值。
这个比值通常约等于。
黄金分割点的推导公式可以通过以下步骤得到:
1. 设线段的总长度为L,分割点为P,则较短的部分长度为a = L - P,较长部分为b = P。
2. 根据黄金分割的定义,我们有:
b/L = a/b
即 P/L = (L - P)/P
3. 将上述公式进行交叉相乘,得到:
P^2 = L (L - P)
4. 展开并整理上述公式,得到:
P^2 = L^2 - LP
LP = L^2 - P^2
5. 为了得到P的表达式,我们可以将上述公式进行整理和求解,得到:
P = (√5 - 1)L / 2
这就是黄金分割点的推导公式。
利用黄金分割线进行操作如何取点?提到黄金分割,大家首先想到的是0.618。
想到的是蒙娜丽莎。
实际上黄金分割也是大家比较常用的一种技术分析的方法。
这种技术分析主要用来进行空间范围的分析。
基本的理论来自于斐波那契数列。
这是数学上存在的一种排列关系。
而同时应用到美学和建筑学生就是我们通常会看到的0.618这样一个黄金比例数字。
当然,把黄金分割能够发扬光大的,主要是江恩理论的引进。
将把很多的数学,天文学上的东西,包括神学上的东西。
应用到了技术分析当中。
其中就包括黄金分割的应用。
当然在他看来,黄金分割有很多的比例数字。
我们这里只说1.1种方法。
想用好黄金分割。
在股价的分析上,主要选择比较规律的一些购物。
而通常不太规律的一些控盘股票。
可能很难走出黄金分割的比例数字。
因为它的随机性比较大。
那我们就用上证指数来作为一个分析。
上面是上证指数的季线。
在蓟县当中是以起始位置,95.79点作为最低点,以之前的历史最高点6124点作为终点。
在长周期的范围之内,对上证指数进行黄金分割比例的分析。
这张图呢其实是在两年之前就已经画出来的,那么事后走出来的结果其实也非常的清楚,比如在2018年的时候。
一月份的反弹高点就在之前的黄金分割位置,138.2%位置附近,3595点。
事实上,最终反弹的高点也是在那个位置。
纵观之前的相对高点,5178点位置是在之前的反弹比例的200%的位置。
如何去画出这个黄金分割位置呢?注意三个要素。
周期,波动和极点。
所谓周期,首先要明确你所分析的饭时间范围是怎样的一个范围,是通过周线的分析,通过月线分析,还是通过分时线的分析,在不同的周期分析级别当中,所得到的结论是不一样的。
波动,波动说的是可以借用。
艾略特波浪理论当中的上升浪,下跌浪,延伸浪。
这些概念来去区分是上涨阶段的调整还是下跌阶段的反弹,从而对于行情的性质有一个更加明确的定义。
极点,也就是你所要取的最高点和最低点。
在软件工具当中有两个比例,一个是238.2%另外一个是261.8%。