【北师大版】2016年七年级上:第3章整式及其加减单元测试卷(含答案)
- 格式:doc
- 大小:112.50 KB
- 文档页数:4
北师大版七年级数学上册第3章《整式及其加减》单元练习题(含答案)一、单选题1.关于多项式2231x y xy -+-,下列说法正确的是( ).A .次数是3B .常数项是1C .次数是5D .三次项是22x y2.代数式1x , 2x +y , 13a 2b , x y π-, 54y x , 0.5 中整式的个数( ) A .3个 B .4个 C .5个 D .6个3.小李今年a 岁,小王今年(a -15)岁,过n +1年后,他们相差( )岁A .15B .n +1C .n +16D .164.已知单项式13m a b +与13n b a --可以合并同类项,则m ,n 分别为( )A .2,2B .3,2C .2,0D .3,05.若7,24m n n p +=-=,则3m n p +-=( )A .11-B .3-C .3D .116.设a 是绝对值最小的有理数,b 是最大的负整数,c 是倒数等于自身的有理数,则a b c -+的值为 ( )A .2B .0C .0或2D .0或-27.如果0xy ≠,22103xy axy +=,那么a 的值为( ) A .-3 B .13- C .0 D .38.黑板上有一道题,是一个多项式减去2351x x -+,某同学由于大意,将减号抄成加号,得出结果是2537x x +-,这道题的正确结果是( ).A .2826x x --B .214125x x --C .2288x x +-D .2139x x -+-9.代数式3x 2y-4x 3y 2-5xy 3-1按x 的升幂排列,正确的是( )A .-4x 3y 2+3x 2y-5xy 3-1B .-5xy 3+3x 2y-4x 3y 2-1C .-1+3x 2y-4x 3y 2-5xy 3D .-1-5xy 3+3x 2y-4x 3y 210.两个形状大小完全相同的长方形中放入4个相同的小长方形后,得到图①和图②的阴影部分,如果大长方形的长为m ,则图②与图①的阴影部分周长之差是( )A .2m -B .2mC .3mD .3m -二、填空题11.多项式2333325467a c bc ab a -+--最高次项为__________,常数项为__________. 12.计算42a a a +-的结果等于_____.13.已知2310x x -+=,则2395x x -+=_________.14.张老师带了100元钱去给学生买笔记本和笔,已知一本笔记本3元,一支笔2元,张老师买了a 本笔记本,b 支笔,她还剩___________________元钱(用含a ,b 的代数式表示). 15.若|1||2|0a b -+-=,则3333232a b a b ++-的值为________.16.若实数a ,b 满足2=a ,41b a -=-||,则a b +=________.三、解答题17.计算(1)()()33223410310a b b a b b -+-+; (2)22135322x x x x ⎡⎤⎛⎫---+ ⎪⎢⎥⎝⎭⎣⎦.18.化简:(1)()()193213x x --+ (2)()()222233a b ab ab a b --+19.定义:若a b 2+=,则称a 与b 是关于1 的平衡数.()1 5与_________是关于1的平衡数;()273x -与________是关于1的平衡数;(用含x 的代数式表示)()3若()22a 2x 3x x =-+,()2b 43x 6x x =-++,判断a 与b 是否是关于1的平衡数,并说明理由.20.计算下列各式,将结果写在横线上:1×1=________;11×11=________;111×111=________;1111×1111=_________.(1)你发现了什么?(2)你能直接写出111111111×111111111=的结果吗?21.某教辅书中一道整式运算的参考答案污损看不清了,形式如下:解:原式=█()2232y x +- 118x y =-+.(1)求污损部分的整式;(2)当x =2,y =﹣3时,求污损部分整式的值.22.观察下列各式的计算结果:2113131124422-=-==⨯; 2118241139933-=-==⨯; 2111535114161644-=-==⨯; 2112446115252555-=-==⨯… (1)用你发现的规律填写下列式子的结果:1﹣216= × ;1﹣2110= × . (2)用你发现的规律计算:(1﹣212)×(1﹣213)×(1﹣214)×…×(1﹣212020)×(1﹣212021)×21(1)2022-.23.已知:23231A x xy y =++-,2B x xy =-.(1)计算:A -3B ;(2)若()2120x y ++-=,求A -3B 的值;(3)若A -3B 的值与y 的取值无关,求x 的值.24.如图是一个长为a ,宽为b 的矩形,两个阴影图形都是一对底边长为1,且底边在矩形对边上的平行四边形.(1)用含字母a ,b 的代数式表示矩形中空白部分的面积;(2)当a=3,b=2时,求矩形中空白部分的面积.25.观察算式:213142⨯+==;224193⨯+==;2351164⨯+==;2461255⨯+==,…(1)请根据你发现的规律填空:681⨯+=()2;(2)用含n的等式表示上面的规律:;(n为正整数)(3)利用找到的规律解决下面的问题:计算:11111111132********⎛⎫⎛⎫⎛⎫⎛⎫+⨯+⨯+⨯⨯+⎪ ⎪ ⎪ ⎪⨯⨯⨯⨯⎝⎭⎝⎭⎝⎭⎝⎭.26.如图,甲、乙两人(看成点)分别在数轴上表示-3和5的位置,沿数轴做移动游戏,每次移动游戏规则:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动.①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位;②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位;③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)若经过第一次移动游戏,甲的位置停在了数轴的正半轴上,则甲、乙猜测的结果是______(填“谁对谁错”)(2)从如图的位置开始,若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错,设乙猜对n次,且他最终停留的位置对应的数为m.①试用含n的代数式表示m;②该位置距离原点O最近时n的值为(3)从如图的位置开始,若进行了k次移动游戏后,甲与乙的位置相距2个单位,则k的值是参考答案1.A2.B3.A4.A5.D6.C7.B8.D9.D10.B11.35ab4-12.5a13.214.(100-3a-2b)15.-316.−1或517.(1)32243a b a b-;(2)293 2x x--18.(1)3x-;(2)22ab-19.(1)-3;(2)3x5-;(3)20.(1)n位(各位数字都是1)的数自乘,得到(2n-1)位的数,最中间位的数字为n,它的两边位上的数字依次减1,第一位和最后一位是1(2)1234567898765432121.(1)2687.y y x -+-(2)92.-22.(1)56,76,910,1110; (2)2023404423.(1)5xy +3y -1(2)-5 (3)35x =- 24.(1)S =ab ﹣a ﹣b +1;(2)矩形中空白部分的面积为2; 25.(1)7;(2)n •(n +2)+1=(n +1)2;(3)9950. 26.(1)甲对乙错(2)①-6n +25 ;②4(3)3或5。
第三章整式及其加减数学七年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、下列计算中正确的是()A.a 2+a 3=2a 5B.a 4÷a=a 4C.a 2·a 4=a 8D.(-a 2) 3=-a 62、仔细观察,探索规律:则的个位数字是( )A.1B.3C.5D.73、若x<0,y>0,且│x│>│y│,那么x+y是()A.正数B.负数C.0D.正、负不能确定4、下列变形中,错误的是()A. B.a-b-(c-d)=a-b-c-d C.a+b-(-c-d)=a+b+c+d D.5、多项式2﹣3xy+4xy2的次数及最高次项的系数分别是()A.2,﹣3B.﹣3,4C.3,4D.3,﹣36、如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2,4,6,8 …,顶点依次为A1, A2, A3, A4, A5,…,则顶点A55的坐标是()A.(13,13)B.(-13,-13)C.(-14,-14)D.(14,14)7、希腊人常用小石子在沙滩上摆成各种性状来研究数,例如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16…这样的数成为正方形数。
下列数中既是三角形数又是正方形数的是()A.289B.1024C.1225D.13788、下列计算正确的是()A. a2+a2=a4B. (2a2)3=6a6C. a8÷a2=a4D. a3•a4=a79、已知x=2019时,代数式ax3+bx-2的值是0,当x=-2019时,代数式ax3+bx-2的值等于()A.0B.2C.4D.-410、已知2x m y3与x2y n是同类项,则m-n的值等于()A.1B.-1C.2D.-211、现定义一种新运算“※”,对任意有理数a、b,规定a※b=ab+a﹣b,例如:1※2=1×2+1﹣2=1,则2※(﹣3)等于()A.﹣3B.﹣2C.﹣1D.012、一项工程,甲单独做需x天完成,乙单独做需y天完成,如果两人合做这项工程,则所需天数为()A. B. C. D.13、如图所示,以O为端点画六条射线OA,OB,OC,OD,OE,OF,再从射线OA上某点开始按逆时针方向依次在射线上描点并连线,若将各条射线所描的点依次记为1,2,3,4,5,6,7,8…,那么所描的第2017个点在()A.射线OA上B.射线OC上C.射线OD上D.射线OE上14、已知x m=6,x n=3,则x2m-n的值为( )A.9B.39C.12D.10815、下列式子中不是整式的是()A.-23xB.C.12x+5yD.0二、填空题(共10题,共计30分)16、按整式的分类,-15xy2是________(单项式、多项式),其系数是________; 3x2+2x-y2是________(单项式、多项式),其次数是________.17、平面直角坐标系中,点、、,…和、、,…分别在直线和轴上. ,,,…都是等腰直角三角形,如果,,则点的横坐标是________18、一个两位数,若个位数字为a,十位数字为b,则这个两位数可表示为________.19、观察下面一列数,按规律在横线上填写适当的数, ________、________20、若x2+3x=2,那么多项式2x2+6x﹣8=________.21、在直角坐标系中,直线与y轴交于点,按如图方式作正方形、、,、、在直线上,点、、在x轴上,图中阴影部分三角形的面积从左到右依次记为、、、,则的值为________ 用含n的代数式表示,n为正整数.22、观察下列各式:,根据其中的规律可得________(用含n的式子表示).23、如果与是同类项,则________.24、若,则代数式的值为________.25、古希腊著名的毕达哥拉斯学派把1、3、6、10 …这样的数称为“三角形数”,而把1、4、9、16 …这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是________ (填序号)①13=3+10;②25=9+16;③36=15+21;④49=18+31.三、解答题(共5题,共计25分)26、已知a,b互为相反数,b与c的积是最大的负整数,d和e的和等于,求的值.27、如图A,B,C三点表示的数分别为a,b,c.利用图形化简:.28、已知关于x的多项式不含三次项和一次项,求的值.29、飞机的无风航速为mkm/h,风速为30km/h.飞机顺风飞行5小时的行程是多少?飞机逆风飞行4小时的行程是多少?两个行程相差多少?30、当k为何值时,多项式4x|2k﹣1|y+xy﹣5是四次多项式?此时是关于x的几次式?参考答案一、单选题(共15题,共计45分)1、D2、C3、B4、B5、C6、D7、C8、D9、D10、B11、C12、D13、A14、C15、B二、填空题(共10题,共计30分)16、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
