天津市武清区2017年中考数学模拟试卷有答案
- 格式:doc
- 大小:1.97 MB
- 文档页数:30
2017年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算(﹣3)+5的结果等于()A.2 B.﹣2 C.8 D.﹣82.(3分)cos60°的值等于()A.B.1 C.D.3.(3分)在一些美术字中,有的汉子是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A. B. C.D.4.(3分)据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为()A.0.1263×108B.1.263×107C.12.63×106D.126.3×1055.(3分)如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C. D.6.(3分)估计的值在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间7.(3分)计算的结果为()A.1 B.a C.a+1 D.8.(3分)方程组的解是()A.B.C.D.9.(3分)如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是()A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC10.(3分)若点A(﹣1,y1),B(1,y2),C(3,y3)在反比例函数y=﹣的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y311.(3分)如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD上一个动点,则下列线段的长度等于BP+EP最小值的是()A.BC B.CE C.AD D.AC12.(3分)已知抛物线y=x2﹣4x+3与x轴相交于点A,B(点A在点B左侧),顶点为M.平移该抛物线,使点M平移后的对应点M'落在x轴上,点B平移后的对应点B'落在y轴上,则平移后的抛物线解析式为()A.y=x2+2x+1 B.y=x2+2x﹣1 C.y=x2﹣2x+1 D.y=x2﹣2x﹣1二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算x7÷x4的结果等于.14.(3分)计算的结果等于.15.(3分)不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.16.(3分)若正比例函数y=kx(k是常数,k≠0)的图象经过第二、四象限,则k的值可以是(写出一个即可).17.(3分)如图,正方形ABCD和正方形EFCG的边长分别为3和1,点F,G分别在边BC,CD上,P为AE的中点,连接PG,则PG的长为.18.(3分)如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.(1)AB的长等于;(2)在△ABC的内部有一点P,满足S△PAB:S△PBC:S△PCA=1:2:3,请在如图所示的网格中,用无刻度...的直尺,画出点P,并简要说明点P的位置是如何找到的(不要求证明).三、解答题(本大题共7小题,共66分。
2017年天津市部分区初中毕业生学业考试第一次模拟练习数学参考答案一、选择题(本大题共12小题,每小题3分,共36分) (1)D (2)C (3)C (4)B (5)A (6)B (7)C(8)D(9)A(10)C(11)A(12)B二、填空题(本大题共6小题,每小题3分,共18分) (13)16(14)26x y (15)2(2)x - (16)21y x =-(答案不惟一,满足0≤b 即可)(171-(18);(Ⅱ)如图,作正方形ANMB ,取格点D ,P ,使得AD=5,AP=4,连接DN ,找到使PQ ∥DN 的格点Q ,连接PQ ,交AN 于点F ,同理找到点E ,连接EF ,则矩形AFEB 即为所求. 三、解答题(本大题共7小题,共66分) (19)(本小题8分)解:(Ⅰ)3x ≥-;…………………………………………………………………2' (Ⅱ)2x <; …………………………………………………………………4'(Ⅲ)6'(Ⅳ)32x -≤<; …………………………………………………………………8'(20)(本小题8分)解:(Ⅰ)25. ………………………………………………………………………1' (Ⅱ)观察条形统计图,∵ 1.503 1.556 1.604 1.655 1.7021.59x ⨯+⨯+⨯+⨯+⨯=≈,第(18)题∴ 这组数据的平均数约为1.59.……………………………………………3'∵ 在这组数据中,1.55出现了6次,出现的次数最多,∴ 这组数据的众数为1.55.…………………………………………………5'∵ 将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.60, 有1.60 1.601.602+=, ∴ 这组数据的中位数为1.60.………………………………………………7' (Ⅲ)不能. ……………………………………………………………………8' (21)(本小题10分)证明:(Ⅰ)如图,连接OB .………………………………………………………1' ∵AB 是⊙O 的切线,∴OB AE ⊥. …………………………………………………………………2' ∵CE AE ⊥,∴OB ∥CE .………………………………………………………………………3' ∴∠OBC =∠BCE . ∵ OB OC =,∴∠OBC =∠OCB . ……………………………………………………………4' ∴∠BCE =∠OCB ,即CB 平分∠ACE .………………………………………5'(Ⅱ)如图,连接DB . 在Rt △BCE中5BC ===. ……………………………6'∵ CD 是⊙O 的直径,∴∠CBD =90°.∴CBD E ∠=∠.………………………………………………………………………7' 又∵DCB BCE ∠=∠, ∴BCE DCB ∠=∠cos cos 即BCCEDC BC =…………………………………………8' ∴554DC =即DC =254. …………………………………………………………9'25B第(20)题图B第(20)题图(22)(本小题10分)解:过点D 作DM ⊥BC 于M ,DN ⊥AC 于N ,则四边形DNCM 是矩形.………………………1' ∵DA =6,斜坡FA 的坡比i∴DN =132AD =.………………………………2' AN=………………………………………3' 设大树BC 的高度为x 米.在Rt BAC △中,48BAC ∠=︒,tan BCBAC AC∠=,………………………………4' ∴0tan 48 1.11BC xAC AC==≈. ∴ 1.11xAC ≈.………………………………………………………………………5' ∴DM =NC =AN +AC= 1.11x +. 由题意得30BDM ∠=︒,在Rt BDM △中,DMBMBDM =∠tan ,……………6' ∴tan 30)1.11x BM DM =︒==.……………………………7' 又∵BM =3BC MC x -=- ∴3)1.11xx -=. ………………………………………………………8' ∴ 12.5x ≈. ………………………………………………………………………10' 答:大树BC 的高度约为12.5米. (23)(本小题10分)解:(Ⅰ) 表一:港口从甲仓库运(吨)从乙仓库运(吨)A 港 x 100-xB 港80-xx -30………………………3'表二: 港口从甲仓库运到港口费用(元) 从乙仓库运到港口费用(元)NMA 港 14x 20(100-x )B 港10(80-x )8(x -30)………………………6' (Ⅱ)设总运费W 元,由(Ⅰ)可知,总运费为:()()()14201001080830W x x x x =+-+-+-82560W x =-+.……………………………………………………………………7' 其中,080010070x x ⎧⎨-⎩≤≤≤≤,解得30≤x ≤80 . ………………………………8'∵ 80-<,∴ W 随x 的增大而减小.∴ 当80x =时,W 取得最小值1920. …………………………………………9' 答:此时方案为:把甲仓库的物资(80吨)全部运往A 港口,再从乙仓库运20吨往A 港口,乙仓库余下的物资(50吨)全部运往B 港口. …………………………10' (24)(本小题10分)解:(Ⅰ)x =15 cm ;……………………2'(Ⅱ)(1)当0≤x ≤6时,如图2所示. ∠GDB=60°,∠GBD =30°,DB =x ,得DG =12x , BG x,重叠部分的面积为2111222y DG BG x x x=⋅=⨯=;…………4' (2)当6<x ≤12时,如图3所示. BD =x ,DG =12x ,BGx ,BE =x ﹣6,EH)6x -.重叠部分的面积为1122BDG BEHy S S DG BG BE EH =-=⋅-⋅ 即)222162y x x =--=+-;…6' ③当12<x ≤15时,如图4所示.AC =6,BC =,BD =x ,BE =(x ﹣6),EG )6x -,重叠部分的面积为1122ABC BEGy S S AC BC BE EG =-=⋅-⋅,即)226y x x=-=++8'综上所述:()))2220661212115xxxy xx x⎪⎪⎪=+-⎨⎪⎪≤≤≤+⎪≤+⎪⎩<<;………9'(Ⅲ)点M与点N10'如图5所示作NG⊥DE于G点,点M在NG上时MN最短.NG是DEF∆的中位线,12NG EF==12MB CB==又∵∠B=30°,∴12MG MB==∴MN最小==(25)(本小题10分)解:(Ⅰ)联立两直线解析式可得21y xy x=--⎧⎨=-⎩,解得11xy=-⎧⎨=⎩,∴B点坐标为(﹣1,1),…………………………………………………………………1'又C点为B点关于原点的对称点,∴C点坐标为(1,﹣1),…………………………………………………………………2'因为抛物线解析式为12-+=bxaxy把B、C两点坐标代入可得⎩⎨⎧-+=---=1111baba,解得,⎩⎨⎧-==11ba∴抛物线解析式为21y x x=--;………………………………………………………4'(Ⅱ)(1)当四边形PBQC为菱形时,则PQ⊥BC,∵直线BC解析式为y x=-,∴直线PQ解析式为y x=,……………………………5'联立抛物线解析式可得21y xy x x=⎧⎨=--⎩,解得11xy⎧=⎪⎨=⎪⎩或11xy⎧=⎪⎨=⎪⎩∴P点坐标为(1-或(1++; ……………………………………7' (2)当t=0时,四边形PBQC 的面积最大;最大面积是2.…………………………8' 理由如下:如图,过P 作PD ∥y 轴,交y x =-于点D ,分别过点B ,C 作BE ⊥PD ,CF PD ⊥,垂足分别为E ,F .则点P 的坐标为()2,1,t t t -- 点D 的坐标为(),.t t -∴ PD ()2211;t t t t =----=-+BE+CF=2.∴ PDCF PD BE PD S PBC =∙+∙=∆2121 ∴12+-=∆t S PBC∴ S 四边形PBQC ()2222122PBC S t t ∆==-+=-+.∴ 当t=0时,四边形PBQC 的面积最大,面积最大值为2.…………………………10'PDQEF。
2017年天津市初中毕业生学业考试试卷数 学一、选择题:1.计算5)3(+-的结果等于( )A .2B .2-C .8D .8-2.060cos 的值等于( ) A 3 B .1 C .22 D .21 3.在一些美术字中,有的汉子是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )4.据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为( )A .8101263.0⨯B .710263.1⨯C .61063.12⨯D .5103.126⨯5.右图是一个由4个相同的正方体组成的立体图形,它的主视图是( )6.估计38的值在( )A .4和5之间B .5和6之间 C. 6和7之间 D .7和8之间7.计算111+++a a a 的结果为( ) A .1 B .a C. 1+a D .11+a 8.方程组⎩⎨⎧=+=1532y x x y 的解是( ) A .⎩⎨⎧==32y x B .⎩⎨⎧==34y x C. ⎩⎨⎧==84y x D .⎩⎨⎧==63y x 9.如图,将ABC ∆绕点B 顺时针旋转060得DBE ∆,点C 的对应点E 恰好落在AB 延长线上,连接AD .下列结论一定正确的是( )A .E ABD ∠=∠B .C CBE ∠=∠ C. BC AD // D .BC AD =10.若点),1(1y A -,),1(2y B ,),3(3y C 在反比例函数xy 3-=的图象上,则321,,y y y 的大小关系是( )A .321y y y <<B .132y y y << C. 123y y y << D .312y y y <<11.如图,在ABC ∆中,AC AB =,CE AD ,是ABC ∆的两条中线,P 是AD 上一个动点,则下列线段的长度等于EP BP +最小值的是( )A .BCB .CE C. AD D .AC12.已知抛物线342+-=x x y 与x 轴相交于点B A ,(点A 在点B 左侧),顶点为M .平移该抛物线,使点M 平移后的对应点'M 落在x 轴上,点B 平移后的对应点'B 落在y 轴上,则平移后的抛物线解析式为( )A .122++=x x yB .122-+=x x y C. 122+-=x x yD .122--=x x y二、填空题13.计算47x x ÷的结果等于 .14.计算)74)(74(-+的结果等于 .15.不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是 .16.若正比例函数kx y =(k 是常数,0≠k )的图象经过第二、四象限,则k 的值可以是 (写出一个即可).17.如图,正方形ABCD 和正方形EFCG 的边长分别为3和1,点G F ,分别在边CD BC ,上,P 为AE 的中点,连接PG ,则PG 的长为 .18.如图,在每个小正方形的边长为1的网格中,点C B A ,,均在格点上.(1)AB 的长等于 ;(2)在ABC ∆的内部有一点P ,满足2:1:::=∆∆∆PCA PBC PAB S S S ,请在如图所示的网格中,用无刻度...的直尺,画出点P ,并简要说明点P 的位置是如何找到的(不要求证明) .三、解答题19.解不等式组⎩⎨⎧+≤≥+34521x x x 请结合题意填空,完成本题的解答.(1)解不等式①,得 ;(2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为 .20.某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的跳水运动员人数为 ,图①中m 的值为 ;(2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.①②21.已知AB 是⊙O 的直径,AT 是⊙O 的切线,050=∠ABT ,BT 交⊙O 于点C ,E 是AB 上一点,延长CE 交⊙O 于点D .(1)如图①,求T ∠和CDB ∠的大小;(2)如图②,当BC BE =时,求CDO ∠的大小.22.如图,一艘海轮位于灯塔P 的北偏东064方向,距离灯塔120海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东045方向上的B 处,求BP 和BA 的长(结果取整数).参考数据:05.264tan ,44.064cos ,90.064sin 000≈≈≈,2取414.1.23.用4A 纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.设在同一家复印店一次复印文件的页数为x (x 为非负整数).(1)根据题意,填写下表:(2)设在甲复印店复印收费1y 元,在乙复印店复印收费2y 元,分别写出21y y ,关于x 的函数关系式;(3)当70>x 时,顾客在哪家复印店复印花费少?请说明理由.24.将一个直角三角形纸片ABO 放置在平面直角坐标系中,点)0,3(A ,点)1,0(B ,点)0,0(O .P 是边AB 上的一点(点P 不与点B A ,重合),沿着OP 折叠该纸片,得点A 的对应点'A .(1)如图①,当点'A 在第一象限,且满足OB B A ⊥'时,求点'A 的坐标;(2)如图②,当P 为AB 中点时,求B A '的长;(3)当030'=∠BPA 时,求点P 的坐标(直接写出结果即可).25.已知抛物线32-+=bx x y (b 是常数)经过点)0,1(-A .(1)求该抛物线的解析式和顶点坐标;(2))1,(m P 为抛物线上的一个动点,P 关于原点的对称点为'P .①当点'P 落在该抛物线上时,求m 的值;②当点'P 落在第二象限内,2'A P 取得最小值时,求m 的值.。
