2018年江苏高考数学复习:第2部分 难点6 数列中的证明、探索性和存在性、不定方程的解等综合问题含答案
- 格式:doc
- 大小:94.50 KB
- 文档页数:4
难点四解析几何中的范围、定值和探索性问题(对应学生用书第68页)解析几何中的范围、定值和探索性问题仍是高考考试的重点与难点,主要以解答题形式考查,一般以椭圆为背景,考查范围、定值和探索性问题,试题难度较大.复习时不能把目标仅仅定位在知识的掌握上,要在解题方法、解题思想上深入下去.解析几何中基本的解题方法是使用代数方程的方法研究直线、曲线的某些几何性质,代数方程是解题的桥梁,要掌握一些解方程(组)的方法,掌握一元二次方程的知识在解析几何中的应用,掌握使用根与系数的关系进行整体代入的解题方法;其次注意分类讨论思想、函数与方程思想、化归与转化思想等的应用,如解析几何中的最值问题往往需建立求解目标函数,通过函数的最值研究几何中的最值.下面对这些难点一一分析:1.圆锥曲线中的定点、定值问题该类问题多以直线与圆锥曲线为背景,常与函数与方程、向量等知识交汇,形成了过定点、定值等问题的证明,难度较大.定点、定值问题是在变化中所表现出来的不变的量,那么就可以用变化的量表示问题的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系不受变化的量所影响的一个点、一个值,就是要求的定点、定值.化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量.【例1】 (2017·江苏省南京市迎一模模拟)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =32,直线y =x +2与以原点为圆心、椭圆C 的短半轴长为半径的圆O 相切.(1)求椭圆C 的方程;(2)设直线x =12与椭圆C 交于不同的两点M ,N ,以线段MN 为直径作圆D ,若圆D 与y 轴相交于不同的两点A ,B ,求△ABD 的面积;(3)如图1,A 1,A 2,B 1,B 2是椭圆C 的顶点,P 是椭圆C 上除顶点外的任意点,直线B 2P 交x 轴于点F ,直线A 1B 2交A 2P 于点E ,设A 2P 的斜率为k ,EF 的斜率为m ,求证:2m -k 为定值.【导学号:56394098】图1[解] (1)∵直线y =x +2与以原点为圆心、椭圆C 的短半轴长为半径的圆O 相切, ∴|0-2|2=b ,化为b =1.∵离心率e =32=c a ,b 2=a 2-c 2=1,联立解得a =2,c = 3. ∴椭圆C 的方程为x 24+y 2=1; (2)把x =12代入椭圆方程可得:y 2=1-116,解得y =±154. ∴⊙D 的方程为:⎝ ⎛⎭⎪⎫x -122+y 2=1516. 令x =0,解得y =±114, ∴|AB |=112,∴S △ABD =12|AB |·|OD |=12×112×12=118. (3)证明:由(1)知:A 1(-2,0),A 2(2,0),B 2(0,1),∴直线A 1B 2的方程为y =12x +1, 由题意,直线A 2P 的方程为y =k (x -2),k ≠0,且k ≠±12, 由⎩⎪⎨⎪⎧ y =12x +1,y =k x -,解得E ⎝ ⎛⎭⎪⎫4k +22k -1,4k 2k -1. 设P (x 1,y 1),则由⎩⎪⎨⎪⎧ y =k x -,x 24+y 2=1,得(4k 2+1)x 2-16k 2x +16k 2-4=0. ∴2x 1=16k 2-44k 2+1,∴x 1=8k 2-24k 2+1,y 1=k (x 1-2)=-4k 4k 2+1.∴P ⎝ ⎛⎭⎪⎫8k 2-24k 2+1,-4k 4k 2+1. 设F (x 2,0),则由P ,B 2,F 三点共线得,kB 2P =kB 2F .即-4k 4k 2+1-18k 2-24k 2+1-0=0-1x 2-0,∴x 2=4k -22k +1,∴F ⎝ ⎛⎭⎪⎫4k -22k +1,0. ∴EF 的斜率m =4k 2k -1-04k +22k -1-4k -22k +1=2k +14. ∴2m -k =2k +12-k =12为定值. [方法总结] 定值问题是解析几何中的一种常见问题,基本的求解思想是:先用变量表示所需证明的不变量,然后通过推导和已知条件,消去变量,得到定值,即解决定值问题首先是求解非定值问题,即变量问题,最后才是定值问题.(1)求定值问题常见的方法有两种①从特殊入手,求出定值,再证明这个值与变量无关.②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.(2)定点的探索与证明问题①探索直线过定点时,可设出直线方程为y =kx +m ,然后利用条件建立k ,m 等量关系进行消元,借助于直线系的思想找出定点.②从特殊情况入手,先探求定点,再证明与变量无关.2.圆锥曲线中的最值、范围问题圆锥曲线中参数的范围及最值问题,由于其能很好地考查学生对数学知识的迁移、组合、融会的能力,有利于提高学生综合运用所学知识分析、解决问题的能力.该类试题设计巧妙、命题新颖别致,常求特定量、 特定式子的最值或范围.常与函数解析式的求法、函数最值、不等式等知识交汇,成为近年高考热点.解决圆锥曲线中最值、范围问题的基本思想是建立目标函数和建立不等关系,根据目标函数和不等式求最值、范围,因此这类问题的难点,就是如何建立目标函数和不等关系.建立目标函数或不等关系的关键是选用一个合适变量,其原则是这个变 量能够表达要解决的问题,这个变量可以是直线的斜率、直线的截距、点的坐标等,要根据问题的实际情况灵活处理.图2【例2】 (苏北四市(徐州、淮安、连云港、宿迁)2017届高三上学期期末)如图2,在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且右焦点F 到左准线的距离为6 2.(1)求椭圆C 的标准方程;(2)设A 为椭圆C 的左顶点,P 为椭圆C 上位于x 轴上方的点,直线PA 交y 轴于点M ,过点F 作MF 的垂线,交y 轴于点N .(ⅰ)当直线的PA 斜率为12时,求△FMN 的外接圆的方程; (ⅱ)设直线AN 交椭圆C 于另一点Q ,求△APQ 的面积的最大值.[解] (1)由题意,得⎩⎪⎨⎪⎧ c a =22,c +a 2c =62,解得⎩⎨⎧ a =4,c =22,则b =22,所以椭圆C 的标准方程为x 216+y 28=1. (2)由题可设直线PA 的方程为y =k (x +4),k >0,则M (0,4k ),所以直线FN 的方程为y =224k (x -22),则N ⎝⎛⎭⎪⎫0,-2k . (ⅰ)当直线PA 的斜率为12,即k =12时,M (0,2),N (0,-4),F (22,0),MF →=(22,-2),FN →=(-22,-4),MF →·FN →=-8+8=0.所以MF ⊥FN ,所以圆心为(0,-1),半径为3,所以△FMN 的外接圆的方程为x 2+(y +1)2=9. (ⅱ)联立⎩⎪⎨⎪⎧ y =k x +,x 216+y 28=1,消去y 并整理得,(1+2k 2)x 2+16k 2x +32k 2-16=0, 解得x 1=-4或x 2=4-8k 21+2k 2,所以P ⎝ ⎛⎭⎪⎫4-8k21+2k 2,8k1+2k 2, 直线AN 的方程为y =-12k (x +4),同理可得,Q ⎝ ⎛⎭⎪⎫8k 2-41+2k 2,-8k 1+2k 2, 所以P ,Q 关于原点对称,即PQ 过原点.所以△APQ 的面积S =12OA ·(y P -y Q )=2×16k 1+2k 2=322k +1k ≤82,当且仅当2k =1k ,即k =22时,取“=”.所以△APQ 的面积的最大值为8 2.[方法总结] 这类问题在题目中往往没有给出不等关系,需要我们去寻找.求最值或范围常见的解法:(1)几何法:若题目的条件和结论能明显体现几何特征及意义,可考虑利用图形性质来解决;(2)代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求最值,求函数最值常用的方法有配方法、判别式法、导数法、基本不等式法及函数的单调性、有界性法等.用这种方法求解圆锥曲线的最值与范围问题时,除了重视建立函数关系式这个关键点外,还要密切注意所建立的函数式中的变量是否有限制范围,这些限制范围恰好制约了最值的取得,因此在解题时要予以高度关注.3.圆锥曲线中的探索性问题探索性问题主要考查学生探索解题途径,解决非传统完备问题的能力,是命题者根据学科特点,将数学知识有机结合并赋予新的情境创设而成的,要求学生自己观察、分析、创造性地运用所学知识和方法解决问题,它能很好地考查数学思维能力以及科学的探索精神.因此越来越受到高考命题者的青睐.探索性问题实质上是探索结论的开放性问题.相对于其他的开放性问题来说,由于这类问题的结论较少(只有存在、 不存在两个结论有时候需讨论),因此,思考途径较为单一,难度易于控制,受到各类考试命题者的青睐.解答这一类问题,往往从承认结论、变结论为条件出发,然后通过特例归纳,或由演绎推理证明其合理性.探索过程要充分挖掘已知条件,注意条件的完备性,不要忽略任何可能的因素.图3【例3】 (苏北四市(淮安、宿迁、连云港、徐州)2017届高三上学期期中)如图3,在平面直角坐标系xOy 中,已知圆C :x 2+y 2-4x =0及点A (-1,0),B (1,2).(1)若直线l 平行于AB ,与圆C 相交于M ,N 两点,MN =AB ,求直线l 的方程;(2)在圆C 上是否存在点P 满足条件,使得PA 2+PB 2=12?若存在,求点P 的个数;若不存在,说明理由.【导学号:56394099】[解] (1)圆C 的标准方程为(x -2)2+y 2=4,所以圆心C (2,0),半径为2.因为l ∥AB ,A (-1,0),B (1,2),所以直线l 的斜率为2-01--=1,设直线l 的方程为x -y +m =0,则圆心C 到直线l 的距离为d =|2-0+m |2=|2+m |2. 因为MN =AB =22+22=22, 而CM 2=d 2+⎝ ⎛⎭⎪⎫MN 22,所以4=+m22+2,解得m =0或m =-4,故直线l 的方程为x -y =0或x -y -4=0.(2)假设圆C 上存在点P 满足条件,设P (x ,y ),则(x -2)2+y 2=4, PA 2+PB 2=(x +1)2+(y -0)2+(x -1)2+(y -2)2=12,即x 2+y 2-2y -3=0,即x 2+(y -1)2=4,因为|2-2|<-2+-2<2+2, 所以圆(x -2)2+y 2=4与圆x 2+(y -1)2=4相交,所以点P 的个数为2.[方法总结] (1)解决存在性问题的解题步骤:第一步:先假设存在,引入参变量,根据题目条件列出关于参变量的方程(组)或不等式(组);第二步:解此方程(组)或不等式(组),若有解则存在,若无解则不存在;第三步:得出结论.(2)解决存在性问题应注意以下几点:①当条件和结论不唯一时要分类讨论;②当给出结论而要推导出存在的条件时,先假设成立,再推出条件;③当条件和结论都不知,按常规方法解题很难时,要思维开放,采取另外的途径.。
专项限时集训(六) 数列中的证明、探索性和存在性、不定方程的解等综合问题(对应学生用书第123页)(限时:60分钟)1.(本小题满分14分)已知数列{a n }是各项均为正数的等比数列,a 3=4,{a n }的前3项和为7.(1)求数列{a n }的通项公式;(2)若a 1b 1+a 2b 2+…+a n b n =(2n -3)2n+3,设数列{b n }的前n 项和为S n ,求证:1S 1+1S 2+…+1S n ≤2-1n.[解] (1)设数列{a n }的公比为q ,由已知得q >0,且⎩⎪⎨⎪⎧a 1q 2=4,a 1+a 1q +4=7,∴⎩⎪⎨⎪⎧a 1=1,q =2.∴数列{a n }的通项公式为a n =2n -1.4分(2)证明:当n =1时,a 1b 1=1,且a 1=1,解得b 1=1. 6分当n ≥2时,a n b n =(2n -3)2n+3-(2n -2-3)2n -1-3=(2n -1)·2n -1.∵a n =2n -1,∴当n ≥2时,b n =2n -1.8分∵b 1=1=2×1-1满足b n =2n -1, ∴数列{b n }的通项公式为b n =2n -1(n ∈N *). ∴数列{b n }是首项为1,公差为2的等差数列. ∴S n =n 2.10分∴当n =1时,1S 1=1=2-11.当n ≥2时,1S n =1n 2<1nn -=1n -1-1n. ∴1S 1+1S 2+…+1S n ≤2-11+11-12+…+1n -1-1n =2-1n.14分2.(本小题满分14分)(2017·盐城市滨海县八滩中学二模)如果无穷数列{a n }满足下列条件:①a n +a n +22≤a n +1;②存在实数M ,使a n ≤M .其中n ∈N *,那么我们称数列{a n }为Ω数列.(1)设数列{b n }的通项为b n =5n -2n,且是Ω数列,求M 的取值范围;(2)设{c n }是各项为正数的等比数列,S n 是其前n 项和,c 3=14,S 3=74,证明:数列{S n }是Ω数列;(3)设数列{d n }是各项均为正整数的Ω数列,求证:d n ≤d n +1.【导学号:56394106】[解] (1)∵b n +1-b n =5-2n,∴当n ≥3,b n +1-b n <0,故数列{b n }单调递减; 当n =1,2时,b n +1-b n >0,即b 1<b 2<b 3, 则数列{b n }中的最大项是b 3=7,所以M ≥7.2分(2)证明:∵{c n }是各项为正数的等比数列,S n 是其前n 项和,c 3=14,S 3=74,设其公比为q >0,∴c 3q 2+c 3q +c 3=74.整理,得6q 2-q -1=0,解得q =12,q =-13(舍去).∴c 1=1,c n =12n -1,S n =2-12n -1=S n +2,S <2.对任意的n ∈N *,有S n +S n +22=2-12n -12n +2<2-12n +1=S n +1,且S n <2,故{S n }是Ω数列.8分(3)证明:假设存在正整数k 使得d k >d k +1成立,由数列{d n }的各项均为正整数,可得d k ≥d k+1+1,即d k +1≤d k -1.因为d k +d k +22≤d k +1,所以d k +2≤2d k +1-d k ≤2(d k -1)-d k =d k -2.由d k +2≤2d k +1-d k 及d k >d k +1得d k +2<2d k +1-d k +1=d k +1,故d k +2≤d k +1-1.因为d k +1+d k +32≤d k +2,所以d k +3≤2d k +2-d k +1≤2(d k +1-1)-d k +1=d k +1-2≤d k -3,由此类推,可得d k +m ≤d k -m (m ∈N *).又存在M ,使d k ≤M ,∴m >M ,使d k +m <0,这与数列{d n }的各项均为正数矛盾,所以假设不成立,即对任意n ∈N *,都有d n ≤d n +1成立.14分3.(本小题满分14分)设数列{a n }满足⎪⎪⎪⎪⎪⎪a n -a n +12≤1,n ∈N *. (1)证明:|a n |≥2n -1(|a 1|-2),n ∈N *;(2)若|a n |≤⎝ ⎛⎭⎪⎫32n ,n ∈N *,证明:|a n |≤2,n ∈N *.[证明] (1)由⎪⎪⎪⎪⎪⎪a n -a n +12≤1,得|a n |-12|a n +1|≤1, 故|a n |2n -|a n +1|2n +1≤12n ,n ∈N *, 所以|a 1|21-|a n |2n =⎝ ⎛⎭⎪⎫|a 1|21-|a 2|22+⎝ ⎛⎭⎪⎫|a 2|22-|a 3|23+…+⎝ ⎛⎭⎪⎫|a n -1|2n -1-|a n |2n ≤121+122+…+12n -1<1,因此|a n |≥2n -1(|a 1|-2). 4分(2)任取n ∈N *,由(1)知,对于任意m >n ,|a n |2n -|a m |2m=⎝ ⎛⎭⎪⎫|a n |2n -|a n +1|2n +1+⎝ ⎛⎭⎪⎫|a n +1|2n +1-|a n +2|2n +2+…+⎝ ⎛⎭⎪⎫|a m-1|2m -1-|a m |2m ≤12n +12n +1+…+12m -1<12n -1,故|a n |<⎝⎛⎭⎪⎫12n-1+|a m |2m·2n ≤⎣⎢⎡⎦⎥⎤12n -1+12m ·⎝ ⎛⎭⎪⎫32m ·2n=2+⎝ ⎛⎭⎪⎫34m ·2n.10分从而对于任意m >n ,均有|a n |<2+⎝ ⎛⎭⎪⎫34m ·2n.①由m 的任意性得|a n |≤2. 否则,存在n 0∈N *,有|an 0|>2, 取正整数m 0>log 34|an 0|-22n 0且m 0>n 0,则2n 0·⎝ ⎛⎭⎪⎫34m 0<2n 0·⎝ ⎛⎭⎪⎫34log 34|an 0|-22n 0=|an 0|-2,与①式矛盾.综上,对于任意n ∈N *,均有|a n |≤2.14分4.(本小题满分16分)(2017·江苏省无锡市高考数学一模)已知n 为正整数,数列{a n }满足a n >0,4(n +1)a 2n -na 2n +1=0,设数列{b n }满足b n =a 2ntn .(1)求证:数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n n 为等比数列; (2)若数列{b n }是等差数列,求实数t 的值;(3)若数列{b n }是等差数列,前n 项和为S n ,对任意的n ∈N *,均存在m ∈N *,使得8a 21S n -a 41n 2=16b m 成立,求满足条件的所有整数a 1的值.[解] (1)证明:数列{a n }满足a n >0,4(n +1)a 2n -na 2n +1=0,∴2n +1a n =na n +1,即a n +1n +1=2·a nn, ∴数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n n 是以a 1为首项,以2为公比的等比数列.4分 (2)由(1)可得:a n n=a 1×2n -1,∴a 2n =na 21·4n -1. ∵b n =a 2n t n ,∴b 1=a 21t ,b 2=a 22t 2,b 3=a 23t 3,∵数列{b n }是等差数列,∴2×a 22t 2=a 21t +a 23t3,∴2×2a 21×4t =a 21+3a 21×42t2, 化为:16t =t 2+48,解得t =12或4.8分(3)数列{b n }是等差数列,由(2)可得:t =12或4.①t =12时,b n =na 21·4n -112n=na 214×3n ,S n =n ⎝ ⎛⎭⎪⎫a 2112+na 214×3n 2,∵对任意的n ∈N *,均存在m ∈N *,使得8a 21S n -a 41n 2=16b m 成立,∴8a 21×n ⎝ ⎛⎭⎪⎫a 2112+na 214×3n 2-a 41n 2=16×ma 214×3m ,∴a 21⎝ ⎛⎭⎪⎫n 3+n23n -n 2=4m 3m ,n =1时,化为:-13a 21=4m 3m >0,无解,舍去.②t =4时,b n =na 21·4n -14n=na 214,S n =n ⎝ ⎛⎭⎪⎫a 214+na 2142,对任意的n ∈N *,均存在m ∈N *,使得8a 21S n -a 41n 2=16b m 成立,∴8a 21×n ⎝ ⎛⎭⎪⎫a 214+na 2142-a 41n 2=16×ma 214,∴na 21=4m ,∴a 1=2mn .∵a 1为正整数,∴m n =12k ,k ∈N *. ∴满足条件的所有整数a 1的值为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a 1⎪⎪⎪⎭⎪⎫a 1=2m n,n ∈N *,m ∈N *,且m n =12k ,k ∈N *. 16分5.(本小题满分16分)已知数列{a n }满足:a 1=14,a 2=34,2a n =a n +1+a n -1(n ≥2,n ∈N *),数列{b n }满足:b 1<0,3b n -b n -1=n (n ≥2,n ∈N *),数列{b n }的前n 项和为S n . (1)求证:数列{b n -a n }为等比数列;(2)求证:数列{b n }为递增数列;(3)若当且仅当n =3时,S n 取得最小值,求b 1的取值范围.【导学号:56394107】[解] (1)证明:∵2a n =a n +1+a n -1(n ≥2,n ∈N *).∴{a n }是等差数列. 又∵a 1=14,a 2=34,∴a n =14+(n -1)·12=2n -14,∵b n =13b n -1+n 3(n ≥2,n ∈N *),∴b n +1-a n +1=13b n +n +13-2n +14=13b n -2n -112=13⎝ ⎛⎭⎪⎫b n -2n -14=13(b n -a n ). 又∵b 1-a 1=b 1-14≠0,∴{b n -a n }是以b 1-14为首项,以13为公比的等比数列.(2)证明:∵b n -a n =⎝ ⎛⎭⎪⎫b 1-14·⎝ ⎛⎭⎪⎫13n -1,a n =2n -14.∴b n =⎝ ⎛⎭⎪⎫b 1-14·⎝ ⎛⎭⎪⎫13n -1+2n -14.当n ≥2时,b n -b n -1=12-23⎝ ⎛⎭⎪⎫b 1-14⎝ ⎛⎭⎪⎫13n -2.又b 1<0,∴b n -b n -1>0. ∴{b n }是单调递增数列.10分(3)∵当且仅当n =3时,S n 取最小值.∴⎩⎪⎨⎪⎧b 3<0,b 4>0,即⎩⎪⎨⎪⎧54+⎝ ⎛⎭⎪⎫b 1-14⎝ ⎛⎭⎪⎫132<0,74+⎝⎛⎭⎪⎫b 1-14⎝ ⎛⎭⎪⎫133>0,∴b 1∈(-47,-11). 16分。