北师大版七年级数学上册《第三章整式及其加减》单元测试卷(带答案)一、选择题1.小明比小强大2岁,比小华小4岁.如果小强y 岁.则小华( ) A .(y −2)岁B .(y +2)岁C .(y +4)岁D .(y +6)岁2.下列代数式中,是次数为3的单项式的是( ) A .−m 3nB .3C .4t 3−3D .x 2y 23.对于多项式−3x −2xy 2−1,下列说法中,正确的是( ) A .一次项系数是3 B .最高次项是2xy 2 C .常数项是−1D .是四次三项式4.下列各组单项式中,不是同类项的是( ) A .−2y 2a 3与12ay 2B .12x 3y 与−12xy 3 C .6a 2bn 与−a 2nbD .23与325.按如图所示的程序运算,如果输入x 的值为12,那么输出的值为( )A .3B .0C .−1D .−36.下列运算中,正确的是( ) A .3a +2b =5abB .2a 3+3a 2=5a 5C .5a 2−4a 2=1D .3a 2b −3ba 2=07.若关于x 的代数式2x 2+ax +b −(2bx 2−3x −1)的值与x 无关,则a −b 的值为( ) A .2B .4C .−2D .−48.观察下列关于m ,n 的单项式的特点:12m 2n ,23m 2n 2,34m 2n 3,45m 2n 4,56m 2n 5,……,按此规律,第n 个单项式是( ) A .nn+1m 2n n B .nn+1m n n nC .n−1nm 2n nD .n−1nm n n n二、填空题9.一支钢管需要a 元,一本管记本需要b 元,现买5支钢笔和8本笔记本共需要 元. 10.若x P +4x 3+qx 2+2x +5是关于x 的五次四项式,则qp = . 11.已知2x 6y 2和−x 3m y n 是同类项,则2m +n 的值是 .12.一种商品成本为a 元/件,商场在成本的基础上增加20%作为售价出售,现搞活动促销,按原售价的九折出售.设售出m件该商品时,总利润为元.13.已知a是−5的相反数,b比最小的正整数大4,c是相反数等于它本身的数,则a+b+c的值是.三、计算题14.计算:(1)4b−3a−3b+2a(2)(3x2−y2)−3(x2−2y2)+m2−3cd+5m的值.15.若a、b互为相反数,c、d互为倒数,|m|=3,求a+b4m四、解答题16.已知代数式A=x2+ax−2a(1)求2A−B;(2)若2A−B的值与x的取值无关,求a的值.17.如图,在一个直角三角形休闲广场的直角处设计一块四分之一圆形花坛,若圆形的半径为r米,广场一直角边长为2a米,另一直角边长为b米.(1)列式表示广场空地的面积(用含π的式子表示);(2)若a=150米,b=50米,r=20米,求广场空地的面积(π取3.14).18.滴滴快车是一种便捷的出行工具,计价规则如下表:计费项目里程费时长费远途费单价 1.8元/公里0.45元/分钟0.4元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算:时长费按行车的实际时间计算;远途费的收取方式为:行车里程10公里以内(含10公里)不收远途费,超过10公里的,超出部分每公里收0.4元.(1)若小东乘坐滴滴快车,行车里程为15公里,行车时间为20分钟,则需付车费多少元?(2)若小明乘坐滴滴快车,行车里程为a公里,行车时间为b分钟,则小明应付车费多少元(用含a、b的代数式表示,并化简)?(3)小王与小张各自乘坐滴滴快车,行车里程分别为9.5公里与14.5公里,但下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差多少分钟?参考答案1.D2.D3.C4.B5.C6.D7.D8.A9.(5a+8b)10.011.612.0.08am13.1014.(1)解:4b−3a−3b+2a=(4−3)b+(2−3)a=b−a(2)解:(3x2−y2)−3(x2−2y2)=3x2−y2−3x2+6y2=5y215.解:依题意得a+b=0,cd=1,m=±3.当m=3时,原式=0+32−3×1+5×3=9−3+15=21.当m=−3时,原式=0+(−3)2−3×1+5×(−3)=9−3−15=−9. 因此值为21或-9.16.(1)解:原式=4ax-x-4a+1(2)解:a=1417.(1)解:四分之一圆的面积为:14πr2;直角三角形的面积为:12×2a×b=ab;所以,广场空地的面积为:ab−14πr2;(2)解:当a=150米,b=50米,r=20米,π=3.14时ab−14πr2=150×50−14×3.14×202=7186(平方米)18.(1)解:1.8×15+0.45×20+0.4×(15−10)=38(元)答:需付车费38元.(2)解:当a≤10时,小明应付费(1.8a+0.45b)元;当a>10时,小明应付费1.8a+0.45b+0.4(a−10)=(2.2a+0.45b−4)元;(3)解:小王与小张乘坐滴滴快车分别为x分钟、y分钟1.8×9.5+0.45x=1.8×14.5+0.45y+0.4×(14.5−10)整理,得:0.45x−0.45y=10.8∴x−y=24因此,这两辆滴滴快车的行车时间相差24分钟.。
北师大版七年级数学上册第三章整式及其加减单元测试卷-带参考答案一、单选题 1.按照如图所示的运算程序,能使输出y 的值为5的是( )A .m =1,n =4B .2,5m n ==C .m =5,n =3D .m =2,n =2 2.关于代数式353a +,下列说法中正确的是( ) A .它的一次项系数是1B .它的常数项是5C .它是一个单项式D .它的次数是33.下列各组代数式:(1)a b -与a b --;(2)a b +与a b --;(3)1a +与1a -;(4)a b -+与a b -,其中互为相反数的有( )A .(2)(4)B .(1)(2)C .(1)(3)D .(3)(4)4.下列说法中正确的是( )A .a -表示负数;B .若x x =,则x 为正数C .单项式22xy 9-的系数为2- D .多项式2223a b 7a b 2ab 1-+-+的次数是45.若单项式3a m+1b 与-b n -1a 2m -2的和仍是单项式,则m ,n 的值分别为( )A .1,0B .3,0C .3,2D .1,26.下列从左到右的变形是因式分解的是( )A .B .C .D .7.1x 与2x ,3x …202x 是202个由1和1-组成的数,且满足12320222x x x x +++⋅⋅⋅+=,则()()()()22221232021111x x x x -+-+-+⋅⋅⋅+-的值为( ) A .408 B .462 C .360 D .3688.下列各组代数式中是同类项的是( )A .234a b -34ab -B .232x y -与323x yC .3512m n -与537n m - D .a 与c 9.某服装店出售一件衣服,标价为m 元,由于市场行情的变化,服装店进行了一次调价,在此基础上又进行了第二次调价,下列四种方案中,两次调价后售价最低的是( )A .第一次打八折,第二次打八折B .第一次提价30%,第二次打六折C .第一次提价50%,第二次降价50%D .第一次提价20%,第二次降价30%10.观察下列等式:133= 239= 3327= 4381= 53243= 63729= 732187=…解答下列问题:234202333333++++的末位数字是( )A .0B .2C .3D .9二、填空题11.观察2,﹣3,4,﹣5,6,﹣7,…这一列数,你能发现它们排列的规律吗?请根据你发现的规律,试写出第)21x ++=322221+-+-+23,12-…第10个数字是的值是、d 互为倒数,m 的绝对值等于.已知一个两位数,它的个位数字是x ,十位数字是三、解答题19.如图:(1)用含字母的式子表示阴影部分的面积;(2)当5a =,3b =时,阴影部分的面积是多少?20.观察下列按一定规律排列的三行数:第一行:﹣2,4,﹣8,16,﹣32,64,﹣128…第二行:3,9,﹣3,21,﹣27,69,﹣123…第三行:4,﹣2,10,﹣14,34,﹣62,130…(1)第一行数中的第11个数是 ;(2)第三行数中的第n 个数是 (用含n 的式子表示);(3)取每行数中的第m 个数,是否存在m 的值,使这三个数的和等于255?若存在,求出m 的值,若不存在,说明理由.21.已知:有理数a 、b 、c 在数轴上的位置如图所示,且c a >.(1)填空:a =___________;c =___________;ac =___________(2)化简:b c a c a b -++--22.如图,在一个长方形休闲广场的四角都设计一块半径相同的四分之一圆形的花坛,若圆形的半径为m r ,广场长为m a ,宽为m b .(m 为单位米)(1)列式表示广场空地的面积;参考答案: 1.D2.A3.A4.D5.C6.D7.C8.C9.A10.D11.﹣10112.113.1或3-/3-或1 14. 11n x +-/11n x +-+ 21213+ 15.15- 16.1617.13或7 18.11x +11y/11y+11x 19.(1)阴影部分面积为()2244a b a a b ππ+--;(2)阴影部分面积为17402π- 20.(1)-2048;(2)()22n --+;(3)不存在21.(1),,a c ac --(2)2c -22.(1)()22m ab r π-(2)()220000100m π- 23.(1)968-;(2)252ab -24.(1)666x y xy +-(2)9(3)6。
北师大新版七年级上学期《第3章整式及其加减》单元测试卷一.填空题(共50小题)1.下列各式:①1x;②2•3;③20%x;④a﹣b÷c;⑤;⑥x﹣5;其中,不符合代数式书写要求的有(填写序号)2.若﹣x n﹣2+4x是关于x的三次二项式,则n的值是.3.若n为整数,则代数式n(n+1)(n+2)表示的实际意义.4.已知代数式3x2﹣5x+3的值为1,则6x2﹣10x+7的值是.5.当x=﹣2时,多项式mx3+2x2+nx+4的值等于18,那么当x=2时,该多项式的值等于.6.体校里男生人数占学生总数的75%,女生人数是a,则学生总数是人.7.如图所示的运算程序中,若开始输入的x的值为﹣1,我们发现第一次输出的结果为2,第二次输出的结果为1,则第2018次输出的结果为.8.如图,图中阴影部分的面积是.9.如果a﹣b=﹣2,那么(a﹣b)2﹣(b﹣a)=.10.按照如图操作,若输入x的值是9,则输出的值是.11.买一个篮球需要m元,买一个足球需要n元,那么买4个篮球和7个足球共需元.12.用代数式表示:x的30%除5a的商.13.下列各式:0,,F=ma,m+2>m,2x2﹣3x+11,B≠12,,﹣y,6π,其中代数式的有个.14.已知x2﹣2x﹣1=0,则5+4x﹣2x2=.15.当x=1时,多项式px3+qx+1的值为2020,求当x=﹣1时,多项式px3+qx+1的值为.16.把多项式2m2n3+3mn2﹣2﹣m3n按字母m的降幂排列为.17.已知多项式3a4b m﹣a2b+1是六次三项式,则m=.18.单项式πr3h的系数是,次数是.多项式9x2y3﹣2x3y+5的次数是.19.下列式子:①a+2b;②﹣2xy2;③;④+5;⑤x﹣;⑥x2+x,其中属于多项式的有(填序号).20.如果多项式x b+(1﹣a)x3﹣x+1是关于x的四次三项式,那么a b的值为.21.观察给出的一列单项式:﹣2,4x,﹣8x2,16x3,…根据你发现的规律,第8个单项式为.22.多项式2x4﹣3x5﹣5是次项式,最高次项的系数是,常数项是.23.把多项式2x2﹣x3y﹣y3+xy2按字母y的降幂排列:.24.多项式2ab﹣a2b的次数是,单项式的系数是,﹣1的倒数是.25.当自然数a<b时,x a+y b+3a+b是次多项式.26.在式子,,,﹣,1﹣x﹣5xy2,﹣x,6xy+1,a2+b2中,多项式有个.27.单项式﹣的系数是.28.单项式的次数是.系数是.29.下列代数式:(1),(2)m,(3),(4),(5)2m+1,(6),(7),(8)x2+2x+,(9)y3﹣5y+中,整式有.(填序号)30.下列各式①m;②x+5=7;③2x+3y;④m>3;⑤中,整式的个数有个.31.若单项式5x4y和7x n﹣1y m是同类项,则m+n的值为.32.一个多项式加上多项式2x﹣1后得3x﹣2,则这个多项式为.33.已知a+b=5,c﹣d=﹣3,则(d﹣a)﹣(b+c)的值为.34.若单项式(n+3)x3y2m和单项式﹣2x|n|y4的和仍是一个单项式,则m+n=.35.若多项式x2+kxy+4x﹣2xy+y2﹣1不含xy项,则k的值是.36.若x=y﹣3,则(x﹣y)2﹣2.3(x﹣y)+0.75(x﹣y)2+(x﹣y)﹣6的值为.37.一个多项式加上3x2y﹣3xy2得x3﹣3xy2,则这个多项式为.38.已知A=2a2+3ab﹣2a﹣1,B=﹣a2+ab+.(1)a=﹣1,b=﹣2时,求4A﹣(3A﹣2B)的值;(2)若(1)中式子的值与a的取值无关,求b的值.39.合并下列多项式3(4x2﹣3x+2)﹣2(1﹣4x2+x)40.若多项式3x2﹣2(5+y﹣3x2+mx2)的值与x的值无关,则m的等于.41.某同学做了一道数学题:“已知两个多项式为A、B,B=3x﹣2y,求A﹣B的值.”他误将“A﹣B”看成了“A+B”,结果求出的答案是x﹣y,那么原来的A﹣B 的值应该是.42.某同学在做计算2A+B时,误将“2A+B”看成了“2A﹣B”,求得的结果是9x2﹣2x+7,已知B=x2+3x+2,则2A+B的正确答案为.43.如图,已知正五角星的面积为5,正方形的边长为2,图中对应阴影部分的面积分别是S1、S2,则S1﹣S2的值为.44.去括号:2xy﹣(3xy﹣3y2+5).45.把多项式a﹣3b+c﹣2d的后3项用括号括起来,且括号前面带“﹣”号,所得结果是.46.如果x﹣y=2,m+n=1,那么(y+2m)﹣(x﹣2n)=.47.若x=y+3,则(x﹣y)2﹣2.3(x﹣y)+0.75(x﹣y)2+(x﹣y)+7等于.48.当x=﹣,y=3时,3x2y﹣[2xy2﹣2(xy﹣x2y)+xy]+3xy2=.49.将整数按如图方式进行有规律的排列,第2行最后一个数是﹣4,第3行最后一个数是9,第4行最后一个数是﹣16,…,依此类推,第21行的第21个数是.50.观察下列关于x的单项式,探究其规律:x,3x2,5x3,7x4,9x5,11x6,…,按照上述规律,第2018个单项式是.北师大新版七年级上学期《第3章整式及其加减》单元测试卷参考答案与试题解析一.填空题(共50小题)1.下列各式:①1x;②2•3;③20%x;④a﹣b÷c;⑤;⑥x﹣5;其中,不符合代数式书写要求的有①②(填写序号)【分析】根据书写规则,分数不能为带分数,对各项的代数式进行判定,即可求出答案.