2017年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算(﹣3)+5的结果等于()A.2 B.﹣2 C.8 D.﹣82.(3分)cos60°的值等于()A.B.1 C.D.3.(3分)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A. B. C.D.4.(3分)据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为()A.0.1263×108 B.1.263×107C.12.63×106D.126.3×1055.(3分)如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C. D.6.(3分)估计的值在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间7.(3分)计算的结果为()A.1 B.a C.a+1 D.8.(3分)方程组的解是()A.B.C.D.9.(3分)如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是()A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC10.(3分)若点A(﹣1,y1),B(1,y2),C(3,y3)在反比例函数y=﹣的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y311.(3分)如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD 上一个动点,则下列线段的长度等于BP+EP最小值的是()A.BC B.CE C.AD D.AC12.(3分)已知抛物线y=x2﹣4x+3与x轴相交于点A,B(点A在点B左侧),顶点为M.平移该抛物线,使点M平移后的对应点M'落在x轴上,点B平移后的对应点B'落在y轴上,则平移后的抛物线解析式为()A.y=x2+2x+1 B.y=x2+2x﹣1 C.y=x2﹣2x+1 D.y=x2﹣2x﹣1二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算x7÷x4的结果等于.14.(3分)计算的结果等于.15.(3分)不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.16.(3分)若正比例函数y=kx (k 是常数,k ≠0)的图象经过第二、四象限,则k 的值可以是 (写出一个即可).17.(3分)如图,正方形ABCD 和正方形EFCG 的边长分别为3和1,点F ,G 分别在边BC ,CD 上,P 为AE 的中点,连接PG ,则PG 的长为 .18.(3分)如图,在每个小正方形的边长为1的网格中,点A ,B ,C 均在格点上.(1)AB 的长等于 ;(2)在△ABC 的内部有一点P ,满足S △PAB :S △PBC :S △PCA =1:2:3,请在如图所示的网格中,用无刻度...的直尺,画出点P ,并简要说明点P 的位置是如何找到的(不要求证明) .三、解答题(本大题共7小题,共66分。
2017年天津市部分区初中毕业生学业考试第二次模拟练习数学参考答案一、选择题(本大题共12小题,每小题3分,共36分)(1)A (2)D (3)D (4)D (5)A (6)C(7)C (8)B (9)C (10)B (11)B (12)A二、填空题(本大题共6小题,每小题3分,共18分)(13)2618x xy -+ (14)125(15)答案不唯一 (16)81)1(1002=-x(17)4(18)(Ⅰ)52;(Ⅱ)如图,取格点M ,N ,连接MN 交AB于点P ,则点P 即为所求.三、解答题(本大题共7小题,共66分)(19)(本小题8分)解:(Ⅰ)x <3 ………... ……2分(Ⅱ)4x ≥- ………... ……4分(Ⅲ)(Ⅳ)4-≤x <3 ………... ……8分(20)(本小题8分)解:(Ⅰ)30 ………... ……1分(Ⅱ)补全图2 ………... ……2分.. ……6分第(18)题图∵ 在这组数据中,5出现了8次,出现的次数最多,∴ 这组数据的众数为5 ………... ……3分 ∵ 将这组数据按从小到大的顺序排列,其中处于中间的两个数都是5 ∴ 这组数据的中位数为5 ………... ……5分 (Ⅲ) 3.52027668544=⨯+⨯+⨯+⨯=x (棵), 答:抽查的20名学生平均每人的植树量5.3棵. ………... ……7分 13782603.5=⨯(棵)答:估计全校260名学生共植树1378棵. ………... ……8分 (21)(本小题10分)(Ⅰ)如图1:连接OC ………... ……1分 ∵CD 切⊙O 于点C∴CD OC ⊥ ………... ……2分 又∵四边形ABCD 是平行四边形∴AB ∥CD ∴AB OC ⊥又∵OB OC =∴︒=∠=∠45OCB B ………... ……3分 ∴︒=∠+∠=∠135OCB OCD BCD ………... ……4分∵四边形ABCD 是平行四边形∴︒=∠=∠135BCD DAB︒=∠=∠45B D ………... ……5分(Ⅱ)如图2,连接OC 交AB 于点E ,连接OB ………... ……6分由(1)可得AB OC ⊥∴222BE OE OB =-第(21)题图 1第(21)题图2222BE CE BC =-设cm x OE =,则()cm 3x CE -=又∵cm 3=OB ,cm 2=BC∴()2222323x x --=-∴37=x ……... ……7分即cm 37=OE ∴cm 32422=-=OE OB BE ………... ……8分 ∴cm 3282==BE AB ∵四边形ABCD 是平行四边形 ∴cm 328==AB CD ………... ……10分(22)(本小题10分)解:(Ⅰ)如图,过点D 作MN DP ⊥于点P ,……... ……1分 ∵DE ∥MN∴︒=∠=∠76ADE DCP ……... ……2分在Rt △CDP 中,DCDPDCP =∠sin ……... ……3分 ∴8.3897.04076sin =⨯≈︒=DC DP (cm )答:椅子的高度约为8.8cm 3 ………... ……4分(Ⅱ)作MN EQ ⊥于点Q ………... ……5分 ∴︒=∠=∠90EQB DPQ ∴DP ∥EQ第(22)题图QP又∵DF ∥MN ,︒=∠58AED ,︒=∠76ADE∴四边形DEQP 是矩形,且︒=∠=∠76ADE DCP ,︒=∠=∠58AED EBQ ∴,20==PQ DE 8.38==DP EQ 又∵在DPC Rt ∆和EQB Rt ∆中,︒=∠=67cos 40cos DCP CD CP ………... ……7分︒=∠=58tan 8.38EBQ tan EQ BQ ………... ……9分∴ 5476cos 402058tan 8.38≈︒++︒=++=CP PQ BQ BC (cm )答:椅子两脚B 、C 之间的距离约为54cm ………... ……10分(23)(本小题10分)解:(Ⅰ)1,2,2,1.5;75.12=+b a ,2,2; 第五空2分,其余每空1分,共8分;(Ⅱ)依题意y 与x 的关系式为()x x y -+=85.12即125.0+=x y …10分(24)(本小题10分) 解:(Ⅰ)A '(3-,3),B '(0,4) ………... ……2分(Ⅱ)①四边形CB B A '是平行四边形 ………... ……3分理由:如图2,∵C B '∥AB ∴BAC CA B ∠='∠又∵︒=∠+∠90CAO BAC ∴︒=∠+''∠90CAO A C B又∵︒='∠+''∠90A A O C A B ,且由旋转得A O OA '=,则A A O CAO '∠=∠ ∴C A B A C B ''∠=''∠ ………... ……4分 ∴A B C B ''=' 又∵AB B A ='' ∴AB C B ='∴四边形CB B A '是平行四边形 ………... ……5分 ②过点A '作x E A ⊥'轴,垂足为E由点A (32-,0)可得32=OA 又∵︒=∠90OAB ,︒=∠30AOB∴2=AB ,4=OB ,则32='A O ,2=''B A由︒='∠135A AO ,得︒='∠45OE A ∴622='='=A O E A OE ∴点A '(6,6) ………... ……6分 过点B '作E A F B '⊥',垂足为点F 由︒='∠45O A E ,得︒=''∠45B A E ∴2222=⨯='='F A F B ∴26-=EF ,26+='+F B OE∴点B '(26+,2-6) ………... ……7分(Ⅲ)C B '扫过的面积为12 ………... ……10分 ( 注:C B '扫过的图形是平行四边形) (25)(本小题10分)解:(Ⅰ)抛物线322+--=x x y 取0=y ,得11=x ,32-=x∴ A (3-,0),C (1,0) ………... ……2分 取0=x ,得3=y ∴B (0,3) ………... ……3分(Ⅱ)∵点D 为AC 中点,∴D (1-,0) ………... ……4分∵DE BE 2=,∴E (32-,1) ………... ……5分 设直线CE 为b kx y +=,把点C (1,0),E (32-,1)代入, F EyxA /B /C OBA图2得⎪⎩⎪⎨⎧=+=+-0132b k b k ,解得⎪⎪⎩⎪⎪⎨⎧=-=5353b k∴直线CE 为5353+-=x y ………... ……6分 由⎪⎩⎪⎨⎧+--=+-=3253532x x y x y 得⎩⎨⎧==01y x 或⎪⎪⎩⎪⎪⎨⎧=-=2551512y x ∴依题意点M (512-,2551) ………... ……7分 (Ⅲ)PG PC PA ++的最小值是192, ………... ……8分点P (199-,19312) ………... ……10分 附答案:∵AGQ ∆,APR ∆是等边三角形∴PR AR AP ==,AG AQ =,︒=∠=∠60RAP QAG∴G A P Q A R ∠=∠在Q A R ∆和G A P ∆中⎪⎩⎪⎨⎧=∠=∠=AP AR GAP QAR AGAQ∴Q A R ∆≌G A P ∆ ∴PG QR =∴QR PC PR PG PC PA ++=++∴当Q 、R 、P 、C 共线时PG PC PA ++的值最小,为线段QC 的值,如图: 作OA QN ⊥于点N ,作CQ AM ⊥于点M ,作CN PK ⊥于点K依题意︒=∠60GAO ,3=AO∴6===QA GQ AG ,︒=∠30AGO ∵︒=∠60AGQ ∴︒=∠90QGO ∴点Q (6-,33)在QNC Rt ∆中,33=QN ,7=CN ∴19222=+=CN QN QC ∴QCQNAC AM ACM ==∠sin ∴19576=AM ∵APR ∆是等边三角形, ∴︒=∠60APM ,AM PM 33=19191422=-=AM AC MC ∴19198=-=PM CM PC ∵QC QN PC PK PCN ==∠sin ,CQCNCP CK PCN ==∠cos ∴19312=PK ,1928=CK ∴199=OK ∴点P (199-,19312)。
2017年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算(﹣3)+5的结果等于()A.2B.﹣2C.8D.﹣8【解析】(﹣3)+5=5﹣3=2.故选:A.2.cos60°的值等于()A.B.1C.D.【解析】cos60°=,故选:D.3.在一些美术字中,有的汉子是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.【解析】A、不可以看作是轴对称图形,故本选项错误;B、不可以看作是轴对称图形,故本选项错误;C、可以看作是轴对称图形,故本选项正确;D、不可以看作是轴对称图形,故本选项错误.故选C.4.据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为()A.0.1263×108B.1.263×107C.12.63×106D.126.3×105【解析】12630000=1.263×107.故选:B.5.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.【解析】从正面看易得第一层有3个正方形,第二层中间有一个正方形.故选D.6.估计的值在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间【解析】∵<<,∴6<<7,∴的值在整数6和7之间.故选C.7.计算的结果为()A.1B.A C.a+1D.【解析】原式==1,故选A.8.方程组的解是()A.B.C.D.【解析】解:,①代入②得,3x+2x=15,解得x=3,将x=3代入①得,y=2×3=6,所以方程组的解是.故选D.9.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是()A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC【解析】∵△ABC绕点B顺时针旋转60°得△DBE,∴∠ABD=∠CBE=60°,AB=BD,∴△ABD是等边三角形,∴∠DAB=60°,∴∠DAB=∠CBE,∴AD∥BC,故选C.10.若点A(﹣1,y1),B(1,y2),C(3,y3)在反比例函数的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y3【解析】∵k=﹣3<0,∴在第四象限,y随x的增大而增大,∴y2<y3<0,∵y1>0,∴y2<y3<y1,故选B.11.如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD上一个动点,则下列线段的长度等于BP+EP最小值的是()A.BC B.CE C.AD D.AC【解析】如图连接PC,∵AB=AC,BD=CD,∴AD⊥BC,∴PB=PC,∴PB+PE=PC+PE,∵PE+PC≥CE,∴P、C、E共线时,PB+PE的值最小,最小值为CE,故选B.12.已知抛物线y=x2﹣4x+3与x轴相交于点A,B(点A在点B左侧),顶点为M.平移该抛物线,使点M平移后的对应点M'落在x轴上,点B平移后的对应点B'落在y轴上,则平移后的抛物线解析式为()A.y=x2+2x+1B.y=x2+2x﹣1C.y=x2﹣2x+1D.y=x2﹣2x﹣1【解析】当y=0,则0=x2﹣4x+3(x﹣1)(x﹣3)=0,解得x1=1,x2=3,∴A(1,0),B(3,0),y=x2﹣4x+3=(x﹣2)2﹣1,∴M点坐标为:(2,﹣1),∵平移该抛物线,使点M平移后的对应点M'落在x轴上,点B平移后的对应点B'落在y轴上,∴抛物线向上平移一个单位长度,再向左平移3个单位长度即可,∴平移后的解析式为:y=(x+1)2=x2+2x+1.故选A.二、填空题(本大题共6小题,每小题3分,共18分)13.计算x7÷x4的结果等于______.【解析】原式=x3,故答案为:x3.14.计算的结果等于______.【解析】=16﹣7=9.故答案为9.15.不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是______.【解析】∵共6个球,有5个红球,∴从袋子中随机摸出一个球,它是红球的概率为.故答案为.16.若正比例函数y=kx(k是常数,k≠0)的图象经过第二、四象限,则k的值可以是______(写出一个即可).【解析】∵若正比例函数y=kx的图象在第二、四象限,∴k<0,∴符合要求的k的值是﹣2,故答案为:﹣2.17.如图,正方形ABCD和正方形EFCG的边长分别为3和1,点F,G分别在边BC,CD上,P为AE的中点,连接PG,则PG的长为______.【解析】延长GE交AB于点O,作PH⊥OE于点H.则PH∥AB.∵P是AE的中点,∴PH是△AOE的中位线,∴PH=OA=(3﹣1)=1.∵直角△AOE中,∠OAE=45°,∴△AOE是等腰直角三角形,即OA=OE=2,同理△PHE中,HE=PH=1.∴HG=HE+EG=1+1=2.∴在Rt△PHG中,PG===.故答案是:.18.如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.(1)AB的长等于______;(2)在△ABC 的内部有一点P ,满足S △PAB :S △PBC :S △PCA =1:2:3,请在如图所示的网格中,用无刻度...的直尺,画出点P ,并简要说明点P 的位置是如何找到的(不要求证明)________.【解】(1)AB==.故答案为.(2)如图AC 与网格相交,得到点D 、E ,取格点F ,连接FB 并且延长,与网格相交,得到M ,N ,G .连接DN ,EM ,DG ,DN 与EM 相交于点P ,点P 即为所求.理由:平行四边形ABME 的面积:平行四边形CDNB :平行四边形DEMG=1:2:3,△PAB 的面积=平行四边形ABME 的面积,△PBC 的面积=平行四边形CDNB 的面积,△PAC 的面积=△PNG 的面积=△DGN 的面积=平行四边形DEMG 的面积,∴S △PAB :S △PBC :S △PCA =1:2:3.三、解答题(本大题共7小题,共66分。