2018届高三数学成功在我专题五 数列问题六:数列中的探索性问题一、考情分析近几年的高考试卷中经常出现以数列为载体的探索性问题,这类问题不仅考查学生的探索能力,而且给学生提供了创新思维的空间,而这类问题有下列三类题型:规律探索性问题;条件探索性问题;结论探索性问题. 二、经验分享(1)对于条件开放的探索性问题,往往采用分析法,从结论和部分已知的条件入手,执果索因,导出所需的条件.另外,需要注意的是,这一类问题所要求的往往是问题的充分条件,而不一定是充要条件,因此,直觉联想、较好的洞察力都将有助于这一类问题的解答.(2)探索结论型问题是指那些题目结论不明确、或者答案不唯一,给同学们留有较大探索余地的试题.一般是由给定的已知条件求相应的结论。
它要求同学们充分利用已知条件进行猜想、透彻分析,发现规律、获取结论,这一类问题立意于对发散思维能力的培养和考察,具有开放性,解法活、形式新,无法套用统一的解题模式,不仅有利于考查和区分同学们的数学素质和创新能力,而且还可以有效地检测和区分考生的学习潜能,因而受到各方面的重视,近年来已成为高考试题的一个新亮点.注意含有两个变量的问题,变量归一是常用的解题思想,一般把其中的一个变量转化为另一个变量,根据题目条件,确定变量的值.数列中大小关系的探索问题可以采用构造函数,根据函数的单调性进行证明,这是解决复杂问题常用的方法. (3)存在型探索性问题通常假定题中的数学对象存在(或结论成立)或暂且认可其中的一部分的结论,然后在这个前提下进行逻辑推理,若由此导出矛盾,则否定假设;否则,给出肯定结论.其中反证法在解题中起着重要的作用.(4)处理规律探索性问题,应充分利用已知条件,先求出数列的前几项,根据前几项的特点透彻分析,发现规律、猜想结论. 三、题型分析 (一) 条件探索性问题【例1】已知数列{}n a 为等差数列,12a =,{}n a 的前n 和为n S ,数列{}n b 为等比数列,且2112233(1)24n n n a b a b a b a b n ++++⋅⋅⋅+=-⋅+对任意的n *∈N 恒成立.(Ⅰ)求数列{}n a 、{}n b 的通项公式; (Ⅱ)是否存在非零整数λ,使不等式1121111(1)(1)(1)cos 21n n n a a a a a πλ+--⋅⋅⋅⋅⋅⋅-<+对一切n *∈N 都成立?若存在,求出λ的值;若不存在,说明理由.(Ⅲ)各项均为正整数的无穷等差数列{}n c ,满足391007c a =,且存在正整数k ,使139,,k c c c 成等比数列,若数列{}n c 的公差为d ,求d 的所有可能取值之和.【分析】(Ⅰ)因为2112233(1)24n n n a b a b a b a b n ++++⋅⋅⋅+=-⋅+对任意的n *∈N 恒成立,所以取1,2,3n =,又知{}n a 为等差数列,{}n b 为等比数列,设出首项,公差,公比解方程组即可;(Ⅱ))由2n a n =,得11coscos(1)(1)2n n a n ππ++=+=-,设121111(1)(1)(1)1n n nb a a a a =--⋅⋅⋅-+,则不等式等价于1(1)n n b λ+-<,问题转化为求n b 的最小值,因0n b >,利用()12112123n n n b b n n ++=>++知n b 单调递增,求n b 的最小值,再根据1(1)n n b λ+-<求解;(Ⅲ)特殊情况0d =时,成立,当d >0时,3911382014201438c c d c d =+=⇒=-,39(39)2014(39)k c c k d k d =+-=+-,由等比中项知2391k c c c =,化简得()23953(77)0(39)53(77)k d k d k d k --+-=⇒-=-,整理得:*53383953k N d ⨯=+∈-,由120143838(53)05300c d d d d =-=->⇒->⎧⎨>⎩,所以53530d >->,根据*533853N d⨯∈-,故531,2,19d -=,从而52,51,34d =,所以公差d 的所有可能取值之和为137.【解析】(Ⅰ)法1:设数列{}n a 的公差为d ,数列{}n b 的公比为q . 因为2112233(1)24()n n n a b a b a b a b n n +*+++⋅⋅⋅+=-⋅+∈N令1,2,3n =分别得114a b =,112220a b a b +=,11223368a b a b a b ++=,又12a =所以1122332,21648a b a b a b ==⎧⎪=⎨⎪=⎩即22(2)(2)163440(22)(2)48d q d d d q +=⎧⇒--=⎨+=⎩, 得11236d q ⎧=-⎪⎨⎪=⎩或2222d q =⎧⎨=⎩,经检验2,2d q ==符合题意,2,63d q =-=不合题意,舍去.所以2,2n n n a n b ==.①当n 为奇数时,得min 123()3n b b λ<==; ② 当n 为偶数时,得min 285()15n b b λ-<==,即8515λ>-. 综上,8523,153λ⎛⎫∈-⎪ ⎪⎝⎭,由λ是非零整数,可知存在1λ=±满足条件. (Ⅲ)易知d=0,成立.当d >0时,3911382014201438c c d c d =+=⇒=-,39(39)2014(39)k c c k d k d =+-=+-,[][]22391(201438)2014(39)2014,38(53)2014(39)20142014,k c c c d k d d k d =⇒-+-=⇒-+-=⨯()()53201439532014d k d ⇒-+-=⨯⎡⎤⎣⎦,()23953(77)0(39)53(77)k d k d k d k ⇒--+-=⇒-=-, 395353107(53)395377kd d k d k d ⇒-=-⨯⇒-=-⨯,*39537739(53)5339537753385338393953535353d d k N d d d d-⨯-+⨯-⨯⨯⨯===-=+∈----,又120143838(53)0530c d d d d =-=->⇒->⎧⎨>⎩Q ,05353d ∴<-<,531,2,19d ∴-=,52,51,34d ∴=,所以公差d 的所有可能取值之和为137.……16分【点评】第一问采取特殊化的思想,转化为联立方程组求首项,公差公比问题,比较容易解决;第二问学会构造数列,将恒成立问题转化为求数列的最小值,选择做商的方法研究数列的单调性,进而求其最值,特别注意最后结果需要对n 分奇偶讨论;第三问通过等比中项,构造公差和项数的方程,利用项数是正整数,分析对公差d 的要求,进而得到d 的可能取值,此类问题虽然比较常见,但是对变形、运算、分析能力要求很高.【小试牛刀】【2017届河北武邑中学高三上学期调研】已知数列{}n a 的前n 项和为n S ,且()12n n S n λ=+-⋅,又数列{}n b 满足:n n a b n ⋅=. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)当λ为何值时,数列{}n b 是等比数列?并求此时数列{}n b 的前n 项和n T 的取值范围.【答案】(Ⅰ)()()11,22n n n a n n λ-=⎧⎪=⎨⋅≥⎪⎩;(Ⅱ)[)1,2. 【解析】(Ⅰ)由()12n n S n λ=+-⋅,当1n =时,11a S λ==;当2n ≥时,()()11112222n n n n n n a S S n n n ---=-=-⋅--⋅=⋅,故数列{}n a 的通项公式为()()11,22n n n a n n λ-=⎧⎪=⎨⋅≥⎪⎩ (Ⅱ)由n n a b n ⋅=有()()111,122n n n b n λ-⎧=⎪⎪=⎨⎛⎫⎪≥ ⎪⎪⎝⎭⎩则数列{}n b 为等比数列, 则首项为11b λ=满足2n ≥的情况,故1λ=,则()112111122111212nn n n b q b b q --⎛⎫++===- ⎪-⎝⎭-…+b 而1212n⎛⎫- ⎪⎝⎭是单调递增的,故[)121211,22n n b b ⎛⎫++=-∈ ⎪⎝⎭…+b (二) 结论探索性问题【例2】已知数列{}n a 中,2a a =(a 为非零常数),其前n 项和n S 满足1()()2n n n a a S n N +-=∈.(1)求数列{}n a 的通项公式; (2)若2a =,且21114m n a S -=,求m n 、的值; (3)是否存在实数a b 、,使得对任意正整数p ,数列{}n a 中满足n a b p +≤的最大项恰为第32p -项? 若存在,分别求出a 与b 的取值范围;若不存在,请说明理由. 【分析】(1)先由()12n n n a a S -=得11111()02a a a S -===, 2n n na S =,11(1)2n n n a S +++=两式相减整理得1(1)n n n a na +-=,21(1)n n na n a ++=+, 再相减化为121n n n n a a a a +++-=-,故{}n a 是等差数列,(1)n a n a =-;(2)先求出()()221,1n n a n S n n =-=-代入21114m n a S -=整理得(223)(221)43m n m n +---=,只有22343,m n +-=且2211m n --=,解得12,11m n ==;(3)先排除0a <的情况,再求得0a >时有1p b n a -≤+,再由3231p bp p a--≤<-对任意正数p 成立可得310,a -= 13a =,最后验证2013b b -<≤-得213b <≤.【解析】(1)由已知,得11111()02a a a S -===,∴2n n na S =, 则有11(1)2n n n a S +++=,∴112()(1)n n n n S S n a na ++-=+-, 即1(1)n n n a na +-=,21(1)n n na n a ++=+, 两式相加,得*122,n n n a a a n N ++=+∈, 即*121,n n n n a a a a n N +++-=-∈, 故数列{}n a 是等差数列,又120,a a a ==,∴(1)n a n a =-(3)由n a b p +≤,得(1)a n b p -+≤, 若0a <,则1p bn a -≥+,不合题意,舍去; 若0a >,则1p bn a-≤+. ∵不等式n a b p +≤成立的最大正整数解为32p -, ∴32131p bp p a--≤+<-, 即2(31)3a b a p a b -<-≤-对任意正整数p 都成立,∴310a -=,解得13a =, 此时,2013b b -<≤-,解得213b <≤, 故存在实数a b 、满足条件,a 与b 的取值范围是12,133a b =<≤, 【点评】判定一个数列为等差数列的常见方法是:①验证2n ≥时1n n a a --为同一常数;②验证3n ≥时,112n n n n a a a a ----=-恒成立;③验证n a pn q =+;④验证2n S An Bn =+.本题(1)运用了方法②.【小试牛刀】【2017届河北武邑中学高三理周考】已知数列{}n a 中,11a =,且点()()*1n n P a a n N +∈,在直线10x y -+=上. ⑴求数列{}n a 的通项公式; ⑵若函数()123123nnf n n a n a n a n a =++++++++…(n N ∈,且2n ≥),求函数()f n 的最小值; ⑶设1n nb a =,n S 表示数列{}n b 的前n 项和,试问:是否存在关于n 的整式()g n ,使得()()12311n n S S S S S g n -++++=-⋅…对于一切不小于2的自然数n 恒成立?若存在,写出()g n 的解析式,并加以证明;若不存在,试说明理由. 【答案】(1)n a n =;(2)65)2(=f ;(3)n ng =)(,证明见解析. 【解析】⑴ 点)(1,+n n a a P 在直线01=--y x 上,即11=-+n n a a ,且11=a ,∴数列}{n a 是以1为首项,1为公差的等差数列,)2(1)1(1≥=⋅-+=∴n n n a n ,11=a 也满足,n a n =∴⑵ n nn n n f 22211)(+++++=, ∴22112213221)1(+++++-+++++=+n n n n n n n n n f , 0)()1(≥-+∴n f n f ,)(n f ∴是单调递增的,故)(n f 的最小值是65)2(=f . ⑶ n S n b n n 1312111++++=⇒= ,)2(11≥=-∴-n nS S n n ,即,1,,1)2()1(112221+=-+=---∴---S S S S S n S n n n n ,,1-n 1211++++=-∴-n n S S S S nS)2()1(121≥⋅-=-=+++∴-n n S n nS S S S n n n ,n n g =∴)(.故存在关于n 的整式n n g =)(,使等式对于一切不小于2的自然数n 恒成立. 法二:先由3,2==n n 的情况,猜想出n n g =)(,再用数学归纳法证明. (三) 存在型探索问题通常假定题中的数学对象存在(或结论成立)或暂且认可其中的一部分的结论,然后在这个前提下进行逻辑推理,若由此导出矛盾,则否定假设;否则,给出肯定结论.其中反证法在解题中起着重要的作用.【例3】【广东省茂名市五大联盟学校2018届高三3月联考】设数列的前n项和为,且满足().(1)求数列的通项公式;(2)是否存在实数,使得数列为等差数列?若存在,求出的值,若不存在,请说明理由. 【答案】(1);(2)答案见解析.【分析】(1)由题意可得,据此有.且().,故,整理可得.数列是以2为首项,2为公比的等比数列,.(2)由(1)知,,,必要条件探路,若为等差数列,则,,成等差数列,据此可得.经检验时,成等差数列,故的值为-2.【解析】(1)由(),可知当时,.又由().可得,两式相减,得,即,即.所以数列是以2为首项,2为公比的等比数列故.(2)由(1)知,,所以若为等差数列,则,,成等差数列,即有,即,解得. 经检验时,成等差数列,故的值为-2.【小试牛刀】【2017安徽六安一中上学期周检】已知数列{}n a 的前n 项和为n S ,11a =,13n S +是6与2nS 的等差中项()n N *∈.(1)求数列{}n a 的通项公式;(2)是否存在正整数k ,使不等式()()21nn n k a S n N*-<∈恒成立,若存在,求出k 的最大值;若不存在,请说明理由. 【答案】(1)()*131N n a n n ∈=-;(2)存在,11. 【解析】(1)解法一:因为13n S +是6与2n S 的等差中项,所以()1626n n S S n N *++=∈,即1113n n S S +=+,当2n ≥时有1113n n S S -=+②-①②得()1113n n n n S S S S +--=-,即113n n a a +=对2n ≥都成立 又根据①有21113S S =+即121113a a a +=+,所以211133a a ==所以()113n n a n N *-=∈.所以数列{}n a 是首项为1,公比为13的等比数列.解法二:因为13n S +是6与2n S 的等差中项所以()1626n n S S n N *++=∈,即1113n n S S +=+,()n N *∈ 由此得()1313111312323232n n n n S S S S n N *+⎛⎫⎛⎫-=+-=-=-∈ ⎪ ⎪⎝⎭⎝⎭, 又11331222S a -=-=-,所以()1312332n n S n N S +*-=∈-, 所以数列32n S ⎧⎫-⎨⎬⎩⎭是以为12-首项,13为公比的等比数列. 得1311223n n S -⎛⎫-=-⨯ ⎪⎝⎭,即()1311223n n S n N -*⎛⎫=-∈ ⎪⎝⎭,所以,当2n ≥时,121131131112232233n n n n n n a S S ----⎡⎤⎡⎤⎛⎫⎛⎫=-=---=⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,又1n =时,11a =也适合上式,所以()113n n a n N *-=∈. (2)根据(1)的结论可知, 数列{}n a 是首项为1,公比为13的等比数列, 所以其前n 项和为()1311223n n S n N -*⎛⎫=-∈ ⎪⎝⎭原问题等价于()()()21111113323n n nk n N --*⎡⎤⎛⎫⎛⎫-<-∈⎢⎥ ⎪⎪⎝⎭⎝⎭⎢⎥⎣⎦①恒成立. 当n 为奇数时,不等式左边恒为负数,右边恒为正数,所以对任意正整数k 不等式恒成立;当n 为偶数时,①等价于()2111123033n n k --⎛⎫⎛⎫+-< ⎪⎪⎝⎭⎝⎭恒成立,令113n t -⎛⎫= ⎪⎝⎭,有103t <<,则①等价于2230kt t +-<在103t <<恒成立,因为k 为正整数,二次函数223y kt t =+-的对称轴显然在y 轴左侧,所以当103t <<时,二次函数为增函数,故只须21123033k ⎛⎫+-< ⎪⎝⎭,解得012k <<,k N *∈,所以存在符合要求的正整数k ,且最大值为11. 四、迁移运用1.【2017福建厦门一中高二上学期期中】数列{}n a 的前n 项和为n S ,若*3113,21,n n S a S n N +==+∈,则符合5n S a >的最小的n 值为( )A .8B .7C .6D .5 【答案】D2.【2017届安徽淮北一中高三上学期四模】已知{}n a 是等比数列, 公比为q , 前n 项和是n S ,若1341,,a a a a - 成等差数列,则( )A .10a >时,1n n S qS +<B .10a >时,21n n S q S +< C. 10a <时,1n n S qS +< D .10a <时,21n n S q S +< 【答案】B【解析】1341,,a a a a -成等差数列,即314142,2a a a a a q =+-==.()()11122112n n n a S a -==--,()11121n n S a ++=-,()21421n n q S a =-,当10a >时,()()()211111214213120n n n n n S q S a a a ++-=---=-<,所以21n n S q S +<,选B.3.【2017届河北武邑中学高三周考】若数列{}n a 满足112324221n n a a a a n -++++=-…,且数列{}n a 的前n 项和为n S ,若实数λ满足对于任意*n N ∈都有24n S λλ<<,则λ的取值范围是 .【答案】143<≤λ 【解析】由,122421321-=++++-n a a a a n n 得2123124221123n n a a a a n n --++++=--=-()2n ≥(),两式相减得)(2,221≥=-n a n n ,又1=n 时,11=a ,所以,)2(2112⎩⎨⎧≥==-n n a nn ),(所以212210213211211122221------=--+=++++=n n nn S )()( ,在1≥n 时单调递增,可得31<≤n S ,由题意可得,3412⎩⎨⎧≥<λλ解得143<≤λ.4.【2017届安徽淮北一中高三上学期四模】已知数列{}n a 与{}n b 满足()1122n n n n a b b a n N *+++=+∈,若()19,3n n a b n N*==∈且()33633n nan λλ>+-+对一切n N *∈恒成立 ,则实数λ的取值范围是_________. 【答案】13,18⎛⎫+∞⎪⎝⎭5.【2017届山西临汾一中等五校高三联考】已知数列{}n a 的通项公式()(),14182,2nn a n a n a n =⎧⎪=⎨+--≥⎪⎩,若对任意1,n n n N a a ++∈<恒成立,则a 的取值范围是_____________ . 【答案】()3,5【解析】∵对任意1,n n n N a a ++∈<恒成立,∴1=n 时,21a a <,可得()a a 288-+<,解得316<a .2≥n时,()()()()()a n a n n n2811428141--++<--++,化为:()()01141>+--+n a ,k n 2=时,化为:()014>+--a ,解得3>a ;12+=k n 时,化为:014>+-a ,解得5<a .综上可得:()3,5.∴a 的取值范围是()3,5.故答案为:()3,5.6.【2017届湖南湘中名校教改联合体高三12月联考】对于数列{}n a ,定义11222n nn a a a H n-+++=为{}n a 的“优值”,现在已知某数列{}n a 的“优值”12n n H +=,记数列{}n a kn -的前n 项和为n S ,若5n S S ≤对任意的n 恒成立,则实数k 的最大值为__________.