【解答】解:①1x分数不能为带分数;②2•3数与数相乘不能用“•”;③20%x,书写正确;④a﹣b÷c,书写正确;⑤;书写正确;⑥x﹣5,书写正确,不符合代数式书写要求的有①②共2个.故答案为:①②.【点评】此题考查了代数式的书写.注意代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)带分数要写成假分数的形式.2.若﹣x n﹣2+4x是关于x的三次二项式,则n的值是5.【分析】直接利用三次二项式的定义进而分析得出答案.【解答】解:∵﹣x n﹣2+4x是关于x的三次二项式,∴n﹣2=3,则n的值是:5.故答案为:5.【点评】此题主要考查了代数式,正确把握代数式的次数与系数的确定方法是解题关键.3.若n为整数,则代数式n(n+1)(n+2)表示的实际意义连续三个整数的乘积.【分析】根据代数式的结构即可得出答案.【解答】解:由于n为整数,所以n(n+1)(n+2)表示连续三个整数的乘积故答案为:连续三个整数的乘积【点评】本题考查代数式,解题的关键是正确理解题意,本题属于基础题型.4.已知代数式3x2﹣5x+3的值为1,则6x2﹣10x+7的值是3.【分析】先求出3x2﹣5x=﹣2,再变形后代入,即可求出答案.【解答】解:根据题意得:3x2﹣5x+3=1,3x2﹣5x=﹣2,所以6x2﹣10x+7=2(3x2﹣5x)+7=2×(﹣2)+7=3,故答案为:3;【点评】本题考查了求代数式的值,能够整体代入是解此题的关键.5.当x=﹣2时,多项式mx3+2x2+nx+4的值等于18,那么当x=2时,该多项式的值等于6.【分析】对题意进行分析,x=﹣2,mx3+2x2+nx+4=18,可求出8m+2n的值,然后将x=2代入,即可求得结果.【解答】解:当x=﹣2,mx3+2x2+nx+4=18,则8m+2n=﹣6,将8m+n=﹣6,x=2代入,可得:mx3+2x2+nx+4=6,故答案为:6.【点评】本题考查整式的加减,看清题中,弄清各个量的关系即可.6.体校里男生人数占学生总数的75%,女生人数是a,则学生总数是4a人.【分析】直接利用女生人数除以所占百分比进而得出答案.【解答】解:∵体校里男生人数占学生总数的75%,女生人数是a,∴学生总数是:a÷(1﹣75%)=4a.故答案为:4a.【点评】此题主要考查了列代数式,正确理解题意是解题关键.7.如图所示的运算程序中,若开始输入的x的值为﹣1,我们发现第一次输出的结果为2,第二次输出的结果为1,则第2018次输出的结果为1.【分析】根据题意找出规律即可求出答案.【解答】解:第一次输出为2,第二次输出为1,第三次输出为4,第四次输出为2,第五次输出为1,第六次输出为4,……从第三次起开始循环,∴(2018﹣2)÷3=672 (2)故第2018次输出的结果为:1故答案为:1.【点评】本题考查数字规律,解题的关键是正确理解程序图找出规律,本题属于基础题型.8.如图,图中阴影部分的面积是 5.7mn.【分析】直接利用总面积减去空白面积进而得出答案.【解答】解:阴影部分面积为:6mn﹣0.3nm=5.7mn.故答案为:5.7mn.【点评】此题主要考查了列代数式,正确表示矩形面积是解题关键.9.如果a﹣b=﹣2,那么(a﹣b)2﹣(b﹣a)=2.【分析】把a﹣b=﹣2代入计算即可求出值.【解答】解:把a﹣b=﹣2代入(a﹣b)2﹣(b﹣a)=4﹣2=2,故答案为:2【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.10.按照如图操作,若输入x的值是9,则输出的值是193.【分析】根据题意列出代数式,将x=9代入计算即可求出值.【解答】解:根据题意得:(x+5)2﹣3,当x=9时,原式=(9+5)2﹣3=196﹣3=193.故答案为:193.【点评】此题考查了代数式求值,弄清题中的程序框图是解本题的关键.11.买一个篮球需要m元,买一个足球需要n元,那么买4个篮球和7个足球共需(4m+7n)元.【分析】买一个篮球需要m元,则买4个篮球需要4m元,买一个足球需要n 元,则买7个足球需要7n元,然后将它们相加即可.【解答】解:∵买一个篮球需要m元,买一个足球需要n元,∴买4个篮球和7个足球共需(4m+7n)元.故答案为(4m+7n).【点评】本题考查了列代数式,列代数式的关键是正确理解文字语言中的关键词,找到其中的数量关系.12.用代数式表示:x的30%除5a的商.【分析】根据题意列出代数式即可得出答案【解答】解:x的30%可表示为30%x,x的30%除5a的用代数式可表示为:.故答案为:可表示为:.【点评】本题主要考查了列代数式,正确理解题意是关键.13.下列各式:0,,F=ma,m+2>m,2x2﹣3x+11,B≠12,,﹣y,6π,其中代数式的有6个.【分析】根据代数式的概念,用运算符号把数字与字母连接而成的式子叫做代数式.单独的一个数或一个字母也是代数式.【解答】解:题中的代数式有:0,,2x2﹣3x+11,,﹣y,6π,共6个.故答案为:6.【点评】考查了代数式,注意:代数式中不含有“>”,“=”号.14.已知x2﹣2x﹣1=0,则5+4x﹣2x2=3.【分析】将x2﹣2x=1代入多项式5+4x﹣2x2即可求出答案.【解答】解:由题意可知:x2﹣2x=1,∴原式=5+2(2x﹣x2)=5﹣2(x2﹣2x)=5﹣2×1=3,故答案为:3【点评】本题考查代数式求值,解题的关键是将x2﹣2x看成一个整体,本题属于基础题型.15.当x=1时,多项式px3+qx+1的值为2020,求当x=﹣1时,多项式px3+qx+1的值为﹣2018.【分析】将x=1代入多项式px3+qx+1后可求出p+q的值,然后将x=﹣1代入px3+qx+1即可求出答案.【解答】解:将x=1代入多项式px3+qx+1,得:p+q+1=2020,∴p+q=2019,将x=﹣1代入多项式px3+qx+1,∴﹣p﹣q+1=﹣(p+q)+1=﹣2018.故答案为:﹣2018【点评】本题考查代数式求值,解题的关键是熟练运用有理数的运算,本题属于基础题型.16.把多项式2m2n3+3mn2﹣2﹣m3n按字母m的降幂排列为﹣m3n+2m2n3+3mn2﹣2.【分析】先分清多项式的各项,然后按多项式降幂排列的定义排列.【解答】解:多项式2m2n3+3mn2﹣2﹣m3n的各项为:2m2n3,3mn2,﹣2,﹣m3n按m降幂排列为:﹣m3n+2m2n3+3mn2﹣2.故答案为:﹣m3n+2m2n3+3mn2﹣2.【点评】本题考查多项式,我们把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列,称为按这个字母的降幂或升幂排列.要注意,在排列多项式各项时,要保持其原有的符号.17.已知多项式3a4b m﹣a2b+1是六次三项式,则m=﹣2.【分析】直接利用多项式的定义分析得出答案.【解答】解:∵多项式3a4b m﹣a2b+1是六次三项式,∴4+m=2,解得:m=﹣2.故答案为:﹣2.【点评】此题主要考查了多项式,正确把握多项式的定义是解题关键.18.单项式πr3h的系数是π,次数是4.多项式9x2y3﹣2x3y+5的次数是5.【分析】直接利用单项式以及多项式的次数确定方法分析得出答案.【解答】解:单项式πr3h的系数是:π,次数是:4;多项式9x2y3﹣2x3y+5的次数是:5.故答案为:π,4,5.【点评】此题主要考查了多项式以及单项式,正确把握相关次数确定方法是解题关键.19.下列式子:①a+2b;②﹣2xy2;③;④+5;⑤x﹣;⑥x2+x,其中属于多项式的有①③④⑥(填序号).【分析】直接利用多项式的定义分析得出答案.【解答】解:①a+2b;②﹣2xy2;③;④+5;⑤x﹣;⑥x2+x,其中属于多项式的有:①a+2b;③;④+5;⑥x2+x,故答案为:①③④⑥.【点评】此题主要考查了多项式,正确把握多项式的定义是解题关键.20.如果多项式x b+(1﹣a)x3﹣x+1是关于x的四次三项式,那么a b的值为1.【分析】直接利用多项式的次数与项数确定方法分析得出答案.【解答】解:∵多项式x b+(1﹣a)x3﹣x+1是关于x的四次三项式,∴b=4,a=1,则a b的值为:1.故答案为:1.【点评】此题主要考查了多项式,正确把握多项式的次数是解题关键.21.观察给出的一列单项式:﹣2,4x,﹣8x2,16x3,…根据你发现的规律,第8个单项式为28•x7.【分析】先根据所给单项式的次数及系数的关系找出规律,再确定所求的单项式即可.【解答】解:∵﹣2=(﹣1)1•21•x0;4x=(﹣1)2•22•x1;﹣8x3=(﹣1)3•23•x2;16x4=(﹣1)4•24•x3;∴第8个单项式为:(﹣1)8•28•x7=28•x7.故答案为:28•x7.【点评】本题考查了单项式的应用,解此题的关键是找出规律直接解答.22.多项式2x4﹣3x5﹣5是五次三项式,最高次项的系数是﹣3,常数项是﹣5.【分析】根据多项式的项和次数的定义,确定各个项和各个项的系数,注意要带有符号.【解答】解:多项式2x4﹣3x5﹣5是五次三项式,最高次项的系数是﹣3,常数项是﹣5;故答案为:五;三;﹣3;﹣5【点评】本题考查与多项式相关的概念,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.23.把多项式2x2﹣x3y﹣y3+xy2按字母y的降幂排列:﹣y3+xy2﹣x3y+2x2.【分析】按字母y的指数从大到小排列即可.【解答】解:多项式2x2﹣x3y﹣y3+xy2按字母y的降幂排列为:﹣y3+xy2﹣x3y+2x2故答案为:﹣y3+xy2﹣x3y+2x2【点评】此题主要考查了多项式,关键是掌握降幂排列的定义.24.多项式2ab﹣a2b的次数是3,单项式的系数是,﹣1的倒数是﹣.【分析】直接利用多项式的次数确定方法以及系数的确定方法和倒数的定义分别分析得出答案.【解答】解:多项式2ab﹣a2b的次数是:3,单项式的系数是:,﹣1的倒数是:﹣.故答案为:3,,﹣.【点评】此题主要考查了多项式以及倒数和单项式,正确把握相关定义是解题关键.25.当自然数a<b时,x a+y b+3a+b是b次多项式.【分析】直接利用多项式的次数确定方法得出答案.【解答】解:当自然数a<b时,x a+y b+3a+b是b次多项式.故答案为:b.【点评】此题主要考查了多项式,正确把握多项式的次数确定方法是解题关键.26.在式子,,,﹣,1﹣x﹣5xy2,﹣x,6xy+1,a2+b2中,多项式有3个.【分析】根据几个单项式的和叫做多项式进行分析即可.【解答】解:多项式有1﹣x﹣5xy2、6xy+1、a2+b2这3个,故答案为:3.【点评】此题主要考查了多项式,关键是掌握多项式定义.27.单项式﹣的系数是﹣.【分析】直接利用单项式的系数的确定方法分析得出答案.【解答】解:单项式﹣的系数是:﹣.故答案为:﹣.【点评】此题主要考查了单项式,正确把握单项式的系数确定方法是解题关键.28.单项式的次数是6.系数是.【分析】直接利用单项式的次数与系数确定方法分析得出答案.【解答】解:单项式的次数是:6,系数是:.故答案为:6,.【点评】此题主要考查了单项式,正确把握单项式的次数与系数确定方法是解题关键.29.下列代数式:(1),(2)m,(3),(4),(5)2m+1,(6),(7),(8)x2+2x+,(9)y3﹣5y+中,整式有(1)、(2)、(3)、(5)、(6)、(8).(填序号)【分析】利用整式的定义判断得出即可.【解答】解:(1),(2)m,(3),(5)2m+1,(6),(8)x2+2x+都是整式,故整式有(1)、(2)、(3)、(5)、(6)、(8).故答案为:(1)、(2)、(3)、(5)、(6)、(8).【点评】此题主要考查了整式的定义,正确把握整式的定义是解题关键.30.下列各式①m;②x+5=7;③2x+3y;④m>3;⑤中,整式的个数有两个.【分析】根据单项式与多项式统称为整式,可得答案.【解答】解:①m是整式;②x+5=7是方程,不是整式;③2x+3y是整式;④m>3是不等式;⑤是分式,不是整式,故答案为:两.【点评】本题考查了整式,单项式与多项式统称为整式,注意等式、不等式都不是整式,是分式,不是整式.31.若单项式5x4y和7x n﹣1y m是同类项,则m+n的值为6.【分析】直接利用同类项的定义得出m,n的值进而得出答案.【解答】解:∵单项式5x4y和7x n﹣1y m是同类项,∴4=n﹣1,1=m,解得:n=5,则m+n的值为:6.故答案为:6.【点评】此题主要考查了同类项,正确把握定义是解题关键.32.一个多项式加上多项式2x﹣1后得3x﹣2,则这个多项式为x﹣1.【分析】直接利用整式的加减运算法则计算得出答案.【解答】解:∵一个多项式加上多项式2x﹣1后得3x﹣2,∴这个多项式为:3x﹣2﹣(2x﹣1)=x﹣1.故答案为:x﹣1.【点评】此题主要考查了整式的加减运算,正确掌握运算法则是解题关键.33.已知a+b=5,c﹣d=﹣3,则(d﹣a)﹣(b+c)的值为﹣2.【分析】原式去括号变形后,将已知等式代入计算即可求出值.【解答】解:∵a+b=5,c﹣d=﹣3,∴原式=d﹣a﹣b﹣c=﹣(a+b)﹣(c﹣d)=﹣5+3=﹣2,故答案为:﹣2【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.34.若单项式(n+3)x3y2m和单项式﹣2x|n|y4的和仍是一个单项式,则m+n=5或﹣1.【分析】根据同类项的定义:所含字母相同,相同字母的次数相同,即可求得m、n的值,然后代入数值计算即可求解.【解答】解:∵单项式(n+3)x3y2m和单项式﹣2x|n|y4的和仍是一个单项式,∴单项式(n+3)x3y2m和单项式﹣2x|n|y4是同类项,则|n|=3,2m=4,∴n=±3,m=2,∴m+n=5或﹣1,故答案为:5或﹣1.