2017年天津市部分区初中毕业生学业考试第二次模拟练习数学参考答案一、选择题(本大题共12小题,每小题3分,共36分)(1)A (2)D (3)D (4)D (5)A (6)C(7)C (8)B (9)C (10)B (11)B (12)A二、填空题(本大题共6小题,每小题3分,共18分)(13)2618x xy -+ (14)125(15)答案不唯一 (16)81)1(1002=-x(17)4(18)(Ⅰ)52;(Ⅱ)如图,取格点M ,N ,连接MN 交AB于点P ,则点P 即为所求.三、解答题(本大题共7小题,共66分) (19)(本小题8分)解:(Ⅰ)x <3 ………... ……2分(Ⅱ)4x ≥- ………... ……4分(Ⅲ)(Ⅳ)4-≤x <3 ………... ……8分(20)(本小题8分)解:(Ⅰ)30 ………... ……1分(Ⅱ)补全图2 ………... ……2分∵ 在这组数据中,5出现了8次,出现的次数最多,.. ……6分第(18)题图∴ 这组数据的众数为5 ………... ……3分 ∵ 将这组数据按从小到大的顺序排列,其中处于中间的两个数都是5 ∴ 这组数据的中位数为5 ………... ……5分 (Ⅲ) 3.52027668544=⨯+⨯+⨯+⨯=x (棵), 答:抽查的20名学生平均每人的植树量5.3棵. ………... ……7分 13782603.5=⨯(棵)答:估计全校260名学生共植树1378棵. ………... ……8分(21)(本小题10分)(Ⅰ)如图1:连接OC ………... ……1分 ∵CD 切⊙O 于点C∴CD OC ⊥ ………... ……2分又∵四边形ABCD 是平行四边形∴AB ∥CD∴AB OC ⊥又∵OB OC =∴︒=∠=∠45OCB B ………... ……3分∴︒=∠+∠=∠135OCB OCD BCD ………... ……4分∵四边形ABCD 是平行四边形∴︒=∠=∠135BCD DAB︒=∠=∠45B D ………... ……5分(Ⅱ)如图2,连接OC 交AB 于点E ,连接OB ………... ……6分由(1)可得AB OC ⊥∴222BE OE OB =-222BE CE BC =-设cm x OE =,则()cm 3x CE -=又∵cm 3=OB ,cm 2=BC∴()2222323x x --=- ∴37=x ……... ……7分即cm 37=OE ∴cm 32422=-=OE OB BE ………... ……8分 ∴cm 3282==BE AB ∵四边形ABCD 是平行四边形 ∴cm 328==AB CD ………... ……10分 第(21)题图 1 第(21)题图2(22)(本小题10分) 解:(Ⅰ)如图,过点D 作MN DP ⊥于点P ,……... ……1分∵DE ∥MN∴︒=∠=∠76ADE DCP ……... ……2分在Rt △CDP 中, DCDP DCP =∠sin ……... ……3分 ∴8.3897.04076sin =⨯≈︒=DC DP (cm )答:椅子的高度约为8.8cm 3 ………... ……4分(Ⅱ)作MN EQ ⊥于点Q ………... ……5分∴︒=∠=∠90EQB DPQ∴DP ∥EQ又∵DF ∥MN ,︒=∠58AED ,︒=∠76ADE∴四边形DEQP 是矩形,且︒=∠=∠76ADE DCP ,︒=∠=∠58AED EBQ∴,20==PQ DE 8.38==DP EQ又∵在DPC Rt ∆和EQB Rt ∆中,︒=∠=67cos 40cos DCP CD CP ………... ……7分︒=∠=58tan 8.38EBQ tan EQ BQ ………... ……9分 ∴ 5476cos 402058tan 8.38≈︒++︒=++=CP PQ BQ BC (cm ) 答:椅子两脚B 、C 之间的距离约为54cm ………... ……10分(23)(本小题10分)解:(Ⅰ)1,2,2,1.5;75.12=+b a ,2,2; 第五空2分,其余每空1分,共8分;(Ⅱ)依题意y 与x 的关系式为()x x y -+=85.12即125.0+=x y …10分(24)(本小题10分)解:(Ⅰ)A '(3-,3),B '(0,4) ………... ……2分(Ⅱ)①四边形CB B A '是平行四边形 ………... ……3分理由:如图2,∵C B '∥AB∴BAC CA B ∠='∠又∵︒=∠+∠90CAO BAC ∴︒=∠+''∠90CAO A C B又∵︒='∠+''∠90A A O C A B ,且由旋转得A O OA '=,则A A O CAO '∠=∠∴C A B A C B ''∠=''∠ ………... ……4分∴A B C B ''='第(22)题图 Q P又∵AB B A =''∴AB C B ='∴四边形CB B A '是平行四边形 ………... ……5分②过点A '作x E A ⊥'轴,垂足为E由点A (32-,0)可得32=OA 又∵︒=∠90OAB ,︒=∠30AOB∴2=AB ,4=OB ,则32='A O ,2=''B A 由︒='∠135A AO ,得︒='∠45OE A ∴622='='=A O E A OE∴点A '(6,6) ………... ……6分过点B '作E A F B '⊥',垂足为点F由︒='∠45O A E ,得︒=''∠45B A E∴2222=⨯='='F A F B∴26-=EF ,26+='+F B OE∴点B '(26+,2-6) ………... ……7分(Ⅲ)C B '扫过的面积为12 ………... ……10分( 注:C B '扫过的图形是平行四边形)(25)(本小题10分)解:(Ⅰ)抛物线322+--=x x y取0=y ,得11=x ,32-=x∴ A (3-,0),C (1,0) ………... ……2分取0=x ,得3=y ∴B (0,3) ………... ……3分(Ⅱ)∵点D 为AC 中点,∴D (1-,0) ………... ……4分∵DE BE 2=,∴E (32-,1) ………... ……5分设直线CE 为b kx y +=,把点C (1,0),E (32-,1)代入,FEyxA /B /C O B A 图2得⎪⎩⎪⎨⎧=+=+-0132b k b k ,解得⎪⎪⎩⎪⎪⎨⎧=-=5353b k ∴直线CE 为5353+-=x y ………... ……6分 由⎪⎩⎪⎨⎧+--=+-=3253532x x y x y 得⎩⎨⎧==01y x 或⎪⎪⎩⎪⎪⎨⎧=-=2551512y x ∴依题意点M (512-,2551) ………... ……7分 (Ⅲ)PG PC PA ++的最小值是192, ………... ……8分 点P (199-,19312) ………... ……10分 附答案:∵AGQ ∆,APR ∆是等边三角形∴PR AR AP ==,AG AQ =,︒=∠=∠60RAP QAG∴G A P Q A R ∠=∠在Q A R ∆和G A P ∆中⎪⎩⎪⎨⎧=∠=∠=AP AR GAP QAR AG AQ∴Q A R ∆≌G A P ∆∴PG QR =∴QR PC PR PG PC PA ++=++∴当Q 、R 、P 、C 共线时PG PC PA ++的值最小,为线段QC 的值,如图: 作OA QN ⊥于点N ,作CQ AM ⊥于点M ,作CN PK ⊥于点K依题意︒=∠60GAO ,3=AO∴6===QA GQ AG ,︒=∠30AGO∵︒=∠60AGQ∴︒=∠90QGO∴点Q (6-,33)在QNC Rt ∆中,33=QN ,7=CN ∴19222=+=CN QN QC ∴QC QN AC AM ACM ==∠sin ∴19576=AM ∵APR ∆是等边三角形,∴︒=∠60APM ,AM PM 33=19191422=-=AM AC MC ∴19198=-=PM CM PC ∵QC QN PC PK PCN ==∠sin ,CQ CN CP CK PCN ==∠cos ∴19312=PK ,1928=CK ∴199=OK ∴点P (199-,19312)。
2017年天津市武清区中考数学二模试卷一、选择题(本大题共12小题,每小题3分,共36分)1.计算4+(﹣6)的结果等于()A.﹣2 B.2 C.10 D.﹣102.sin45°的值等于()A.B.1 C.D.3.在美术字中,有些汉字是轴对称的,下面四个字不属于轴对称图形的是()A.B.C.D.4.2017年春运期间,全国水运旅客发送量约为43500000人次,将43500000用科学记数法表示应为()A.0.435×107B.43.5×106C.43.5×107D.4.35×1075.从正面观察如图的两个立体图形,得到的平面图形是()A. B.C. D.6.如图,数轴上点A表示的数可能是()A.B.C.D.7.矩形具有而菱形不具有的性质是()A.对角线互相平分 B.对角线互相垂直C.对角线相等D.对角线平分一组对角8.已知反比例函数y=,当1<x<3时,y的最小整数值是()A.3 B.4 C.5 D.69.把△ABC沿BC方向平移,得到△A′B′C′,随着平移距离的不断增大,△A′CB的面积大小变化情况是()A.增大B.减小C.不变D.不确定10.若分式的x和y均扩大为原来各自的10倍,则分式的值()A.不变B.缩小到原分式值的C.缩小到原分式值的D.缩小到原分式值的11.如图,把八个等圆按相邻两两外切摆放,其圆心连线构成一个正八边形,设正八边形内侧八个扇形(无阴影部分)面积之和为S1,正八边形外侧八个扇形(阴影部分)面积之和为S2,则=()A.B.C.D.112.如果抛物线y=﹣x2+bx与x轴交于A、B两点,且顶点为C,那么当∠ACB=120°,b的值是()A.±B.±C.D.二、填空题(本大题共6小题,每小题3分,共18分)13.计算:(x﹣3y)(﹣6x)=.14.在一个不透明的袋子中有3个白球,4个黄球,5个红球,这些球除了颜色不同外其余完全相同,从袋子中摸出一个球,则它是红球的概率是.15.如图,点P在∠MON的平分线上,点A、B在∠MON的两边上,若要使△AOP≌△BOP,那么需要添加一个条件是.16.为解决群众看病贵的问题,有关部门决定降低药价,对某种原价为100元的药品进行连续两次降价后为81元,设平均每次降价的百分率为x,则根据题意可列方程为.17.如图,已知矩形ABCD,AB=8cm,BC=6cm,点Q为BC中点,在DC上取一点P,使△APQ 的面积等于18cm2,则DP的长度为cm.18.如图,在每个小正方形的边长为1的网格中,点A,B均在格点上.(Ⅰ)线段AB的长为.(Ⅱ)请利用网格,用无刻度的直尺在AB上作出点P,使AP=,并简要说明你的作图方法(不要求证明)..三、解答题(本大题共7小题,共66分)19.解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.20.某校260名学生参加植树活动,要求每人植4~7棵,活动结束后,随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵,B:5棵,C:6棵,D:7棵,并将各类的人数绘制了扇形统计图(如图1)和条形统计图(如图2),请根据相关信息解答下列问题:(Ⅰ)图1中m的值为;(Ⅱ)补全图2,并求出抽查的20名学生每人植树量数据的众数、中位数;(Ⅲ)求抽查的20名学生平均每人的植树量(保留一位小数),并估计全校260名学生共植树多少棵?21.已知四边形ABCD是平行四边形,CD为⊙O的切线,点C是切点.(Ⅰ)如图1,若AB为⊙O直径,求四边形ABCD各内角的度数;(Ⅱ)如图2,若AB为弦,⊙O的半径为3cm,当BC=2cm时,求CD的长.22.如图1是一种折叠椅,忽略其支架等的宽度,得到他的侧面简化结构图(图2),支架与坐板均用线段表示,若座板DF平行于地面MN,前支撑架AB与后支撑架AC分别与座板DF交于点E、D,现测得DE=20厘米,DC=40厘米,∠AED=58°,∠ADE=76°.(1)求椅子的高度(即椅子的座板DF与地面MN之间的距离)(精确到1厘米)(2)求椅子两脚B、C之间的距离(精确到1厘米)(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,sin76°≈0.97.cos76°≈0.24,tan76°≈4.00)23.如表是某校七~九年级某月课外兴趣小组(分文艺小组和科技小组)活动时间统计表,其中各年级同一兴趣小组每次活动时间相同.观察表格,七、八年级科技小组活动次数相同,文艺小组活动次数相差 次,活动总时间相差 h ,由此可知文艺小组每次活动时间为 h ,进而可知科技小组每次活动时间为 h ;依题意可得a 与b 的关系式为 ,因为a 与b 是自然数,所以a= ,b= ; (Ⅱ)若学校重新规定:九年级每月课外兴趣小组活动总次数为8次,在文艺小组与科技小组每次活动时间保持不变的情况下,求出九年级每月课外兴趣小组活动总时间y (h )与文艺小组活动次数x (次)之间的函数关系式(其中规定x 为大于1且小于8的自然数). 24.在平面直角坐标系中,O 为坐标原点,点A 坐标为(﹣2,0),∠OAB=90°,∠AOB=30°,将△OAB 绕点O 按顺时针方向旋转,旋转角为α(0°<α≤150°),在旋转过程中,点A 、B 的对应点分别为点A′、B′.(Ⅰ)如图1,当α=60°时,直接写出点A′ 、B′的坐标;(Ⅱ)如图2,当α=135°时,过点B′作AB 的平行线交AA′延长线于点C ,连接BC ,AB′. ①判断四边形AB′CB 的形状,并说明理由, ②求此时点A′和点B′的坐标;(Ⅲ)当α由30°旋转到150°时,(Ⅱ)中的线段B′C 也随之移动,请求出B′C 所扫过的区域的面积?(直接写出结果即可).25.已知抛物线y=﹣x 2﹣2x +3交x 轴于点A 、C (点A 在点C 左侧),交y 轴于点B . (Ⅰ)求A ,B ,C 三点坐标;(Ⅱ)如图1,点D 为AC 中点,点E 在线段BD 上,且BE=2DE ,连接CE 并延长交抛物线于点M ,求点M 坐标;(Ⅲ)如图2,将直线AB绕点A按逆时针方向旋转15°后交y轴于点G,连接CG,点P为△ACG 内一点,连接PA、PC、PG,分别以AP、AG为边,在它们的左侧作等边△APR和等边△AGQ,求PA+PC+PG的最小值,并求当PA+PC+PG取得最小值时点P的坐标(直接写出结果即可).2017年天津市武清区中考数学二模试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.计算4+(﹣6)的结果等于()A.﹣2 B.2 C.10 D.﹣10【考点】19:有理数的加法.【分析】依据有理数的加法法则计算即可.