【答案】712,35⎡⎤⎢⎥⎣⎦【解析】由题可知1112222n n na a a n-++++=,∴1112222n n n a a a n -++++=⋅①,212122(1)2n n n a a a n --+++=-⋅②,由①-②得:1122(1)2n n n n a n n -+=⋅--⋅,则22n a n =+,所以(2)2n a kn k n -=-⋅+,令(2)2n b k n =-⋅+,5n S S ≤,560,0b b ∴≥≤,解得:71235k ≤≤,所以k 的取值范围是712[,]35. 7.【2017届江苏如东高级中学等四校高三12月联考】已知数列{}n x 各项为正整数,满足1, 21,nn n nn x x x x x +⎧⎪=⎨⎪+⎩为偶数,为奇数,*n ∈N .若343x x +=,则1x 所有可能取值的集合为__________. 【答案】{}1,2,3,4,8【解析】由题意得34341,22,1x x x x ====或;当31x =时,22x =,从而114x =或;当32x =时,214x =或,因此当21x =时,12x =;当24x =时,183x =或,综上1x 所有可能取值的集合为{}1,2,3,4,88.设等差数列{}n a 满足公差d N +∈,n a N +∈,且数列{}n a 中任意两项之和也是该数列的一项.若513a =,则d 的所有可能取值之和为_________________. 【答案】364【解析】设,n m a a (m n)≠设等差数列{}n a 中的任意两项,由已知得,53(n 1)n a d =+-,53(1)m a m d =+-,则523(2)m n a a m n d +=⨯++-,设m n a a +是数列{}n a 中的第k 项,则有53(1)m n a a k d +=+-,即5523(2)3(1)m n d k d ⨯++-=+-,531d m n k =-+--,故d 的所有可能取值为23451,3,3,3,3,3,其和为61336413-=-. 9.【江苏省扬州市2017-2018学年度第一学期期末调研】已知各项都是正数的数列的前项和为,且,数列满足,.(1)求数列、的通项公式;(2)设数列满足,求和;(3)是否存在正整数,,,使得,,成等差数列?若存在,求出所有满足要求的,,,若不存在,说明理由. 【解析】(1)①,②,②-①得:,即,因为是正数数列,所以,即,所以是等差数列,其中公差为1,在中,令,得,所以,由得,所以数列是等比数列,其中首项为,公比为,所以.(2),裂项得,所以,(3)假设存在正整数,使得成等差数列,则,即,因为,所以数列从第二项起单调递减,当时,,若,则,此时无解;若,则,因为从第二项起递减,故,所以符合要求,若,则,即,不符合要求,此时无解;当时,一定有,否则若,则,即,矛盾,所以,此时,令,则,所以,,综上得:存在或,,满足要求.10.数列{}n x 满足: 11x =, 141n n n x x x ++=+, *n N ∈ (Ⅰ)判断n x 与2的大小关系,并证明你的结论; (Ⅱ)求证: 122222n x x x -+-++-<.【解析】Ⅰ) 当n 为奇数时, n x <2;当n 为偶数时, n x >2. 证明如下:()1221n n n x x x +---=+,两边同取倒数得:11131222n n n n x x x x ++=-=-----,1111132424n n x x +⎛⎫+=-⨯+ ⎪--⎝⎭,所以数列1124n x ⎧⎫+⎨⎬-⎩⎭是以34-为首项, 3-为公比的等比数列, ()11133244n n x -+=-⋅--,()4231n nx -=--,所以当n 为奇数时,()42031n nx -=<--,即n x <2;当n 为偶数时, ()42031n nx -=>--, n x >2.当n 为偶数且4n ≥时, 要证1412312n n n x --=<-, 只需证2231nn⨯<-,即证212133n n⎛⎫⎛⎫⨯+< ⎪ ⎪⎝⎭⎝⎭, 令()21233nnf n ⎛⎫⎛⎫=⨯+ ⎪ ⎪⎝⎭⎝⎭,则()f n 单调递减, ()()max 41f n f =<,当n 为奇数且3n ≥时, 要证1412312n n n x --=<+, 只需证2231nn⨯<+, 只需证223nn⨯<,即证2213n ⎛⎫⨯< ⎪⎝⎭,令()223ng n ⎛⎫=⨯ ⎪⎝⎭,则()g n 单调递减, ()()max 31g n g =<, 所以()1412231n nn x --=<--成立, 所以122222n x x x -+-++-<成立.11.【江苏省盐城中学2018届高三上学期期末】已知数列{}n a 满足11a =, 2142n n n n a a a a λμ+++=+,其中*N n ∈, λ, μ为非零常数.(1)若3λ=, 8μ=,求证: {}1n a +为等比数列,并求数列{}n a 的通项公式; (2)若数列{}n a 是公差不等于零的等差数列. ①求实数λ, μ的值;②数列{}n a 的前n 项和n S 构成数列{}n S ,从{}n S 中取不同的四项按从小到大排列组成四项子数列.试问:是否存在首项为1S 的四项子数列,使得该子数列中的所有项之和恰好为2017?若存在,求出所有满足条件的四项子数列;若不存在,请说明理由. 【解析】(1)当3λ=, 8μ=时, 213842n n n n a a a a +++=+ ()()3222n n n a a a ++=+ 32na =+, ()1131n n a a +∴+=+.又10n a +≠,不然110a +=,这与112a +=矛盾,{}1n a ∴+为2为首项,3为公比的等比数列, 1123n n a -∴+=⋅, 1231n n a -∴=⋅-.经检验,满足题意.综上, 1λ=, 4μ=, 21n a n =-. ②由①知()21212n n n S n +-==.设存在这样满足条件的四元子列,观察到2017为奇数,这四项或者三个奇数一个偶数、或者一个奇数三个偶数.1°若三个奇数一个偶数,设1S , 21x S +, 21y S +, 2z S 是满足条件的四项,则()2121x +++ ()222142017y z ++=,()2222x x y y z ∴++++ 1007=,这与1007为奇数矛盾,不合题意舍去.2°若一个奇数三个偶数,设1S , 2x S , 2y S , 2z S 是满足条件的四项,则2214x ++ 22442017y z +=, 222504x y z ∴++=.由504为偶数知, x , y , z 中一个偶数两个奇数或者三个偶数.1)若x , y , z 中一个偶数两个奇数,不妨设12x x =, 121y y =+, 121z z =+,则()222111112x y y z z ++++ 251=,这与251为奇数矛盾.2)若x , y , z 均为偶数,不妨设12x x =, 12y y =, 12z z =,则222111126x y z ++=,继续奇偶分析知1x , 1y , 1z 中两奇数一个偶数, 不妨设122x x =, 1221y y =+, 1221z z =+,则22222x y y +++ 22231z z +=.因为()221y y +, ()221z z +均为偶数,所以2x 为奇数,不妨设220y z ≤≤,当21x =时, 222222y y z z +++ 30=, 22214y y +≤,检验得20y =, 25z =, 21x =, 当23x =时, 222222y y z z +++ 22=, 22210y y +≤,检验得21y =, 24z =, 23x =,当25x =时, 222222y y z z +++ 6=, 2222y y +≤,检验得20y =, 22z =, 25x =,即1S , 4S , 8S , 44S 或者1S , 12S , 24S , 36S 或者1S , 4S , 20S , 40S 满足条件, 综上所述, {}14844,,,S S S S , {}1122436,,,S S S S , {}142040,,,S S S S 为全部满足条件的四元子列. 12.【西南名校联盟高三2018年元月考试】已知数列{}n a 为等差数列,公差为d ,其前n 项和为n S ,且1357915a a a a a ++++=, 24681025a a a a a ++++=.(1)求数列{}n a 的通项公式n a 及前n 项和n S ;(2)若数列{}n b 满足14b a =, ()*13n n n b b n N +=+∈,求满足6n n b S n ≤+的所有n 的值.【解析】(1)∵1357915a a a a a ++++=, 24681025a a a a a ++++=, ∴5515a =, 6525a =,得53a =, 65a =,∴2d =,∴()55n a a n d =+- ()325n =+- 27n =-,得15a =-,∴()112n n n S na d -=+ 26n n =-.(2)∵141b a ==, 13n n n b b +-=,∴()()()121122113331n n n n n n n b b b b b b b b -----=-+-+⋅⋅⋅+-+=++⋅⋅⋅++ ()3122n n -=≥,又13112b -==∴()31*2n n b n N -=∈,故由6n n b S n ≤+得2312nn -≤ ∴1n =或2n =.13.【2017届湖南长沙雅礼中学高三月考】已知首项为23的等比数列}{n a 的前n 项和为)(*∈N n S n ,且4324,,2S S S -成等差数列.(1)求数列}{n a 的通项公式;(2)对于数列}{n A ,若存在一个区间M ,均有),3,2,1(, =∈i M A i ,则称M 为数列}{n A 的“容值区间”.设nn n S S b 1+=,试求数列}{n b 的“容值区间”长度的最小值. (注:区间],[),,[],,(),,(b a b a b a b a 的长度均为a b -) 【答案】(1)1)21(23--⋅=n n a ;(2)61. 【解析】(1)设等比数列}{n a 的公比为)0(≠q q ,由题意知342242S S S =+-,则)232323(2)23232323(4)2323(2232q q q q q q ++=+++++-,化简得06332=+q q , 解得21-=q ,∴1)21(23--⋅=n n a .(2)由(1)可知n n S )21(1--=.当n 为偶数时,n n S )21(1-=,易知n S 随n 增大而增大,∴)1,43[∈n S ,此时]1225,2(1∈+=n n n S S b ; 当n 为奇数时,n n S )21(1+=,易知n S 随n 增大而减小,∴]23,1(∈n S ,此时]613,2(1∈+=n n n S S b . 又1225613>,∴]213,2(∈n b .故数列}{n b 的“容值区间”长度的最小值为61. 14.【2017届河南南阳一中高三上学期月考】已知数列{}n a 的前n 项和n S 满足11()22n n n S a -++=(*n N ∈),设2n n n c a =.(1)求证:数列{}n c 是等差数列,并求数列{}n a 的通项公式;(2)按以下规律构造数列{}n b ,具体方法如下:11b c =,223b c c =+,34567b c c c c =+++,…,第n 项n b 由相应的{}n c 中12n -项的和组成,求数列{}n b 的通项公式.【答案】(1)2n nn a =;(2)232322n n --⨯-. 【解析】(1)在11()22n n n S a -++=,①中,令1n =,得1112S a ++=,∴112a =. 当2n ≥时,2111()22n n n S a ---++=,②①-②得:1112()02n n n a a ----=,(2n ≥),∴1112()2n n n a a ---=,∴11221n n n n a a ---=,又2n n n c a =,∴11(2)n n c c n --=≥, 又1121c a ==,所以数列{}n c 是等差数列, ∴1(1)1n c n n =+-⨯=,又2n n n c a =,∴2n nn a =. (2)由题意得1111122122212(21)(21)n n n n n n n n b c c c c -----++-=++++=++++-……,而12n -,121n -+,122n -+,…,21n -是首项为12n -,公差为1的等差数列,设数列共有12n -项,所以,11222112322(21)222232222n n n n n n n n n b -------⎡⎤+-⨯+-⎣⎦===⨯-.15.【2017届福建连城县二中高三上学期期中】数列{}n a 的前n 项和为n S ,1a t =,121n n a S +=+(*n N ∈).(1)t 为何值时,数列{}n a 是等比数列?(2)在(1)的条件下,若等差数列{}n b 的前n 项和n T 有最大值,且315T =,又11a b +,22a b +,33a b +等比数列,求n T .【答案】(1)1t =;(2)2205n T n n =-. 【解析】(1)∵121n n a S +=+, ∴当2n ≥时,121n n a S -=+,两式相减得12n n n a a a +-=,即13n n a a +=, ∴当2n ≥时,数列{}n a 是等比数列, 要使数列{}n a 是等比数列, 当且仅当213a a =,即213t t +=,从而1t =.16.【2017届江西鹰潭一中高三上学期月考】设等差数列{}n a 的前n 项和为n S ,()1,1a a =,()101,b a =,若24a b =,且11143S =,数列{}n b 的前n 项和为n T ,且满足()1121n a n T a λ-=--(*n N ∈). (Ⅰ)求数列{}n a 的通项公式及数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和;(Ⅱ)是否存在非零实数λ,使得数列为等比数列?并说明理由.【答案】(Ⅰ)21n a n =+,96+=n nM n ;(Ⅱ)不存在非零实数,使数列为等比数列,理由见解析. 【解析】(Ⅰ)设数列{}n a 的公差为d ,由()1,1a a =,()101,b a =,24a b =,得11024a a +=又11143S =解得13a =,2d =,因此数列的通项公式是21n a n =+(*n N ∈),所以1111122123n n a a n n +⎛⎫=- ⎪++⎝⎭, 所以111111123557212369n nM n n n ⎛⎫=-+-++-= ⎪+++⎝⎭ (Ⅱ)因为()1121na n T a λ-=--(*n N ∈)且13a =可得124n n T λλ=+,当1n =时,16b λ=;当2n ≥时,1134n n n n b T T λ--=-=,此时有14n n b b -=,若是{}n b 等比数列,则有214bb =,而16b λ=,212b λ=,彼此相矛盾,故不存在非零实数,使数列为等比数列.17.【2017届河南中原名校豫南九校高三上学期质检四】设等差数列{}n a 的前n 项和为n S ,且55625S a a =+=.(1)求{}n a 的通项公式;(2)若不等式()()282714nn n S n k a ++>-+对所有的正整数n 都成立,求实数k 的取值范围. 【答案】(Ⅰ)34n a n =-(Ⅱ)2974k -<<18.【2017届江苏南京市盐城高三一模】若存在常数*(,2)k k N k ∈≥、q 、d ,使得无穷数列{}n a 满足1,,,,n n n n a d N ka n qa N k *+*⎧+∉⎪⎪=⎨⎪∈⎪⎩则称数列{}n a 为“段比差数列”,其中常数k 、q 、d 分别叫做段长、段比、段差. 设数列{}n b 为“段比差数列”.(1)若{}n b 的首项、段长、段比、段差分别为1、3、q 、3. ①当0q =时,求2016b ;②当1q =时,设{}n b 的前3n 项和为3n S ,若不等式133n n S λ-≤⋅对n N *∈恒成立,求实数λ的取值范围;(2)设{}n b 为等比数列,且首项为b ,试写出所有满足条件的{}n b ,并说明理由. 【答案】(Ⅰ)①6,②[)14,λ∈+∞(Ⅱ)n b b =或()11n n b b -=-.【解析】(1)①方法一:∵{}n b 的首项、段长、段比、段差分别为1、3、0、3,2014201300b b ∴=⨯=,2015201433b b ∴=+=,2016201536b b ∴=+=.方法二:∵{}n b 的首项、段长、段比、段差分别为1、3、0、3,∴11b =,24b =,37b =,4300b b =⨯=,5433b b =+=,6536b b =+=,7600b b =⨯=, ∴当4n ≥时,{}n b 是周期为3的周期数列. ∴201666b b ==.②方法一:∵{}n b 的首项、段长、段比、段差分别为1、3、1、3,∴()()()32313131331313126n n n n n n n n b b b d b qb d b q b d d b d +-+-----=+-=+-=++-==⎡⎤⎣⎦, ∴{}31n b -是以24b =为首项、6为公差的等差数列, 又()()32313313131313n n n n n n n b b b b d b b d b ------++=-+++=,()()()312345632313n n n n S b b b b b b b b b --∴=+++++++++()()2253113346932n n n b b b n n n --⎡⎤=++=+⨯=+⎢⎥⎣⎦,133n n S λ-≤⋅,313n n S λ-∴≤,设313nn n S c -=,则()max n c λ≥, 又()()()2221112322913193333n n n n n n n n n n n c c +-----++++-=-=, 当1n =时,23220n n --<,12c c <;当2n ≥时,23220n n -->,1n n c c +<, ∴123c c c <>>⋅⋅⋅,∴()2max 14n c c ==, ∴14λ≥,得[)14,λ∈+∞.方法二:∵{}n b 的首项、段长、段比、段差分别为1、3、1、3,∴313n n b b +=,∴333333126n n n n b b b b d +++-=-==,∴{}3n b 是首项为37b =、公差为6的等差数列, ∴()2363176342n n n b b b n n n -+++=+⨯=+, 易知{}n b 中删掉{}3n b 的项后按原来的顺序构成一个首项为1公差为3的等差数列,()21245323122121362n n n n b b b b b b n n n ---∴++++++=⨯+⨯=-,()()222334693n S n n n n n n ∴=++-=+,以下同方法一.方法二:设{}n b 的段长、段比、段差分别为k 、q 、d ,①若2k =,则1b b =,2b b d =+,()3b b d q =+,()4b b d q d =++,由2132b b b =,得b d bq +=;由2243b b b =,得()()2b d q b d q d +=++,联立两式,得01d q =⎧⎨=⎩或21d b q =-⎧⎨=-⎩,则n b b =或()11n n b b -=-,经检验均合题意.②若3k ≥,则1b b =,2b b d =+,32b b d =+,由2132b b b =,得()()22b d b b d +=+,得0d =,则n b b =,经检验适合题意.综上①②,满足条件的{}n b 的通项公式为n b b =或()11n n b b -=-.19.【2017届江苏如东高级中学等四校高三12月联考】已知数列{}n a 满足10a =,218a =,且对任意m ,*n ∈N 都有()221211324m n m n a a a m n --+-+=+-. (1)求3a ,5a ;(2)设2121n n n b a a +-=-(*n ∈N ). ①求数列{}n b 的通项公式; ②设数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n S ,是否存在正整数p ,q ,且1p q <<,使得1S ,p S ,q S 成等比数列?若存在,求出p ,q 的值,若不存在,请说明理由.【答案】(Ⅰ)31a =,55a =(Ⅱ)①32n b n =-②2p =,16q = 【解析】(1)由题意,令2m =,1n =,则()231232214a a a +=+-,解得31a =. 令3m =,1n =,则()251332314a a a +=+-,解得55a =. (2)①以2n +代替m ,得23212123n n n a a a +-++=+.则()()()21212112113n n n n a a a a +-+++-⎡⎤---=⎣⎦,即13n n b b +-=.所以数列{}n b 是以3为公差的等差数列.1311b a a =-=,()11332n b n n ∴=+-⨯=-.②因为()()111111323133231n n b b n n n n +⎛⎫==- ⎪-+-+⎝⎭. 所以11111111113447323133131n n S n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪ ⎪⎢⎥-+++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦. 则114S =,31p p S p =+,31q q S q =+.因为1S ,p S ,q S 成等比数列,2131431p q p q ⎛⎫∴= ⎪++⎝⎭,即26134p q p q ++=. 所以1p q <<,34433q q q +∴=+>.2613p p+∴>. 解得32332333p -+<<. 又1p <,且*p ∈N ,2p ∴=,则16q =.所以存在正整数2p =,16q =,使得1S ,p S ,q S 成等比数列.。