【点评】本题主要考查合并同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.35.若多项式x2+kxy+4x﹣2xy+y2﹣1不含xy项,则k的值是2.【分析】直接利用多项式中不含xy项,得出k﹣2=0,进而得出答案.【解答】解:∵多项式x2+kxy+4x﹣2xy+y2﹣1不含xy项,∴kxy﹣2xy=0,解得:k=2.故答案为:2.【点评】此题主要考查了合并同类项,正确合并同类项是解题关键.36.若x=y﹣3,则(x﹣y)2﹣2.3(x﹣y)+0.75(x﹣y)2+(x﹣y)﹣6的值为9.【分析】直接利用合并同类项法则将原式变形,进而把已知代入求出答案.【解答】解:(x﹣y)2﹣2.3(x﹣y)+0.75(x﹣y)2+(x﹣y)﹣6=(+0.75)(x﹣y)2+(﹣2.3+)(x﹣y)﹣6=(x﹣y)2﹣2(x﹣y)﹣6,∵x=y﹣3,∴x﹣y=﹣3,∴原式=(﹣3)2﹣2×(﹣3)﹣6=9+6﹣6=9.故答案为:9.【点评】此题主要考查了合并同类项,正确合并同类项是解题关键.37.一个多项式加上3x2y﹣3xy2得x3﹣3xy2,则这个多项式为x3﹣3x2y.【分析】根据题意列出多项式相减的式子,再去括号,合并同类项即可.【解答】解:∵一个多项式加上3x2y﹣3xy2得x3﹣3xy2,∴这个多项式=(x3﹣3xy2)﹣(3x2y﹣3xy2)=x3﹣3xy2﹣3x2y+3xy2=x3﹣3x2y.故答案为:x3﹣3x2y.【点评】本题考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键.38.已知A=2a2+3ab﹣2a﹣1,B=﹣a2+ab+.(1)a=﹣1,b=﹣2时,求4A﹣(3A﹣2B)的值;(2)若(1)中式子的值与a的取值无关,求b的值.【分析】(1)先化简4A﹣(3A﹣2B),再把A、B的值代入计算即可;(2)根据“式子的值与a的取值无关”得到关于b的一元一次方程,求解即可.【解答】解:(1)4A﹣(3A﹣2B)=4A﹣3A+2B=A+2B,∵A=2a2+3ab﹣2a﹣1,B=﹣a2+ab+,∴A+2B=2a2+3ab﹣2a﹣1+2(﹣a2+ab+)=2a2+3ab﹣2a﹣1﹣2a2+ab+=4ab﹣2a+;(2)因为4ab﹣2a+=(4b﹣2)a+,又因为4ab﹣2a+的值与a的取值无关,所以4b﹣2=0,所以b=.【点评】本题考查了整式的加减.解决本题(2)的关键是理解结果与a无关.与a无关的意思是含该未知数的项的系数为0.39.合并下列多项式3(4x2﹣3x+2)﹣2(1﹣4x2+x)【分析】先去括号,再合并同类项即可求解.【解答】解:3(4x2﹣3x+2)﹣2(1﹣4x2+x)=12x2﹣9x+6﹣2+8x2﹣2x=20x2﹣11x+4.【点评】考查了整式的加减,整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.40.若多项式3x2﹣2(5+y﹣3x2+mx2)的值与x的值无关,则m的等于 4.5.【分析】此题可根据多项式3x2﹣2(5+y﹣3x2+mx2)的值与x无关,则经过合并同类项后令关于x的系数为零求得m的值.【解答】解:∵3x2﹣2(5+y﹣3x2+mx2)=3x2﹣10﹣2y+6x2﹣2mx2,=(3+6﹣2m)x2﹣2y﹣10,此式的值与x的值无关,则3+6﹣2m=0,解得m=4.5.故答案为:4.5.【点评】本题考查了整式的加减运算,重点是根据题中条件求得m的值,同学们应灵活掌握.41.某同学做了一道数学题:“已知两个多项式为A、B,B=3x﹣2y,求A﹣B的值.”他误将“A﹣B”看成了“A+B”,结果求出的答案是x﹣y,那么原来的A﹣B 的值应该是﹣5x+3y.【分析】先根据题意求出多项式A,然后再求A﹣B.【解答】解:由题意可知:A+B=x﹣y,∴A=(x﹣y)﹣(3x﹣2y)=﹣2x+y,∴A﹣B=(﹣2x+y)﹣(3x﹣2y)=﹣5x+3y.故答案为:﹣5x+3y.【点评】本题考查多项式的加减运算,注意加减法是互为逆运算.42.某同学在做计算2A+B时,误将“2A+B”看成了“2A﹣B”,求得的结果是9x2﹣2x+7,已知B=x2+3x+2,则2A+B的正确答案为11x2+4x+11.【分析】根据题意列出关系式,去括号合并即可得到结果.【解答】解:根据题意得:2A+B=9x2﹣2x+7+2(x2+3x+2)=9x2﹣2x+7+2x2+6x+4=11x2+4x+11,故答案为:11x2+4x+11【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.43.如图,已知正五角星的面积为5,正方形的边长为2,图中对应阴影部分的面积分别是S1、S2,则S1﹣S2的值为1.【分析】设空白部分的面积为S,则S1=5﹣S,S2=22﹣S,所以S1﹣S2=5﹣S﹣(4﹣S),然后去括号后合并即可.【解答】解:设空白部分的面积为S,则S1=5﹣S,S2=22﹣S,所以S1﹣S2=5﹣S﹣(4﹣S)=5﹣S﹣4+S=1.故答案为1.【点评】本题考查了整式的加减:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接;然后去括号、合并同类项.44.去括号:2xy﹣(3xy﹣3y2+5)﹣xy+3y2﹣5.【分析】先去掉括号,再合并同类项即可.【解答】解:2xy﹣(3xy﹣3y2+5)=2xy﹣3xy+3y2﹣5=﹣xy+3y2﹣5,故答案为:﹣xy+3y2﹣5.【点评】本题考查了合并同类项法则和去括号,能够熟记去括号法则的内容是解此题的关键.45.把多项式a﹣3b+c﹣2d的后3项用括号括起来,且括号前面带“﹣”号,所得结果是a﹣(3b﹣c+2d).【分析】根据添括号的法则把给出的式子按要求进行变形,即可得出答案.【解答】解:把多项式a﹣3b+c﹣2d的后3项用括号括起来,且括号前面带“﹣”号,所得结果是a﹣(3b﹣c+2d).故答案为:a﹣(3b﹣c+2d).【点评】本题考查了添括号的法则,添括号时,若括号前是“+”,添括号后,括号里的各项都不改变符号;若括号前是“﹣”,添括号后,括号里的各项都改变符号.46.如果x﹣y=2,m+n=1,那么(y+2m)﹣(x﹣2n)=0.【分析】原式去括号整理后,将已知等式代入计算即可求出值.【解答】解:当x﹣y=2,m+n=1时,原式=y+2m﹣x+2n=﹣(x﹣y)+2(m+n)=﹣2+2=0,故答案为:0.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.47.若x=y+3,则(x﹣y)2﹣2.3(x﹣y)+0.75(x﹣y)2+(x﹣y)+7等于10.【分析】由x=y+3得x﹣y=3,整体代入原式计算可得.【解答】解:∵x=y+3,∴x﹣y=3,则原式=×32﹣2.3×3+0.75×32+×3+7=2.25﹣6.9+6.75+0.9+7=10,故答案为:10.【点评】此题考查了整式的加减﹣化简求值,熟练掌握整体代入思想的运用是解本题的关键.48.当x=﹣,y=3时,3x2y﹣[2xy2﹣2(xy﹣x2y)+xy]+3xy2=﹣4.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=3x2y﹣2xy2+2xy﹣3x2y﹣xy+3xy2=xy2+xy,当x=﹣,y=3时,原式=﹣3﹣1=﹣4.故答案为:﹣4【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.49.将整数按如图方式进行有规律的排列,第2行最后一个数是﹣4,第3行最后一个数是9,第4行最后一个数是﹣16,…,依此类推,第21行的第21个数是421.【分析】根据图形得出第n行最后一个数为(﹣1)n+1•n2,据此知第20行最后一个数为﹣400,继而由奇数行的序数为奇数的数为正数可得答案.【解答】解:根据题意知第n行最后一个数为(﹣1)n+1•n2,当n=20时,即第20行最后一个数为﹣400,又奇数行的序数为奇数的数为正数,∴第21行的第21个数是421,故答案为:421.【点评】本题主要考查数字的变化规律,解题的关键是根据已知数列得出第n 行最后一个数为(﹣1)n+1•n2.50.观察下列关于x的单项式,探究其规律:x,3x2,5x3,7x4,9x5,11x6,…,按照上述规律,第2018个单项式是4035x2018.【分析】系数的规律:第n个对应的系数是2n﹣1,指数的规律:第n个对应的指数是n.【解答】解:系数的规律:第n个对应的系数是2n﹣1,指数的规律:第n个对应的指数是n,则第2018个单项式是4035x2018.故答案为:4035x2018.【点评】此题考查了规律型:数字的变化类,单项式的定义,分别找出单项式的系数和次数的规律是解决此类问题的关键.。
北师大版七年级上册数学第三章《整式及其加减》单元综合测试卷(含答案)一、选择题(每题3分,共30分)1.下列式子符合书写规范的是( )A .-1xB .115xyC .0.3÷xD .-52a 2.下列各式中,是单项式的是( )A .x 2-1B .a 2b C.πa +b D.x -y 3 3.单项式-π3a 2b 的系数和次数分别是( ) A .π3,3 B .-π3,3 C .-13,4 D.13,4 4.下列单项式中,与a 2b 是同类项的是( )A .2a 2bB .a 2b 2C .ab 2D .3ab5.如果多项式(a -2)x 4-12x b +x 2-3是关于x 的三次多项式,那么( ) A .a =0,b =3 B .a =1,b =3 C .a =2,b =3 D .a =2,b =16.下列去括号正确的是( )A .(a -b )-(c -d )=a -b -c -dB .-a -2(b -c )=-a -2b +2cC .-(a -b )+c =-a -b +cD .-2(a -b )-c =-2a +b -c7.【2021·台州】将x 克含糖10%的糖水与y 克含糖30%的糖水混合,混合后的糖水含糖( )A.20% B.x+y2×100% C.x+3y20×100% D.x+3y10x+10y×100%8.如图①是一个长为2m、宽为2n的长方形,其中m>n,先用剪刀沿图中虚线(对称轴)剪开,将它分成四个形状和大小都一样的小长方形,再将这四个小长方形拼成一个如图②的正方形,则中间空白部分的面积是( )A.2mn B.(m+n)2 C.(m-n)2 D.m2-n29.代数式2a2+3a+1的值是6,那么代数式6a2+9a+5的值是( ) A.20 B.18 C.16 D.1510.【教材P104复习题T16变式】【2020·德州】如图是用黑色棋子摆成的美丽图案,按照这样的规律摆下去,第10个这样的图案需要黑色棋子的个数为( )A.148 B.152 C.174 D.202二、填空题(每题3分,共24分)11.用代数式表示“比a的平方的一半小1的数”是____________.12.若单项式-2x3yn与4x m+2y5合并后的结果还是单项式,则m+n=________.13.【教材P101复习题T2变式】按照如图所示的步骤操作,若输入x的值为-4,则输出的值为________.14.在山东部分地区,大年初一常常包上几个装有硬币的饺子,吃到“钱馅”饺子的人,寓意新的一年财源滚滚、大吉大利.因为怕弄坏牙齿,朵朵的奶奶就把花生放在饺子里代替硬币,朵朵家有6口人,奶奶按照每人n 粒花生的规则包饺子(每个饺子包1粒),那么有花生的饺子有________个.15.若多项式2x 3-8x 2+x -1与多项式3x 3+2mx 2-5x +3的和不含x 2项,则m =________.16.某同学计算一个多项式加上xy -3yz -2xz 时,误认为减去此式,计算出的错误结果为xy -2yz +3xz ,则正确的结果是__________.17.已知有理数a ,b ,c 在数轴上对应点的位置如图所示,化简|a +c |-|c -b |-|a +b |的结果为________.18.【2021·怀化】观察等式:2+22=23-2,2+22+23=24-2,2+22+23+24=25-2……已知按一定规律排列的一组数:2100,2101,2102,…,2199,若2100=m ,用含m 的代数式表示这组数的和是__________.三、解答题(19,21,22题每题10分,其余每题12分,共66分)19.先去括号,再合并同类项:(1)2a -(5a -3b )+(4a -b ); (2)3x 2y -⎣⎢⎡⎦⎥⎤2xy 2-2⎝ ⎛⎭⎪⎫xy -32x 2y +xy +3xy 2.20.先化简,再求值:(1)7a 2b +(-4a 2b )-(2a 2b -2ab ),其中a =-2,b =1;(2)2x 2-⎣⎢⎡⎦⎥⎤3⎝ ⎛⎭⎪⎫-13x 2+23xy -2y 2-2(x 2-xy +2y 2),其中x =12,y =-1.21.【教材P 102复习题T 9变式】已知代数式A =2x 2+3xy -2x -1,B =-x 2+xy -1.(1)当x =y =-1时,求2A +4B 的值;(2)若2A +4B 的值与x 的取值无关,求y 的值.22.如图,某纪念馆要在两块紧挨在一起的长方形荒地上修建一个半圆形花圃,尺寸如图所示(单位:m).(1)求阴影部分的面积(用含x的代数式表示);(2)当x=9,π取3时,求阴影部分的面积.23.比较两个数的大小时,我们可以用“作差法”.它的基本思路是求a与b两数的差,当a-b>0时,a>b;当a-b<0时,a<b;当a-b=0时,a=b.试运用“作差法”解决下列问题:(1)比较2a+1与2(a+1)的大小;(2)比较a+b与a-b的大小.24.某家具厂生产一种课桌和椅子,课桌每张定价200元,椅子每把定价80元,厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:每买一张课桌就赠送一把椅子;方案二:课桌和椅子都按定价的80%付款.