【解答】解:4+(﹣6)=﹣(6﹣4)=﹣2.故选:A.2.sin45°的值等于()A.B.1 C.D.【考点】T5:特殊角的三角函数值.【分析】根据特殊角的三角函数值得出即可.【解答】解:sin45°=,故选D.3.在美术字中,有些汉字是轴对称的,下面四个字不属于轴对称图形的是()A.B.C.D.【考点】P3:轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形进行分析即可.【解答】解:A、属于轴对称图形,故此选项错误;B、属于轴对称图形,故此选项错误;C、属于轴对称图形,故此选项错误;D、不属于轴对称图形,故此选项正确;故选:D.4.2017年春运期间,全国水运旅客发送量约为43500000人次,将43500000用科学记数法表示应为()A.0.435×107B.43.5×106C.43.5×107D.4.35×107【考点】1I:科学记数法—表示较大的数.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:43500000=4.35×107.故选:D.5.从正面观察如图的两个立体图形,得到的平面图形是()A. B.C.D.【考点】I1:认识立体图形.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看左边是一个矩形,右边是一个正方形,故选:A.6.如图,数轴上点A表示的数可能是()A.B.C.D.【考点】29:实数与数轴.【分析】设A点表示的数为x,则2<x<3,再根据每个选项中的范围进行判断.【解答】解:如图,设A点表示的数为x,则2<x<3,∵1<<2,1<<2,2<<3,3<<4,∴符合x取值范围的数为.故选C.7.矩形具有而菱形不具有的性质是()A.对角线互相平分 B.对角线互相垂直C.对角线相等D.对角线平分一组对角【考点】LB:矩形的性质;L8:菱形的性质.【分析】根据矩形的对角线互相平分、相等和菱形的对角线互相平分、垂直、对角线平分一组对角,即可推出答案.【解答】解:A、对角线互相平分是菱形矩形都具有的性质,故A选项错误;B、对角线互相垂直是菱形具有而矩形不具有的性质,故B选项错误;C、矩形的对角线相等,菱形的对角线不相等,故C选项正确;D、对角线平分一组对角是菱形具有而矩形不具有的性质,故D选项错误;故选:C.8.已知反比例函数y=,当1<x<3时,y的最小整数值是()A.3 B.4 C.5 D.6【考点】G4:反比例函数的性质.【分析】根据反比例函数系数k>0,结合反比例函数的性质即可得知该反比例函数在x>0中单调递减,再结合x的取值范围,可得出y的取值范围,取其内的最小整数,本题得解.【解答】解:在反比例函数y=中k=6>0,∴该反比例函数在x>0内,y随x的增大而减小,当x=3时,y==2;当x=1时,y==6.∴当1<x<3时,2<y<6.∴y的最小整数值是3.故选A.9.把△ABC沿BC方向平移,得到△A′B′C′,随着平移距离的不断增大,△A′CB的面积大小变化情况是()A.增大B.减小C.不变D.不确定【考点】Q2:平移的性质.【分析】根据平移的性质得到AA′∥BC,从而说明△A′CB的底边BC的长度不变,高不变,确定正确的选项.【解答】解:∵把△ABC沿BC方向平移,得到△A′B′C′,∴AA′∥BC,∴△A′CB的底边BC的长度不变,高不变,∴△A′CB的面积大小变化情况是不变,故选C.10.若分式的x和y均扩大为原来各自的10倍,则分式的值()A.不变B.缩小到原分式值的C.缩小到原分式值的D.缩小到原分式值的【考点】65:分式的基本性质.【分析】根据分式的分子分母都乘以(或除以)同一个不为零的整式,可得答案.【解答】解:式的x和y均扩大为原来各自的10倍,得==,故选:C.11.如图,把八个等圆按相邻两两外切摆放,其圆心连线构成一个正八边形,设正八边形内侧八个扇形(无阴影部分)面积之和为S1,正八边形外侧八个扇形(阴影部分)面积之和为S2,则=()A.B.C.D.1【考点】MO:扇形面积的计算;MM:正多边形和圆.【分析】先根据正多边形的内角和公式可求正八边形的内角和,根据周角的定义可求正八边形外侧八个扇形(阴影部分)的内角和,再根据半径相等的扇形面积与圆周角成正比即可求解.【解答】解:∵正八边形的内角和为(8﹣2)×180°=6×180°=1080°,正八边形外侧八个扇形(阴影部分)的内角和为360°×8﹣1080°=2880°﹣1080°=1800°,∴==.故选:B .12.如果抛物线y=﹣x 2+bx 与x 轴交于A 、B 两点,且顶点为C ,那么当∠ACB=120°,b 的值是( )A .±B .±C .D .【考点】HA :抛物线与x 轴的交点.【分析】将解析式配方成顶点式得对称轴及其顶点纵坐标,作CD ⊥AB 于点D ,由∠BCD=∠ACB=60°、tan ,得=,解之可得答案.【解答】解:∵y=﹣x 2+bx=﹣(x ﹣)2+,∴抛物线的对称轴为x=,顶点C 的纵坐标为,如图,过点C 作CD ⊥AB 于点D ,由抛物线对称性知∠ACD=∠BCD=∠ACB=60°,则tan ,即=,解得:b=0(舍)或b=±,故选:A .二、填空题(本大题共6小题,每小题3分,共18分) 13.计算:(x ﹣3y )(﹣6x )= ﹣6x 2+18xy . 【考点】4A :单项式乘多项式.【分析】根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.【解答】解:原式=﹣6x2+18xy.故答案是:﹣6x2+18xy.14.在一个不透明的袋子中有3个白球,4个黄球,5个红球,这些球除了颜色不同外其余完全相同,从袋子中摸出一个球,则它是红球的概率是.【考点】X4:概率公式.【分析】先求出总球的个数,再根据概率公式即可得出答案.【解答】解:∵袋子中有3个白球,4个黄球,5个红球,共有12个球,∴从袋子中摸出一个球,则它是红球的概率是;故答案为:.15.如图,点P在∠MON的平分线上,点A、B在∠MON的两边上,若要使△AOP≌△BOP,那么需要添加一个条件是AO=BO或∠OAP=∠OBP或∠APO=∠BPO(写出一个即可).【考点】KB:全等三角形的判定.【分析】判断两个三角形全等的方法有“SSS”,“SAS”,“ASA”,“AAS”.此题要证△AOP≌△BOP,通过题中已知的OP为∠MON的平分线,可得∠AOP=∠BOP,还有一条公共边OP=OP,若添加AO=BO,则可根据“SAS”来判定,若添加∠OAP=∠OBP,则可根据“AAS”来判定,若添加∠APO=∠BPO,则可根据“ASA”来判定.综上可得出此题的答案.【解答】解:可以添加的条件有:AO=BO,∠OAP=∠OBP,∠APO=∠BPO,证明:∵OP为∠MON的平分线,∴∠AOP=∠BOP,若添加的条件为AO=BO,在△AOP和△BOP中,OA=OB,∠AOP=∠BOP,OP=OP,∴△AOP≌△BOP.所以添加的条件为AO=BO,能得到△AOP≌△BOP;若添加的条件为∠OAP=∠OBP,在△AOP和△BOP中,∠OAP=∠OBP,∠AOP=∠BOP,OP=OP,∴△AOP≌△BOP.所以添加的条件为∠OAP=∠OBP,能得到△AOP≌△BOP;若添加的条件为∠APO=∠BPO,在△AOP和△BOP中,∠AOP=∠BOP,OP=OP,∠APO=∠BPO∴△AOP≌△BOP.所以添加的条件为∠APO=∠BPO,能得到△AOP≌△BOP;故答案为:AO=BO或∠OAP=∠OBP或∠APO=∠BPO(写出一个即可).16.为解决群众看病贵的问题,有关部门决定降低药价,对某种原价为100元的药品进行连续两次降价后为81元,设平均每次降价的百分率为x,则根据题意可列方程为100(1﹣x)2=81.【考点】AC:由实际问题抽象出一元二次方程.【分析】设平均每次的降价率为x,则经过两次降价后的价格是100(1﹣x)2,根据关键语句“连续两次降价后为81元,”可得方程100(1﹣x)2=81.【解答】解:由题意得:100(1﹣x)2=81,故答案为:100(1﹣x)2=81.17.如图,已知矩形ABCD,AB=8cm,BC=6cm,点Q为BC中点,在DC上取一点P,使△APQ 的面积等于18cm2,则DP的长度为4cm.【考点】LB:矩形的性质.=S矩形ABCD﹣S△ADP﹣S△ABQ﹣S△PCQ,列出方程即可解决问题.【分析】设DP=x,根据S△APQ【解答】解:设DP=x.=S矩形ABCD﹣S△ADP﹣S△ABQ﹣S△PCQ,AD=BC=6,AB=CD=8,BQ=CQ=3,∵S△APQ∴18=48﹣•x•6﹣(8﹣x)•3﹣•8•3,∴x=4,故答案为4.18.如图,在每个小正方形的边长为1的网格中,点A,B均在格点上.(Ⅰ)线段AB的长为2.(Ⅱ)请利用网格,用无刻度的直尺在AB上作出点P,使AP=,并简要说明你的作图方法(不要求证明).取格点M,N,连接MN交AB于P,则点P即为所求.【考点】N4:作图—应用与设计作图;KQ:勾股定理.【分析】利用勾股定理列式求出AB=2,然后作一小正方形对角线,使对角线与AB的交点满足AP:BP=2:1即可.【解答】解:(1)由勾股定理得,AB==2;(2)∵AB=2,所以,AP=时AP:BP=2:1.点P如图所示.取格点M,N,连接MN交AB于P,则点P即为所求;故答案为:取格点M,N,连接MN交AB于P,则点P即为所求.三、解答题(本大题共7小题,共66分)19.解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得x<3;(Ⅱ)解不等式②,得x≥﹣4;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为﹣4≤x<3.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:(Ⅰ)解不等式①,得x<3;(Ⅱ)解不等式②,得:x≥﹣4;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为:﹣4≤x<3,故答案为:(Ⅰ)x<3;(Ⅱ)x≥﹣4;(Ⅳ)﹣4≤x<3.20.某校260名学生参加植树活动,要求每人植4~7棵,活动结束后,随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵,B:5棵,C:6棵,D:7棵,并将各类的人数绘制了扇形统计图(如图1)和条形统计图(如图2),请根据相关信息解答下列问题:(Ⅰ)图1中m的值为30;(Ⅱ)补全图2,并求出抽查的20名学生每人植树量数据的众数、中位数;(Ⅲ)求抽查的20名学生平均每人的植树量(保留一位小数),并估计全校260名学生共植树多少棵?【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图;W2:加权平均数;W4:中位数;W5:众数.【分析】(Ⅰ)由单位1减去其余的百分比求出m的值即可;(Ⅱ)补全图2,求出抽查的20名学生每人植树量数据的众数、中位数即可;(Ⅲ)求出20名学生平均每人植树的棵树,进而估计出全校学生共植树的棵树即可.【解答】解:(Ⅰ)图1中m的值为30;故答案为:30;(Ⅱ)补全图2,如图所示,∵在这组数据中,5出现了8次,出现的次数最多,∴这组数据的众数为5,∵将这组数据按照从小到大顺序排列,其中处于中间的两个数都是5,∴这组数据的中位数为5;(Ⅲ)==5.3(棵),则调查的20名学生平均每人的植树量5.3棵,5.3×260=1378(棵),则估计全校260名学生共植树1378棵.21.已知四边形ABCD是平行四边形,CD为⊙O的切线,点C是切点.(Ⅰ)如图1,若AB为⊙O直径,求四边形ABCD各内角的度数;(Ⅱ)如图2,若AB为弦,⊙O的半径为3cm,当BC=2cm时,求CD的长.【考点】MC:切线的性质;L5:平行四边形的性质.【分析】(1)如图1中,连接OC.只要证明△OCB是等腰直角三角形即可解决问题(2)如图2中,连接OC交AB于点E,连接OB,由(1)可知:AB⊥OC,设OE=xcm,则CE=(3﹣x)cm,想办法构建方程即可解决问题;【解答】解:(1)如图1中,连接OC.∵CD切⊙O于点C,∴CD⊥OC,∵四边形ABCD是平行四边形,∴AB∥OC,∵四边形ABCD是平行四边形,∴AB∥CD,∴AB⊥CD,∵OC=OB,∴∠B=∠OCB=45°,∴∠BCD=∠OCD+∠OCB=135°,∵四边形ABCD是平行四边形,∴∠DAB=∠DCB=135°,∠D=∠B=45°.(2)如图2中,连接OC交AB于点E,连接OB,由(1)可知:AB⊥OC,∴OB2﹣OE2=BE2,BC2﹣CE2=EB2,设OE=xcm,则CE=(3﹣x)cm,∴OB=3,BC=2,∴32﹣x2=22﹣(3﹣x)2,∴x=,即OE=cm,∴BE==cm,∴AB=2BE=cm,∵四边形ABCD 平行四边形,∴CD=AB=cm.22.如图1是一种折叠椅,忽略其支架等的宽度,得到他的侧面简化结构图(图2),支架与坐板均用线段表示,若座板DF平行于地面MN,前支撑架AB与后支撑架AC分别与座板DF交于点E、D,现测得DE=20厘米,DC=40厘米,∠AED=58°,∠ADE=76°.(1)求椅子的高度(即椅子的座板DF与地面MN之间的距离)(精确到1厘米)(2)求椅子两脚B、C之间的距离(精确到1厘米)(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,sin76°≈0.97.cos76°≈0.24,tan76°≈4.00)【考点】T8:解直角三角形的应用.【分析】(1)作DP⊥MN于点P,即∠DPC=90°,由DE∥MN知∠DCP=∠ADE=76°,根据DP=CDsin ∠DCP可得答案;(2)作EQ⊥MN于点Q可得四边形DEQP是矩形,知DE=PQ=20,EQ=DP=39,再分别求出BQ、CP的长可得答案.【解答】解:(1)如图,作DP⊥MN于点P,即∠DPC=90°,∵DE∥MN,∴∠DCP=∠ADE=76°,则在Rt△CDP中,DP=CDsin∠DCP=40×sin76°≈39(cm),答:椅子的高度约为39厘米;(2)作EQ⊥MN于点Q,∴∠DPQ=∠EQP=90°,∴DP∥EQ,又∵DF∥MN,∠AED=58°,∠ADE=76°,∴四边形DEQP是矩形,∠DCP=∠ADE=76°,∠EBQ=∠AED=58°,∴DE=PQ=20,EQ=DP=39,又∵CP=CDcos∠DCP=40×cos76°≈9.6(cm),BQ==≈24.4(cm),∴BC=BQ+PQ+CP=24.4+20+9.6≈54(cm),答:椅子两脚B、C之间的距离约为54cm.23.如表是某校七~九年级某月课外兴趣小组(分文艺小组和科技小组)活动时间统计表,其中各年级同一兴趣小组每次活动时间相同.观察表格,七、八年级科技小组活动次数相同,文艺小组活动次数相差1次,活动总时间相差2h,由此可知文艺小组每次活动时间为2h,进而可知科技小组每次活动时间为 1.5 h;依题意可得a与b的关系式为2a+1.5b=7,因为a与b是自然数,所以a=2,b=2;(Ⅱ)若学校重新规定:九年级每月课外兴趣小组活动总次数为8次,在文艺小组与科技小组每次活动时间保持不变的情况下,求出九年级每月课外兴趣小组活动总时间y(h)与文艺小组活动次数x(次)之间的函数关系式(其中规定x为大于1且小于8的自然数).【考点】FH:一次函数的应用.【分析】(Ⅰ)七、八年级科技小组活动次数相同,文艺小组活动次数相差1次,活动总时间相差2h,由此可知文艺小组每次活动时间为2h,进而可知科技小组每次活动时间为1.5h;进而可得a与b的关系式,再根据a与b是自然数,求出a与b的值;(Ⅱ)如果文艺小组活动次数为x,则科技小组活动次数为8﹣x,根据每月课外兴趣小组活动总时间=文艺小组每次活动时间×文艺小组活动次数+科技小组每次活动时间×科技小组活动次数,得出y与x之间的函数关系式.【解答】解:(Ⅰ)∵七、八年级科技小组活动次数相同,文艺小组活动次数相差4﹣3=1次,活动总时间相差12.5﹣10.5=2h,∴文艺小组每次活动时间为2h,科技小组每次活动时间为(12.5﹣4×2)÷3=1.5h;∵九年级课外小组活动总时间为7h,∴2a+1.5b=7,∵a与b是自然数,∴a=2,b=2.故答案为1,2,2,1.5;2a+1.5b=7,2,2;(Ⅱ)如果文艺小组活动次数为x,则科技小组活动次数为8﹣x,根据题意,得y=2x+1.5(8﹣x),即y=0.5x+12.24.