难点八 函数最值、恒成立及存在性问题(对应学生用书第75页)恒成立问题和有解问题、无解问题是联系函数、方程、不等式的纽带和桥梁,也是高考的重点和热点问题,往往用到的方法是依据不等式的特点,等价变形,构造函数,借助图象观察,或参变分离,转化为求函数的最值问题来处理. F (x )>a :⎩⎪⎨⎪⎧恒成立⇔f x min >a 有解⇔f x max >a无解⇔f x max ≤a具体方法为将已知恒成立或存在性的不等式或等式由等价原理把参数和变量分离开,转化为一元已知函数的最值问题处理,关键是搞清楚哪个是变量哪个是参数,一般遵循“知道谁的范围,谁是变量;求谁的范围,谁是参数”的原则.参变分离后虽然转化为一个已知函数的最值问题,但是有些函数解析式复杂,利用导数知识无法完成,或者是不易参变分离,故可利用构造函数法.【例1】 (2017·盐城市滨海县八滩中学二模)设f (x )=e x-a (x +1).(1)若a >0,f (x )≥0对一切x ∈R 恒成立,求a 的最大值;(2)设g (x )=f (x )+ae x ,A (x 1,y 1),B (x 2,y 2)(x 1≠x 2)是曲线y =g (x )上任意两点,若对任意的a ≤-1,直线AB 的斜率恒大于常数m ,求m 的取值范围;(3)是否存在正整数a ,使得1n +3n +…+(2n -1)n <e e -1(an )n对一切正整数n 都成立?若存在,求a 的最小值;若不存在,请说明理由.【导学号:56394112】[解] (1)∵f (x )=e x-a (x +1),∴f ′(x )=e x-a , ∵a >0,f ′(x )=e x -a =0的解为x =ln a . ∴f (x )min =f (ln a )=a -a (ln a +1)=-a ln a .∵f (x )≥0对一切x ∈R 恒成立,∴-a ln a ≥0,∴a ln a ≤0,∴a max =1. (2)∵f (x )=e x-a (x +1), ∴g (x )=f (x )+ae x =e x+ae x -ax -a .∵a ≤-1,直线AB 的斜率恒大于常数m , ∴g ′(x )=e x-aex -a ≥2e x·⎝ ⎛⎭⎪⎫-a e x -a=-a +2-a =m (a ≤-1),解得m ≤3,∴实数m 的取值范围是(-∞,3].(3)设t (x )=e x-x -1,则t ′(x )=e x-1,令t ′(x )=0得:x =0. 在x <0时t ′(x )<0,f (x )递减;在x >0时t ′(x )>0,f (x )递增. ∴t (x )最小值为t (0)=0,故e x≥x +1,取x =-i 2n ,i =1,3,…,2n -1,得1-i 2n ≤e-i 2n ,即⎝ ⎛⎭⎪⎫2n -i 2n n ≤e-i 2,累加得⎝ ⎛⎭⎪⎫12n n +⎝ ⎛⎭⎪⎫32n n +…+⎝ ⎛⎭⎪⎫2n -12n n <e -2n -12+e -2n -32+…+e -12=e -121-e-n1-e -1<ee -1. ∴1n+3n+…+(2n -1)n<e e -1·(2n )n, 故存在正整数a =2.使得1n+3n+…+(2n -1)n<e e -1·(an )n. 【例2】 (2017·江苏省无锡市高考数学一模)已知函数f (x )=(x +1)ln x -ax +a (a 为正实数,且为常数).(1)若f (x )在(0,+∞)上单调递增,求a 的取值范围; (2)若不等式(x -1)f (x )≥0恒成立,求a 的取值范围.[解] (1)f (x )=(x +1)ln x -ax +a ,f ′(x )=ln x +1x+1-a ,若f (x )在(0,+∞)上单调递增,则a ≤ln x +1x+1在(0,+∞)恒成立(a >0),令g (x )=ln x +1x +1(x >0),g ′(x )=x -1x2,令g ′(x )>0,解得:x >1,令g ′(x )<0,解得:0<x <1, 故g (x )在(0,1)递减,在(1,+∞)递增, 故g (x )min =g (1)=2, 故0<a ≤2;(2)若不等式(x -1)f (x )≥0恒成立,即(x -1)[(x +1)ln x -ax +a ]≥0恒成立, ①x ≥1时,只需a ≤(x +1)ln x 恒成立, 令m (x )=(x +1)ln x (x ≥1), 则m ′(x )=ln x +1x+1,由(1)得:m ′(x )≥2,故m (x )在[1,+∞)递增,m (x )≥m (1)=0,故a ≤0,而a 为正实数,故a ≤0不合题意; ②0<x <1时,只需a ≥(x +1)ln x , 令n (x )=(x +1)ln x (0<x <1),则n ′(x )=ln x +1x+1,由(1)知n ′(x )在(0,1)递减,故n ′(x )>n ′(1)=2,故n (x )在(0,1)递增,故n (x )<n (1)=0, 故a ≥0,而a 为正实数,故a >0.【例3】 (2017·江苏省淮安市高考数学二模)已知函数f (x )=1e x ,g (x )=ln x ,其中e为自然对数的底数.(1)求函数y =f (x )g (x )在x =1处的切线方程;(2)若存在x 1,x 2(x 1≠x 2),使得g (x 1)-g (x 2)=λ[f (x 2)-f (x 1)]成立,其中λ为常数,求证:λ>e ;(3)若对任意的x ∈(0,1],不等式f (x )g (x )≤a (x -1)恒成立,求实数a 的取值范围.【导学号:56394113】[解] (1)y =f (x )g (x )=ln xe x ,y ′=1x -ln xex, x =1时,y =0,y ′=1e,故切线方程是:y =1e x -1e;(2)证明:由g (x 1)-g (x 2)=λ[f (x 2)-f (x 1)], 得:g (x 1)+λf (x 1)=g (x 2)+λf (x 2), 令h (x )=g (x )+λf (x )=ln x +λe x (x >0),h ′(x )=e x-λxx e x,令ω(x )=e x-λx ,则ω′(x )=e x-λ, 由x >0,得e x >1,①λ≤1时,ω′(x )>0,ω(x )递增, 故h ′(x )>0,h (x )递增,不成立;②λ>1时,令ω′(x )=0,解得:x =ln λ, 故ω(x )在(0,ln λ)递减,在(ln λ,+∞)递增, ∴ω(x )≥ω(ln λ)=λ-λln λ,令m (λ)=λ-λln λ(λ>1), 则m ′(λ)=-ln λ<0,故m (λ)递减, 又m (e)=0,若λ≤e,则m (λ)≥0,ω(x )≥0,h (x )递增,不成立, 若λ>e ,则m (λ)<0,函数h (x )有增有减,满足题意, 故λ>e ;(3)若对任意的x ∈(0,1],不等式f (x )g (x )≤a (x -1)恒成立, 即ln xex -a (x -1)≤0在(0,1]恒成立, 令F (x )=ln xe x -a (x -1),x ∈(0,1],F (1)=0,F ′(x )=1x -ln x e x-a ,F ′(1)=1e-a , ①F ′(1)≤0时,a ≥1e,F ′(x )≤1x -ln x -ex -1ex递减,而F ′(1)=0,故F ′(x )≥0,F (x )递增,F (x )≤F (1)=0,成立,②F ′(1)>0时,则必存在x 0,使得F ′(x )>0,F (x )递增,F (x )<F (1)=0不成立,故a ≥1e.【例4】 设函数f (x )=ax 2-a -ln x ,其中a ∈R .(1)讨论f (x )的单调性;(2)确定a 的所有可能取值,使得f (x )>1x-e 1-x在区间(1,+∞)内恒成立(e =2.718…为自然对数的底数).[解] (1)f ′(x )=2ax -1x =2ax 2-1x(x >0).当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内单调递减. 当a >0时,由f ′(x )=0,有x =12a.此时,当x ∈⎝⎛⎭⎪⎫0,12a 时,f ′(x )<0,f (x )单调递减; 当x ∈⎝⎛⎭⎪⎫12a ,+∞时,f ′(x )>0,f (x )单调递增.(2)令g (x )=1x -1ex -1,s (x )=e x -1-x ,则s ′(x )=ex -1-1.而当x >1时,s ′(x )>0,所以s (x )在区间(1,+∞)内单调递增. 又由s (1)=0,有s (x )>0, 从而当x >1时,g (x )>0.当a ≤0,x >1时,f (x )=a (x 2-1)-ln x <0.故当f (x )>g (x )在区间(1,+∞)内恒成立时,必有a >0. 当0<a <12时,12a >1.由(1)有f ⎝⎛⎭⎪⎫12a <f (1)=0,而g ⎝ ⎛⎭⎪⎫12a >0, 所以此时f (x )>g (x )在区间(1,+∞)内不恒成立. 当a ≥12时,令h (x )=f (x )-g (x )(x ≥1).当x >1时,h ′(x )=2ax -1x +1x 2-e 1-x>x -1x +1x 2-1x =x 3-2x +1x 2>x 2-2x +1x2>0. 因此,h (x )在区间(1,+∞)内单调递增.又因为h (1)=0,所以当x >1时,h (x )=f (x )-g (x )>0, 即f (x )>g (x )恒成立.综上,a ∈⎣⎢⎡⎭⎪⎫12,+∞.[点评] 综合构造函数,运用函数的思想,利用导数研究函数的性质(单调性和最值),达到解题的目的,是一成不变的思路,合理构思,善于从不同角度分析问题,是解题的法宝.。
高考导航 对近几年高考试题统计看,江苏卷中考查内容主要集中在两个方面:一是以填空题的形式考查等差、等比数列的运算和性质,题目多为常规试题;二是等差、等比数列的通项与求和问题,有时结合函数、不等式等进行综合考查,涉及内容较为全面,注重数学推理探究能力的考查,试题难度大.热点一 等差数列、等比数列的综合问题解决等差、等比数列的综合问题时,重点在于读懂题意,灵活利用等差、等比数列的定义、通项公式及前n 项和公式解决问题,求解这类问题要重视方程思想的应用.【例1】(2017·常州监测)已知等差数列{a n }的公差d 为整数,且a k =k 2+2,a 2k =(k +2)2,其中k 为常数且k ∈N *. (1)求k 及a n ;(2)设a 1>1,{a n }的前n 项和为S n ,等比数列{b n }的首项为1,公比为q (q >0),前n 项和为T n ,若存在正整数m ,使得S 2S m=T 3,求q .解 (1)由题意得⎩⎨⎧dk +a 1-d =k 2+2,①2dk +a 1-d =(k +2)2,②由②-①并整理得d =4+2k .因为d ∈Z ,k ∈N *,所以k =1或k =2.当k =1时,d =6,代入①得a 1=3,所以a n =6n -3; 当k =2时,d =5,代入①得a 1=1,所以a n =5n -4.(2)由题意可得b n =q n -1,因为a 1>1,所以a n =6n -3,S n =3n 2. 由S 2S m =T 3得123m 2=1+q +q 2,整理得q 2+q +1-4m 2=0. 因为Δ=1-4⎝ ⎛⎭⎪⎫1-4m 2≥0,所以m 2≤163.因为m ∈N *,所以m =1或m =2.当m =1时,q =-13-12(舍去)或q =13-12.当m =2时,q =0或q =-1(均舍去). 综上,q =13-12.探究提高 解决等差数列与等比数列的综合问题,既要善于综合运用等差数列与等比数列的相关知识求解,更要善于根据具体问题情境具体分析,寻找解题的突破口.【训练1】(2017·济南模拟)已知数列{a n }是公差不为零的等差数列,其前n 项和为S n ,满足S 5-2a 2=25,且a 1,a 4,a 13恰为等比数列{b n }的前三项. (1)求数列{a n },{b n }的通项公式; (2)设T n 是数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n a n +1的前n 项和,是否存在k ∈N *,使得等式1-2T k =1b k成立?若存在,求出k 的值;若不存在,请说明理由. 解 (1)设等差数列{a n }的公差为d (d ≠0), ∴⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫5a 1+5×42d -2(a 1+d )=25,(a 1+3d )2=a 1(a 1+12d ),解得a 1=3,d =2,∴a n =2n +1. ∵b 1=a 1=3,b 2=a 4=9,∴等比数列{b n }的公比q =3,∴b n =3n . (2)不存在.理由如下:∵1a n a n +1=1(2n +1)(2n +3)=12⎝⎛⎭⎪⎫12n +1-12n +3, ∴T n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17+…+⎝ ⎛⎭⎪⎫12n +1-12n +3=12⎝ ⎛⎭⎪⎫13-12n +3, ∴1-2T k =23+12k +3(k ∈N *),易知数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫12k +3为单调递减数列,∴23<1-2T k ≤1315,又1b k=13k ∈⎝ ⎛⎦⎥⎤0,13,∴不存在k ∈N *,使得等式1-2T k =1b k成立.热点二 数列的通项与求和(规范解答)数列的通项与求和是高考必考的热点题型,求通项属于基本问题,常涉及与等差、等比的定义、性质、基本量运算.求和问题关键在于分析通项的结构特征,选择合适的求和方法.常考求和方法有:错位相减法、裂项相消法、分组求和法等. 【例2】(满分12分)(2015·湖北卷)设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q ,已知b 1=a 1,b 2=2,q =d ,S 10=100. (1) 求数列{a n },{b n }的通项公式;(2) 当d >1时,记c n =a nb n,求数列{c n }的前n 项和T n .满分解答 (1)解 由题意有⎩⎨⎧10a 1+45d =100,a 1d =2,即⎩⎨⎧2a 1+9d =20,a 1d =2,…………2分 解得⎩⎨⎧a 1=1,d =2或⎩⎪⎨⎪⎧a 1=9,d =29.…………4分故⎩⎨⎧a n =2n -1,b n =2n -1或⎩⎪⎨⎪⎧a n =19(2n +79),b n =9·⎝ ⎛⎭⎪⎫29n -1.…………6分(2)解 由d >1,知a n =2n -1,b n =2n -1, 故c n =2n -12n -1,…………7分于是T n =1+32+522+723+924+…+2n -12n -1,①12T n =12+322+523+724+925+…+2n -12n .②…………8分 ①-②可得12T n =2+12+122+…+12n -2-2n -12n …………10分 =3-2n +32n ,…………11分 故T n =6-2n +32n -1.…………12分❶由题意列出方程组得2分; ❷解得a 1与d 得2分,漏解得1分; ❸正确导出a n ,b n 得2分,漏解得1分; ❹写出c n 得1分;❺把错位相减的两个式子,按照上下对应好,再相减,就能正确地得到结果,本题就得满分,否则就容易出错,丢掉一些分数.用错位相减法解决数列求和的模板第一步:(判断结构)若数列{a n ·b n }是由等差数列{a n }与等比数列{b n }(公比q )的对应项之积构成的,则可用此法求和. 第二步:(乘公比)设{a n ·b n }的前n 项和为T n ,然后两边同乘以q . 第三步:(错位相减)乘以公比q 后,向后错开一位,使含有q k (k ∈N *)的项对应,然后两边同时作差. 第四步:(求和)将作差后的结果求和,从而表示出T n .【训练2】(2017·苏北四市联考)已知数列{a n }满足2a n +1=a n +a n +2+k (n ∈N *,k ∈R ),且a 1=2,a 3+a 5=-4.(1)若k =0,求数列{a n }的前n 项和S n ; (2)若a 4=-1,求数列{a n }的通项公式a n .解 (1)当k =0时,2a n +1=a n +a n +2,即a n +2-a n +1=a n +1-a n ,所以数列{a n }是等差数列.设数列{a n }的公差为d ,则⎩⎨⎧a 1=2,2a 1+6d =-4,解得⎩⎪⎨⎪⎧a 1=2,d =-43.所以S n =na 1+n (n -1)2d =2n +n (n -1)2×⎝ ⎛⎭⎪⎫-43=-23n 2+83n .(2)由题意得2a 4=a 3+a 5+k ,即-2=-4+k ,所以k =2. 所以2a 2=a 1+a 3+2,2a 3=a 2+a 4+2,又a 4=2a 3-a 2-2=3a 2-2a 1-6,所以a 2=3, 由2a n +1=a n +a n +2+2得(a n +2-a n +1)-(a n +1-a n )=-2,所以数列{a n +1-a n }是以a 2-a 1=1为首项,-2为公差的等差数列.所以a n +1-a n =-2n +3,当n ≥2时,有a n -a n -1=-2(n -1)+3, 于是,a n -1-a n -2=-2(n -2)+3, a n -2-a n -3=-2(n -3)+3, ……a 3-a 2=-2×2+3, a 2-a 1=-2×1+3,叠加得a n -a 1=-2(1+2+…+(n -1))+3(n -1)(n ≥2), 所以a n =-2×n (n -1)2+3(n -1)+2=-n 2+4n -1(n ≥2), 又当n =1时,a 1=2也适合,所以数列{a n }的通项公式为a n =-n 2+4n -1,n ∈N *. 热点三 数列的综合应用热点3.1 数列与不等式的综合问题数列与不等式知识相结合的考查方式主要有三种:一是判断数列问题中的一些不等关系;二是以数列为载体,考查不等式的恒成立问题;三是考查与数列问题有关的不等式的证明.在解决这些问题时,如果是证明题要灵活选择不等式的证明方法,如比较法、综合法、分析法等.如果是解不等式问题,要使用不等式的各种不同解法,如数轴法、因式分解法等.【例3-1】(2017·泰州月考)设各项均为正数的数列{a n }的前n 项和为S n ,满足a 2n +1=4S n +4n +1,n ∈N *,且a 2,a 5,a 14恰好是等比数列{b n }的前三项.(1)求数列{a n },{b n }的通项公式;(2)记数列{b n }的前n 项和为T n ,若对任意的n ∈N *,⎝ ⎛⎭⎪⎫T n +32k ≥3n -6恒成立,求实数k 的取值范围.解 (1)当n ≥2时,4S n -1=a 2n -4(n -1)-1, 所以4a n =4S n -4S n -1=a 2n +1-a 2n -4, 所以a 2n +1=a 2n +4a n +4=(a n +2)2,因为a n >0,所以a n +1=a n +2,所以当n ≥2时,{a n }是以2为公差的等差数列. 因为a 2,a 5,a 14构成等比数列,所以a 25=a 2·a 14,即(a 2+6)2=a 2·(a 2+24),解得a 2=3, 由条件可知,4a 1=a 22-5=4,所以a 1=1.因为a 2-a 1=3-1=2,所以数列{a n }是首项a 1=1,公差d =2的等差数列. 所以数列{a n }的通项公式为a n =2n -1. 因为a 5=9,所以a 5a 2=3,所以数列{b n }的通项公式为b n =3n . (2)T n =b 1(1-q n )1-q =3(1-3n )1-3=3n +1-32.因为⎝ ⎛⎭⎪⎫3n +1-32+32k ≥3n -6对n ∈N *恒成立, 所以k ≥2n -43n 对n ∈N *恒成立.