某校计划添置100张课桌和x把椅子.(1)若x=100,请计算哪种方案划算;(2)若x>100,请用含x的代数式分别把两种方案的费用表示出来;(3)若x=300,如果两种方案可以同时使用,请帮助学校设计一种最省钱的方案.参考答案一、1.D 2.B 3.B 4.A 5.C 6.B 7.D8.C 9.A10.C点思路:根据图案知,第1个图案有12个棋子,第2个图案有22个棋子,第3个图案有34个棋子,…第n 个图案有2[1+2+…+(n +1)+(n +2)]+2(n -1)=(n +2)(n +3)+2(n -1)(个)棋子.故第10个这样的图案需要黑色棋子的个数为(10+2)(10+3)+2×(10-1)=174.二、11.12a 2-1 12.6 13.-6 14.6n 15.4 16.3xy -8yz -xz 点拨:由题意可知原多项式为(xy -2yz +3xz )+(xy -3yz-2xz )=2xy -5yz +xz ,则正确的结果为(2xy -5yz +xz )+(xy -3yz -2xz)=3xy -8yz -xz .17.2b -2c 点拨:由题图可知a +c <0,c -b >0,a +b <0,所以原式=-(a+c)-(c -b)-[-(a +b)]=-a -c -c +b +a +b =2b -2c.18.m 2-m点技巧:由题中规律,得2100+2101+2102+…+2199=(2+22+23+...+2199)-(2+22+23+ (299)=(2200-2)-(2100-2)=(2100)2-2100.因为2100=m ,所以原式=m 2-m .三、19.解:(1)原式=2a -5a +3b +4a -b =a +2b ;(2)原式=3x 2y -(2xy 2-2xy +3x 2y +xy )+3xy 2=3x 2y -2xy 2+2xy -3x 2y -xy +3xy 2=xy +xy 2.20.解:(1)7a 2b +(-4a 2b )-(2a 2b -2ab )=7a 2b -4a 2b -2a 2b +2ab =a 2b +2ab .把a =-2,b =1代入,得原式=(-2)2×1+2×(-2)×1=0.(2)2x 2-[3(-13x 2+23xy )-2y 2]-2(x 2-xy +2y 2)=2x 2-(-x 2+2xy -2y 2)-(2x 2-2xy +4y 2)=2x 2+x 2-2xy +2y 2-2x 2+2xy -4y 2=x 2-2y 2.把x =12,y =-1代入,得原式=⎝ ⎛⎭⎪⎫122-2×(-1)2=-74. 21.解:(1)2A +4B =2(2x 2+3xy -2x -1)+4(-x 2+xy -1)=4x 2+6xy -4x -2-4x 2+4xy -4=10xy -4x -6.当x =y =-1时,原式=10×(-1)×(-1)-4×(-1)-6=10+4-6=8.(2)2A +4B =10xy -4x -6=(10y -4)x -6.因为2A +4B 的值与x 的取值无关,所以10y -4=0,解得y =0.4.22.解:(1)由题图中各个部分面积之间的关系可得,阴影部分的面积=2(x -2)+4(x -2-2)-12π·⎝ ⎛⎭⎪⎫2+422=2x -4+4x -16-92π=⎝ ⎛⎭⎪⎫6x -20-92πm 2. (2)当x =9,π取3时,阴影部分的面积为54-20-272=412(m 2). 23.解:(1)因为2a +1-2(a +1)=2a +1-2a -2=-1<0,所以2a +1<2(a +1).(2)(a+b)-(a-b)=a+b-a+b=2b.①当b>0时,a+b>a-b;②当b<0时,a+b<a-b;③当b=0时,a+b=a-b.24.解:(1)当x=100时,方案一:100×200=20 000(元);方案二:100×(200+80)×80%=22 400(元).因为20 000<22 400,所以方案一划算.(2)当x>100时,方案一:100×200+80(x-100)=80x+12 000(元);方案二:(100×200+80x)×80%=64x+16 000(元).(3)当x=300时,①按方案一购买:80×300+12 000=36 000(元);②按方案二购买:64×300+16 000=35 200(元);③先按方案一购买100张课桌,同时送100把椅子,再按方案二购买200把椅子:100×200+80×200×80%=32 800(元),36 000>35 200>32 800,即先按方案一购买100张课桌,同时送100把椅子,再按方案二购买200把椅子最省钱。
北师大版七年级上册数学第三章整式及其加减含答案一、单选题(共15题,共计45分)1、已知5x=3,5y=2,则52x﹣3y=()A. B.1 C. D.2、下列运算正确的是A.2m 2+m 2=3m 4B.(mn 2) 2=mn 4C.2m·4m²=8m²D.m 5÷m 3=m 23、已知a+b=7,ab=10,则代数式(5ab+4a+7b)+(3a-4ab)的值为( )A.49B.59C.77D.1394、有这样一种算法,对于输入的任意一个实数,都进行“先乘以,再加3”的运算。
现在输入一个x=4,通过第1次运算的结果为x1,再把x1输入进行第2次同样的运算,得到的运算结果为x2,…,一直这样运算下去,当运算次数不断增加时,运算结果xn()A.越来越接近4B.越来越接近于-2C.越来越接近2D.不会越来越接近于一个固定的数5、下列式子中,不是整式的是()A. B. +b C. D.4y6、计算正确的是()A.(-5) 0=0B. x2+ x3= x5C.( ab2) 3= a2b5D.2 a 2· a-1=2 a7、观察下列算式:根据上述算式中的规律,你认为的个位数字是()A.2B.4C.6D.88、已知a,b,c是三角形的三条边,则|a+b﹣c|﹣|c﹣a﹣b|的化简结果为()A.0B.2a+2bC.2cD.2a+2b﹣2c9、在﹣3,0,2x,,,, a2﹣3ab+b2这些代数式中,整式的个数为()A.2个B.3个C.4个D.5个10、如果的积中不含x的一次项,则m的值为()A.7B.8C.9D.1011、下列计算正确的是()A. 2a+5a=7aB. 2x﹣x=1C. 3+a=3aD. x2•x3=x612、多项式x5y2+2x4y3﹣3x2y2﹣4xy是()A.按x的升幂排列B.按x的降幂排列C.按y的升幂排列D.按y的降幂排列13、如果代数式的值为,那么()A. B. C. D.14、下列运算正确的是()A. B. C. D.15、当x=2时,下列代数式中与代数式2x+1的值相等的是()A.1-x 2B.3x+1C.3x-x 2D.x 2+1二、填空题(共10题,共计30分)16、某通信公司的移动电话计费标准每分钟降低a元后,再下调了20%,现在收费标准是每分钟b元,则原来收费标准每分钟是________元.17、(x+y)2可以解释为________。
北师大版数学七年级上册第三章《整式及其加减》综合检测卷 班级 座号 姓名 成绩一、选择题(本大题8小题,每小题3分,共24分.)在每小题列出的四个选项中,只有一个是正确的.1.下列代数式 a ,-2ab ,x +y ,x 2+y 2,-1,2312ab c 中,单项式共有( ) A .6个 B .5 个 C .4 个 D .3个2.下列各式,符合代数式书写格式的是( )A .(a +b )÷cB .a -b cmC .113x D .43x 3.现有四种说法:①-a 表示负数;②若|x |=-x ,则x <0;③绝对值最小的有理数是0;④3×102x 2y 是5次单项式.其中正确的是( )A .①B .②C .③D .④4.计算-a 2+3a 2的结果为( )A .2a 2B .-2a 2C .4a 2D .-4a 25.下列各式中,去括号正确的是( )A .x 2-(2y -x +z )=x 2-2y -x +zB .2a +(-6x +4y -2)=2a -6x +4y -2C .3a -[6a -(4a -1)]=3a -6a -4a +1D .-(2x 2-y )+(z -1)=-2x 2-y -z -16.若-x 3y m 与x n y 是同类项,则m +n 的值为( )A .1B .2C .3D .47.如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如4如如如如如如4如如如如如如如如如如如如如如如如如如如如如如如如如如 如A .17段B .32段C .33段D .34段8.已知有理数a ,b ,c 在数轴上所对应点的位置如图所示,化简代数式a a b c a b c +++---的结果是( )A .-3aB .2c -aC .2a -2bD .b 二、填空题(本大题7小题,每小题4分,共28分.)请将下列各题的正确答案填在该题的横线上. 第8题图 第7题图9.单项式225xy -的系数是 ,次数是 . 10.买单价a 元/支的体温计n 支,付费b 元,则应找回的钱数是 .11.若x +y =4,a ,b 互为倒数,则12(x +y )+5ab 的值是 . 12.若A +(a +b 2-c )=a +c ,则A 为 .13.若合并多项式3x 2-2x +m -x -mx +1中的同类项后,得到的多项式中不含x 的一次项,则m 的值为________.14.对于有理数a ,b ,定义a *b =3a +2b ,化简:(x+y )*(x -y )= .15.一列单项式:-x 2,3x 3,-5x 4,7x 5,…,按此规律排列,则第7个单项式为________.三、解答题(本大题4小题,16、17题每小题10分,18、19题每小题14分,共48分.)解答过程应写出文字说明、推理过程及演算步骤.16.先化简,再求值:(6a 2-6ab -12b 2)-3(2a 2-4b 2),其中a =-12,b =-8.17.已知A =x -2y ,B =-x -4y +1.(1)求2(A +B )-(2A -B )的值(结果用含x ,y 的代数式表示);(2)当12x +与y 2互为相反数时,求(1)中代数式的值.18.如图,一个点从数轴上的原点开始,先向左移动 2 cm 到达A 点,再向左移动3 cm 到达B 点,然后向右移动9 cm 到达C 点.(1)用1个单位长度表示1 cm ,请你在数轴上表示出A ,B ,C 三点的位置;(2)把点C 到点A 的距离记作CA ,则CA = cm ;(3)若点B以每秒2 cm的速度向左移动,同时A,C点分别以每秒1 cm,4 cm的速度向右移动,设移动时间为t秒,试探索CA-AB的值是否会随着t的变化而改变.请说明理由.19.下图的数阵是由全体奇数排成:(1)图中平行四边形框内的九个数之和与中间的数有什么关系?(2)在数阵图中任意作一类似(1)中的平行四边形框,这九个数之和还有这种规律吗?请说出理由;(3)这九个数之和能等于1998吗?2005,1017呢?若能,请写出这九个数中最小的一个;若不能,请说出理由.参考答案一、选择题:1.C 2.D 3.C 4.A 5.B 6.D 7.A 8.A二、填空题:9.25-,3 10.(b -na )元 11.7 12.2c -b 2 13.-3 14.5x +y 15.-13x 8三、解答题:16.原式=6a 2-6ab -12b 2-6a 2+12b 2=-6ab ,当a =-12,b =-8时,原式=-6×1()2-×(-8)=-24 17.(1)原式=2A +2B -2A +B =3B =3(-x -4y +1)=-3x -12y +3;(2)∵12x +与y 2互为相反数, ∴12x ++y 2=0, ∴x +12=0,y 2=0, ∴x =-12,y =0, ∴2(A +B )-(2A -B )=-3×1()2--12×0+3=92 18.(1)图略;(2)CA =4-(-2)=4+2=6(cm);(3)不变.理由: 当移动t 秒时,点A ,B ,C 分别表示的数为-2+t ,-5-2t ,4+4t , 则CA =(4+4t )-(-2+t )=6+3t ,AB =(-2+t )-(-5-2t )=3+3t ,∵CA -AB =(6+3t )-(3+3t )=3, ∴CA -AB 的值不会随着t 的变化而改变 19.(1)平行四边形框内的九个数之和是中间的数的9倍;(2)规律仍然成立.设框中间的数为n ,这九个数按大小顺序依次为:(n -18),(n -16),(n -14),(n -2),n ,(n +2),(n+14),(n +16),(n +18),和为9n ;(3)这九个数之和不能为1998.若和为1998,则9n =1998,n =222,是偶数,则不在数阵中.这九个数之和也不能为2005,因为2005不能被9整除;若和为1017,则中间数可能为113,最小的数为113-16-2=95.。