在平面直角坐标系中,O为坐标原点,点A坐标为(﹣2,0),∠OAB=90°,∠AOB=30°,将△OAB绕点O按顺时针方向旋转,旋转角为α(0°<α≤150°),在旋转过程中,点A、B的对应点分别为点A′、B′.(Ⅰ)如图1,当α=60°时,直接写出点A′(﹣,3)、B′(0,4)的坐标;(Ⅱ)如图2,当α=135°时,过点B′作AB的平行线交AA′延长线于点C,连接BC,AB′.①判断四边形AB′CB的形状,并说明理由,②求此时点A′和点B′的坐标;(Ⅲ)当α由30°旋转到150°时,(Ⅱ)中的线段B′C也随之移动,请求出B′C所扫过的区域的面积?(直接写出结果即可).【考点】KY:三角形综合题.【分析】(Ⅰ)如图1中,作A′E⊥OB′于E.解直角三角形求出EO,A′E即可解决问题;(Ⅱ)①如图2中,结论:四边形AB′CB是平行四边形.只要证明B′C∥AB,B′C=AB;②过点A′作A′E⊥x轴于E.过点B′作B′F⊥A′E于F,解直角三角形求出OE、EF、B′F即可;,由此计算即可;(Ⅲ)B′C扫过的面积=S平行四边形B′B″C″C′【解答】解:(Ⅰ)如图1中,作A′E⊥OB′于E.在Rt′△OA′B′中,∵∠A′OB′=30°,OA′=2,∴cos30°=,∴OB′=4,∴B′(0,4),在Rt△OA′E中,∵OA′=2,∴A′E=,OE=A′E=3,∴A′(﹣,3).故答案为(﹣,3),(0,4).(Ⅱ)①如图2中,结论:四边形AB′CB是平行四边形.理由:∵B′C∥AB,∴∠B′CA=∠BAC,∵∠BAC+∠CAO=90°,∴∠B′CA′+∠CAO=90°,又∵∠B′A′C+∠OA′A=90°,且旋转得到OA=OA′,则∠CAO=∠OA′A,∴∠B′CA′=∠B′A′C,∴B′C=B′A′,又∵A′B′=AB,∴B′C=AB,∴四边形AB′CB是平行四边形.②过点A′作A′E⊥x轴于E.由A(﹣2,0),可得OA=2,又∵∠OAB=90°,∠AOB=30°,∴AB=2,OB=4,则OA′=2,A′B′=2,由∠AOA′=135°,得到∠A′OE=45°,∴OE=A′E=OA′=,∴点A′(,),过点B′作B′F⊥A′E于F,由∠EA′O=45°,得∠EA′B′=45°,∴B′F=A′F=×2=,∴EF=﹣,OE+B′F=+,∴点B′(+,﹣).(Ⅲ)如图3中,B′C扫过的面积=S平行四边形B′B″C″C′=6×2=12.25.已知抛物线y=﹣x2﹣2x+3交x轴于点A、C(点A在点C左侧),交y轴于点B.(Ⅰ)求A,B,C三点坐标;(Ⅱ)如图1,点D为AC中点,点E在线段BD上,且BE=2DE,连接CE并延长交抛物线于点M,求点M坐标;(Ⅲ)如图2,将直线AB绕点A按逆时针方向旋转15°后交y轴于点G,连接CG,点P为△ACG 内一点,连接PA、PC、PG,分别以AP、AG为边,在它们的左侧作等边△APR和等边△AGQ,求PA+PC+PG的最小值,并求当PA+PC+PG取得最小值时点P的坐标(直接写出结果即可).【考点】HF:二次函数综合题.【分析】(Ⅰ)抛物线y=﹣x2﹣2x+3中,令y=﹣x2﹣2x+3=0,可得A(﹣3,0),C(1,0);当x=0时,可得B(0,3);(Ⅱ)首先利用A、C坐标,求出D的坐标,根据BE=2ED,求出点E坐标,求出直线CE,利用方程组求交点坐标M即可;(Ⅲ)先证明△QAR≌△GAP即可得出QR=PG,进而得到PA+PC+PG=PR+PC+QR,可得当Q,R,P,C共线时,PA+PC+PG的值最小,即为线段QC的长,作QN⊥OA于N,AM⊥QC于M,PK⊥OA于K,利用勾股定理求得QC的长,再求出AM,CM,利用等边三角形性质求出AP、PM、PC,由此即可解决问题.【解答】解:(Ⅰ)抛物线y=﹣x2﹣2x+3中,令y=﹣x2﹣2x+3=0,可得x1=1,x2=﹣3,∴A(﹣3,0),C(1,0),当x=0时,y=3,∴B(0,3);(Ⅱ)∵点D为AC中点,A(﹣3,0),C(1,0),∴D(﹣1,0),∵BE=2DE,B(0,3),∴E(﹣,1),设直线CE为y=kx+b,把C(1,0),E(﹣,1)代入,可得,解得,∴直线CE为y=﹣x+,解方程组,可得或,∵M在第二象限,∴M(﹣,);(Ⅲ)∵△APR和△AGQ是等边三角形,∴AP=AR=PR,AQ=AG,∠QAG=∠RAP=60°,∴∠QAR=∠GAP,在△QAR和△GAP中,,∴△QAR≌△GAP(SAS),∴QR=PG,∴PA+PC+PG=PR+PC+QR,∴当Q,R,P,C共线时,PA+PC+PG的值最小,即为线段QC的长,如图3,作QN⊥OA于N,作AM⊥CQ于M,作PK⊥CN于K,依题意得∠GAO=45°+15°=60°,AO=3,∴AG=GQ=QA=6,∠AGO=30°,OG=3,∵∠AGQ=60°,∴∠QGO=90°,∴Q(﹣6,3),在Rt△QNC中,QN=3,CN=6+1=7,∴QC==2,即PA+PC+PG的最小值为2,∴sin∠ACM==,∴AM==,∵△APR是等边三角形,∴∠APM=60°,PM=AM,MC==,∴PC=CM﹣PM=,∵sin∠PCN==,cos∠PCN==,∴PK=,CK=,∴OK=,∴P(﹣,).。
2017年天津市武清区中考数学一模试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)﹣的相反数是()A.B.﹣ C.5 D.﹣52.(3分)sin60°的值等于()A.B.C.D.3.(3分)下列图案中,属于轴对称图形的是()A.B.C.D.4.(3分)移动互联网已经全面进入人们的日常生活,全国用户总数量超过3.87亿人,将3.87亿用科学记数法表示应为()A.0.387×109B.3.87×108C.38.7×107D.387×1065.(3分)实数a,b在数轴上的对应点的位置如图所示,把﹣a,b,0按照从小到大的顺序排列,正确的是()A.﹣a<b<0 B.0<﹣a<b C.b<0<﹣a D.0<b<﹣a6.(3分)如图所示的几何体的俯视图是()A.B.C.D.7.(3分)估计2的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间8.(3分)化简的结果是()A.x+1 B.x﹣1 C.﹣x D.x9.(3分)若关于x的方程x2+3x+a=0有一个根为﹣1,则另一个根为()A.﹣2 B.2 C.4 D.﹣310.(3分)如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为PQ,则线段BQ的长度为()A.B.C.4 D.511.(3分)如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y=的图象上.若点B在反比例函数y=的图象上,则k的值为()A.﹣4 B.4 C.﹣2 D.212.(3分)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC.则下列结论:①abc<0;②>0;③ac﹣b+1=0;④2a+b=0其中正确结论的个数是()A.1 B.2 C.3 D.4二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)从甲、乙、丙、丁4名三好学生中随机抽取2名学生担任国旗队升旗手,则抽取的2名学生恰好是乙和丙的概率是.14.(3分)计算(﹣xy3)2的结果等于.15.(3分)多项式x(x﹣1)﹣3x+4因式分解的结果等于.16.(3分)若一次函数y=2x+b的图象不经过第二象限,则此函数的解析式可以为(写出一个即可)17.(3分)如图,正方形ABCD绕点B逆时针旋转30°后得到正方形BEFG,EF 与AD相交于点H,延长DA交GF于点K.若正方形ABCD边长为,则HD的长为.18.(3分)如图,将△ABC放在每个小正方形的边长为1的网格中,点A,B,C 均在格点上.(Ⅰ)计算AB边的长为;(Ⅱ)请在如图所示的网格中,用无刻度的直尺作出一个以AB为边的矩形,使矩形的面积等于△ABC的面积,并简要说明你的作图方法(不要求证明)三、解答题(本大题共7小题,共66分)19.(8分)解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的阶级在数轴上表示出来;(Ⅳ)原不等式组的解集为20.(8分)在一次初中生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)图①中a的值为;(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数(结果保留小数点后两位);(Ⅲ)根据这组初赛成绩,由高到低确定7人进入复赛,请直接写出初赛成绩为1.60m的运动员能否进入复赛.21.(10分)如图,已知三角形ABC的边AB是⊙0的切线,切点为B.AC经过圆心0并与圆相交于点D、C,过C作直线CE丄AB,交AB的延长线于点E.(1)求证:CB平分∠ACE;(2)若BE=3,CE=4,求⊙O的半径.22.(10分)如图所示,某中学九年级数学活动小组选定测量学校前面小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°.若斜坡FA的坡比i=1:,求大树的高度.(结果保留一位小数)参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,取1.73.23.(10分)为保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口A的费用分别为14元/吨,20元/吨;从甲、乙两仓库运送物资到港口B的费用分别为10元/吨、8元/吨.(Ⅰ)设从甲仓库运往A港口x吨,试填写表格.表一表二(Ⅱ)给出能完成此次运输任务的最节省费用的调配方案,并说明理由.24.(10分)两个三角板ABC,DEF,按如图所示的位置摆放,点B与点D重合,边AB与边DE在同一条直线上(假设图形中所有的点,线都在同一平面内).其中,∠C=∠DEF=90°,∠ABC=∠F=30°,AC=DE=6cm.现固定三角板DEF,将三角板ABC沿射线DE方向平移,当点C落在边EF上时停止运动.设三角板平移的距离为x(cm),两个三角板重叠部分的面积为y(cm2).(1)当点C落在边EF上时,x=cm;(2)求y关于x的函数解析式,并写出自变量x的取值范围;(3)设边BC的中点为点M,边DF的中点为点N.直接写出在三角板平移过程中,点M与点N之间距离的最小值.25.(10分)在平面直角坐标系中,O为原点,直线y=﹣2x﹣1与y轴交于点A,与直线y=﹣x交于点B,点B关于原点的对称点为点C.(Ⅰ)求过B,C两点的抛物线y=ax2+bx﹣1解析式;(Ⅱ)P为抛物线上一点,它关于原点的对称点为Q.①当四边形PBQC为菱形时,求点P的坐标;②若点P的横坐标为t(﹣1<t<1),当t为何值时,四边形PBQC面积最大?最大值是多少?并说明理由.2017年天津市武清区中考数学一模试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)(2014•广安)﹣的相反数是()A.B.﹣ C.5 D.﹣5【解答】解:﹣的相反数是.故选:A.2.(3分)(2017•宁河县一模)sin60°的值等于()A.B.C.D.【解答】解:sin60°=×=,故选:C.3.(3分)(2017•宁河县一模)下列图案中,属于轴对称图形的是()A.B.C.D.【解答】解:A、沿直线折叠直线两旁的部分不能完全重合,不是轴对称图形,故A不符合题意;B、沿直线折叠直线两旁的部分不能完全重合,不是轴对称图形,故B不符合题意;C、沿直线折叠直线两旁的部分能完全重合,是轴对称图形,故C符合题意;D、沿直线折叠直线两旁的部分不能完全重合,不是轴对称图形,故D不符合题意;故选:C.4.(3分)(2017•宁河县一模)移动互联网已经全面进入人们的日常生活,全国用户总数量超过3.87亿人,将3.87亿用科学记数法表示应为()A.0.387×109B.3.87×108C.38.7×107D.387×106【解答】解:将3.87亿用科学记数法表示为:3.87×108故选:B.5.(3分)(2017•宁河县一模)实数a,b在数轴上的对应点的位置如图所示,把﹣a,b,0按照从小到大的顺序排列,正确的是()A.﹣a<b<0 B.0<﹣a<b C.b<0<﹣a D.0<b<﹣a【解答】解:∵b<0<a,|a|>|b|,∴﹣a<b<0.故选:A.6.(3分)(2015•河南)如图所示的几何体的俯视图是()A.B.C.D.【解答】解:从上面看左边一个正方形,右边一个正方形,故选:B.7.(3分)(2017•宁河县一模)估计2的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间【解答】解:∵(2)2=12,9<12<16,∴3<2<4.故选C.8.(3分)(2014•南通)化简的结果是()A.x+1 B.x﹣1 C.﹣x D.x【解答】解:=﹣===x,故选:D.9.(3分)(2015•衡阳)若关于x的方程x2+3x+a=0有一个根为﹣1,则另一个根为()A.﹣2 B.2 C.4 D.﹣3【解答】解:设一元二次方程的另一根为x1,则根据一元二次方程根与系数的关系,得﹣1+x1=﹣3,解得:x1=﹣2.故选A.10.(3分)(2016•呼伦贝尔)如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为PQ,则线段BQ的长度为()A.B.C.4 D.5【解答】解:设BQ=x,由折叠的性质可得DQ=AQ=9﹣x,∵D是BC的中点,∴BD=3,在Rt△BQD中,x2+32=(9﹣x)2,解得:x=4.故线段BQ的长为4.故选:C.11.(3分)(2015•孝感)如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y=的图象上.若点B在反比例函数y=的图象上,则k的值为()A.﹣4 B.4 C.﹣2 D.2【解答】解:过点A,B作AC⊥x轴,BD⊥x轴,分别于C,D.设点A的坐标是(m,n),则AC=n,OC=m,∵∠AOB=90°,∴∠AOC+∠BOD=90°,∵∠DBO+∠BOD=90°,∴∠DBO=∠AOC,∵∠BDO=∠ACO=90°,∴△BDO∽△OCA,∴==,∵OB=2OA,∴BD=2m,OD=2n,因为点A在反比例函数y=的图象上,则mn=1,∵点B在反比例函数y=的图象上,B点的坐标是(﹣2n,2m),∴k=﹣2n•2m=﹣4mn=﹣4.故选A.12.(3分)(2017•宁河县一模)如图,二次函数y=ax2+bx+c(a≠0)的图象与x 轴交于A,B两点,与y轴交于点C,且OA=OC.则下列结论:①abc<0;②>0;③ac﹣b+1=0;④2a+b=0其中正确结论的个数是()A.1 B.2 C.3 D.4【解答】解:①∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y轴的右侧,∴b>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①正确;②∵抛物线与x轴有两个交点,∴b2﹣4ac>0,∵a<0,∴<0,所以②不正确;③∵C(0,c),OA=OC,∴A(﹣c,0),把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,∴ac﹣b+1=0,所以③正确;④当﹣=1时,b=﹣2a,2a+b=0,而本题的对称轴不确定值,所以④不正确;本题正确的有:①③,2个,故选B.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)(2017•宁河县一模)从甲、乙、丙、丁4名三好学生中随机抽取2名学生担任国旗队升旗手,则抽取的2名学生恰好是乙和丙的概率是.【解答】解:画树状图为:共有12种等可能的结果数,其中抽取的2名学生恰好是乙和丙的结果数为2,所以抽取的2名学生恰好是乙和丙的概率==.故答案为.14.(3分)(2017•宁河县一模)计算(﹣xy3)2的结果等于x2y6.【解答】解:(﹣xy3)2=(﹣1)2•x2•(y3)2=x2y6,故等答案为:x2y6.15.(3分)(2017•宁河县一模)多项式x(x﹣1)﹣3x+4因式分解的结果等于(x ﹣2)2.【解答】解:x(x﹣1)﹣3x+4=x2﹣x﹣3x+4=x2﹣4x+4=(x﹣2)2.