令c n =2n -43n ,则c n -c n -1=2n -43n -2n -63n -1=-2(2n -7)3n(n ≥2,n ∈N *), 当n ≤3时,c n >c n -1;当n ≥4时,c n <c n -1, 所以(c n )max =c 3=227.故k ≥227.探究提高 数列中不等式问题的处理方法:(1)函数法:即构造函数,通过函数的单调性、极值等得出关于正实数的不等式,通过对关于正实数的不等式特殊赋值得出数列中的不等式.(2)放缩法:数列中不等式可以通过对中间过程或最后的结果放缩得到. (3)比较法:作差或者作商比较法.【训练3-1】(2017·镇江调研)设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=2S n +n +1(n ∈N *). (1)求数列{a n }的通项公式; (2)若b n =na n +1-a n,数列{b n }的前n 项和为T n ,n ∈N *,证明:T n <2.(1)解 由S n +1=2S n +n +1得,当n ≥2时, S n =2S n -1+n ,则S n +1-S n =2(S n -S n -1)+1. 所以a n +1=2a n +1,所以a n +1+1=2(a n +1), 即a n +1+1a n +1=2(n ≥2), 又因为S 2=2S 1+2,a 1=S 1=1,所以a 2=3,所以a 2+1a 1+1=2,所以a n +1=2n ,即a n =2n -1(n ∈N *).(2)证明 因为a n =2n-1,所以b n =n (2n +1-1)-(2n -1)=n 2n +1-2n =n2n ,所以T n =12+222+323+…+n2n , 所以12T n =122+223+…+n -12n +n2n +1,所以T n =2⎝ ⎛⎭⎪⎫12+122+123+…+12n -n 2n +1=2-12n -1-n 2n <2.热点3.2 数列中的探索性问题处理探索性问题的一般方法是:假设题中的数学对象存在或结论成立或其中的一部分结论成立,然后在这个前提下进行逻辑推理.若由此导出矛盾,则否定假设,否则,给出肯定结论,其中反证法在解题中起着重要的作用.还可以根据已知条件建立恒等式,利用等式恒成立的条件求解.【例3-2】(2017·南京调研)已知等差数列{a n }的前n 项和为S n ,且2a 5-a 3=13,S 4=16.(1)求数列{a n }的前n 项和S n ;(2)设T n =∑ni =1(-1)i a i ,若对一切正整数n ,不等式λT n <[a n +1+(-1)n +1a n ]·2n -1恒成立,求实数λ的取值范围;(3)是否存在正整数m ,n (n >m >2),使得S 2,S m -S 2,S n -S m 成等比数列?若存在,求出所有的m ,n ;若不存在,请说明理由. 解 (1)设数列{a n }的公差为d . 因为2a 5-a 3=13,S 4=16.所以⎩⎨⎧2(a 1+4d )-(a 1+2d )=13,4a 1+6d =16,解得a 1=1,d =2,所以a n =2n -1,S n =n 2.(2)①当n 为偶数时,设n =2k ,k ∈N *,则T 2k =(a 2-a 1)+(a 4-a 3)+…+(a 2k -a 2k -1)=2k , 代入不等式λT n <[a n +1+(-1)n +1a n ]·2n -1得λ·2k <4k,从而λ<4k2k .设f (k )=4k 2k ,则f (k +1)-f (k )=4k +12(k +1)-4k 2k =4k(3k -1)2k (k +1).因为k ∈N *,所以f (k +1)-f (k )>0,所以f (k )是递增的,所以f (k )min =2,所以λ<2. ②当n 为奇数时,设n =2k -1,k ∈N *, 则T 2k -1=T 2k -(-1)2k a 2k =2k -(4k -1)=1-2k , 代入不等式λT n <[a n +1+(-1)n +1a n ]·2n -1, 得λ·(1-2k )<(2k -1)4k ,从而λ>-4k .因为k ∈N *,所以-4k 的最大值为-4,所以λ>-4. 综上所述,λ的取值范围为(-4,2).(3)假设存在正整数m ,n (n >m >2),使得S 2,S m -S 2,S n -S m 成等比数列,则(S m -S 2)2=S 2·(S n -S m ),即(m 2-4)2=4(n 2-m 2),所以4n 2=(m 2-2)2+12,即4n 2-(m 2-2)2=12, 即(2n -m 2+2)(2n +m 2-2)=12.因为n >m >2,所以n ≥4,m ≥3,所以2n +m 2-2≥15. 因为2n -m 2+2是整数,所以等式(2n -m 2+2)(2n +m 2-2)=12不成立.故不存在正整数m ,n (n >m >2),使得S 2,S m -S 2,S n -S m 成等比数列. 【训练3-2】(2017·南京、盐城质检)已知数列{a n },{b n }满足a 1=3,a n b n =2,b n +1=a n ⎝ ⎛⎭⎪⎫b n -21+a n ,n ∈N *.(1)求证:数列⎩⎨⎧⎭⎬⎫1b n 是等差数列,并求数列{b n }的通项公式;(2)设数列{c n }满足c n =2a n -5,对于给定的正整数p ,是否存在正整数q ,r (p <q <r ),使得1c p ,1c q ,1c r 成等差数列?若存在,试用p 表示q ,r ;若不存在,请说明理由.(1)证明 因为a n b n =2,所以a n =2b n ,则b n +1=a n b n -2a n1+a n =2-4b n 1+2b n=2-4b n +2=2b nb n +2, 所以1b n +1=1b n +12,又a 1=3,所以b 1=23,故⎩⎨⎧⎭⎬⎫1b n 是首项为32,公差为12的等差数列,即1b n=32+(n -1)×12=n +22,所以b n =2n +2.(2)解 由(1)知a n =n +2,所以c n =2a n -5=2n -1. ①当p =1时,c p =c 1=1,c q =2q -1,c r =2r -1, 若1c p ,1c q ,1c r 成等差数列, 则22q -1=1+12r -1,(*) 因为p <q <r ,所以q ≥2,r ≥3,22q -1<1,1+12r -1>1,所以(*)式不成立.②当p ≥2时,若1c p,1c q,1c r成等差数列,则22q -1=12p -1+12r -1,所以12r -1=22q -1-12p-1=4p-2q-1(2p-1)(2q-1),即2r-1=(2p-1)(2q-1)4p-2q-1,所以r=2pq+p-2q4p-2q-1,欲满足题设条件,只需q=2p-1,此时r=4p2-5p+2,因为p≥2,所以q=2p-1>p,r-q=4p2-7p+3=4(p-1)2+p-1>0,即r>q.综上所述,当p=1时,不存在q,r满足题设条件;当p≥2时,存在q=2p-1,r=4p2-5p+2,满足题设条件.热点3.3数列的实际应用数列在实际问题中的应用,要充分利用题中限制条件确定数列的特征,如通项公式、前n项和公式或递推关系式,建立数列模型.【例3-3】某企业的资金每一年都比上一年分红后的资金增加一倍,并且每年年底固定给股东们分红500万元,该企业2010年年底分红后的资金为1 000万元.(1)求该企业2014年年底分红后的资金;(2)求该企业从哪一年开始年底分红后的资金超过32 500万元.解设a n为(2010+n)年年底分红后的资金,其中n∈N*,则a1=2×1 000-500=1 500,a2=2×1 500-500=2 500,…,a n=2a n-1-500(n≥2).∴a n-500=2(a n-1-500)(n≥2),即数列{a n-500}是以a1-500=1 000为首项,2为公比的等比数列,∴a n-500=1 000×2n-1,∴a n=1 000×2n-1+500.(1)∵a4=1 000×24-1+500=8 500,∴该企业2014年年底分红后的资金为8 500万元.(2)由a n>32 500,即2n-1>32,得n>6,∴该企业从2017年开始年底分红后的资金超过32 500万元.【训练3-3】(2017·南京师大附中模拟)为了减少城市公交车的碳排放,优化城市环境,某市计划用若干年时间更换现有的10 000辆燃油型公交车.每更换1辆新车,则淘汰1辆燃油型公交车,更换的新车分别为电力型车、混合动力型车这两种车型,今年初(记为第1年)投入了电力型公交车128辆,混合动力型公交车400辆,计划以后每年电力型车的投入量比上一年增加50%,混合动力型车每年比上一年多投入a 辆.设S n ,T n 分别为前n 年里投入的电力型公交车、混合动力型公交车的总数量.(1)求S n ,T n ;(2)该市计划从今年起,要实现以下的更新目标:用2年的时间至少更新燃油型公交车总量的12%,用5年的时间至少更新燃油型公交车总量的50%,求a 的最小值.解 (1)S n =256⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫32n -1, T n =400n +n (n -1)2a .(2)设前n 年更换的燃油型公交车为A n 辆,则A n =S n +T n =256⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫32n -1+400n +n (n -1)2a , 由题意得⎩⎨⎧ A 2≥1 200,A 5≥5 000,解得⎩⎨⎧a ≥80,a ≥131.2,即a ≥131.2且a ∈N *, 所以a 的最小值为132.(建议用时:80分钟)1.(2015·重庆卷)已知等差数列{a n }满足a 3=2,前3项和S 3=92.(1)求{a n }的通项公式;(2)设等比数列{b n }满足b 1=a 1,b 4=a 15,求{b n }的前n 项和T n .解 (1)设{a n }的公差为d ,则由已知条件得a 1+2d =2,3a 1+3×22d =92,化简得a 1+2d =2,a 1+d =32,解得a 1=1,d =12,故{a n }的通项公式a n =1+n -12,即a n =n +12.(2)由(1)得b 1=1,b 4=a 15=15+12=8.设{b n }的公比为q ,则q 3=b 4b 1=8,从而q =2, 故{b n }的前n 项和T n =b 1(1-q n )1-q =1×(1-2n )1-2=2n -1. 2.(2017·苏州调研)已知等差数列{a n }的前n 项和为S n ,公差d ≠0,且S 3+S 5=50,a 1,a 4,a 13成等比数列.(1)求数列{a n }的通项公式;(2)设⎩⎨⎧⎭⎬⎫b n a n 是首项为1,公比为3的等比数列,求数列{b n }的前n 项和T n .解 (1)依题意得⎩⎪⎨⎪⎧ 3a 1+3×22d +5a 1+4×52d =50,(a 1+3d )2=a 1(a 1+12d ),解得⎩⎨⎧a 1=3,d =2,∴a n =2n +1. (2)∵b n a n =3n -1,∴b n =a n ·3n -1=(2n +1)·3n -1, ∴T n =3+5×3+7×32+…+(2n +1)×3n -1,3T n =3×3+5×32+7×33+…+(2n -1)×3n -1+(2n +1)×3n , 两式相减得,-2T n =3+2×3+2×32+…+2×3n -1-(2n +1)×3n=3+2×3(1-3n -1)1-3-(2n +1)×3n =-2n ×3n , ∴T n =n ×3n .3.(2017·兰州模拟)正项数列{a n }的前n 项和S n 满足:S 2n -(n 2+n -1)S n -(n 2+n )=0.(1)求数列{a n }的通项公式a n ;(2)令b n =n +1(n +2)2a 2n,数列{b n }的前n 项和为T n ,证明:对于任意的n ∈N *,都有T n <564.(1)解 由S 2n -(n 2+n -1)S n -(n 2+n )=0,得[S n -(n 2+n )](S n +1)=0.由于{a n }是正项数列,所以S n >0,S n =n 2+n .于是a 1=S 1=2,当n ≥2时,a n =S n -S n -1=n 2+n -(n -1)2-(n -1)=2n ,又a 1=2=2×1. 综上,数列{a n }的通项a n =2n .(2)证明 由于a n =2n ,b n =n +1(n +2)2a 2n, 则b n =n +14n 2(n +2)2=116⎣⎢⎡⎦⎥⎤1n 2-1(n +2)2. T n =116⎣⎢⎡1-132+122-142+132-152+… ⎦⎥⎤+1(n -1)2-1(n +1)2+1n 2-1(n +2)2 =116⎣⎢⎡⎦⎥⎤1+122-1(n +1)2-1(n +2)2<116⎝ ⎛⎭⎪⎫1+122=564. 所以对于任意的n ∈N *,都有T n <564.4.(2017·泰州模拟)已知数列{a n },{b n }满足2S n =(a n +2)b n ,其中S n 是数列{a n }的前n 项和.(1)若数列{a n }是首项为23,公比为-13的等比数列,求数列{b n }的通项公式;(2)若b n =n ,a 2=3,求数列{a n }的通项公式;(3)在(2)的条件下,设c n =a n b n,求证:数列{c n }中的任意一项总可以表示成该数列其他两项之积.(1)解 因为a n =23⎝ ⎛⎭⎪⎫-13n -1=-2⎝ ⎛⎭⎪⎫-13n , 所以S n =23⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-13n 1-⎝ ⎛⎭⎪⎫-13=12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-13n ,所以b n =2S n a n +2=1-⎝ ⎛⎭⎪⎫-13n -2⎝ ⎛⎭⎪⎫-13n +2=12. (2)解 若b n =n ,则2S n =na n +2n ,①所以2S n +1=(n +1)a n +1+2(n +1),②由②-①得2a n +1=(n +1)a n +1-na n +2,即na n =(n -1)a n +1+2,③当n ≥2时,(n -1)a n -1=(n -2)a n +2,④由③-④得(n -1)a n +1+(n -1)a n -1=2(n -1)a n ,即a n +1+a n -1=2a n ,又由2S 1=a 1+2得a 1=2,所以数列{a n }是首项为2,公差为3-2=1的等差数列, 故数列{a n }的通项公式是a n =n +1.(3)证明 由(2)得c n =n +1n ,对于给定的n ∈N *,若存在k ≠n ,t ≠n ,k ≠t ,k ,t ∈N *,使得c n =c k ·c t ,只需n +1n =k +1k ·t +1t ,即1+1n =⎝ ⎛⎭⎪⎫1+1k ·⎝ ⎛⎭⎪⎫1+1t ,即1n =1k +1t +1kt , 则t =n (k +1)k -n, 取k =n +1,则t =n (n +2),所以对数列{c n }中的任意一项c n =n +1n ,都存在c n +1=n +2n +1和c n 2+2n =n 2+2n +1n 2+2n使得c n =c n +1·c n 2+2n .5.(2017·徐州、宿迁、连云港三市模拟)在数列{a n }中,已知a 1=1,a 2=2,a n +2=⎩⎨⎧a n +2,n =2k -1,3a n ,n =2k(k ∈N *). (1)求数列{a n }的通项公式;(2)求满足2a n +1=a n +a n +2的正整数n 的值;(3)设数列{a n }的前n 项和为S n ,问是否存在正整数m ,n ,使得S 2n =mS 2n -1?若存在,求出所有的正整数对(m ,n );若不存在,请说明理由. 解 (1)由题意,数列{a n }的奇数项是以a 1=1为首项,2为公差的等差数列; 偶数项是以a 2=2为首项,3为公比的等比数列.所以对任意正整数k ,a 2k -1=2k -1,a 2k =2×3k -1.所以数列{a n }的通项公式a n =⎩⎪⎨⎪⎧n ,n =2k -1,2×3n 2-1,n =2k (k ∈N *). (2)当n 为奇数时,由2a n +1=a n +a n +2,得2×2×3n +12-1=n +n +2,所以2×3n -12=n +1,令f (x )=2×3x -12-x -1(x ≥1),由f ′(x )=23×(3)x ×ln 3-1≥23×3×ln 3-1=ln 3-1>0, 可知f (x )在[1,+∞)上是增函数,所以f (x )≥f (1)=0,所以当且仅当n =1时,满足2×3n -12=n +1,即2a 2=a 1+a 3.当n 为偶数时,由2a n +1=a n +a n +2,得2(n +1)=2×3n 2-1+2×3n +22-1,即n +1=3n 2-1+3n 2=4×3n 2-1,上式左边为奇数,右边为偶数,因此不成立.综上,满足2a n +1=a n +a n +2的正整数n 的值为1.(3)存在.S 2n =(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n )=n (1+2n -1)2+2(1-3n )1-3=3n +n 2-1,n ∈N *. S 2n -1=S 2n -a 2n =3n -1+n 2-1.假设存在正整数m ,n ,使得S 2n =mS 2n -1,则3n +n 2-1=m (3n -1+n 2-1),所以3n -1(3-m )=(m -1)(n 2-1),(*)从而3-m ≥0,所以m ≤3,又m ∈N *,所以m =1,2,3.①当m =1时,(*)式左边大于0,右边等于0,不成立.②当m =3时,(*)式左边等于0,所以2(n 2-1)=0,n =1,所以S 2=3S 1. ③当m =2时,(*)式可化为3n -1=n 2-1=(n +1)(n -1), 则存在k 1,k 2∈N ,k 1<k 2,使得n -1=3k 1,n +1=3k 2且k 1+k 2=n -1, 从而3k 2-3k 1=3k 1(3k 2-k 1-1)=2,所以3k 1=1,3k 2-k 1-1=2, 所以k 1=0,k 2-k 1=1,于是n =2,S 4=2S 3.综上,符合条件的正整数对(m ,n )为(2,2),(3,1).6.(2016·江苏卷)记U ={1,2,…,100}.对数列{a n }(n ∈N *)和U 的子集T ,若T =∅,定义S T =0;若T ={t 1,t 2,…,t k },定义S T =at 1+at 2+…+at k .例如:T ={1,3,66}时,S T =a 1+a 3+a 66.现设{a n }(n ∈N *)是公比为3的等比数列,且当T ={2,4}时,S T =30.(1)求数列{a n }的通项公式;(2)对任意正整数k (1≤k ≤100),若T ⊆{1,2,…,k },求证:S T <a k +1;(3)设C ⊆U ,D ⊆U ,S C ≥S D ,求证:S C +S C ∩D ≥2S D .(1)解 当T ={2,4}时,S T =a 2+a 4=a 2+9a 2=30,∴a 2=3,a 1=a 23=1,故a n =a 1q n -1=3n -1. (2)证明 对任意正整数k (1≤k ≤100).由于T ⊆{1,2,…,k },则S T ≤a 1+a 2+a 3+…+a k =1+3+32+…+3k -1=3k -12<3k =a k +1.(3)证明 设A =∁C (C ∩D ),B =∁D (C ∩D ),则A ∩B =∅,S C =S A +S C ∩D ,S D =S B +S C ∩D ,S C +S C ∩D -2S D =S A -2S B ,∴S C +S C ∩D ≥2S D 等价于S A ≥2S B .由条件S C ≥S D 可得S A ≥S B .①若B =∅,则S B =0,所以S A ≥2S B 成立,②若B ≠∅,由S A ≥S B 可知A ≠∅,设A 中的最大元素为I ,B 中的最大元素为m ,若m ≥I +1,则由(2)得S A <S I +1≤a m ≤S B ,矛盾.又∵A ∩B =∅,∴I ≠m ,∴I ≥m +1,∴S B≤a1+a2+…+a m=1+3+32+…+3m-1<a m+12≤a I2≤S A2,即S A>2S B成立.综上所述,S A≥2S B.故S C+S C∩D≥2S D成立.。
(江苏专版)2018年高考数学二轮复习第2部分八大难点突破难点2 立体几何中的探索性与存在性问题学案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((江苏专版)2018年高考数学二轮复习第2部分八大难点突破难点2 立体几何中的探索性与存在性问题学案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(江苏专版)2018年高考数学二轮复习第2部分八大难点突破难点2 立体几何中的探索性与存在性问题学案的全部内容。