《第3章 整式及其加减》一、单选题1.用若干张大小相同的黑白两种颜色的正方形纸片,按下列拼图的规律拼成一列图案,则第6个图案中黑色正方形纸片的张数是( )A .22B .21C .20D .192.小明同学在上楼梯时发现:若只有一个台阶时,有一种走法;若有二个台阶时,可以一阶一阶地上,或者一步上二个台阶,共有两种走法;如果他一步只能上一个或者两个台阶,根据上述规律,有三个台阶时,他有三种走法,那么有四个台阶时,共有( )种走法. A .3 B .4C .5D .63.将1、2、3、4、5、6这六个数字分别填入每个小方格中,如果要求每行、每列及每个对角线隔成的2×3方格内部都没有重复数字,则“▲”处填入的数字是( )A .5B .4C .3D .24.一列数a 1,a 2,a 3,…,其中a 1=,a n =(n 为不小于2的整数),则a 4的值为( )A .B .C .D .5.古希腊著名的毕达哥拉斯学派把1,3,6,10 …这样的数称为“三角形数”,而把1,4,9,16 …这样的数称为“正方数”. 从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )A .20=6+14B .25=9+16C .36=16+20D .49=21+286.已知整式的值为6,则2x2﹣5x+6的值为()A.9 B.12 C.18 D.247.将正偶数按下表排成5列:根据上面的排列规律,则2000应在()A.第125行,第1列B.第125行,第2列C.第250行,第1列D.第250行,第2列8.请观察“杨辉三角”图,并根据数表中前五行的数字所反映的规律,推算出第九行正中间的数应是()A.58 B.70 C.84 D.1269.观察下列各式:(1)1=12;(2)2+3+4=32;(3)3+4+5+6+7=52;(4)4+5+6+7+8+9+10=72;…请你根据观察得到的规律判断下列各式正确的是()A.1005+1006+1007+…+3016=20112B.1005+1006+1007+…+3017=20112C.1006+1007+1008+…+3016=20112D.1007+1008+1009+…+3017=2011210.计算2m2n﹣3m2n的结果为()A.﹣1 B.﹣ C.﹣m2n D.﹣6m4n2二、填空题11.一个自然数的立方,可以分裂成若干个连续奇数的和.例如:23,33和43分别可以按如图所示的方式“分裂”成2个、3个和4个连续奇数的和,即23=3+5;33=7+9+11;43=13+15+17+19;…;若63也按照此规律来进行“分裂”,则63“分裂”出的奇数中,最大的奇数是.12.若a2+a=0,则2a2+2a+2013= .13.如图是与杨辉三角有类似性质的﹣三角形数垒,a、b、c、d是相邻两行的前四个数(如图所示),那么当a=8时,c= ,d= .14.已知a与l﹣2b互为相反数,则代数式2a﹣4b﹣3的值是.15.观察下列各式:(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1,根据前面各式的规律可得(x﹣1)(x n+x n﹣1+…+x+1)= (其中n为正整数).16.在2001、2002、…、2010这10个数中,不能表示成两个平方数差的数有个.17.对整数按以下方法进行加密:每个数位上的数字变为与7乘积的个位数字,再把每个数位上的数字a变为10﹣a.如果一个数按照上面的方法加密后为473392,则该数为.18.若x2﹣3x+1=0,则的值为.19.有若干张如图所示的正方形A类、B类卡片和长方形C类卡片,如果要拼成一个长为(3a+b),宽为(a+2b)的大长方形,则需要C类卡片张.20.若:A32=3×2=6,A53=5×4×3=60,A54=5×4×3×2=120,A64=6×5×4×3=360,…,观察前面计算过程,寻找计算规律计算A 73= (直接写出计算结果),并比较A103A104(填“>”或“<”或“=”)三、解答题21.研究下列算式,你会发现有什么规律? ①13=12 ②13+23=32 ③13+23+33=62 ④13+23+33+43=102 ⑤13+23+33+43+53=152…(1)根据以上算式的规律,请你写出第⑥个算式; (2)用含n (n 为正整数)的式子表示第n 个算式; (3)请用上述规律计算:73+83+93+ (203)22.图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面﹣层有一个圆圈,以下各层均比上﹣层多一个圆圈,一共堆了n 层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+…+n=.如果图1中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是 ;(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数﹣23,﹣22,﹣21,…,求图4中所有圆圈中各数的绝对值之和.23.如图,学校准备新建一个长度为L 的读书长廊,并准备用若干块带有花纹和没有花纹的两种规格大小相同的正方形地面砖搭配在一起,按图中所示的规律拼成图案铺满长廊,已知每个小正方形地面砖的边长均为0.3m .(1)按图示规律,第一图案的长度L 1= ;第二个图案的长度L 2= ; (2)请用代数式表示带有花纹的地面砖块数n 与走廊的长度L n (m )之间的关系; (2)当走廊的长度L 为30.3m 时,请计算出所需带有花纹图案的瓷砖的块数.24.在计算1+4+7+10+13+16+19+22+25+28时,我们发现,从第一个数开始,后面的每个数与它的前面一个数的差都是一个相等的常数,具有这种规律的一列数,除了直接相加外,我们还可以用下列公式来求和S,S=(其中n表示数的个数,a1表示第一个数,an表示最后一个数),所以1+4+7+10+13+16+19+22+25+28==145.用上面的知识解答下面问题:某公司对外招商承包一分公司,符合条件的两企业A、B分别拟定上缴利润方案如下:A:每年结算一次上缴利润,第一年上缴1.5万元,以后每年比前一年增加1万元:B:每半年结算一次上缴利润,第一个半年上缴0.3万元,以后每半年比前半年增加0.3万元.(1)如果承包期限为4年,请你通过计算,判断哪家企业上缴利润的总金额多?(2)如果承包期限为n年,试用n的代数式分别表示两企业上缴利润的总金额.(单位:万元)25.2(3x2﹣2xy+4y2)﹣3(2x2﹣xy+2y2)其中x=2,y=1.26.有足够多的长方形和正方形卡片,如下图:(1)如果选取1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠无缝隙),请画出这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义.这个长方形的代数意义是.(2)小明想用类似方法解释多项式乘法(a+3b)(2a+b)=2a2+7ab+3b2,那么需用2号卡片张,3号卡片张.27.化简,求值①3(x2﹣2xy)﹣[3x2﹣2y﹣2(3xy+y)]②已知A=3a2+b2﹣5ab,B=2ab﹣3b2+4a2,先求﹣B+2A,并求当a=﹣,b=2时,﹣B+2A的值.28.某商场将进货价为30元的台灯以40元的销售价售出,平均每月能售出600个.市场调研表明:当销售价每上涨1元时,其销售量就将减少10个.若设每个台灯的销售价上涨a元.(1)试用含a的代数式填空:①涨价后,每个台灯的销售价为元;②涨价后,每个台灯的利润为元;③涨价后,商场的台灯平均每月的销售量为台.(2)如果商场要想销售利润平均每月达到10000元,商场经理甲说“在原售价每台40元的基础上再上涨40元,可以完成任务”,商场经理乙说“不用涨那么多,在原售价每台40元的基础上再上涨10元就可以了”,试判断经理甲与乙的说法是否正确,并说明理由.29.(1)拼一拼,画一画:请你用4个长为a,宽为b的矩形拼成一个大正方形,并且正中间留下一个洞,这个洞恰好是一个小正方形.(2)用不同方法计算中间的小正方形的面积,聪明的你能发现什么?(3)当拼成的这个大正方形边长比中间小正方形边长多3cm时,它的面积就多24cm2,求中间小正方形的边长.30.下图的数阵是由全体奇数排成:(1)图中平行四边形框内的九个数之和与中间的数有什么关系?(2)在数阵图中任意作一类似(1)中的平行四边形框,这九个数之和还有这种规律吗?请说出理由;(3)这九个数之和能等于1998吗?2005,1017呢?若能,请写出这九个数中最小的一个;若不能,请说出理由.《第3章整式及其加减》参考答案与试题解析一、单选题1.用若干张大小相同的黑白两种颜色的正方形纸片,按下列拼图的规律拼成一列图案,则第6个图案中黑色正方形纸片的张数是()A.22 B.21 C.20 D.19【考点】规律型:图形的变化类.【专题】规律型.【分析】观察图形,发现:黑色纸片在4的基础上,依次多3个;根据其中的规律,用字母表示即可.【解答】解:第个图案中有黑色纸片3×1+1=4张第2个图案中有黑色纸片3×2+1=7张,第3图案中有黑色纸片3×3+1=10张,…第n个图案中有黑色纸片=3n+1张.当n=6时,3n+1=3×6+1=19故选D.【点评】此题主要考查学生对图形的变化类的知识点的理解和掌握,此题的关键是注意发现前后图形中的数量之间的关系.2.小明同学在上楼梯时发现:若只有一个台阶时,有一种走法;若有二个台阶时,可以一阶一阶地上,或者一步上二个台阶,共有两种走法;如果他一步只能上一个或者两个台阶,根据上述规律,有三个台阶时,他有三种走法,那么有四个台阶时,共有()种走法.A.3 B.4 C.5 D.6【考点】规律型:数字的变化类.【分析】根据题意可知:当有四个台阶时,可分情况讨论:①逐级上,那么有一种走法;②上一个台阶和上二个台阶合用,那么有共三种走法;③一步走两个台阶,只有一种走法;所以可求得有五种走法.注意分类讨论思想的应用.【解答】解:当有四个台阶时,可分情况讨论:①逐级上,那么有一种走法;②上一个台阶和上二个台阶合用,那么有: 1、1、2;1、2、1;2、1、1; 共三种走法;③一步走两个台阶,只有一种走法:2、2; 综上可知:共5种走法. 故选C .【点评】本题属规律性题目,解答此题的关键是根据所给的条件,列举出可能走的方法解答.3.将1、2、3、4、5、6这六个数字分别填入每个小方格中,如果要求每行、每列及每个对角线隔成的2×3方格内部都没有重复数字,则“▲”处填入的数字是( )A .5B .4C .3D .2【考点】规律型:数字的变化类. 【专题】规律型.【分析】由第五行和第五列可以知道三角内不可以填2,6,3,4,再综合其他的即可得出答案. 【解答】解:由第五行和第五列可以知道三角内不可填2,6,3,4, 因为第六行和第六列都有一个1所以第六行和第五列都不能填1,即三角的左边应填1.第五行和第六列都有4,所以可知第六行第五列填4. 即三角内填2或5.因为三角的左边是1,第五列又有一个1,所以三角上边的那个大格的第六列就是1. 因为第四行有一个2,所以第三行,第四列填2.所以第四行,第四列 或第四行第五列有一个填5,故三角内不能 填5. 故:答案选D .【点评】此题主要考试的是同学们的逻辑思维和对图形的观察能力.4.一列数a 1,a 2,a 3,…,其中a 1=,a n =(n 为不小于2的整数),则a 4的值为( )A .B .C .D .【考点】规律型:数字的变化类. 【专题】探究型.【分析】将a 1=代入a n =得到a 2的值,将a 2的值代入,a n =得到a 3的值,将a 3的值代入,a n =得到a 4的值.【解答】解:将a 1=代入a n =得到a 2==,将a 2=代入a n =得到a 3==,将a 3=代入a n =得到a 4==.故选A .【点评】本题考查了数列的变化规律,重点强调了后项与前项的关系,能理解通项公式并根据通项公式算出具体数.5.古希腊著名的毕达哥拉斯学派把1,3,6,10 …这样的数称为“三角形数”,而把1,4,9,16 …这样的数称为“正方数”. 从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )A .20=6+14B .25=9+16C .36=16+20D .49=21+28 【考点】规律型:数字的变化类. 【专题】压轴题;规律型.【分析】本题考查探究、归纳的数学思想方法.题中明确指出:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为n (n+1)和(n+1)(n+2),所以由正方形数可以推得n 的值,然后求得三角形数的值.【解答】解:根据规律:正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为n (n+1)和(n+1)(n+2),只有D、49=21+28符合,故选D.【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.6.已知整式的值为6,则2x2﹣5x+6的值为()A.9 B.12 C.18 D.24【考点】代数式求值.【专题】压轴题;整体思想.【分析】观察题中的两个代数式,可以发现,2x2﹣5x=2(),因此可整体求出式的值,然后整体代入即可求出所求的结果.【解答】解:∵ =6∴2x2﹣5x+6=2()+6=2×6+6=18,故选C.【点评】代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式的值,然后利用“整体代入法”求代数式的值.7.将正偶数按下表排成5列:根据上面的排列规律,则2000应在()A.第125行,第1列B.第125行,第2列C.第250行,第1列D.第250行,第2列【考点】规律型:数字的变化类.【分析】根据题意得到每一行是4个偶数,奇数行从第2列往后排,偶数行从第4列往前排,然后用2000除以2得到2000是第1000个偶数,再用1000÷4得250,于是可判断2000在第几行第几列.【解答】解:因为2000÷2=1000,所以2000是第1000个偶数,而1000÷4=250,第1000个偶数是250行最大的一个,偶数行的数从第4列开始向前面排,所以第1000个偶数在第1列,所以2000应在第250行第一列.答:在第250行第1列.故选:C.【点评】本题考查了关于数字的变化规律:先要观察各行各列的数字的特点,得出数字排列的规律,然后确定所给数字的位置.8.请观察“杨辉三角”图,并根据数表中前五行的数字所反映的规律,推算出第九行正中间的数应是()A.58 B.70 C.84 D.126【考点】规律型:数字的变化类.