故答案为:(x﹣2)2.16.(3分)(2017•宁河县一模)若一次函数y=2x+b的图象不经过第二象限,则此函数的解析式可以为y=2x﹣1(写出一个即可)【解答】解:∵一次函数y=2x+b的图象不经过第二象限,∴b<0.故答案为:y=2x﹣1.17.(3分)(2017•宁河县一模)如图,正方形ABCD绕点B逆时针旋转30°后得到正方形BEFG,EF与AD相交于点H,延长DA交GF于点K.若正方形ABCD边长为,则HD的长为﹣1.【解答】解:连接BH,如图所示:∵四边形ABCD和四边形BEFG是正方形,∴∠BAH=∠ABC=∠BEH=∠F=90°,由旋转的性质得:AB=EB,∠CBE=30°,∴∠ABE=60°,在Rt△ABH和Rt△EBH中,,∴Rt△ABH≌△Rt△EBH(HL),∴∠ABH=∠EBH=∠ABE=30°,AH=EH,∴AH=AB•tan∠ABH=×=1,∴HD=AD﹣AH=﹣1,故答案为:﹣1.18.(3分)(2017•宁河县一模)如图,将△ABC放在每个小正方形的边长为1的网格中,点A,B,C均在格点上.(Ⅰ)计算AB边的长为;(Ⅱ)请在如图所示的网格中,用无刻度的直尺作出一个以AB为边的矩形,使矩形的面积等于△ABC的面积,并简要说明你的作图方法(不要求证明)【解答】解:(1)AB==.故答案为:;(2)如图所示,矩形ABHG即为所求.三、解答题(本大题共7小题,共66分)19.(8分)(2017•宁河县一模)解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得x≥﹣3;(Ⅱ)解不等式②,得x<2;(Ⅲ)把不等式①和②的阶级在数轴上表示出来;(Ⅳ)原不等式组的解集为﹣3≤x<2【解答】解:(Ⅰ)系数化成1得x≥﹣3.故答案是:x≥﹣3;(Ⅱ)去括号,得3x+3<2x+5,移项,得3x﹣2x<5﹣3,合并同类项,得x<2.故答案是:x<2;(Ⅲ);(Ⅳ)不等式组的解集是﹣3≤x<2.故答案是:﹣3≤x<2.20.(8分)(2017•宁河县一模)在一次初中生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)图①中a的值为25;(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数(结果保留小数点后两位);(Ⅲ)根据这组初赛成绩,由高到低确定7人进入复赛,请直接写出初赛成绩为1.60m的运动员能否进入复赛.【解答】解:(1)∵a%=1﹣(15%+30%+20%+10%)=25%,∴a=25,故答案为:25;(2)平均数为≈1.60(m),1.55m出现次数最多,故众数为1.55m;19个数据的中位数为第10个数据,故中位数为1.60m;(3)由条形图知,分数从高到低1.70m的有2人,1.65m的有5人,共7人,∴初赛成绩为1.60m的运动员不能进入复赛.21.(10分)(2015•铜仁市)如图,已知三角形ABC的边AB是⊙0的切线,切点为B.AC经过圆心0并与圆相交于点D、C,过C作直线CE丄AB,交AB的延长线于点E.(1)求证:CB平分∠ACE;(2)若BE=3,CE=4,求⊙O的半径.【解答】(1)证明:如图1,连接OB,∵AB是⊙0的切线,∴OB⊥AB,∵CE丄AB,∴OB∥CE,∴∠1=∠3,∵OB=OC,∴∠1=∠2,∴∠2=∠3,∴CB平分∠ACE;(2)如图2,连接BD,∵CE丄AB,∴∠E=90°,∴BC===5,∵CD是⊙O的直径,∴∠DBC=90°,∴∠E=∠DBC,∴△DBC∽△CBE,∴,∴BC2=CD•CE,∴CD==,∴OC==,∴⊙O的半径=.22.(10分)(2017•宁河县一模)如图所示,某中学九年级数学活动小组选定测量学校前面小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°.若斜坡FA的坡比i=1:,求大树的高度.(结果保留一位小数)参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,取1.73.【解答】解:过点D作DM⊥BC于点M,DN⊥AC于点N,则四边形DMCN是矩形,∵DA=6,斜坡FA的坡比i=1:,∴DN=AD=3,AN=AD•cos30°=6×=3,设大树的高度为x,∵在斜坡上A处测得大树顶端B的仰角是48°,∴tan48°=≈1.11,∴AC=,∴DM=CN=AN+AC=3+,∵在△ADM中,=,∴x﹣3=(3+)•,解得:x≈13.答:树高BC约13米23.(10分)(2017•宁河县一模)为保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口A的费用分别为14元/吨,20元/吨;从甲、乙两仓库运送物资到港口B的费用分别为10元/吨、8元/吨.(Ⅰ)设从甲仓库运往A港口x吨,试填写表格.表一表二(Ⅱ)给出能完成此次运输任务的最节省费用的调配方案,并说明理由.【解答】解:(Ⅰ)设从甲仓库运x吨往A港口,则从甲仓库运往B港口的有(80﹣x)吨,从乙仓库运往A港口的有(100﹣x)吨,运往B港口的有50﹣(80﹣x)=(x﹣30)吨,费用分别为14x元,10(80﹣x)元,20(100﹣x)元,8(x﹣30)元.故答案分别为x,100﹣x,80﹣x,x﹣30;20(100﹣x),10(80﹣x),8(x﹣30);(Ⅱ)因为y=14x+20(100﹣x)+10(80﹣x)+8(x﹣30)=﹣8x+2560,x的取值范围是30≤x≤80.因为y随x增大而减少,所以当x=80时总运费最小,当x=80时,y=﹣8×80+2560=1920,此时方案为:把甲仓库的全部运往A港口,再从乙仓库运20吨往A港口,乙仓库的余下的全部运往B港口.24.(10分)(2015•吉林)两个三角板ABC,DEF,按如图所示的位置摆放,点B 与点D重合,边AB与边DE在同一条直线上(假设图形中所有的点,线都在同一平面内).其中,∠C=∠DEF=90°,∠ABC=∠F=30°,AC=DE=6cm.现固定三角板DEF,将三角板ABC沿射线DE方向平移,当点C落在边EF上时停止运动.设三角板平移的距离为x(cm),两个三角板重叠部分的面积为y(cm2).(1)当点C落在边EF上时,x=15cm;(2)求y关于x的函数解析式,并写出自变量x的取值范围;(3)设边BC的中点为点M,边DF的中点为点N.直接写出在三角板平移过程中,点M与点N之间距离的最小值.【解答】解:(1)如图1所示:作CG⊥AB于G点.,在Rt△ABC中,由AC=6,∠ABC=30,得BC==6.在Rt△BCG中,BG=BC•cos30°=9.四边形CGEH是矩形,CH=GE=BG+BE=9+6=15cm,故答案为:15;(2)①当0≤x <6时,如图2所示.,∠GDB=60°,∠GBD=30°,DB=x ,得DG=x ,BG=x ,重叠部分的面积为y=DG•BG=×x ×x=x 2②当6≤x <12时,如图3所示.,BD=x ,DG=x ,BG=x ,BE=x ﹣6,EH=(x ﹣6).重叠部分的面积为y=S △BDG ﹣S △BEH =DG•BG ﹣BE•EH ,即y=×x ×x ﹣(x ﹣6)(x ﹣6)化简,得y=﹣x 2+2x ﹣6;③当12<x ≤15时,如图4所示., AC=6,BC=6,BD=x ,BE=(x ﹣6),EG=(x ﹣6),重叠部分的面积为y=S △ABC ﹣S △BEG =AC•BC ﹣BE•EG ,即y=×6×6﹣(x ﹣6)(x ﹣6), 化简,得y=18﹣(x 2﹣12x +36)=﹣x 2+2x +12;综上所述:y=;(3)如图5所示作NG ⊥DE 于G 点.,点M 在NG 上时MN 最短,NG 是△DEF 的中位线,NG=EF=.MB=CB=3,∠B=30°,MG=MB=,MN最小=3﹣=.25.(10分)(2017•宁河县一模)在平面直角坐标系中,O为原点,直线y=﹣2x ﹣1与y轴交于点A,与直线y=﹣x交于点B,点B关于原点的对称点为点C.(Ⅰ)求过B,C两点的抛物线y=ax2+bx﹣1解析式;(Ⅱ)P为抛物线上一点,它关于原点的对称点为Q.①当四边形PBQC为菱形时,求点P的坐标;②若点P的横坐标为t(﹣1<t<1),当t为何值时,四边形PBQC面积最大?最大值是多少?并说明理由.【解答】解:(Ⅰ)联立两直线解析式可得,解得,∴B点坐标为(﹣1,1),又C点为B点关于原点的对称点,∴C点坐标为(1,﹣1),∵直线y=﹣2x﹣1与y轴交于点A,∴A点坐标为(0,﹣1),设抛物线解析式为y=ax2+bx+c,把A、B、C三点坐标代入可得,解得,∴抛物线解析式为y=x2﹣x﹣1;(Ⅱ)①当四边形PBQC为菱形时,则PQ⊥BC,∵直线BC解析式为y=﹣x,∴直线PQ解析式为y=x,联立抛物线解析式可得,解得或,∴P点坐标为(1﹣,1﹣)或(1+,1+);②当t=0时,四边形PBQC的面积最大.理由如下:如图,过P作PD⊥BC,垂足为D,作x轴的垂线,交直线BC于点E,=2S△PBC=2×BC•PD=BC•PD,则S四边形PBQC∵线段BC长固定不变,∴当PD最大时,四边形PBQC面积最大,又∠PED=∠AOC(固定不变),∴当PE最大时,PD也最大,∵P点在抛物线上,E点在直线BC上,∴P点坐标为(t,t2﹣t﹣1),E点坐标为(t,﹣t),∴PE=﹣t﹣(t2﹣t﹣1)=﹣t2+1,∴当t=0时,PE有最大值1,此时PD有最大值,即四边形PBQC的面积最大.参与本试卷答题和审题的老师有:HLing;2300680618;王学峰;放飞梦想;zhjh;zhangCF;sd2011;守拙;tcm123;gsls;zjx111;曹先生;家有儿女;szl;三界无我;CJX;弯弯的小河(排名不分先后)菁优网2017年5月24日。
2017年天津市初中毕业生学业考试试卷数 学一、选择题:1.计算(3) 5的结果等于( )A. 2 B2C . 8D .8【答案】 A.【解析】试题分析 根据有理数的加法法则即可得原式-2,故选A.2. COS600的值等于( )A 品B.1C 2D1 2【答案】D.【解析】试题分析;棍据特殊角的三角函数值可得3丸0匸:,故选D3.在一些美术字中,有的汉子是轴对称图形 •下面4个汉字中,可以看作是轴对称图形的 是( )礼迎全运CA )(B ) (C ) (D )【答案】C. 【解析】试题分析:根据轴对称图形的定义可知,只有选项C 是轴对称图形,故选 C.4. 据《天津日报》报道,天津市社会保障制度更加成熟完善,截止 放社会保障卡12630000张•将12630000用科学记数法表示为()【答案】B.2017年4月末,累计发 8 7A. 0.1263 10 B . 1.263 106C . 12.63 105D . 126.3 10试题分析:学记数法的表示形式为a x I0n的形式,其中1w|a|v 10, n为整数,n的值为这个数的整数位数减1,所以=1.263 107.故选B.5. 右图是一个由4个相同的正方体组成的立体图形,它的主视图是()第<5)IS (O【答案】D.【解析】试题分析:从正面看可得从下往上有2列正方形,个数依次为3, 1,故选D.6. 估计.38的值在()A. 4和5之间 B . 5和6之间C. 6和7之间D . 7和8之间【答案】C.【解析】试題分析:由即可得X ,烦<匚故选C7.计算a1的结果为()a 1 a 11A. 1B.aC. a 1Da 1【答案】A.【解析】试题分析:根据同分母的分式相加减的法则可得,原式=a 1 1,故选A.a 1y2x8.方程组J的解是()3x y15x2x4x4x3A.B C. D .y3y3y8y6(A>iD)【解析】试题分析:把方程①代入方程②可得,3x+2x=15,解得x=3,把x=3代入方程①可得y=6,所以方程组的解为X 3,故选D.y 69.如图,将ABC绕点B顺时针旋转600得DBE,点C的对应点E恰好落在AB延长线上,连接AD .下列结论一定正确的是()【答案】C.【解析】试题分析;WilSC绕点鸟顺时针谄专6L富3EE ,由此可得遊吧厶BXZEBWr ;即可得△ABD为等边三对略根据等边三角形的性贡可得4期司o° ,所以4蛇立瑰,所以,化”比,其它结论都不能够推岀,故选c10.若点A(1, y i) , B(1,y2), C(3,y3)在反比例函数y3的图象上,贝UXy1,y2, y3 的大小关系是()A. y i y2y3 B . y2 y3 屮 C. y3y2 y1 D . y2 y1 y3【答案】B.【解析】试题分析:把A( 1,yJ , B(1, y2), 53小)分别代入y -可得,Xy i 3,y23,y3 1,即可得y2 y3 y i,故选B.CBE C. AD//BC D . AD BCAABD E A.11.如图,在ABC中,AB AC , AD,CE是ABC的两条中线,P是AD上一个动点,EP最小值的是(C. AD D . AC【解试题分析:在ABC 中,AB AC , AD是ABC的中线,可得点B和点D关于直线AD对称,连结CE交AD于点P,此时BP EP最小,为EC的长,故选 B.12.已知抛物线y x2 4x 3与x轴相交于点A,B (点A在点B左侧),顶点为M .平移该抛物线,使点M平移后的对应点M '落在x轴上,点B平移后的对应点B'落在y轴上,则平移后的抛物线解析式为()2 2 2A. y x 2x 1 B . y x 2x 1 C. y x 2x 1D. y x2 2x 1【答案】A.【解析】试题分析=令 E 即r-4A+3 = 0 ;解得口或3,即可得A (b 0), 抛物线+ 3 = 的顶点坐标为(初・1人平移该挞物袋,使点胚平移后的对应点M落在工轴上点B平移后的对应点B'落在>■轴上,也就是把该抽物线问上平移1个单仏向左平移3个单位,抿協抛物线平移规律可得新抛物线的解析式九丄二0+=$ + 2工+1「故选A.二、填空题13.计算x7 x4的结果等于_____________ .【答案】X3.【解析】试题分析:根据同底数幕的除法法则计算即可,即原式=x3.14. 计算(4 7)(4 . 7)的结果等于________ .【答案】9.【解析】试题分析:根据平方差公式计算即可,即原式=16-7=9.15. 不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.【答案】5.6【解析】试题分析:从袋子中随机取出1个球,总共有6种等可能结果,这个球为红球的结果有5中,所以从袋子中随机取出1个球,则它是红球的概率是5.616. 若正比例函数y kx ( k是常数,k 0 )的图象经过第二、四象限,贝U k的值可以是(写出一个即可).【答案】k<0,只要符合条件的k值都可,例如k=-1.【解析】试題分析=正比例酗"是常数,的團象经过第二HW限’根16正比例函数的性质可得Z 只要符合条件的k值都可』例如k-h17. 如图,正方形ABCD和正方形EFCG的边长分别为3和1,点F,G分别在边BC,CD上,P为AE的中点,连接PG,则PG的长为.【解析】 试题分析:连结 AC 根据正方形的性质可得 A 、E C 三点共线,连结FG 交AC 于点M ,因正 方形ABCD 和正方形EFCG 的边长分别为3和1,根据勾股定理可求得EC=FG= 2 ,AC=3 ;2 ,即可得AE=2 2 ,因P 为AE 的中点,可得PE=AP= 2 ,再由正方形的GM=EM=Z ,FG 垂直于 AC,在 Rt △ PGM 中,PM 丄22 2PG=.5.【答案】(1) .17 ;( 2)详见解析 【解析】试题分析:⑴根据勾股定理即可求得AB-, 17 ; (2)如图,AC 与网络线相交,得点D 、E ,取格点F ,连结FB 并延长,与网格线相交,得点 M 、N ,连结DN 、EM ,DN 与EM 相交于性质可得由勾股定理即可求得18. 如图,在每个小正方形的边长为 1的网格中,点 代B,C 均在格点上.(1)AB 的长等于 ___________ ;(2 )在ABC 的内部有一点P ,满足S PAB : S PBC :: S PCA 1:2,请在如图所示的网格中, 用无刻度的直尺,画出点P ,并简要说明点P 的位置是如何找到的(不要求证 明)点P,点P即为所求•三、解答题19. 解不等式组X 1 2 ①5x 4x 3 ②请结合题意填空,完成本题的解答•(1) ___________________________ 解不等式①,得;(2) ___________________________ 解不等式②,得;(3 )把不等式①和②的解集在数轴上表示出来:0 12 3 4 5(4)原不等式组的解集为__________ •【答案】(1)x > 1; (2) x< 3; (3)详见解析;(4) K x w 3.【解析】试题分析:⑴ 移莎合并同类项即可求得答案;⑵ 移项、合并同类臥系数化为1即可求得答案:⑶ 根据不等式解集在数轴上的表示方法』画出即可,(4)找出这两个不等式解集的公共咅吩』即可得不等式组的解集.试题解析:(1)x > 1 ;(2) x w 3;(J 2 3^5(3)(3) 1 w x w 3.20.某跳水队为了解运动员的年龄情况, 作了一次年龄调查,根据跳水运动员的年龄 (单位:岁),绘制出如下的统计图①和图② •请根据相关信息,解答下列问题:(1)本次接受调查的跳水运动员人数为(2 )求统计的这组跳水运动员年龄数据的平均数、众数和中位数 【答案】(1)40, 30;( 2)15,16,15.【解析】试題分析:(1)用13岁年龄的人数除以13岁年龄的人数所占的百分比,祁可得本^接受调查的跳水运动 员人如用泊岁年龄的人数除以本次接登调查的跳水运动员人数即可求得m 的怪<2>根据统计囲中给出 的信息,结合求平t 渊、介数、中位数的方法求解即可.试题解析:(1)40,30; (2)观察条形统计图,-13 4 14 10 15 11 16 12 17 3 , J x ---------------------------------------------------- 15 ,40•••这组数据的平均数为 15;•••在这组数据中,16出现了 12次,出现的次数最多, •这组数据的众数为 16;15 15•••将这组数据按照从小到大的顺序排列,其中处于中间的两个数都是15,有15 15 15 ,2•这组数据的中位数为 15.21.已知AB 是O O 的直径,AT 是O O 的切线,ABT 50° , BT 交O O 于点C , E 是,图①中m 的值为AB上一点,延长CE交O O于点D .(1) 如图①,求T和CDB的大小;(2) 如图②,当BE BC时,求CDO的大小.【答案】(1) / T=40。