难点二立体几何中的探索性与存在性问题(对应学生用书第65页)数学科考试大纲指出,通过考试,让学生提高多种能力,其中空间想象能力是对空间形式的观察、分析、抽象的能力.要在立体几何学习中形成.立体几何中的探索性与存在性问题实质是对线面平行与垂直性质定理的考查.探究性与存在性问题常常是条件不完备的情况下探讨某些结论能否成立,立体几何中的探究性与存在性问题既能够考查学生的空间想象能力,又可以考查学生的意志力及探究的能力.1.对命题条件的探索探索条件,即探索能使结论成立的条件是什么.对命题条件的探索常采用以下三种方法:(1)先猜后证,即先观察与尝试给出条件再给出证明;(2)先通过命题成立的必要条件探索出命题成立的条件,再证明充分性;(3)把几何问题转化为代数问题,探索出命题成立的条件.【例1】如图1,在四棱锥P-ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD=错误!AD,E 为棱AD的中点,异面直线PA与CD所成的角为90°。
在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由.【导学号:56394092】图1[解] 在梯形ABCD中,AB与CD不平行.如图,延长AB,DC,相交于点M(M∈平面PAB),点M即为所求的一个点.理由如下:由已知,知BC∥ED,且BC=ED,所以四边形BCDE是平行四边形,从而CM∥EB.又EB⊂平面PBE,CM⊄平面PBE,所以CM∥平面PBE。
第2讲 等差数列考试要求 1.等差数列的概念,B 级要求;2.等差数列的通项公式与前n 项和公式,C 级要求;3.等差数列与一次函数、二次函数的关系,A 级要求.知 识 梳 理1.等差数列的概念(1)如果一个数列从第二项起,每一项减去它的前一项所得的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示. 数学语言表达式:a n +1-a n =d (n ∈N *,d 为常数),或a n -a n -1=d (n ≥2,d 为常数). (2)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A =a +b2.2.等差数列的通项公式与前n 项和公式(1)若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n =a 1+(n -1)d . 通项公式的推广:a n =a m +(n -m )d (m ,n ∈N *). (2)等差数列的前n 项和公式S n =n a 1+a n 2=na 1+n n -2d (其中n ∈N *,a 1为首项,d 为公差,a n 为第n 项).3.等差数列的有关性质已知数列{a n }是等差数列,S n 是{a n }的前n 项和. (1)若m +n =p +q (m ,n ,p ,q ∈N *),则有a m +a n =a p +a q .(2)等差数列{a n }的单调性:当d >0时,{a n }是递增数列;当d <0时,{a n }是递减数列;当d =0时,{a n }是常数列.(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. (4)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列. 4.等差数列的前n 项和公式与函数的关系S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n .数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数). 5.等差数列的前n 项和的最值在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值.诊 断 自 测1.判断正误(在括号内打“√”或“×”)(1)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( ) (2)等差数列{a n }的单调性是由公差d 决定的.( )(3)已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列.( )(4)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( ) (5)等差数列的前n 项和公式是常数项为0的二次函数.( ) 解析 (4)若公差d =0,则通项公式不是n 的一次函数. (5)若公差d =0,则前n 项和不是二次函数.答案 (1)√ (2)√ (3)√ (4)× (5)× 2.(2016·江苏卷)已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是________.解析 设等差数列{a n }公差为d ,由题意可得:⎩⎪⎨⎪⎧a 1+a 1+d 2=-3,5a 1+5×42d =10,解得⎩⎪⎨⎪⎧a 1=-4,d =3,则a 9=a 1+8d =-4+8×3=20. 答案 203.(2017·盐城模拟)设等差数列{a n }的前n 项和为S n ,若S 3=2a 3,S 5=15,则a 2 016=________. 解析 在等差数列{a n }中,由S 3=2a 3知,3a 2=2a 3,而S 5=15,则a 3=3,于是a 2=2,从而其公差为1,首项为1,因此a n =n ,故a 2 016=2 016. 答案 2 0164.在等差数列{a n }中,a 1=7,公差为d ,前n 项和为S n ,当且仅当n =8时S n 取得最大值,则d 的取值范围为______.解析 由题意知d <0且⎩⎪⎨⎪⎧a 8>0,a 9<0,即⎩⎪⎨⎪⎧7+7d >0,7+8d <0,解得-1<d <-78.答案 ⎝⎛⎭⎪⎫-1,-78 5.(必修5P40习题7改编)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=450,则a 2+a 8=________.解析 由等差数列的性质,得a 3+a 4+a 5+a 6+a 7=5a 5=450,∴a 5=90,∴a 2+a 8=2a 5=180. 答案 180考点一 等差数列基本量的运算【例1】 (1)(2016·北京卷)已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6=________.(2)(2017·盐城模拟)设等差数列{a n }的前n 项和为S n ,S 3=6,S 4=12,则S 6=________. 解析 (1)∵a 3+a 5=2a 4=0,∴a 4=0. 又a 1=6,∴a 4=a 1+3d =0,∴d =-2. ∴S 6=6×6+-2×(-2)=6.(2)法一 设数列{a n }的首项为a 1,公差为d ,由S 3=6,S 4=12,可得⎩⎪⎨⎪⎧S 3=3a 1+3d =6,S 4=4a 1+6d =12,解得⎩⎪⎨⎪⎧a 1=0,d =2,即S 6=6a 1+15d =30.法二 由{a n }为等差数列,故可设前n 项和S n =An 2+Bn ,由S 3=6,S 4=12可得⎩⎪⎨⎪⎧S 3=9A +3B =6,S 4=16A +4B =12,解得⎩⎪⎨⎪⎧A =1,B =-1,即S n =n 2-n ,则S 6=36-6=30.答案 (1)6 (2)30规律方法 (1)等差数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想来解决问题.(2)数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.【训练1】 (2017·南京师大附中模拟)在数列{a n }中,若a 1=-2,且对任意的n ∈N *有2a n+1=1+2a n ,则数列{a n }前10项的和为________.解析 由2a n +1=1+2a n 得a n +1-a n =12,所以数列{a n }是首项为-2,公差为12的等差数列,所以S 10=10×(-2)+-2×12=52. 答案 52考点二 等差数列的判定与证明(典例迁移)【例2】 (经典母题)若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 成等差数列;(2)求数列{a n }的通项公式.(1)证明 当n ≥2时,由a n +2S n S n -1=0, 得S n -S n -1=-2S n S n -1,所以1S n -1S n -1=2,又1S 1=1a 1=2,故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列.(2)解 由(1)可得1S n =2n ,∴S n =12n .当n ≥2时,a n =S n -S n -1=12n-1n -=n -1-n 2n n -=-12n n -.当n =1时,a 1=12不适合上式.故a n=⎩⎪⎨⎪⎧12,n =1,-12n n -,n ≥2.【迁移探究1】 将本例条件“a n +2S n S n -1=0(n ≥2),a 1=12”改为“S n (S n -a n )+2a n =0(n ≥2),a 1=2”,问题不变,试求解.(1)证明 当n ≥2时,a n =S n -S n -1且S n (S n -a n )+2a n =0. ∴S n [S n -(S n -S n -1)]+2(S n -S n -1)=0, 即S n S n -1+2(S n -S n -1)=0. 即1S n -1S n -1=12.又1S 1=1a 1=12. 故数列⎩⎨⎧⎭⎬⎫1S n 是以首项为12,公差为12的等差数列.(2)解 由(1)知1S n =n 2,∴S n =2n,当n ≥2时,a n =S n -S n -1=-2n n -当n =1时,a 1=2不适合上式, 故a n =⎩⎪⎨⎪⎧2,n =1,-2n n -,n ≥2.【迁移探究2】 已知数列{a n }满足2a n -1-a n a n -1=1(n ≥2),a 1=2,证明数列⎩⎨⎧⎭⎬⎫1a n -1是等差数列,并求数列{a n }的通项公式.解 当n ≥2时,a n =2-1a n -1, ∴1a n -1-1a n -1-1=12-1a n -1-1-1a n -1-1=11-1a n -1-1a n -1-1=a n -1a n -1-1-1a n -1-1=a n -1-1a n -1-1=1(常数). 又1a 1-1=1. ∴数列⎩⎨⎧⎭⎬⎫1a n -1是以首项为1,公差为1的等差数列. ∴1a n -1=1+(n -1)×1, ∴a n =n +1n. 规律方法 等差数列的四种判断方法:(1)定义法:对于n ≥2的任意自然数,验证a n -a n -1为同一常数. (2)等差中项法:验证2a n -1=a n +a n -2(n ≥3,n ∈N *)都成立. (3)通项公式法:验证a n =pn +q .(4)前n 项和公式法:验证S n =An 2+Bn .后两种方法只能用来判断是否为等差数列,而不能用来证明等差数列.考点三 等差数列的性质及应用【例3】 (1)(2015·全国Ⅱ卷改编)设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=________.(2)(2017·洛阳统考)设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9=________.(3)已知S n 是等差数列{a n }的前n 项和,若a 1=-2 014,S 2 0142 014-S 2 0082 008=6,则S 2 017=________.解析 (1)∵{a n }为等差数列,∴a 1+a 5=2a 3,由a 1+a 3+a 5=3得3a 3=3,则a 3=1,∴S 5=a 1+a 52=5a 3=5.(2)由{a n }是等差数列,得S 3,S 6-S 3,S 9-S 6为等差数列. 即2(S 6-S 3)=S 3+(S 9-S 6), 得到S 9-S 6=2S 6-3S 3=45.(3)由等差数列的性质可得⎩⎨⎧⎭⎬⎫S n n 也为等差数列.设其公差为d .则S 2 0142 014-S 2 0082 008=6d =6,∴d =1.故S 2 0172 017=S 11+2 016d =-2 014+2 016=2, ∴S 2 017=2×2 017=4 034. 答案 (1)5 (2)45 (3)4 034规律方法 等差数列的性质是解题的重要工具.(1)在等差数列{a n }中,数列 S m ,S 2m -S m ,S 3m -S 2m 也成等差数列. (2)在等差数列{a n }中,数列⎩⎨⎧⎭⎬⎫S n n 也成等差数列.【训练3】 (1)(2017·扬州中学质检)若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列的项数为________.(2)(2015·广东卷)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________. 解析 (1)因为a 1+a 2+a 3=34,a n -2+a n -1+a n =146,a 1+a 2+a 3+a n -2+a n -1+a n =34+146=180,又因为a 1+a n =a 2+a n -1=a 3+a n -2, 所以3(a 1+a n )=180,从而a 1+a n =60, 所以S n =n a 1+a n2=n ×602=390,即n =13.(2)因为{a n }是等差数列,所以a 3+a 7=a 4+a 6=a 2+a 8=2a 5,a 3+a 4+a 5+a 6+a 7=5a 5=25,即a 5=5,a 2+a 8=2a 5=10. 答案 (1)13 (2)10考点四 等差数列前n 项和及其最值【例4】 (1)设数列{a n }的通项公式为a n =2n -10(n ∈N *),则|a 1|+|a 2|+…+|a 15|=________.(2)(2017·衡水月考)等差数列{a n }的前n 项和为S n ,已知a 1=13,S 3=S 11,当S n 最大时,n 的值是________.解析 (1)由a n =2n -10(n ∈N *)知{a n }是以-8为首项,2为公差的等差数列,又由a n =2n -10≥0得n ≥5,∴n ≤5时,a n ≤0,当n >5时,a n >0,∴|a 1|+|a 2|+…+|a 15|=-(a 1+a 2+a 3+a 4)+(a 5+a 6+…+a 15)=20+100=130.(2)法一 由S 3=S 11,得a 4+a 5+…+a 11=0,根据等差数列的性质,可得a 7+a 8=0.根据首项等于13可推知这个数列递减,从而得到a 7>0,a 8<0,故n =7时S n 最大.法二 由S 3=S 11,可得3a 1+3d =11a 1+55d ,把a 1=13代入,得d =-2,故S n =13n -n (n -1)=-n 2+14n .根据二次函数的性质,知当n =7时S n 最大.法三 根据a 1=13,S 3=S 11,知这个数列的公差不等于零,且这个数列的和是先递增后递减.根据公差不为零的等差数列的前n 项和是关于n 的二次函数,以及二次函数图象的对称性,可得只有当n =3+112=7时,S n 取得最大值.答案 (1)130 (2)7规律方法 求等差数列前n 项和的最值,常用的方法:(1)利用等差数列的单调性,求出其正负转折项;(2)利用性质求出其正负转折项,便可求得和的最值;(3)将等差数列的前n 项和S n =An 2+Bn (A ,B 为常数)看作二次函数,根据二次函数的性质求最值.【训练4】 (2017·长春质检)设等差数列{a n }的前n 项和为S n ,a 1>0且a 6a 5=911,则当S n 取最大值时,n 的值为________. 解析 由a 6a 5=911,得S 11=S 9,即a 10+a 11=0,根据首项a 1>0可推知这个数列递减,从而a 10>0,a 11<0,故n =10时,S n 最大. 答案 10[思想方法]1.在解有关等差数列的基本量问题时,可通过列关于a 1,d 的方程组进行求解. 2.证明等差数列要用定义;另外还可以用等差中项法,通项公式法,前n 项和公式法判定一个数列是否为等差数列.3.等差数列性质灵活使用,可以大大减少运算量. [易错防范]1.用定义法证明等差数列应注意“从第2项起”,如证明了a n +1-a n =d (n ≥2)时,应注意验证a 2-a 1是否等于d ,若a 2-a 1≠d ,则数列{a n }不为等差数列.2.利用二次函数性质求等差数列前n 项和最值时,一定要注意自变量n 是正整数.基础巩固题组(建议用时:40分钟)一、填空题1.(2017·南京模拟)在等差数列{a n }中,已知a 1+a 7=10,则a 3+a 5=________. 解析 ∵{a n }是等差数列, ∴a 3+a 5=a 1+a 7=10. 答案 102.(2017·南通调研)已知数列{a n }是等差数列,a 1+a 7=-8,a 2=2,则数列{a n }的公差d=________.解析 法一 由题意可得⎩⎪⎨⎪⎧a 1+a 1+6d =-8,a 1+d =2,解得a 1=5,d =-3.法二 a 1+a 7=2a 4=-8,∴a 4=-4, ∴a 4-a 2=-4-2=2d ,∴d =-3. 答案 -33.(2015·陕西卷)中位数为1 010的一组数构成等差数列,其末项为2 015,则该数列的首项为________.解析 设该数列的首项为a 1,根据等差数列的性质可得a 1+2 015=2×1 010,从而a 1=5. 答案 54.已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________. 解析 ∵S 10,S 20-S 10,S 30-S 20成等差数列, ∴2(S 20-S 10)=S 10+S 30-S 20, ∴40=10+S 30-30,∴S 30=60. 答案 605.(2017·徐州、宿迁、连云港模拟)在等差数列{a n }中,a 1+3a 8+a 15=120,则3a 9-a 11的值为________.解析 由a 1+3a 8+a 15=5a 8=120,得a 8=24,故3a 9-a 11=3(a 1+8d )-(a 1+10d )=2a 1+14d =2(a 1+7d )=2a 8=48. 答案 486.设数列{a n },{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,则a 37+b 37=________. 解析 设{a n },{b n }的公差分别为d 1,d 2,则(a n +1+b n +1)-(a n +b n )=(a n +1-a n )+(b n +1-b n )=d 1+d 2,∴{a n +b n }为等差数列,又a 1+b 1=a 2+b 2=100, ∴{a n +b n }为常数列,∴a 37+b 37=100. 答案 1007.(2017·泰安模拟)设等差数列{a n }的前n 项和为S n ,若a 2=-11,a 5+a 9=-2,则当S n 取最小值时,n =________.解析 设等差数列{a n }的首项为a 1,公差为d ,由⎩⎪⎨⎪⎧a 2=-11,a 5+a 9=-2,得⎩⎪⎨⎪⎧a 1+d =-11,2a 1+12d =-2,解得⎩⎪⎨⎪⎧a 1=-13,d =2.∴a n =-15+2n .由a n =-15+2n ≤0,解得n ≤152.又n 为正整数,∴当S n 取最小值时,n =7. 答案 78.正项数列{a n }满足a 1=1,a 2=2,2a 2n =a 2n +1+a 2n -1(n ∈N *,n ≥2),则a 7=________. 解析 由2a 2n =a 2n +1+a 2n -1(n ∈N *,n ≥2),可得数列{a 2n }是等差数列,公差d =a 22-a 21=3,首项a 21=1,所以a 2n =1+3(n -1)=3n -2,∴a n =3n -2,∴a 7=19. 答案19二、解答题9.(2016·全国Ⅱ卷)等差数列{a n }中,a 3+a 4=4,a 5+a 7=6. (1)求{a n }的通项公式;(2)设b n =[a n ],求数列{b n }的前10项和,其中[x ]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2.解 (1)设数列{a n }首项为a 1,公差为d ,由题意有⎩⎪⎨⎪⎧2a 1+5d =4,a 1+5d =3.解得⎩⎪⎨⎪⎧a 1=1,d =25.所以{a n }的通项公式为a n =2n +35. (2)由(1)知,b n =⎣⎢⎡⎦⎥⎤2n +35.当n =1,2,3时,1≤2n +35<2,b n =1;当n =4,5时,2≤2n +35<3,b n =2;当n =6,7,8时,3≤2n +35<4,b n =3;当n =9,10时,4≤2n +35<5,b n =4.所以数列{b n }的前10项和为1×3+2×2+3×3+4×2=24.10.已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数. (1)证明:a n +2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由. (1)证明 由题设知,a n a n +1=λS n -1,a n +1a n +2=λS n +1-1. 