【专题】规律型.【分析】第一行有1个数,第二行有2个数,那么第9行就有9个数,偶数行中间的两个数是相等的.第九行正中间的数应是第九行的第5个数.应该=第8行第4个数+第8行第5个数=2×第8行第4个数=2×(第7行第3个数+第7行第4个数)=2×[(第6行第2个数+第6行第3个数)+(第6行第3个数+第6行第4个数)]=2×(第6行第2个数+2第6行第3个数+第6行第4个数)=2×[5+2×(第5行第2个数+第5行第3个数)+(第5行第3个数+第5行第4个数)]=2×[5+2×(4+6)+6+4]=70.【解答】解:2×[5+2×(4+6)+6+4]=70.故选B.【点评】杨辉三角最本质的特征是:它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两个数之和.9.观察下列各式:(1)1=12;(2)2+3+4=32;(3)3+4+5+6+7=52;(4)4+5+6+7+8+9+10=72;…请你根据观察得到的规律判断下列各式正确的是()A.1005+1006+1007+…+3016=20112B.1005+1006+1007+…+3017=20112C.1006+1007+1008+…+3016=20112D.1007+1008+1009+…+3017=20112【考点】规律型:数字的变化类.【专题】应用题.【分析】根据已知条件找出数字规律:第n个等式是n+(n+1)+(n+2)+…+(n+2n﹣2)=(2n﹣1)2,其中n为正整数,依次判断各个式子即可得出结果.【解答】解:根据(1)1=12;(2)2+3+4=32;(3)3+4+5+6+7=52;(4)4+5+6+7+8+9+10=7×7可得出:n+(n+1)+(n+2)+…+(n+2n﹣2)=(2n﹣1)2,依次判断各选项,只有C符合要求,故选C.【点评】本题主要考查了根据已知条件寻找数字规律,难度适中.10.计算2m2n﹣3m2n的结果为()A.﹣1 B.﹣ C.﹣m2n D.﹣6m4n2【考点】合并同类项.【专题】计算题.【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变计算即可.【解答】解:2m2n﹣3m2n=(2﹣3)m2n=﹣m2n.故选C.【点评】本题考查了合并同类项的法则,解题时牢记法则是关键,此题比较简单,易于掌握.二、填空题11.一个自然数的立方,可以分裂成若干个连续奇数的和.例如:23,33和43分别可以按如图所示的方式“分裂”成2个、3个和4个连续奇数的和,即23=3+5;33=7+9+11;43=13+15+17+19;…;若63也按照此规律来进行“分裂”,则63“分裂”出的奇数中,最大的奇数是41 .【考点】规律型:数字的变化类.【专题】压轴题;规律型.【分析】首先发现奇数的个数与前面的底数相同,再得出每一组分裂中的第一个数是底数×(底数﹣1)+1,问题得以解决.【解答】解:由23=3+5,分裂中的第一个数是:3=2×1+1,33=7+9+11,分裂中的第一个数是:7=3×2+1,43=13+15+17+19,分裂中的第一个数是:13=4×3+1,53=21+23+25+27+29,分裂中的第一个数是:21=5×4+1,63=31+33+35+37+39+41,分裂中的第一个数是:31=6×5+1,所以63“分裂”出的奇数中最大的是6×5+1+2×(6﹣1)=41.故答案为:41.【点评】本题是对数字变化规律的考查,找出分裂的第一个数的变化规律是解题的关键,也是求解的突破口.12.若a2+a=0,则2a2+2a+2013= 2013 .【考点】代数式求值.【专题】计算题.【分析】把代数式化为2(a2+a)+2013,把a2+a=0代入求出即可.【解答】解:∵a2+a=0,∴2a2+2a+2013=2(a2+a)+2013=2×0+2013=2013.故答案为:2013.【点评】本题考查了求代数式的值的应用,注意:把a2+a当作一个整体进行代入,题目比较典型,难度也不大.13.如图是与杨辉三角有类似性质的﹣三角形数垒,a、b、c、d是相邻两行的前四个数(如图所示),那么当a=8时,c= 9 ,d= 37 .【考点】规律型:数字的变化类.【专题】压轴题;图表型.【分析】观察发现:第n行的第一个数和行数相等,第二个数是1+1+2+…+n﹣1=+1.所以当a=8时,则c=9,d=9×4+1=37.【解答】解:当a=8时,c=9,d=9×4+1=37.【点评】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.此题要根据已知的数据发现各行的第一个数和第二个数的规律.14.已知a与l﹣2b互为相反数,则代数式2a﹣4b﹣3的值是﹣5 .【考点】相反数;代数式求值.【专题】整体思想.【分析】根据相反数的意义得出a+1﹣2b=0,求出a﹣2b的值,变形后代入即可.【解答】解:∵a与l﹣2b互为相反数,∴a+1﹣2b=0,∴a﹣2b=﹣1,∴2a﹣4b﹣3=2(a﹣2b)﹣3=2×(﹣1)﹣3=﹣5.故答案为:﹣5.【点评】本题考查了相反数的意义和代数式求值的应用,根据相反数的意义求出a+2b的值,把a+2b当作一个整体,即整体思想的应用.15.观察下列各式:(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1,根据前面各式的规律可得(x﹣1)(x n+x n﹣1+…+x+1)= x n+1﹣1 (其中n为正整数).【考点】平方差公式.【专题】压轴题;规律型.【分析】观察其右边的结果:第一个是x2﹣1;第二个是x3﹣1;…依此类推,则第n个的结果即可求得.【解答】解:(x﹣1)(x n+x n﹣1+…x+1)=x n+1﹣1.故答案为:x n+1﹣1.【点评】本题考查了平方差公式,发现规律:右边x的指数正好比前边x的最高指数大1是解题的关键.16.在2001、2002、…、2010这10个数中,不能表示成两个平方数差的数有 3 个.【考点】完全平方数.【专题】创新题型.【分析】首先将符合条件的整数分解成两整数的和与这两整数的差的积,再由整数的奇偶性,判断这个符合条件的整数,是奇数或是能被4整除的数,从而找出符合条件的整数的个数.在2001、2002、…、2010这10个数中,奇数有5个,能被4整除的有2个,所以不能表示成两个平方数差的数有10﹣5﹣2=3个.【解答】解:对x=n2﹣m2=(n+m)(n﹣m),(m<n,m,n为整数)因为n+m与n﹣m同奇同偶,所以x是奇数或是4的倍数,在2001、2002、…、2010这10个数中,奇数有5个,能被4整除的数有2个,所以能表示成两个平方数差的数有5+2=7个,则不能表示成两个平方数差的数有10﹣7=3个.故答案为:3.【点评】本题考查了平方差公式的实际运用,使学生体会到平方差公式在判断数的性质方面的作用.17.对整数按以下方法进行加密:每个数位上的数字变为与7乘积的个位数字,再把每个数位上的数字a变为10﹣a.如果一个数按照上面的方法加密后为473392,则该数为891134 .【考点】数的十进制.【专题】数字问题;新定义.【分析】根据题意算出从0到9加密后对应的数字,根据所给加密后的数字可得原数.【解答】解:对于任意一个数位数字(0﹣9),经加密后对应的数字是唯一的.规律如下:例如数字4,4与7相乘的末位数字是8,再把8变2,也就是说4对应的是2;同理可得:1对应3,2对应6,3对应9,4对应2,5对应5,6对应8,7对应1,8对应4,9对应7,0对应0;∴如果加密后的数为473392,那么原数是891134,故答案为891134.【点评】考查新定义后数字的规律;得到加密数字与原数字的对应规律是解决本题的关键.18.若x2﹣3x+1=0,则的值为.【考点】分式的化简求值.【专题】压轴题.【分析】将x2﹣3x+1=0变换成x2=3x﹣1代入逐步降低x的次数出现公因式,分子分母同时除以公因式.【解答】解:由已知x2﹣3x+1=0变换得x2=3x﹣1将x2=3x﹣1代入======故答案为.【点评】解本类题主要是将未知数的高次逐步降低,从而求解.代入时机比较灵活19.有若干张如图所示的正方形A类、B类卡片和长方形C类卡片,如果要拼成一个长为(3a+b),宽为(a+2b)的大长方形,则需要C类卡片7 张.【考点】多项式乘多项式.【分析】计算出长为(3a+b),宽为(a+2b)的大长方形的面积,再分别得出A、B、C卡片的面积,即可看出应当需要各类卡片多少张.【解答】解:长为(3a+b),宽为(a+2b)的大长方形的面积为:(3a+b)(a+2b)=3a2+2b2+7ab;A卡片的面积为:a×a=a2;B卡片的面积为:b×b=b2;C卡片的面积为:a×b=ab;因此可知,拼成一个长为(3a+b),宽为(a+2b)的大长方形,需要3块A卡片,2块B卡片和7块C卡片.故答案为:7.【点评】本题考查了多项式乘法,此题的立意较新颖,注意对此类问题的深入理解.20.若:A32=3×2=6,A53=5×4×3=60,A54=5×4×3×2=120,A64=6×5×4×3=360,…,观察前面计算过程,寻找计算规律计算A 73= 210 (直接写出计算结果),并比较A103<A104(填“>”或“<”或“=”)【考点】规律型:数字的变化类.【专题】压轴题;规律型.【分析】对于Aab(b<a)来讲,等于一个乘法算式,其中最大因数是a,依次少1,最小因数是a﹣b.依此计算即可.【解答】解:A73=7×6×5=210;∵A103=10×9×8=720,A104=10×9×8×7=5040.∴A103<A104.故答案为:210;<.【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.注意找到Aab(b<a)中的最大因数,最小因数.三、解答题21.研究下列算式,你会发现有什么规律?①13=12②13+23=32③13+23+33=62④13+23+33+43=102⑤13+23+33+43+53=152…(1)根据以上算式的规律,请你写出第⑥个算式;(2)用含n(n为正整数)的式子表示第n个算式;(3)请用上述规律计算:73+83+93+ (203)【考点】规律型:数字的变化类.【专题】规律型.【分析】(1)利用类比的方法得到第⑥个算式为 13+23+33+43+53+63=212;(2)同样利用类比的方法得到第n个算式为;(3)将73+83+93+…+203转化为(13+23+33+43+…+203)﹣(13+23+33+43+53+63)后代入总结的规律求解即可.【解答】解:(1)第⑥个算式为13+23+33+43+53+63=212;(2)第n个算式为;(3)73+83+93+…+203=(13+23+33+43+…+203)﹣(13+23+33+43+53+63)==44100﹣441=43659.【点评】本题考查了数字的变化类问题,仔细观察每个算式得到本题的通项公式是解决此题的关键.22.图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面﹣层有一个圆圈,以下各层均比上﹣层多一个圆圈,一共堆了n层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+…+n=.如果图1中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是;(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数﹣23,﹣22,﹣21,…,求图4中所有圆圈中各数的绝对值之和.【考点】规律型:数字的变化类.【专题】规律型.【分析】(1)12层时最底层最左边这个圆圈中的数是11层的数字之和再加1;(2)首先计算圆圈的个数,从而分析出23个负数后,又有多少个正数.【解答】解:(1)1+2+3+…+11+1=6×11+1=67;(2)图4中所有圆圈中共有1+2+3+…+12==78个数,其中23个负数,1个0,54个正数,所以图4中所有圆圈中各数的绝对值之和=|﹣23|+|﹣22|+…+|﹣1|+0+1+2+…+54=(1+2+3+…+23)+(1+2+3+…+54)=276+1485=1761.另解:第一层有一个数,第二层有两个数,同理第n层有n个数,故原题中1+2+.+11为11层数的个数即为第11层最后的圆圈中的数字,加上1即为12层的第一个数字.【点评】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.注意连续整数相加的时候的这种简便计算方法:1+2+3+…+n=.23.(2013秋•永州期末)如图,学校准备新建一个长度为L 的读书长廊,并准备用若干块带有花纹和没有花纹的两种规格大小相同的正方形地面砖搭配在一起,按图中所示的规律拼成图案铺满长廊,已知每个小正方形地面砖的边长均为0.3m .(1)按图示规律,第一图案的长度L 1= 0.9 ;第二个图案的长度L 2= 1.5 ;(2)请用代数式表示带有花纹的地面砖块数n 与走廊的长度L n (m )之间的关系;(2)当走廊的长度L 为30.3m 时,请计算出所需带有花纹图案的瓷砖的块数.【考点】规律型:图形的变化类.【专题】计算题.【分析】(1)观察题目中的已知图形,可得前两个图案中有花纹的地面砖分别有:1,2个,第二个图案比第一个图案多1个有花纹的地面砖,所以可得第n 个图案有花纹的地面砖有n 块;第一个图案边长3×0.3=L ,第二个图案边长5×0.3=L ,(2)由(1)得出则第n 个图案边长为L=(2n+1)×0.3;(3)根据(2)中的代数式,把L 为30.3m 代入求出n 的值即可.