2017年天津市中考数学试卷(含答案解析版)(总28页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2017年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的) 1.(3分)计算(﹣3)+5的结果等于( ) A .2 B .﹣2C .8D .﹣82.(3分)cos60°的值等于( )A .√3B .1C .√22 D .123.(3分)在一些美术字中,有的汉子是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A .B .C .D .4.(3分)据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡张.将用科学记数法表示为( ) A .×108B .×107C .×106D .×1055.(3分)如图是一个由4个相同的正方体组成的立体图形,它的主视图是( )A .B .C .D .6.(3分)估计√38的值在( ) A .4和5之间B .5和6之间C .6和7之间D .7和8之间7.(3分)计算a a +1+1a +1的结果为( )A .1B .aC .a+1D .1a +18.(3分)方程组{a =2a 3a +a =15的解是( )A .{a =2a =3 B .{a =4a =3 C .{a =4a =8 D .{a =3a =69.(3分)如图,将△ABC 绕点B 顺时针旋转60°得△DBE ,点C 的对应点E 恰好落在AB 延长线上,连接AD .下列结论一定正确的是( )A .∠ABD=∠EB .∠CBE=∠CC .AD ∥BCD .AD=BC10.(3分)若点A (﹣1,y 1),B (1,y 2),C (3,y 3)在反比例函数a =−3a的图象上,则y 1,y 2,y 3的大小关系是( ) A .y 1<y 2<y 3 B .y 2<y 3<y 1 C .y 3<y 2<y 1 D .y 2<y 1<y 311.(3分)如图,在△ABC 中,AB=AC ,AD 、CE 是△ABC 的两条中线,P 是AD 上一个动点,则下列线段的长度等于BP+EP 最小值的是( )A .BCB .CEC .AD D .AC12.(3分)已知抛物线y=x 2﹣4x+3与x 轴相交于点A ,B (点A 在点B 左侧),顶点为M .平移该抛物线,使点M 平移后的对应点M'落在x 轴上,点B 平移后的对应点B'落在y 轴上,则平移后的抛物线解析式为( ) A .y=x 2+2x+1 B .y=x 2+2x ﹣1 C .y=x 2﹣2x+1D .y=x 2﹣2x ﹣1二、填空题(本大题共6小题,每小题3分,共18分) 13.(3分)计算x 7÷x 4的结果等于 .14.(3分)计算(4+√7)(4−√7)的结果等于 .15.(3分)不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是 .16.(3分)若正比例函数y=kx (k 是常数,k ≠0)的图象经过第二、四象限,则k 的值可以是 (写出一个即可).17.(3分)如图,正方形ABCD 和正方形EFCG 的边长分别为3和1,点F ,G 分别在边BC ,CD 上,P 为AE 的中点,连接PG ,则PG 的长为 .18.(3分)如图,在每个小正方形的边长为1的网格中,点A ,B ,C 均在格点上.(1)AB 的长等于 ;(2)在△ABC 的内部有一点P ,满足S △PAB :S △PBC :S △PCA =1:2:3,请在如图所示的网格中,用无刻度...的直尺,画出点P ,并简要说明点P 的位置是如何找到的(不要求证明) .三、解答题(本大题共7小题,共66分。
2017年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算(﹣3)+5的结果等于()A.2 B.﹣2 C.8 D.﹣82.(3分)cos60°的值等于()A.B.1 C.D.3.(3分)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A. B. C.D.4.(3分)据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为()A.0.1263×108 B.1.263×107C.12.63×106D.126.3×1055.(3分)如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C. D.6.(3分)估计的值在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间7.(3分)计算的结果为()A.1 B.a C.a+1 D.8.(3分)方程组的解是()A.B.C.D.9.(3分)如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是()A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC10.(3分)若点A(﹣1,y1),B(1,y2),C(3,y3)在反比例函数y=﹣的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y311.(3分)如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD上一个动点,则下列线段的长度等于BP+EP最小值的是()A.BC B.CE C.AD D.AC12.(3分)已知抛物线y=x2﹣4x+3与x轴相交于点A,B(点A在点B左侧),顶点为M.平移该抛物线,使点M平移后的对应点M'落在x轴上,点B平移后的对应点B'落在y轴上,则平移后的抛物线解析式为()A.y=x2+2x+1 B.y=x2+2x﹣1 C.y=x2﹣2x+1 D.y=x2﹣2x﹣1二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算x7÷x4的结果等于.14.(3分)计算的结果等于.15.(3分)不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.16.(3分)若正比例函数y=kx(k是常数,k≠0)的图象经过第二、四象限,则k的值可以是(写出一个即可).17.(3分)如图,正方形ABCD和正方形EFCG的边长分别为3和1,点F,G分别在边BC,CD上,P为AE的中点,连接PG,则PG的长为.18.(3分)如图,在每个小正方形的边长为1的网格中,点A ,B ,C 均在格点上.(1)AB 的长等于 ;(2)在△ABC 的内部有一点P ,满足S △PAB :S △PBC :S △PCA =1:2:3,请在如图所示的网格中,用无刻度...的直尺,画出点P ,并简要说明点P 的位置是如何找到的(不要求证明) .三、解答题(本大题共7小题,共66分。
2017年天津宝坻宁河蓟州静海武清五区初三一模数学试卷一、选择题(共12小题;共60分)1. 的相反数是A. B. C. D.2. 的值等于A. B. C. D.3. 下列图案中,属于轴对称图形的是A. B.C. D.4. 移动互联网已经全面进入人们的日常生活,全国用户总数量超过亿人.将亿用科学记数法表示应为A. B. C. D.5. 实数,在数轴上的对应点的位置如图所示.把,,按照从小到大的顺序排列,正确的是A. B. C. D.6. 如图所示的几何体的俯视图是A. B.C. D.7. 估计的值在A. 和之间B. 和之间C. 和之间D. 和之间8. 化简的结果为A. B. C. D.9. 若关于的方程有一个根为,则另一个根为A. B. C. D.10. 如图,在中,,,,将折叠,使点与的中点重合,折痕为,则线段的长度为A. B. C. D.11. 如图,是直角三角形,,,点在反比例函数的图象上.若点在反比例函数的图象上,则的值为A. B. C. D.12. 如图,二次函数的图象与轴交于,两点,与轴交于点,且.则下列结论:①;②;③;④.其中正确结论的个数是A. B. C. D.二、填空题(共6小题;共30分)13. 从甲、乙、丙、丁名三好学生中随机抽取名学生担任校国旗队升旗手,则抽取的名学生恰好是乙和丙的概率是.14. 计算的结果等于.15. 多项式因式分解的结果等于.16. 若一次函数的图象不经过第二象限,则此函数的解析式可以为(写出一个即可).17. 如图,正方形绕点逆时针旋转后得到正方形,与相交于点,延长交于点.若正方形边长为,则的长为.18. 如图,将放在每个小正方形的边长为的网格中,点,,均在格点上.(Ⅰ)计算边的长为;(Ⅱ)请在如图所示的网格中,用无刻度的直尺作出一个以为边的矩形,使矩形的面积等于的面积,并简要说明你的作图方法(不要求证明).三、解答题(共7小题;共91分)19. 解不等式请结合题意填空,完成本题的解答.(1)解不等式,得;(2)解不等式,得;(3)把不等式和的解集在数轴上表示出来;(4)原不等式的解集为.20. 在一次初中生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)图①中的值为;(2)求统计的这组初赛成绩数据的平均数、众数和中位数(结果保留小数点后两位);(3)根据这组初赛成绩,由高到低确定人能入复赛,请直接写出初赛成绩为的运动员能否进入复赛.21. 如图,已知的边是的切线,切点为,经过圆心并与圆相交于点,,过点作直线,交的延长线于点.(1)求证:平分;(2)若,,求的半径.22. 如图所示,某中学九年级数学活动小组选定测量学校前面小河对岸大树的高度,他们在斜坡上处测得大树顶端的仰角是,朝大树方向下坡走米到达坡底处,在处测得大树顶端的仰角是,若斜坡的坡比,求大树的高度.(结果保留一位小数)参考数据:,,,取.23. 为保障我国海外维和部队官兵的生活,现需通过A港口,B港口分别运送吨和吨生活物资.已知该物资在甲仓库存有吨,乙仓库存有吨,若从甲、乙两仓库运送物资到港口A 的费用分别为元/吨,元/吨;从甲、乙两仓库运送物资到港口B的费用分别为元/吨,元/吨.(1)设从甲仓库运往A港口吨,试填写表格.表一:港口从甲仓库运吨从乙仓库运吨港港表二:港口从甲仓库运到港口费用元从乙仓库运到港口费用元港港(2)给出能完成此次运输任务的最节省费用的调配方案,并说明理由.24. 两个三角板,,按如图所示的位置摆放,点与点重合,边与边在同一条直线上(假设图形中所以的点、线都在统一平面内).其中,,,.现固定三角板,将三角板沿射线方向平移,当点落在边上时停止运动.设三角板平移的距离为,两个三角板重叠部分的面积为.(1)当点落在边上时,;(2)求关于的函数解析式,并写出自变量的取值范围;(3)设边的中点为点,边的中点为点,直接写出在三角板平移过程中,点与点之间距离的最小值.25. 在平面直角坐标系中,为原点,直线与轴交于点,与直线交于点,点关于原点的对称点为点.(1)求过,两点的抛物线解析式;(2)为抛物线上一点,它关于原点的对称点为.①当四边形为菱形时,求点的坐标;②若点的坐标为,当为何值时,四边形面积最大?最大值是多少?并说明理由.答案第一部分1. D2. C3. D4. B5. A6. D7. C8. D9. A 10. C11. A 12. B第二部分13.14.15.16. (答案不唯一,满足即可)17.18. (Ⅰ)(Ⅱ)如图,作正方形,取格点,,使得,,连接,找到使的格点,连接,交于点,同理找到点,连接,则矩形即为所求.第三部分19. (1)(2)(3)(4)20. (1)(2)观察条形统计图,,这组数据的平均数约为.在这组数据中,出现了次,出现的次数最多,这组数据的众数为.将这组数据按从小到大的顺序排列,其中处于中间的两个数都是,有,这组数据的中位数为.(3)不能.21. (1)如图,连接.是的直径,..,连接,则,,..,..平分.(2)由()可得,.在中,++, .,即.的半径是.22. 过点作于点,于点,则四边形是矩形.,斜坡的坡比..设大树的高度为米.在中,,,...由题意得,在中,,.又,..答:大树的高度约为米.23. (1)表一:港口从甲仓库运吨从乙仓库运吨港港表二:港口从甲仓库运到港口费用元从乙仓库运到港口费用元港港(2)设总运费元,由(1)可知,总运费为:其中,解得,随的增大而减小,当时,取得最小值.答:此时方案为:把甲仓库的物资(吨)全部运往A港口,再从乙仓库运吨往A港口,乙仓库余下的物资(吨)全部运往B港口.24. (1)(2)(1)当时,如图 2 所示.,,,得,,重叠部分的面积为;(2)当时,如图 3 所示.,,,,.重叠部分的面积为,即;(3)当时,如图 4 所示.,,,,,重叠部分的面积为,即;综上所述:.(3)点与点之间距离的最小值为.【解析】如图 5 所示作于点,点在上时最短.是的中位线,,,又,,.最小25. (1)联立两直线解析式可得解得点坐标为,又点为点关于原点的对称点,点坐标为,因为抛物线解析式为,把,两点坐标代入可得解得,抛物线解析式为;(2)(1)当四边形为菱形时,则,直线解析式为,直线解析式为,联立抛物线解析式可得解得或点坐标为或;(2)当时,四边形的面积最大;最大面积是.理由如下:如图,过作轴,交于点,分别过点,作,,垂足分别为点,.则点的坐标为,点的坐标为.;.,,.四边形当时,四边形的面积最大,面积最大值为.第11页(共11 页)。