两式相减得a n +1(a n +2-a n )=λa n +1. 由于a n +1≠0,所以a n +2-a n =λ.(2)解 由题设知,a 1=1,a 1a 2=λS 1-1,可得a 2=λ-1. 由(1)知,a 3=λ+1. 令2a 2=a 1+a 3,解得λ=4. 故a n +2-a n =4,由此可得{a 2n -1}是首项为1,公差为4的等差数列,a 2n -1=4n -3; {a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1. 所以a n =2n -1,a n +1-a n =2.因此存在λ=4,使得数列{a n }为等差数列.能力提升题组 (建议用时:20分钟)11.(2017·东北三省四市联考)《莱因德纸草书》是世界上最古老的数学著作之一.书中有一道这样的题目:把100个面包分给5个人,使每人所得成等差数列,且使较大的三份之和的17是较小的两份之和,则最小的一份为________. 解析 依题意,设这100份面包所分成的五份由小到大依次为a -2m ,a -m ,a ,a +m ,a +2m ,则有⎩⎪⎨⎪⎧5a =100,a +a +m+a +2m =a -2m +a -m ,解得a =20,m =11a 24,a -2m =a 12=53,即其中最小一份为53.答案 5312.(2017·泰州模拟)已知正项等差数列{a n }的前n 项和为S n ,若S 12=24,则a 6·a 7的最大值为________.解析 在等差数列{a n }中,∵S 12=6(a 6+a 7)=24,∴a 6+a 7=4,令x >0,y >0,由基本不等式可得x ·y ≤⎝⎛⎭⎪⎫x +y 22,当且仅当x =y 时“=”成立.又a 6>0,a 7>0,∴a 6·a 7≤⎝ ⎛⎭⎪⎫a 6+a 722=4,当且仅当a 6=a 7=2时,“=”成立.即a 6·a 7的最大值为4. 答案 413.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意自然数n 都有S n T n =2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4的值为________.解析 ∵{a n },{b n }为等差数列, ∴a 9b 5+b 7+a 3b 8+b 4=a 92b 6+a 32b 6=a 9+a 32b 6=a 6b 6.∵S 11T 11=a 1+a 11b 1+b 11=2a 62b 6=2×11-34×11-3=1941, ∴a 6b 6=1941. 答案 194114.(2014·江苏卷)设数列{a n }的前n 项和为S n .若对任意的正整数n ,总存在正整数m ,使得S n =a m ,则称{a n }是“H 数列”.(1)若数列{a n }的前n 项和S n =2n (n ∈N *),证明:{a n }是“H 数列”;(2)设{a n }是等差数列,其首项a 1=1,公差d <0,若{a n }是“H 数列”,求d 的值;(3)证明:对任意的等差数列{a n },总存在两个“H 数列”{b n }和{c n },使得a n =b n +c n (n ∈N *)成立.(1)证明 首先a 1=S 1=2,当n ≥2时,a n =S n -S n -1=2n -2n -1=2n -1,所以a n =⎩⎪⎨⎪⎧ 2,n =1,2n -1,n ≥2,所以对任意的n ∈N *,S n =2n是数列{a n }中的n +1项,因此数列{a n }是“H 数列”.(2)解 由题意a n =1+(n -1)d ,S n =n +n n -2d ,数列{a n }是“H 数列”,则存在k ∈N *,使n +n n -2d =1+(k -1)d ,k =n -1d +n n -2+1,由于n n -2∈N *,又k ∈N *,则n -1d∈Z 对一切正整数n 都成立,所以d =-1. (3)证明 首先,若d n =bn (b 是常数),则数列{d n }前n 项和为S n =n n +2b 是数列{d n }中的第n n +2项,因此{d n }是“H 数列”,对任意的等差数列{a n },a n =a 1+(n -1)d (d是公差),设b n =na 1,c n =(d -a 1)(n -1),则a n =b n +c n ,而数列{b n },{c n }都是“H 数列”,证毕.。
专项限时集训(二)立体几何中的探索性与存在性问题(对应学生用书第115页)(限时:60分钟)1.(本小题满分14分)(南京市、盐城市2017届高三第一次模拟)如图3,在直三棱柱ABC-A1B1C1中,BC⊥AC,D,E分别是AB,AC的中点.图3(1)求证:B1C1∥平面A1DE;(2)求证:平面A1DE⊥平面ACC1A1.[证明](1)因为D,E分别是AB,AC的中点,所以DE∥BC,2分又因为在三棱柱ABC-A1B1C1中,B1C1∥BC,所以B1C1∥DE. 4分又B1C1⊄平面A1DE,DE⊂平面A1DE,所以B1C1∥平面A1DE. 6分(2)在直三棱柱ABC-A1B1C1中,CC1⊥底面ABC,又DE⊂底面ABC,所以CC1⊥DE.8分又BC⊥AC,DE∥BC,所以DE⊥AC,10分又CC1,AC⊂平面ACC1A1,且CC1∩AC=C,所以DE⊥平面ACC1A1.12分又DE⊂平面A1DE,所以平面A1DE⊥平面ACC1A1. 14分2.(本小题满分14分)如图4所示,已知在直四棱柱ABCD-A1B1C1D1中,AD⊥DC,AB∥DC,DC=DD1=2AD=2AB =2.图4(1)求证:DB⊥平面B1BCC1;(2)设E是DC上一点,试确定E的位置,使得D1E∥平面A1BD,并说明理由.[解](1)因为AB∥DC,AD⊥DC,所以AB⊥AD,在Rt△ABD中,AB=AD=1,所以BD=2,易求BC=2,4分因为CD=2,所以BD⊥BC.又BD⊥BB1,B1B∩BC=B,所以BD⊥平面B1BCC1. 6分(2)DC的中点为E点.如图所示,连接BE,因为DE∥AB,DE=AB,所以四边形ABED是平行四边形. 8分所以AD∥BE.又AD∥A1D1,所以BE∥A1D1,10分所以四边形A1D1EB是平行四边形,所以D1E∥A1B. 12分因为D1E⊄平面A1BD,所以D1E∥平面A1BD.14分3.(本小题满分14分)(苏北四市(淮安、宿迁、连云港、徐州)2017届高三上学期期中)如图5, 在正三棱柱ABC -A1B1C1中,已知D,E分别为BC,B1C1的中点,点F在棱CC1上,且EF⊥C1D.求证:图5(1)直线A1E∥平面ADC1;(2)直线EF⊥平面ADC1.【导学号:56394093】[证明](1)连接ED,因为D,E分别为BC,B1C1的中点,所以B1E∥BD且B1E=BD,所以四边形B 1BDE 是平行四边形,2分所以BB 1∥DE 且BB 1=DE ,又BB 1∥AA 1且BB 1=AA 1, 所以AA 1∥DE 且AA 1=DE , 所以四边形AA 1ED 是平行四边形,4分所以A 1E ∥AD ,又因为A 1E ⊄平面ADC 1,AD ⊂平面ADC 1, 所以直线A 1E ∥平面ADC 1.7分(2)在正三棱柱ABC -A 1B 1C 1中,BB 1⊥平面ABC , 又AD ⊂平面ABC ,所以AD ⊥BB 1,又△ABC 是正三角形,且D 为BC 的中点,所以AD ⊥BC , 9分又BB 1,BC ⊂平面B 1BCC 1,BB 1∩BC =B , 所以AD ⊥平面B 1BCC 1,又EF ⊂平面B 1BCC 1,所以AD ⊥EF ,11分又EF ⊥C 1D ,C 1D ,AD ⊂平面ADC 1,C 1D ∩AD =D , 所以直线EF ⊥平面ADC 1.14分4.(本小题满分14分)(镇江市2017届高三上学期期末)在长方体ABCD -A 1B 1C 1D 1中,AB =BC =EC =12AA 1.图6(1)求证:AC 1∥平面BDE ; (2)求证:A 1E ⊥平面BDE .[证明] (1)连接AC 交BD 于点O ,连接OE .在长方体ABCD -A 1B 1C 1D 1中,四边形ABCD 为正方形,点O 为AC 的中点,2分AA 1∥CC 1且AA 1=CC 1,由EC =12AA 1,则EC =12CC 1,即点E 为CC 1的中点,于是在△CAC 1中,AC 1∥OE . 4分 又因为OE ⊂平面BDE ,AC 1⊄平面BDE .所以AC 1∥平面BDE .6分(2)连接OA 1,根据垂线定理,可得OA 1⊥DB ,OE ⊥DB ,OA 1∩OE =O ,∴平面A 1OE ⊥DB . 可得A 1E ⊥DB . 8分∵E 为CC 1的中点,设AB =BC =EC =12AA 1=a ,∴BE =2a ,A 1E =3a ,A 1B =5a , ∵A 1B 2=A 1E 2+BE 2, ∴A 1E ⊥EB .12分∵EB ⊂平面BDE ,BD ⊂平面BDE ,EB ∩BD =B , ∴A 1E ⊥平面BDE .14分 5.(本小题满分16分)(苏北四市(徐州、淮安、连云港、宿迁)2017届高三上学期期末)如图7,在四棱锥E -ABCD 中,平面EAB ⊥平面ABCD ,四边形ABCD 为矩形,EA ⊥EB ,点M ,N 分别是AE ,CD 的中点.图7求证:(1)直线MN ∥平面EBC ; (2)直线EA ⊥平面EBC .[证明] (1)取BE 中点F ,连接CF ,MF , 又M 是AE 的中点,所以MF 綊12AB ,又N 是矩形ABCD 边CD 的中点,所以NC 綊12AB ,所以MF 綊NC ,所以四边形MNCF 是平行四边形, 4分所以MN ∥CF ,又MN ⊄平面EBC ,CF ⊂平面EBC , 所以MN ∥平面EBC .8分(2)在矩形ABCD 中,BC ⊥AB ,又平面EAB ⊥平面ABCD ,平面ABCD ∩平面EAB =AB ,BC ⊂平面ABCD , 所以BC ⊥平面EAB ,12分又EA ⊂平面EAB ,所以BC ⊥EA ,又EA ⊥EB ,BC ∩EB =B ,EB ,BC ⊂平面EBC ,所以EA⊥平面EBC. 16分6.(本小题满分16分)(无锡市2017届高三上学期期末)在四棱锥P-ABCD中,底面ABCD为矩形,AP⊥平面PCD,E,F分别为PC,AB的中点.求证:图8(1)平面PAD⊥平面ABCD;(2)EF∥平面PAD.[证明](1)∵AP⊥平面PCD,CD⊂平面PCD,∴AP⊥CD.∵ABCD为矩形,∴AD⊥CD,2分又∵AP∩AD=A,AP⊂平面PAD,AD⊂平面PAD,∴CD⊥平面PAD,4分∵CD⊂平面ABCD,∴平面PAD⊥平面ABCD. 6分(2)连接AC、BD交于O,连接OE,OF.∵ABCD为矩形,∴O为AC中点,∵E为PC中点,∴OE∥PA.∵OE⊄平面PAD,PA⊂平面PAD,∴OE∥平面PAD,10分同理OF∥平面PAD,12分∵OE∩OF=O,∴平面OEF∥平面PAD,14分∵EF⊂平面OEF,∴EF∥平面PAD. 16分7.(本小题满分16分)(扬州市2017届高三上学期期末)如图9,在四棱锥P-ABCD中,底面ABCD是矩形,点E、F分别是棱PC和PD的中点.图9(1)求证:EF∥平面PAB;(2)若AP=AD,且平面PAD⊥平面ABCD,证明:AF⊥平面PCD.【导学号:56394094】[证明](1)因为点E、F分别是棱PC和PD的中点,所以EF∥CD,又在矩形ABCD中,AB∥CD,所以EF∥AB,3分又AB⊂平面PAB,EF⊄平面PAB,所以EF∥平面PAB. 6分(2)在矩形ABCD中,AD⊥CD,又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,CD⊂平面ABCD,所以CD⊥平面PAD,又AF⊂面PAD,所以CD⊥AF.①因为PA=AD且F是PD的中点,所以AF⊥PD,②由①②及PD⊂平面PCD,CD⊂平面PCD,PD∩CD=D,所以AF⊥平面PCD. 16分。
第2讲 等差数列考试要求 1.等差数列的概念,B 级要求;2.等差数列的通项公式与前n 项和公式,C 级要求;3.等差数列与一次函数、二次函数的关系,A 级要求.知 识 梳 理1.等差数列的概念(1)如果一个数列从第二项起,每一项减去它的前一项所得的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示. 数学语言表达式:a n +1-a n =d (n ∈N *,d 为常数),或a n -a n -1=d (n ≥2,d 为常数). (2)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A =a +b2.2.等差数列的通项公式与前n 项和公式(1)若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n =a 1+(n -1)d . 通项公式的推广:a n =a m +(n -m )d (m ,n ∈N *). (2)等差数列的前n 项和公式S n =n a 1+a n 2=na 1+n n -2d (其中n ∈N *,a 1为首项,d 为公差,a n 为第n 项).3.等差数列的有关性质已知数列{a n }是等差数列,S n 是{a n }的前n 项和. (1)若m +n =p +q (m ,n ,p ,q ∈N *),则有a m +a n =a p +a q .(2)等差数列{a n }的单调性:当d >0时,{a n }是递增数列;当d <0时,{a n }是递减数列;当d =0时,{a n }是常数列.(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. (4)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列. 4.等差数列的前n 项和公式与函数的关系S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n .数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数). 5.等差数列的前n 项和的最值在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值.诊 断 自 测1.判断正误(在括号内打“√”或“×”)(1)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( ) (2)等差数列{a n }的单调性是由公差d 决定的.( )(3)已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列.( )(4)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( ) (5)等差数列的前n 项和公式是常数项为0的二次函数.( ) 解析 (4)若公差d =0,则通项公式不是n 的一次函数. (5)若公差d =0,则前n 项和不是二次函数.答案 (1)√ (2)√ (3)√ (4)× (5)× 2.(2016·江苏卷)已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是________.解析 设等差数列{a n }公差为d ,由题意可得:⎩⎪⎨⎪⎧a 1+a 1+d 2=-3,5a 1+5×42d =10,解得⎩⎪⎨⎪⎧a 1=-4,d =3,则a 9=a 1+8d =-4+8×3=20. 答案 203.(2017·盐城模拟)设等差数列{a n }的前n 项和为S n ,若S 3=2a 3,S 5=15,则a 2 016=________. 解析 在等差数列{a n }中,由S 3=2a 3知,3a 2=2a 3,而S 5=15,则a 3=3,于是a 2=2,从而其公差为1,首项为1,因此a n =n ,故a 2 016=2 016. 答案 2 0164.在等差数列{a n }中,a 1=7,公差为d ,前n 项和为S n ,当且仅当n =8时S n 取得最大值,则d 的取值范围为______.解析 由题意知d <0且⎩⎪⎨⎪⎧a 8>0,a 9<0,即⎩⎪⎨⎪⎧7+7d >0,7+8d <0,解得-1<d <-78.答案 ⎝⎛⎭⎪⎫-1,-78 5.(必修5P40习题7改编)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=450,则a 2+a 8=________.解析 由等差数列的性质,得a 3+a 4+a 5+a 6+a 7=5a 5=450,∴a 5=90,∴a 2+a 8=2a 5=180. 答案 180考点一 等差数列基本量的运算【例1】 (1)(2016·北京卷)已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6=________.(2)(2017·盐城模拟)设等差数列{a n }的前n 项和为S n ,S 3=6,S 4=12,则S 6=________. 解析 (1)∵a 3+a 5=2a 4=0,∴a 4=0. 又a 1=6,∴a 4=a 1+3d =0,∴d =-2. ∴S 6=6×6+-2×(-2)=6.(2)法一 设数列{a n }的首项为a 1,公差为d ,由S 3=6,S 4=12,可得⎩⎪⎨⎪⎧S 3=3a 1+3d =6,S 4=4a 1+6d =12,解得⎩⎪⎨⎪⎧a 1=0,d =2,即S 6=6a 1+15d =30.法二 由{a n }为等差数列,故可设前n 项和S n =An 2+Bn ,由S 3=6,S 4=12可得⎩⎪⎨⎪⎧S 3=9A +3B =6,S 4=16A +4B =12,解得⎩⎪⎨⎪⎧A =1,B =-1,即S n =n 2-n ,则S 6=36-6=30.答案 (1)6 (2)30规律方法 (1)等差数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想来解决问题.(2)数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.【训练1】 (2017·南京师大附中模拟)在数列{a n }中,若a 1=-2,且对任意的n ∈N *有2a n+1=1+2a n ,则数列{a n }前10项的和为________.解析 由2a n +1=1+2a n 得a n +1-a n =12,所以数列{a n }是首项为-2,公差为12的等差数列,所以S 10=10×(-2)+-2×12=52. 答案 52考点二 等差数列的判定与证明(典例迁移)【例2】 (经典母题)若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 成等差数列;(2)求数列{a n }的通项公式.(1)证明 当n ≥2时,由a n +2S n S n -1=0, 得S n -S n -1=-2S n S n -1,所以1S n -1S n -1=2,又1S 1=1a 1=2,故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列.(2)解 由(1)可得1S n =2n ,∴S n =12n .当n ≥2时,a n =S n -S n -1=12n-1n -=n -1-n 2n n -=-12n n -.当n =1时,a 1=12不适合上式.故a n=⎩⎪⎨⎪⎧12,n =1,-12n n -,n ≥2.【迁移探究1】 将本例条件“a n +2S n S n -1=0(n ≥2),a 1=12”改为“S n (S n -a n )+2a n =0(n ≥2),a 1=2”,问题不变,试求解.(1)证明 当n ≥2时,a n =S n -S n -1且S n (S n -a n )+2a n =0. ∴S n [S n -(S n -S n -1)]+2(S n -S n -1)=0, 即S n S n -1+2(S n -S n -1)=0. 即1S n -1S n -1=12.又1S 1=1a 1=12. 故数列⎩⎨⎧⎭⎬⎫1S n 是以首项为12,公差为12的等差数列.(2)解 由(1)知1S n =n 2,∴S n =2n,当n ≥2时,a n =S n -S n -1=-2n n -当n =1时,a 1=2不适合上式, 故a n =⎩⎪⎨⎪⎧2,n =1,-2n n -,n ≥2.【迁移探究2】 已知数列{a n }满足2a n -1-a n a n -1=1(n ≥2),a 1=2,证明数列⎩⎨⎧⎭⎬⎫1a n -1是等差数列,并求数列{a n }的通项公式.解 当n ≥2时,a n =2-1a n -1, ∴1a n -1-1a n -1-1=12-1a n -1-1-1a n -1-1=11-1a n -1-1a n -1-1=a n -1a n -1-1-1a n -1-1=a n -1-1a n -1-1=1(常数). 又1a 1-1=1. ∴数列⎩⎨⎧⎭⎬⎫1a n -1是以首项为1,公差为1的等差数列. ∴1a n -1=1+(n -1)×1, ∴a n =n +1n. 