【解答】解:(1)第一图案的长度L 1=0.3×3=0.9,第二个图案的长度L 2=0.3×5=1.5;故答案为:0.9,1.5;(2)观察可得:第1个图案中有花纹的地面砖有1块,第2个图案中有花纹的地面砖有2块,… 故第n 个图案中有花纹的地面砖有n 块;第一个图案边长L=3×0.3,第二个图案边长L=5×0.3,则第n 个图案边长为L=(2n+1)×0.3;(3)把L=30.3代入L=(2n+1)×0.3中得:30.3=(2n+1)×0.3,解得:n=50,答:需要50个有花纹的图案.【点评】此题考查了平面图形的有规律变化,以及一元一次方程的应用,要求学生通过观察图形,分析、归纳发现其中的规律,并应用规律解决问题.24.在计算1+4+7+10+13+16+19+22+25+28时,我们发现,从第一个数开始,后面的每个数与它的前面一个数的差都是一个相等的常数,具有这种规律的一列数,除了直接相加外,我们还可以用下列公式来求和S,S=(其中n表示数的个数,a1表示第一个数,an表示最后一个数),所以1+4+7+10+13+16+19+22+25+28==145.用上面的知识解答下面问题:某公司对外招商承包一分公司,符合条件的两企业A、B分别拟定上缴利润方案如下:A:每年结算一次上缴利润,第一年上缴1.5万元,以后每年比前一年增加1万元:B:每半年结算一次上缴利润,第一个半年上缴0.3万元,以后每半年比前半年增加0.3万元.(1)如果承包期限为4年,请你通过计算,判断哪家企业上缴利润的总金额多?(2)如果承包期限为n年,试用n的代数式分别表示两企业上缴利润的总金额.(单位:万元)【考点】列代数式;有理数的混合运算.【专题】应用题.【分析】(1)根据两企业的利润方案计算即可;(2)归纳总结,根据题意列出两企业上缴利润的总金额即可.【解答】解:(1)根据题意得:企业A,4年上缴的利润总金额为1.5+(1.5+1)+(1.5+2)+(1.5+3)=12(万元);企业B,4年上缴的利润总金额为0.3+(0.3+0.3)+(0.3+0.6)+(0.3+0.9)+(0.3+1.2)+(0.3+1.5)+(0.3+1.8)+(0.3+2.1)=2.4+8.4=10.8(万元),∵12>10.8,∴企业A上缴利润的总金额多;(2)根据题意得:企业A,n年上缴的利润总金额为1.5n+(1+2+…+n﹣1)=1.5n+=1.5n+=(万元);企业B,n年上缴的利润总金额为0.6n+[0.3+0.6+…+0.3(2n﹣1)]=0.6n+=0.6n+0.3n(2n﹣1)=0.6n2+0.3n(万元).【点评】此题考查了有理数加法运算的应用,属于规律型试题,弄清题意是解本题的关键.25.2(3x2﹣2xy+4y2)﹣3(2x2﹣xy+2y2)其中x=2,y=1.【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=6x2﹣4xy+8y2﹣6x2+3xy﹣6y2=﹣xy+2y2,当x=2,y=1时,原式=﹣2+2=0.。
第三章整式及其加减数学七年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、下列语句正确的是()A.﹣b 2的系数是1,次数是2B.2a+b是二次二项式C.多项式a 2+ab﹣1是按照a的降幂排列D. 的系数是2,次数是32、下列运算正确的是()A. B. C. D.3、下列运算中,正确的是()A.x 2y﹣yx 2=0B.2x 2+x 2=3x 4C.4x+y=4xyD.2x﹣x=14、在下列代数式中,次数为3的单项式是( )A.x 3+y 3B.xy 2C.x 3yD.3xy5、若抛物线y=x2-2x+m的最低点的纵坐标为n,则m-n的值是()A.-1B.C.1D.26、某商场举办促销活动,促销的方法是将原价x元的衣服以(x﹣10)元出售,则下列说法中,能正确反映该商场的促销方法的是()A.原价打8折后再减10元B.原价减10元后再打8折C.原价减10元后再打2折D.原价打2折后再减10元7、今年市场上荔枝的价格比去年便宜了5%,去年的价格是每kgm元,则今年的价格是每kg()元A.5%mB.m-5%C.(1+5%)mD.(1-5%)m8、下列计算正确是()A. B. C. D.9、下列运算结果正确是( )A.a 2+a 3=a 5B.a 3÷a 2=aC.a 2•a 3=a 6D.(a 2) 3=a 510、已知一个多项式与3x2+9x的和等于3x2+4x-1,则此多项式是( )A.-6x 2-5x-1B.-5x-1C.-6x 2+5x+1D.-5x+111、若单项式与的和仍是单项式,则的值分别为()A.4B.7C.8D.912、下面选项中符合代数式书写要求的是 ( )A. y 2B.ay·3C.D.a×b+c13、下面计算正确的是()A. B. C. D.14、下列运算中,结果正确的是()A.2a+3b=5abB.a 2•a 3=a 6C.(a+b)2=a 2+b 2D.2a﹣(a+b)=a﹣b15、下列去括号正确的是().A. x 2−(x−3y)=x 2−x−3yB. x 2−3(y 2−2xy)=x 2−3y 2+2xyC. m 2−4(m−1)=m 2−4m+4D. a 2−2(a−3)=a 2+2a−6二、填空题(共10题,共计30分)16、如图,古希腊人常用小石子在沙滩上摆成各种形状来研究数.例如:称图中的数1,5,12,22…为五边形数,则第6个五边形数是________.17、在劳技课上莹莹用一根铁丝正好围成一个长方形,若此长方形的一边长为cm,另一边比这条边长cm,则这根铁丝的长为________cm.18、如图,在直角坐标系中,已知点、,对连续作旋转变换,依次得到,则的直角顶点的坐标为________.19、请写出一个单项式,同时满足下列条件:①含有字母x、y;②系数是负整数;③次数是4,你写的单项式为________.20、若多项式是关于x,y的三次多项式,则________.21、若单项式2x m+4y3与x3y3的和是单项式,则常数m的值是________22、已知(a﹣1)2+|b+1|=0,则代数式2a2+4b+2018值是________ .23、若5x6y2m与-3x n+9y6和是单项式,那么n-m的值为________.24、化简|π﹣4|+|3﹣π|=________.25、已知代数式2x-3y的值是3,则5-2x+3y的值是________.三、解答题(共5题,共计25分)26、,,且,,,求的值.(注意:先化简再代值)27、已知多项式﹣3x3y|m+1|+xy3+(n﹣2)x2y2﹣4是六次三项式,求(m+1)2n﹣3的值.28、三角形的第一边长为3a+2b,第二边比第一边长a﹣b,第三边比第二边短2a.请用a、b式子分别表示第二边和第三边,并求这个三角形的周长(最后结果都要求最简)29、先化简,再求值:,其中x= .30、已知a-2b=3.求9-2a+4b的值.参考答案一、单选题(共15题,共计45分)1、C2、B3、A4、B5、C6、A7、D8、C9、B10、B11、B12、C13、B14、D15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。
单元测试(三) 整式及其加减
(时间:120分钟 满分:150分)
一、选择题(本大题共15小题,每小题3分,共45分)
1.下列各式中不是单项式的是( )
A .-a 3
B .-15
C .0
D .-3a
2.单项式-3xy 2z 3的系数是( )
A .-1
B .5
C .6
D .-3
3.某班数学兴趣小组共有a 人,其中女生占30%,那么女生人数是( )
A .30%a
B .(1-30%)a
C.a 30%
D.a 1-30%
4.下列各组式子中,为同类项的是( )
A .5x 2y 与-2xy 2
B .4x 与4x 2
C .-3xy 与32yx
D .6x 3y 4与-6x 3z 4
5.当a =-1,b =2时,代数式a 2b 的值是( )
A .-2
B .1
C .2
D .-1
6.列式表示“比m 的平方的3倍大1的数”是( )
A .(3m )2+1
B .3m 2+1
C .3(m +1)2
D .(3m +1)2
7.若m ,n 为自然数,多项式x m +y n +4m +n 的次数应是( )
A .m
B .n
C .m ,n 中的较大数
D .m +n
8.化简2x -(x -y)-y 的结果是( )
A .3x
B .x
C .x -2y
D .2x -2y
9.(玉林中考)下列运算中,正确的是( )
A .3a +2b =5ab
B .2a 3+3a 2=5a 5
C .3a 2b -3ba 2=0
D .5a 2-4a 2=1
10.一个多项式减去x 2-2y 2等于x 2-2y 2,则这个多项式是( )
A .-2x 2+y 2
B .x 2-2y 2
C .2x 2-4y 2
D .-x 2+2y 2 11.下列判断错误的是( )
A .多项式5x 2-2x +4是二次三项式
B .单项式-a 2b 3c 4的系数是-1,次数是9
C .式子m +5,ab ,-2,s v 都是代数式
D .多项式与多项式的和一定是多项式
12.十位数字是x ,个位数字是y 的两位数是 ( )
A .xy
B .x +10y
C .x +y
D .10x +y
13.(厦门中考)某商店举办促销活动,促销的方法是将原价x 元的衣服以(45x -10)元出售,则下列说法中,能正确表
达该商店促销方法的是( )
A .原价减去10元后再打8折
B .原价打8折后再减去10元
C .原价减去10元后再打2折
D .原价打2折后再减去10元
14.(湘西中考)已知x -2y =3,则代数式6-2x +4y 的值为( )
A .0
B .-1
C .-3
D .3
15.下面一组按规律排列的数:0,2,8,26,80,…,则第2 016个数是( )
A .32 016
B .32 015
C .32 016-1
D .32 015-1
二、填空题(本大题共5小题,每小题5分,共25分)
16.去括号:-(3x -2)=________.
17.请你结合生活实际,设计具体情境,解释下列代数式30a 的意义:________________________________.
18.对于有理数a,b,定义a⊙b=3a+2b,则(x+y)⊙(x-y)化简后得________.19.当m=________时,代数式2x2+(m+2)xy-5x不含xy项.
20.若用围棋子摆出下列一组图形:
…
(1)(2)(3)
按照这种方法摆下去,第n个图形共用________枚棋子.
三、解答题(本大题共7小题,共80分)
21.(8分)化简下列各式:
(1)a+2b+3a-2b; (2)2(a-1)-(2a-3)+3.
22.(8分)先化简,再求值:(2m2-3mn+8)-(5mn-4m2+8),其中m=2,n=1.
23.(10分)如图所示:
(1) 用代数式表示阴影部分的面积;
(2) 当a=10,b=4时,求阴影部分的面积(π取3.14,结果精确到0.01).
24.(12分)已知a,b,c在数轴上的位置如图所示,求|b+c|-|a-b|-|c-b|的值.
25.(12分)已知长方形的一边长为2a+3b,另一边比它短(b-a),试计算此长方形的周长.
26.(14分)已知A=2a2+3ab-2a-1,B=-a2+ab-1.
(1)求3A+6B;
(2)若3A+6B的值与a的取值无关,求b的值.
27.(16分)某农户承包荒山若干亩,种果树2 000棵.今年水果总产量为18 000千克,此水果在市场上每千克售a 元,在果园每千克售b元(b<a).该农户将水果拉到市场出售平均每天出售1 000千克,需8人帮忙,每人每天付工资25元,农用车运费及其他各项税费平均每天100元.
(1)分别用a,b表示两种方式出售水果的收入;
(2)若a=1.3元,b=1.1元,且两种出售水果方式都在相同的时间内售完全部水果,请你通过计算说明选择哪种出售方式较好.
参考答案
1.D 2.D 3.A 4.C 5.C 6.B 7.C 8.B 9.C 10.C
11.D 12.D 13.B 14.A 15.D 16.-3x +2 17.某班级有a 名学生参加考试,30名学生成绩合格,则合格人数
占总人数的30a 18.5x +y 19.-2 20.3n 21.(1)原式=4a. (2)原式=4. 22.原式=2m 2-3mn +8-5mn +4m 2-8
=6m 2-8mn.当m =2,n =1时,原式=6×22
-8×2×1=8. 23.(1)ab -12πb 2.(2)当a =10,b =4时,ab -12πb 2≈10×4-12×3.14×42=14.88. 24.由图知:b +c >0,a -b <0,c -b >0,|b +c|-|a -b|-|c -b|=b +c -[-(a -b)]-(c -b)=b +c +a -b -c +b =a +b. 25.长方形的另一边长为3a +2b ,则周长为2[(2a +3b)+(3a +2b)]=2(5a +5b)=10a +10b. 26.(1)3A +6B =3(2a 2+3ab -2a -1)+6(-a 2+ab -1)=6a 2+9ab -6a -3-6a 2+6ab -6=15ab -6a -9.(2)
因为15ab -6a -9=a(15b -6)-9,且3A +6B 的值与a 的取值无关,所以15b =6,即b =25. 27.(1)将这批水果拉到
市场上出售收入为18 000a -18 0001 000×8×25-18 0001 000×100=18 000a -3 600-1 800=18 000a -5 400(元).在果园直
接出售收入为18 000b 元.(2)当a =1.3时,市场收入为18 000a -5 400=18 000×1.3-5 400=18 000(元).当b =
1.1时,果园收入为18 000b =18 000×1.1=19 800(元).因为18 000<19 800,所以应选择在果园出售.。