2017年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算(﹣3)+5的结果等于()A.2 B.﹣2 C.8 D.﹣82.(3分)cos60°的值等于()A.B.1 C.D.3.(3分)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A. B. C.D.4.(3分)据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为()A.0.1263×108 B.1.263×107C.12.63×106D.126.3×1055.(3分)如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C. D.6.(3分)估计的值在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间7.(3分)计算的结果为()A.1 B.a C.a+1 D.8.(3分)方程组的解是()A.B.C.D.9.(3分)如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是()A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC10.(3分)若点A(﹣1,y1),B(1,y2),C(3,y3)在反比例函数y=﹣的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y311.(3分)如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD上一个动点,则下列线段的长度等于BP+EP最小值的是()A.BC B.CE C.AD D.AC12.(3分)已知抛物线y=x2﹣4x+3与x轴相交于点A,B(点A在点B左侧),顶点为M.平移该抛物线,使点M平移后的对应点M'落在x轴上,点B平移后的对应点B'落在y轴上,则平移后的抛物线解析式为()A.y=x2+2x+1 B.y=x2+2x﹣1 C.y=x2﹣2x+1 D.y=x2﹣2x﹣1二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算x7÷x4的结果等于.14.(3分)计算的结果等于.15.(3分)不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.16.(3分)若正比例函数y=kx(k是常数,k≠0)的图象经过第二、四象限,则k的值可以是(写出一个即可).17.(3分)如图,正方形ABCD和正方形EFCG的边长分别为3和1,点F,G分别在边BC ,CD 上,P 为AE 的中点,连接PG ,则PG 的长为 .18.(3分)如图,在每个小正方形的边长为1的网格中,点A ,B ,C 均在格点上. (1)AB 的长等于 ;(2)在△ABC 的内部有一点P ,满足S △PAB :S △PBC :S △PCA =1:2:3,请在如图所示的网格中,用无刻度...的直尺,画出点P ,并简要说明点P 的位置是如何找到的(不要求证明) .三、解答题(本大题共7小题,共66分。
2017年九年级数学中考模拟试卷一、选择题:1.计算﹣2﹣1的结果是()A.﹣3B.﹣2C.﹣1D.32.在Rt△ABC中,∠ABC=90°、tanA=,则sinA的值为()A. B. C. D.3.在我们的生活中,常见到很多美丽的图案,下列图案中,既是中心对称,又是轴对称图形的是( )4.2014年5月,中俄两国签署了供气购销合同,从2018年起,俄罗斯开始向我国供气,最终达到每年380亿立方米.380亿这个数据用科学记数法表示为( )A.3.8×109B.3.8×1010C.3.8×1011D.3.8×10125.如图,桌上放着一摞书和一个茶杯,从左边看到的图形是()6.下列实数中是无理数的是()A.0.38B.πC.D.7.在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘﹣131,其浓度为0.000 0963贝克/立方米.数据“0.000 0963”用科学记数法可表示为()A.9.63×10﹣5B.96.3×10﹣6C.0.963×10﹣5D.963×10﹣48.不解方程,判别方程2x2﹣3x=3的根的情况()A.有两个相等的实数根B.有两个不相等的实数根C.有一个实数根D.无实数根9.函数y=﹣中的自变量x的取值范围是( )A.x≥0B.x<0且x≠1C.x<0D.x≥0且x≠110.如图,平行四边形ABCD中,DE⊥AB于E,DF⊥BC于F,若□ABCD的周长为48,DE=5,DF=10,则□ABCD的面积等于( )A.87.5 B.80 C.75 D.72.511.如果直角三角形的面积一定,那么下列关于这个直角三角形边的关系中,正确的是( )A.两条直角边成正比例 B.两条直角边成反比例C.一条直角边与斜边成正比例 D.一条直角边与斜边成反比例12.二次函数y=a(x﹣3)2+4(a≠0)的图象在1<x<2这一段位于x轴的上方,在5<x<6这一段位于x轴的下方,则a的值为()A.1B.-1C.2D.﹣2二、填空题:13.分解因式:a3﹣4ab2= .14.×= ; = .15.在一个不透明的布袋中有除颜色外其它都相同的红、黄、蓝球共200个,某位同学经过多次摸球试验后发现,其中摸到红色球和蓝色球的频率稳定在35%和55%,则口袋中可能有黄球个.16.已知一次函数y=kx+b(k、b为常数且k≠0)的图象经过点A(0,-2)和点B(1,0),则b=________,k=________.17.如图,锐角三角形ABC的边AB,AC上的高线EC,BF相交于点D,请写出图中的两对相似三角形____________(用相似符号连接).18.如图,光源P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=2m,CD=6m,点P到CD的距离是2.7m,则AB离地面的距离为______m.三、解答题:19.解不等式组:20.某校要求八年级同学在课外活动中,必须在五项球类(篮球、足球、排球、羽毛球、乒乓球)活动中任选一项(只能选一项)参加训练,为了了解八年级学生参加球类活动的整体情况,现以八年级2班作为样本,对该班学生参加球类活动的情况进行统计,并绘制了如图所示的不完整统计表和扇形统计图:根据图中提供的信息,解答下列问题:(1)a = ,b= ;(2)该校八年级学生共有600人,则该年级参加足球活动的人数约人;(3)该班参加乒乓球活动的5位同学中,有3位男同学(A、B、C)和2位女同学(D、E),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.21.如图,⊙O的直径为AB,点C在圆周上(异于A,B),AD⊥CD.(2)若AC是∠DAB的平分线,求证:直线CD是⊙O的切线.22.如图,禁止捕鱼期间,某海上稽查队在某海域巡逻,上午某一时刻在A处接到指挥部通知,在他们东北方向距离12海里的B处有一艘捕鱼船,正在沿南偏东75°方向以每小时10海里的速度航行,稽查队员立即乘坐巡逻船以每小时14海里的速度沿北偏东某一方向出发,在C处成功拦截捕鱼船,求巡逻船从出发到成功拦截捕鱼船所用的时间.23.我市一家电子计算器专卖店每只进价13元,售价20元,多买优惠;凡是一次买10只以上的,每多买1只,所买的全部计算器每只就降低0.10元,例如,某人买20只计算器,于是每只降价0.10×(20-10)=1(元),因此,(1).求一次至少买多少只,才能以最低价购买?(2).写出该专卖店当一次销售x(时,所获利润y(元)与x(只)之间的函数关系式,并写出自变量x的取值范围;(3)若店主一次卖的只数在10至50只之间,问一次卖多少只获得的利润最大?其最大利润为多少?24.已知在△ABC中,∠ABC=90°,AB=3,BC=4.点Q是线段AC上的一个动点,过点Q作AC的垂线交线段AB(如图1)或线段AB的延长线(如图2)于点P.(1)当点P在线段AB上时,求证:△AQP∽△ABC;(2)当△PQB为等腰三角形时,求AP的长.25.如图,已知二次函数的图象经过点A(6,0)、B(﹣2,0)和点C(0,﹣8).(1)求该二次函数的解析式;(2)设该二次函数图象的顶点为M,若点K为x轴上的动点,当△KCM的周长最小时,点K的坐标为;(3)连接AC,有两动点P、Q同时从点O出发,其中点P以每秒3个单位长度的速度沿折线OAC按O→A→C的路线运动,点Q以每秒8个单位长度的速度沿折线OCA按O→C→A的路线运动,当P、Q两点相遇时,它们都停止运动,设P、Q同时从点O出发t秒时,△OPQ的面积为S.①请问P、Q两点在运动过程中,是否存在PQ∥OC?若存在,请求出此时t的值;若不存在,请说明理由;②请求出S关于t的函数关系式,并写出自变量t的取值范围;③设S0是②中函数S的最大值,直接写出S0的值.参考答案1.A2.A3.C4.B5.D6.B7.A8.B9.D10.B11.B12.B13.答案为:a(a+2b)(a﹣2b).14.答案为:2,.15.答案为:20;16.答案为:-2,2;17.答案不唯一,如△ABF∽△DBE或△ACE∽△DCF或△EDB∽△FDC等18.答案为:1.8;19.解:由不等式①得,x-3x+6≤4,所以x≥1,不等式②去分母得,2(2x-1)>6x-15,解得x<6.5,∴不等式组的解集是1≤x<6.5。
天津市武清区2017年中考数学模拟试卷有答案
2017年九年级数学中考模拟试卷
一、选择题:
1.若|a|=3,|b|=2,且a+b>0,那么a-b的值是()
A.5或1
B.1或-1
C.5或-5
D.-5或-1
2.如图,在平面直角坐标系中,直线OA过点(2,1),则tanα的值是( )
A.2
B.
C.
D.
3.下面的图形中,既是轴对称图形又是中心对称图形的是
()
4.为缓解中低收入人群和新参加工作的大学生住房
的需求,某市将新建保障住房3600000套,把3600000用科学记数法表示应是()
A.0.36×107
B.3.6×106
C.3.6×107
D.36×105
5.下列“慢行通过,注意危险,禁止行人通行,禁止非机
动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是()
6.下列说法中正确的是().
7.下列计算正确的是()
A.2÷2﹣1=-1
B.
C.(﹣2x﹣2)
﹣3=6x6 D.
8.一元二次方程x2+x+0.25=0的根的情况是( )
A.有两个不相等的实数根
B.有两个相等的实数根
C.无实数根
D.无法确定根
的情况
9.在函数y=中,自变量x的取值
范围是()
A.x≥﹣2且x≠0
B.x≤2且x≠0
C.x≠0
D.x≤﹣2
10.如图,平行四边形ABCD中,DB=DC,∠C=70°,AE⊥BD 于E,则∠DAE等于()
A.20°
B.25°
C.30°
D.35°
11.已知反比例函数,当1<x<2
时,y的取值范围是( )
A.0<y<5
B.1<y<2
C.5<y<10
D.y>10
12.已知二次函数y=x2+2x﹣3,当自变量x取m时,对应的
函数值小于0,设自变量分别取m﹣4,m+4时对应的函数值为y1,y2,则下列判断正确的是()
A.y1<0,y2<0
B.y1<0,y2>0
C.y1>0,y2<0
D.y1>0,y2>0
二、填空题:
13.分解因式:x2y﹣y= .
14.计算2﹣
的结果是.
15.在一个袋子里装有10个球,其中6个红球,3个黄球,
1个绿球,这些球除颜色外,形状、大小、质地等完全相同,充分搅匀后,在看不到球的条件下,随机从这个袋子中摸出一球,不是红球的概率是.
16.如图,正比例函数y=kx,y=mx,y=nx在同一平面直角
坐标系中的图象如图所示.则系数k,m,n的大小关系是__________.
17.如图,点A的坐标为(-4,0),直线
y=x+n与坐标轴交于点B,C,连接AC,如果∠ACD=90°,则n的值为________.
18.已知菱形A
1B1C1D1的边长为2,∠A1B1C1=60°,对角线A1C1,B1D1相交于点O.以点O为坐标原点,分别以OA1,OB1所在直线为x轴、y轴,建立如图所示的直角坐标系.以B1D1为对角线作菱形B1C2D1A2∽菱形A1B1C1D1,再以A2C2为对角线作菱形A2B2C2D2∽菱形B1C2D1A2,再以B2D2为对角线作菱形B2C3D2A3∽菱形A2B2C2D2,…,按此规律继续作下去,在x轴的正半轴上得到点A1,A2,A3,…,A n,则点A n的坐标为____________.
三、解答题:
19.解不等式组:,并把不等式组的解集在数轴上表示出来.
20.某超市计划经销一些特产,经销前,围绕“A:绥中白
梨,B:虹螺岘干豆腐,C:绥中六股河鸭蛋,D:兴城红崖子花生”四种特产,在全市范围内随机抽取了部分市民进行问卷调查:“我最喜欢的特产是什么?”(必选且只选一种).现将调查结果整理后,绘制成如图所示的不完整的扇形统计图和条形统计图.
请根据所给信息解答以下问题:
(1)请补全扇形统计图和条形统计图;
(2)若全市有280万市民,估计全市最喜欢“虹螺岘干豆腐”的市民约有多少万人?
(3)在一个不透明的口袋中有四个分别写上四种特产标记A、B、C、D的小球(除标记外完全相同),随机摸出一个小球然后放回,混合摇匀后,再随机摸出一个小球,则两次都摸到“A”的概率为.
21.如图,已知在△ABC中,BC=AC,以BC为直径的⊙O与边AB
相交于点D,DE⊥AC,垂足为点E.
(1)求证:点D是AB的中点;
(2)判断DE与⊙O的位置关系,并证明你的结论;
(3)若⊙O的直径为18,cosB=,
求DE的长.
22.如图,禁止捕鱼期间,某海上稽查队在某海域巡逻,上
午某一时刻在A处接到指挥部通知,在他们东北方向距离12海里的B处有一艘捕鱼船,正在沿南偏东75°方向以每小时10海里的速度航行,稽查队员立即乘坐巡逻船以每小时14海里的速度沿北偏东某一方向出发,在C处成功拦截捕鱼船,求巡逻船从出发到成功拦截捕鱼船所用的时间.
23.市移动通讯公司开设了两种通讯业务: “全球通”使
用者先缴50元月基础费, 然后每通话1分钟, 再付电话费0.4元; “神州行”不缴月基础费, 每通话1分钟, 付话费0.6元(这里均指市内通话). 若一个月内通话x分钟, 两种通讯方式的费用分别为y1元和y2元.
(1)写出y1、y2与x之间的函数关系式;
(2)一个月内通话多少分钟, 两种通讯方式的费用相同?
(3)若某人预计一个月内使用话费200元, 则应选择哪种通讯方式较合算?
24.如图1,在△ABC中,AB=AC,射线BP从BA所在位置开
始绕点B顺时针旋转,旋转角为α(0°<α<180°)(1)当∠BAC=60°时,将BP旋转到图2位置,点D在射线BP上.若∠CDP=120°,则∠ACD ∠ABD(填“>”、“=”、“<”),线段BD、CD与AD之间的数量关系是;(2)当∠BAC=120°时,将BP旋转到图3位置,点D在射线BP上,若∠CDP=60°,求证:BD﹣CD=AD;
(3)将图3中的BP继续旋转,当30°<α<180°时,点D是直线BP上一点(点P不在线段BD上),若∠CDP=120°,请直接写出线段BD、CD与AD之间的数量关系(不必证明).
25.如图,已知抛物线y=﹣x2+2x经过原点O,且与直线y=x
﹣2交于B,C两点.
(1)求抛物线的顶点A的坐标及点B,C的坐标;
(2)求证:∠ABC=90°;
(3)在直线BC上方的抛物线上是否存在点P,使△PBC 的面积最大?若存在,请求出点P的坐标;若不存在,请说明理由;
(4)若点N为x轴上的一个动点,过点N作MN⊥x轴与
抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.
参考答案
1.A
2.B
3.C
4.B
5.B
6.C
7.D
8.B
9.A
10.A
11.C
12.D
13.答案为:y(x+1)(x﹣1).
14.解:原式=2×﹣
3=﹣
3=﹣2,故答案为:﹣2.
15.答案为:0.4.
16.略
17.答案为:;
18.答案为:(3n-1,0)
19.答案为:﹣1≤x<4
20.
21.解:(1) 证明:在等腰梯形ABCD中,AD∥BC. ∴AB=DC,∠B=∠C
∵ OE=OC ∴∠OEC=∠C ∴∠B=∠OEC ∴OE∥AB
(2) 证明:连结OF,∵⊙O与AB切于点F ,∴OF⊥AB,∵EH ⊥AB∴OF ∥EH
又∵OE∥AB∴四边形OEHF为平行四边形∴EH= OF∵
OF=0.5CD=0.5AB∴EH=0.5AB
(3)解:连结DE,设⊙O的半径为r,∵CD是⊙O的直径,∴∠DEC=90°则∠DEC=∠EHB
又∵∠B=∠C ∴△EHB∽△DEC ∴
∵,∴
,
在中,
∴,
解得:∴⊙O的半径为
22.解:设巡逻船从出发到成功拦截所用时间为
小时.
如图所示,由题得,
,
,
过点作
的延长线于点,
在中,,∴.
∴.
在中,由勾股定理得:
解此方程得(不合题意舍去).
答:巡逻船从出发到成功拦截所用时间为2小时。
23.(1)y1=50+0.4x(x≥0的整数);y2=0.6x(x≥0的整数)
(2)x=250
(3)“全球通”可通话375分钟,“神州行”可通话
分钟,∴选择“全球通”较合算。
24.(1)∠ACD=∠ABD,BD=CD+AD;(2)略;(3)
BD+CD=AD.25.。