规律方法 等差数列的四种判断方法:(1)定义法:对于n ≥2的任意自然数,验证a n -a n -1为同一常数. (2)等差中项法:验证2a n -1=a n +a n -2(n ≥3,n ∈N *)都成立. (3)通项公式法:验证a n =pn +q .(4)前n 项和公式法:验证S n =An 2+Bn .后两种方法只能用来判断是否为等差数列,而不能用来证明等差数列.考点三 等差数列的性质及应用【例3】 (1)(2015·全国Ⅱ卷改编)设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=________.(2)(2017·洛阳统考)设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9=________.(3)已知S n 是等差数列{a n }的前n 项和,若a 1=-2 014,S 2 0142 014-S 2 0082 008=6,则S 2 017=________.解析 (1)∵{a n }为等差数列,∴a 1+a 5=2a 3,由a 1+a 3+a 5=3得3a 3=3,则a 3=1,∴S 5=a 1+a 52=5a 3=5.(2)由{a n }是等差数列,得S 3,S 6-S 3,S 9-S 6为等差数列. 即2(S 6-S 3)=S 3+(S 9-S 6), 得到S 9-S 6=2S 6-3S 3=45.(3)由等差数列的性质可得⎩⎨⎧⎭⎬⎫S n n 也为等差数列.设其公差为d .则S 2 0142 014-S 2 0082 008=6d =6,∴d =1.故S 2 0172 017=S 11+2 016d =-2 014+2 016=2, ∴S 2 017=2×2 017=4 034. 答案 (1)5 (2)45 (3)4 034规律方法 等差数列的性质是解题的重要工具.(1)在等差数列{a n }中,数列 S m ,S 2m -S m ,S 3m -S 2m 也成等差数列. (2)在等差数列{a n }中,数列⎩⎨⎧⎭⎬⎫S n n 也成等差数列.【训练3】 (1)(2017·扬州中学质检)若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列的项数为________.(2)(2015·广东卷)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________. 解析 (1)因为a 1+a 2+a 3=34,a n -2+a n -1+a n =146,a 1+a 2+a 3+a n -2+a n -1+a n =34+146=180,又因为a 1+a n =a 2+a n -1=a 3+a n -2, 所以3(a 1+a n )=180,从而a 1+a n =60, 所以S n =n a 1+a n2=n ×602=390,即n =13.(2)因为{a n }是等差数列,所以a 3+a 7=a 4+a 6=a 2+a 8=2a 5,a 3+a 4+a 5+a 6+a 7=5a 5=25,即a 5=5,a 2+a 8=2a 5=10. 答案 (1)13 (2)10考点四 等差数列前n 项和及其最值【例4】 (1)设数列{a n }的通项公式为a n =2n -10(n ∈N *),则|a 1|+|a 2|+…+|a 15|=________.(2)(2017·衡水月考)等差数列{a n }的前n 项和为S n ,已知a 1=13,S 3=S 11,当S n 最大时,n 的值是________.解析 (1)由a n =2n -10(n ∈N *)知{a n }是以-8为首项,2为公差的等差数列,又由a n =2n -10≥0得n ≥5,∴n ≤5时,a n ≤0,当n >5时,a n >0,∴|a 1|+|a 2|+…+|a 15|=-(a 1+a 2+a 3+a 4)+(a 5+a 6+…+a 15)=20+100=130.(2)法一 由S 3=S 11,得a 4+a 5+…+a 11=0,根据等差数列的性质,可得a 7+a 8=0.根据首项等于13可推知这个数列递减,从而得到a 7>0,a 8<0,故n =7时S n 最大.法二 由S 3=S 11,可得3a 1+3d =11a 1+55d ,把a 1=13代入,得d =-2,故S n =13n -n (n -1)=-n 2+14n .根据二次函数的性质,知当n =7时S n 最大.法三 根据a 1=13,S 3=S 11,知这个数列的公差不等于零,且这个数列的和是先递增后递减.根据公差不为零的等差数列的前n 项和是关于n 的二次函数,以及二次函数图象的对称性,可得只有当n =3+112=7时,S n 取得最大值.答案 (1)130 (2)7规律方法 求等差数列前n 项和的最值,常用的方法:(1)利用等差数列的单调性,求出其正负转折项;(2)利用性质求出其正负转折项,便可求得和的最值;(3)将等差数列的前n 项和S n =An 2+Bn (A ,B 为常数)看作二次函数,根据二次函数的性质求最值.【训练4】 (2017·长春质检)设等差数列{a n }的前n 项和为S n ,a 1>0且a 6a 5=911,则当S n 取最大值时,n 的值为________. 解析 由a 6a 5=911,得S 11=S 9,即a 10+a 11=0,根据首项a 1>0可推知这个数列递减,从而a 10>0,a 11<0,故n =10时,S n 最大. 答案 10[思想方法]1.在解有关等差数列的基本量问题时,可通过列关于a 1,d 的方程组进行求解. 2.证明等差数列要用定义;另外还可以用等差中项法,通项公式法,前n 项和公式法判定一个数列是否为等差数列.3.等差数列性质灵活使用,可以大大减少运算量. [易错防范]1.用定义法证明等差数列应注意“从第2项起”,如证明了a n +1-a n =d (n ≥2)时,应注意验证a 2-a 1是否等于d ,若a 2-a 1≠d ,则数列{a n }不为等差数列.2.利用二次函数性质求等差数列前n 项和最值时,一定要注意自变量n 是正整数.基础巩固题组(建议用时:40分钟)一、填空题1.(2017·南京模拟)在等差数列{a n }中,已知a 1+a 7=10,则a 3+a 5=________. 解析 ∵{a n }是等差数列, ∴a 3+a 5=a 1+a 7=10. 答案 102.(2017·南通调研)已知数列{a n }是等差数列,a 1+a 7=-8,a 2=2,则数列{a n }的公差d =________.解析 法一 由题意可得⎩⎪⎨⎪⎧a 1+a 1+6d=-8,a 1+d =2,解得a 1=5,d =-3.法二 a 1+a 7=2a 4=-8,∴a 4=-4, ∴a 4-a 2=-4-2=2d ,∴d =-3. 答案 -33.(2015·陕西卷)中位数为1 010的一组数构成等差数列,其末项为2 015,则该数列的首项为________.解析 设该数列的首项为a 1,根据等差数列的性质可得a 1+2 015=2×1 010,从而a 1=5. 答案 54.已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________. 解析 ∵S 10,S 20-S 10,S 30-S 20成等差数列, ∴2(S 20-S 10)=S 10+S 30-S 20, ∴40=10+S 30-30,∴S 30=60. 答案 605.(2017·徐州、宿迁、连云港模拟)在等差数列{a n }中,a 1+3a 8+a 15=120,则3a 9-a 11的值为________.解析 由a 1+3a 8+a 15=5a 8=120,得a 8=24,故3a 9-a 11=3(a 1+8d )-(a 1+10d )=2a 1+14d =2(a 1+7d )=2a 8=48. 答案 486.设数列{a n },{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,则a 37+b 37=________. 解析 设{a n },{b n }的公差分别为d 1,d 2,则(a n +1+b n +1)-(a n +b n )=(a n +1-a n )+(b n +1-b n )=d 1+d 2,∴{a n +b n }为等差数列,又a 1+b 1=a 2+b 2=100, ∴{a n +b n }为常数列,∴a 37+b 37=100. 答案 1007.(2017·泰安模拟)设等差数列{a n }的前n 项和为S n ,若a 2=-11,a 5+a 9=-2,则当S n 取最小值时,n =________.解析 设等差数列{a n }的首项为a 1,公差为d ,由⎩⎪⎨⎪⎧a 2=-11,a 5+a 9=-2,得⎩⎪⎨⎪⎧a 1+d =-11,2a 1+12d =-2,解得⎩⎪⎨⎪⎧a 1=-13,d =2.∴a n =-15+2n .由a n =-15+2n ≤0,解得n ≤152.又n 为正整数,∴当S n 取最小值时,n =7. 答案 78.正项数列{a n }满足a 1=1,a 2=2,2a 2n =a 2n +1+a 2n -1(n ∈N *,n ≥2),则a 7=________. 解析 由2a 2n =a 2n +1+a 2n -1(n ∈N *,n ≥2),可得数列{a 2n }是等差数列,公差d =a 22-a 21=3,首项a 21=1,所以a 2n =1+3(n -1)=3n -2,∴a n =3n -2,∴a 7=19. 答案19二、解答题9.(2016·全国Ⅱ卷)等差数列{a n }中,a 3+a 4=4,a 5+a 7=6. (1)求{a n }的通项公式;(2)设b n =[a n ],求数列{b n }的前10项和,其中[x ]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2.解 (1)设数列{a n }首项为a 1,公差为d ,由题意有⎩⎪⎨⎪⎧2a 1+5d =4,a 1+5d =3.解得⎩⎪⎨⎪⎧a 1=1,d =25.所以{a n }的通项公式为a n =2n +35. (2)由(1)知,b n =⎣⎢⎡⎦⎥⎤2n +35.当n =1,2,3时,1≤2n +35<2,b n =1;当n =4,5时,2≤2n +35<3,b n =2;当n =6,7,8时,3≤2n +35<4,b n =3;当n =9,10时,4≤2n +35<5,b n =4.所以数列{b n }的前10项和为1×3+2×2+3×3+4×2=24.10.已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数. (1)证明:a n +2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由. (1)证明 由题设知,a n a n +1=λS n -1,a n +1a n +2=λS n +1-1. 两式相减得a n +1(a n +2-a n )=λa n +1. 由于a n +1≠0,所以a n +2-a n =λ.(2)解 由题设知,a 1=1,a 1a 2=λS 1-1,可得a 2=λ-1. 由(1)知,a 3=λ+1. 令2a 2=a 1+a 3,解得λ=4. 故a n +2-a n =4,由此可得{a 2n -1}是首项为1,公差为4的等差数列,a 2n -1=4n -3; {a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1. 所以a n =2n -1,a n +1-a n =2.因此存在λ=4,使得数列{a n }为等差数列.能力提升题组 (建议用时:20分钟)11.(2017·东北三省四市联考)《莱因德纸草书》是世界上最古老的数学著作之一.书中有一道这样的题目:把100个面包分给5个人,使每人所得成等差数列,且使较大的三份之和的17是较小的两份之和,则最小的一份为________. 解析 依题意,设这100份面包所分成的五份由小到大依次为a -2m ,a -m ,a ,a +m ,a +2m ,则有⎩⎪⎨⎪⎧5a =100,a +a +m+a +2m =a -2m +a -m ,解得a =20,m =11a 24,a -2m =a 12=53,即其中最小一份为53.答案 5312.(2017·泰州模拟)已知正项等差数列{a n }的前n 项和为S n ,若S 12=24,则a 6·a 7的最大值为________.解析 在等差数列{a n }中,∵S 12=6(a 6+a 7)=24,∴a 6+a 7=4,令x >0,y >0,由基本不等式可得x ·y ≤⎝⎛⎭⎪⎫x +y 22,当且仅当x =y 时“=”成立.又a 6>0,a 7>0,∴a 6·a 7≤⎝ ⎛⎭⎪⎫a 6+a 722=4,当且仅当a 6=a 7=2时,“=”成立.即a 6·a 7的最大值为4. 答案 413.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意自然数n 都有S n T n =2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4的值为________.解析 ∵{a n },{b n }为等差数列, ∴a 9b 5+b 7+a 3b 8+b 4=a 92b 6+a 32b 6=a 9+a 32b 6=a 6b 6.∵S 11T 11=a 1+a 11b 1+b 11=2a 62b 6=2×11-34×11-3=1941, ∴a 6b 6=1941. 答案 194114.(2014·江苏卷)设数列{a n }的前n 项和为S n .若对任意的正整数n ,总存在正整数m ,使得S n =a m ,则称{a n }是“H 数列”.(1)若数列{a n }的前n 项和S n =2n (n ∈N *),证明:{a n }是“H 数列”;(2)设{a n }是等差数列,其首项a 1=1,公差d <0,若{a n }是“H 数列”,求d 的值;(3)证明:对任意的等差数列{a n },总存在两个“H 数列”{b n }和{c n },使得a n =b n +c n (n ∈N *)成立.(1)证明 首先a 1=S 1=2,当n ≥2时,a n =S n -S n -1=2n -2n -1=2n -1,所以a n =⎩⎪⎨⎪⎧ 2,n =1,2n -1,n ≥2,所以对任意的n ∈N *,S n =2n是数列{a n }中的n +1项,因此数列{a n }是“H 数列”.(2)解 由题意a n =1+(n -1)d ,S n =n +n n -2d ,数列{a n }是“H 数列”,则存在k ∈N *,使n +n n -2d =1+(k -1)d ,k =n -1d +n n -2+1,由于n n -2∈N *,又k ∈N *,则n -1d∈Z 对一切正整数n 都成立,所以d =-1. (3)证明 首先,若d n =bn (b 是常数),则数列{d n }前n 项和为S n =n n +2b 是数列{d n }中的第n n +2项,因此{d n }是“H 数列”,对任意的等差数列{a n },a n =a 1+(n -1)d (d是公差),设b n =na 1,c n =(d -a 1)(n -1),则a n =b n +c n ,而数列{b n },{c n }都是“H 数列”,证毕.。
难点六数列中的证明、探索性和存在性、不定方程的解等综合问题
(对应学生用书第72页)
近几年的高考试卷中经常出现以数列为载体的证明、探索等综合问题,这类问题不仅考查学生的分析问题解决问题的能力,以及探索能力,而且给学生提供了创新思维的空间.
1.等差数列、等比数列的证明问题
有关证明、判断数列是等差(等比)数列的主要证明方法有:定义法、性质法.定义法:
用定义法判断一个数列是等差数列,常采用的两个式子a
n -a
n-1
=d和a
n+1
-a
n
=d有差别,前者必须加上“n≥2”,否则n=1时a
无意义;在等比数列中一
样有:①n≥2时,有
a
n
a
n-1
=…=q(常数q≠0);②n∈N*时,有
a
n+1
a
n
=…=q(常数
q≠0).性质法:
a n +a
n+2
=2a
n+1
⇔{a
n
}是等差数列,a
n
a
n+2
=(a
n+1
)2(a
n
≠0)⇔{a
n
}是等比数列,这
是证明数列{a
n
}为等差(等比)数列的另一种主要方法.
【例1】(苏北四市淮安、宿迁、连云港、徐州)2017届高三上学期期中)在数列{a
n
}
中,已知a
1=
1
3
,a
n+1
=
1
3
a
n
-
2
3n+1
,n∈N*,设S
n
为{a
n
}的前n项和.
(1)求证:数列{3n a
n
}是等差数列;
(2)求S
n
;
(3)是否存在正整数p,q,r(p<q<r),使S
p ,S
q
,S
r
成等差数列?若存在,求
出p,q,r的值;若不存在,说明理由.
[解] (1)证明:因为a
n+1=
1
3
a
n
-
2
3n+1
,n∈N*,所以3n+1a
n+1
-3n a
n
=-2,
又因为a
1=
1
3
,所以31·a
1
=1,
所以{3n a
n
}是首项为1,公差为-2的等差数列.
(2)由(1)知3n a
n =1+(n-1)·(-2)=3-2n,所以a
n
=(3-2n)
⎝
⎛
⎭
⎪
⎫1
3
n,
所以S n =1·⎝ ⎛⎭⎪⎫131+(-1)·⎝ ⎛⎭⎪⎫132+(-3)·⎝ ⎛⎭⎪⎫133+…+(3-2n)·⎝ ⎛⎭⎪⎫13n
,
所以13S n =1·⎝ ⎛⎭⎪⎫132+(-1)·⎝ ⎛⎭⎪⎫133+…+(5-2n)·⎝ ⎛⎭⎪⎫13n +(3-2n)·⎝ ⎛⎭⎪⎫
13n +1,
两式相减得23S n =13-2⎣⎢⎡⎦⎥⎤
⎝ ⎛⎭⎪⎫132+⎝ ⎛⎭⎪⎫133+…+⎝ ⎛⎭⎪⎫13n -(3-2n)·⎝ ⎛⎭⎪⎫13n +1
=13-2⎣⎢⎢⎡⎦
⎥
⎥⎤
19×1-⎝ ⎛⎭⎪⎫
13n -1
1-1
3+(2n -3)·⎝ ⎛⎭⎪⎫13n +1
=2n ·⎝ ⎛⎭
⎪⎫13n +1
,
所以S n =n
3
n .
(3)假设存在正整数p ,q ,r(p <q <r),使S p ,S q ,S r 成等差数列,则2S q =S p +S r ,即2q 3q =p 3p +r
3
r .
由于当n ≥2时,a n =(3-2n)⎝ ⎛⎭⎪⎫13n
<0,所以数列{S n }单调递减.
又p <q ,所以p ≤q -1且q 至少为2,所以p 3p ≥q -1
3q -1,
q -13q -1-2q 3q =q -3
3
q . ①当q ≥3时,p 3p ≥q -13q -1≥2q 3q ,又r
3r >0,
所以p 3p +r 3r >2q
3q ,等式不成立.
②当q =2时,p =1,
所以49=13+r 3r ,所以r 3r =1
9,所以r =3({S n }单调递减,解唯一确定).
综上可知,p ,q ,r 的值为1,2,3. 2.数列中探索与存在性问题
数列探索性问题主要表现为存在型,解答的一般策略:先假设所探求对象存在或结论成立,以此假设为前提条件进行运算或逻辑推理,若由此推出矛盾,则
假设不成立,从而得到“否定”的结论,即不存在.若推理不出现矛盾,能求得在范围内的数值或图形,就得到肯定的结论,即得到存在的结果.而要确定范围内的数值,则往往涉及不定方程的正整数解问题.
【例2】 (2017·江苏省盐城市高考数学三模)已知数列{a n },{b n }都是单调递增数列,若将这两个数列的项按由小到大的顺序排成一列(相同的项视为一项),则得到一个新数列{c n }.
(1)设数列{a n },{b n }分别为等差、等比数列,若a 1=b 1=1,a 2=b 3,a 6=b 5,求c 20;
(2)设{a n }的首项为1,各项为正整数,b n =3n
,若新数列{c n }是等差数列,求数列{c n }的前n 项和S n ;
(3)设b n =q n -1(q 是不小于2的正整数),c 1=b 1,是否存在等差数列{a n },使得
对任意的n ∈N *
,在b n 与b n +1之间数列{a n }的项数总是b n ?若存在,请给出一个
满足题意的等差数列{a n };若不存在,请说明理由. 【56394105】
[解] (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q ,
由题意得,⎩⎨⎧
1+d =q
2
1+5d =q 4
,
解得d =0或3,因数列{a n },{b n }单调递增,
所以d >0,q >1, 所以d =3,q =2, 所以a n =3n -2,b n =2n -1.
因为a 1=b 1=1,a 2=b 3,a 6=b 5,b 7>a 20. ∴c 20=a 17=49.
(2)设等差数列{c n }的公差为d ,又a 1=1,且b n =3n , 所以c 1=1,所以c n =dn +1-d.
因为b 1=3是{c n }中的项,所以设b 1=c n ,即d(n -1)=2. 当n ≥4时,解得d =2
n -1
<1,不满足各项为正整数;
当b 1=c 3=3时,d =1,此时c n =n ,只需取a n =n ,而等比数列{b n }的项都是等差数列{a n }中的项,所以S n =
n n +1
2
;当b 1=c 2=3时,。